岩石学报  2021, Vol. 37 Issue (1): 162-184, doi: 10.18654/1000-0569/2021.01.11   PDF    
鄂尔多斯地块基底研究新的思考与认识
张成立1, 苟龙龙1, 白海峰2, 胡漾1, 武春英2     
1. 前寒武纪研究中心, 大陆动力学国家重点实验室, 西北大学, 西安 710069;
2. 中国石油长庆油田分公司勘探研究院, 西安 710018
摘要: 鄂尔多斯地块基底岩芯岩石组合、花岗片麻岩的锆石U-Pb年龄、Hf同位素和全岩Nd同位素组成以及航磁异常和地壳速度结构特征表明,该地块中部沿大同-华池基底断裂带存在一航磁异常梯度带,沿该带南缘发育一条2.2~2.0Ga古元古代弧岩浆活动带,并经历了1.96~1.85Ga的变质作用改造,与东缘中部带古元古代中晚期构造演化过程一样,可能代表该地块内部古元古代中晚期形成的一条构造活动带。该活动带以北为东西向展布的正航磁异常带,基底由混合岩化的变泥质和杂砂质片麻岩、片岩及大理岩和石英岩等变质表壳岩和一些花岗片麻岩类构成,记录了新太古代末~2.50Ga和古元古代中期2.2~2.0Ga两期岩浆活动及古元古代末期1.95~1.85Ga变质作用等地质事件,为一主要由新太古代陆壳物质构成的陆块。活动带南部为北东向不规则正、负相间航磁异常带,基底除少量副变质岩外,多为花岗片麻岩类,记录了古元古代中期2.2~2.0Ga岩浆热事件以及1.95~1.85Ga的变质作用改造,除新太古代物质外,还存在古、中太古代陆壳物质,是由一定规模中太古代和部分古太古代陆壳物质以及新太古代新生陆壳添加构成的古老地块。因此,鄂尔多斯地块中部沿大同-华池断裂带成为分割该地块一条重要分界带,其北部地块与其北缘孔兹岩带构成同一构造带,可能代表新太古代陆壳基底之上于古元古代晚期发育的一条大陆边缘活动带。南部则为古、中太古代陆壳与新太古新生陆壳增生而成的古老地块,代表鄂尔多斯地块古老基底陆壳的主体。
关键词: 基底组成与性质    构造分区    鄂尔多斯地块    华北克拉通    
New thinking and understanding for the researches on the basement of Ordos Block
ZHANG ChengLi1, GOU LongLong1, BAI HaiFeng2, HU Yang1, WU ChunYing2     
1. Precambrian Research Center, State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China;
2. Research Institute of Petroleum Exploration and Development, Changqing Oil Field Branch, Petro China Company Limited, Xi'an 710018, China
Abstract: Based on the comprehensive petrographic observations for the basement samples from deep drilling cores and their zircon U-Pb geochronological data, Hf isotopes and whole rock Nd isotopes of the granitic gneisses as well as aeromagnetic anomaly and velocity distribution of upper crust, a 2.2~2.0Ga arc-magmatism belt is recognized along the NE trending Datong-Huachi fault which goes with the southern fringe of a gradient belt of aeromagnetic anomaly in the basement of central Ordos Block. This arc-magmatism belt had been experienced 1.95~1.85Ga metamorphism similar to those of central part (Trans-North China Orogen) of North China Craton, leading to a two-fold subdivision of the basement of Ordos Block into the northern and southern parts, rspectively. Of which, the northern part displays an EW trending distribution zone of aeromagnetic anomaly, and contains a basement composed by supracrustal rocks including metapelite and metagraywackes gneisses, schists, marbles and quartzites associated with strong migmatization as well as granitic gneisses. It is a terrane with a Neoarchean basement that underwent multiple phases of 2.5Ga and 2.2~2.0Ga magmatic and 1.95~1.85Ga metamorphic events. The southern part is characterized by a NE trending distribution zone of aeromagnetic anomaly and a basement with the reports of strong modification of the 2.2~2.0Ga granitic magmatism and a 1.95~1.85Ga metamorphism, suggesting an old block with a basement composed of Paleo-to Meso-Archean and Neoarchean juvenal crustal materials. Consequently, we proposed that the Datong-Huachi fault is most likely a main boundary separated the basement of the Ordos Block. The northern part likely constructed an activity belt of continental margin formed on the Neoarchean basement together with Konderite belt to the north during Late Paleoproterozoic. While, the southern part is a block with a basement composed of some Paleo-to Mesoarchean and Neoarchean crust, most likely representing a main part of Ordos Block basement.
Key words: Basement component and nature    Tectonic division    Ordos Block    North China Craton    

克拉通基底岩石是大陆地壳形成与增生演化的产物,记录了陆壳早期演化的大量信息,其物质建造、构造属性及地质事件的甄别是探讨地壳早期形成演化的重要基础,也是确定基底不同地质单元性质和早期大陆构造格局的关键,长期受到地质学者的关注,并成为早寒武纪地质演化研究的热点和前沿。与全球其它克拉通相比,华北克拉通是中国面积最大和最为古老的陆块,经历了复杂、多样的前寒武纪演化,记录了大量早期陆壳演化的重要信息。经过数十年的研究,在华北克拉通基底构造单元划分、拼合过程及重大构造岩浆-变质事件及构造背景等方面已取得显著进展,并涌现出多种构造单元划分方案和构造演化模式。鄂尔多斯地块是华北克拉通西部重要组成部分,其东达五台-吕梁-中条山,西抵贺兰-六盘山,南、北缘分别以秦岭和阴山山脉所围限,面积达25万平方千米,约占整个华北克拉通面积的1/5,具典型稳定陆块二元结构,是华北克拉通现今低热流、高波速、少地震,具厚达200km岩石圈(邱瑞照等, 2004)的最稳定部分。前人无论在华北克拉通基底构造单元的划分、不同微陆块拼合及其地壳形成和构造演化模式的建立上,均认为鄂尔多斯地块是华北克拉通西部具有太古代陆壳基底的重要古老地块(张抗, 1982; Zhao et al. , 2001, 2005; Zhai, 2011)。然而,由于鄂尔多斯地块基底被巨厚的中元古代以来沉积盖层覆盖、无基底岩石出露,长期以来有关其基底组成、性质及构造特征等的认识均是基于地球物理资料的分析与解释以及与周缘邻区出露的前寒武纪结晶岩系对比推断所获得(张抗, 1982; 贾进斗等, 1997; 邓军等, 2005; 王涛等, 2007; Gao et al. , 2015; 包红平等,2019),一直缺乏来自该地块基底岩石的直接地质证据的实证与检验。最近,一些学者利用钻入该地块基底为数不多的岩芯样品,识别出多期地质事件(Hu et al. , 2013; Wan et al. , 2013; Zhang et al. , 2015),并对变质作用做了详细研究(Wang et al. , 2014, 2019; Gou et al. , 2016He et al. , 2016),为深入了解该地块基底组成及其演化提供了最为直接的地质证据,明显提高了该地块基底特征和地质演化的认识。尽管如此,目前对该地块基底的地质认识,仍主要是来自基底岩石的地质年代学和变质作用等方面的研究结果,还不能充分证实地球物理资料对地块基底组成和性质的解释,也难以全面认识基底组成、性质和构造属性。基于此,本文充分综合近年来前人有关基底岩石的研究成果,并结合我们最近几年对钻遇鄂尔多斯盆地基底各类片麻岩和盖层长城系沉积岩开展的岩石学及锆石U-Pb年代学、Hf同位素和全岩Sm-Nd同位素多方面的综合研究,限定鄂尔多斯地块基底组成、形成时代及其性质,为深入认识华北克拉通早期地壳生长、演化历史及已有构造演化模式的检验提供关键地质证据和重要约束。

1 鄂尔多斯地块基底构造及岩石类型 1.1 地块基底构造

前人根据华北地区出露的前寒武纪变质基底岩系的地表地质研究,在华北克拉通基底中识别出若干不同的微陆块(Zhao et al. , 2005; Zhao and Zhai, 2013及其引用文献)。Zhai and Santosh(2011)根据不同陆块基底变质岩系的研究成果,归纳划分出胶辽、许昌、迁怀、鄂尔多斯、徐淮、集宁和阿拉善等7个太古宙微陆块。除鄂尔多斯地块外,其它微陆块均有基底岩系出露,它们的组成、性质等也得到相应地块前寒武纪岩石多种地质研究成果的论证与支持。Zhao et al. (2001, 2005)在华北中部确定存在一条形成于~18.5亿年前的古大洋俯冲、闭合形成的古元古代造山带(Trans-North China Orogen),并以此将华北克拉通划分为东、西2个古陆块。最近,万渝生等(2017)根据华北克拉通出露的中、新太古代岩石分布,划分出东、南和中部3个古老陆块,但鄂尔多斯地块基本未被包括在这一划分方案中。一个重要的原因可能是鄂尔多斯地块被巨厚中元古代以来沉积盖层覆盖,其基底组成、形成时代及性质的认识目前主要借助于地球物理资料的解释获得,少有直接来自其基底物质的地质证据的支撑。现有的重、磁及电性研究结果表明,该地块地壳厚约43km,分层简单,上、下地壳速度均匀,少有低速层发育(赵国泽等,2010及其引用文献)。地块内部的磁异常强度及其展布显示为北部东、西向正磁异常和南部北东向正、负磁异常相间的两大磁异常区(王涛等,2007Gao et al. , 2015; Wang et al. , 2015),二者之间沿北东向大同-华池基底断裂北缘出现一显著低幅值负磁异常变化梯度带(图 1),与天池-定边-靖边-子州-临县一线38°N带的电性结构转化带相对应(李晨晶等,2017),因而将其解释为一具壳深性质的大型剪切带(张家声等, 2003),并被认为是一分割该地块基底的重要构造界线(王涛等,2007阮小敏等,2011)。该磁异常梯度带南北的物质介质属性及航磁异常呈现了显著不同,北部东西向中航磁异常到河套地堑之间的下地壳出现低阻层,而38°N带以南则以北东向正、负相间磁异常为特征,地壳整体显示了刚性克拉通高阻特征(李晨晶等,2017),其正磁异常带沿北东向延伸可与地块以东吕梁地区出露的前寒武纪古老变质岩系对应(贾进斗等,1997王涛等,2007Gao et al. , 2015及其引用文献)(图 1)。38°N带北部乌审旗以北伊盟隆起区东、西向高正磁异常区,被认为是高磁异常麻粒岩相变质岩的反映,与地块北缘孔兹岩带麻粒岩相片麻岩类似(伍家善等,1998)。然而,无论是磁异常幅值,还是等值线展布方向及其形态特征,鄂尔多斯地块内部航磁异常明显呈现为几个差异明显的高磁异常和梯度变化带,揭示基底存在几组规模不等、方向不同的断裂(图 1)。因此,依据鄂尔多斯地块重、磁异常、电性及其分布特征反映的构造走向,可将鄂尔多斯地块基底明显区分为北部东西向和中南部北东向延伸的两大基底结构单元,二者之间出现一由北向南逐渐由东西向转变为北东向的负航磁异常带,代表基底南、北两块体间的结合梯度带。

图 1 鄂尔多斯地块及邻区地质简图(图中航磁异常及井位位置据长庆油田石油地质志编写组,2021) Fig. 1 Geological sketch map of Ordos Block and adjacent areas (the aeromagnetic anomalies and locations of wells after WGPGCOF, 2021)
1.2 钻井基底岩芯岩石类型

迄今为止,钻遇鄂尔多斯地块基底岩系的探井已达二十余口,但获取基底岩芯样品的井仅有十余口,而且这些获取基底岩芯的探井分布不均,主要集中在北部伊盟隆起带和大同-华池断裂一线以南地区。其中,北部东西向正航磁异常带伊盟隆起带钻遇基底并获取岩芯的探井有:胜2井、准1井、霍3井、鄂1井、克1井、召探1井及棋探1井;南部华池大同基底断裂以南的北东向正航磁异常带北缘在龙探1井、镇钾1井、米131井和庆深1井等探井获得了基底岩石(图 1),二者之间的负磁异常过渡区不仅钻遇基底探井很少,而且少有探井获得结晶基底岩芯。

北部东西向正航磁异常带区的胜2井是钻遇鄂尔多斯地块结晶基底最北部的探井之一,位于地块伊盟隆起带东北部鄂尔多斯市以北约20km处,在1749~1758m深度获得了灰红色混合岩化黑云母花岗片麻岩(图 2ac),岩石具中粒鳞片粒状变晶结构,片麻状构造,主要矿物组合为:微斜长石及钾长石(~40%)、石英(~28%)、斜长石(~15%)、黑云母(~15%)、白云母(~2%),以及磁铁矿、磷灰石、锆石和独居石等副矿物。长石为半自形板状,不同程度发生绢云母化,黑云母不同程度绿泥石化,并呈细小鳞片定向分布于长石与石英颗粒之间;石英多定向排布呈拉长状(图 2b, d),局部细粒化与片状黑云母成集合体绕长石碎斑定向分布(图 2b),表明经历了糜棱岩化的改造。

图 2 鄂尔多斯地块北部基底岩芯代表性岩石及其显微照片 矿物缩写:Ab-钠长石;Bi-黑云母;Grt-石榴石;Hb-普通角闪石;Kf-钾长石;Mi-微斜长石;Mus-白云母;Pl-斜长石;Qtz-石英;Ser-绢云母;Sill-夕线石 Fig. 2 Photos and micro-photos of the representative rocks from the northern basement of Ordos Block

准1井紧邻胜2井东南,位于鄂尔多斯市东南约50km处,在2520~2525m深度获得了杂色混合岩化石榴子石黑云二长片麻岩,新生长英质脉体与暗色矿物集合定向排列构成片麻理(图 2e),岩石具中粒鳞片粒状变晶结构,主要矿物有石英(~30%)、钾长石(~20%)、斜长石(~20%)、黑云母(~10%)、白云母(~10%)、石榴子石(5%)和绢云母(~5%),石英与长石多为半自形或他形晶,黑云母与白云母成集合体定向排布于长石、石英颗粒之间(图 2f)(Wang et al. , 2019)。

霍3井位于准1井西南约40km处,在2985~2988m深度获得灰色夕线石榴二长片麻岩(图 2g),岩石发生强烈混合岩化,呈现为淡砖红色新生长英质脉体(图 2g),甚至为组分相对均一的花岗岩(图 2i)。岩石显示中细粒鳞片粒状变晶结构(图 2h)和片麻状构造,主要由石英(~30%)、斜长石(~20%)、钾长石(~35%)、黑云母(~10%)、石榴子石(~5%)以及锆石、钛铁矿等副矿物构成(图 2hj)。长石多为半自形晶,不同程度发生绢云母和黝帘石化,黑云母强烈定向分布于板柱状长石和粒状石英颗粒间,同时伴有细小白云母或绢云母矿物(图 2h);石榴子石呈变斑晶,裂隙发育,沿裂隙有绿泥石和绢云母矿物充填(图 2j),个别石榴子石周缘可见堇青石反应边(Wang et al. , 2019)。

鄂1井位于霍3井西北约70km,岩芯取自2796~2797.5m深度,采集到灰白色二长花岗岩(图 2k)和暗灰色角闪二长岩(图 2m),且灰白色花岗岩明显侵入角闪二长岩中(图 2m)。灰白色花岗岩具中粒花岗变晶结构,块状构造,矿物组成为:微斜长石及钾长石(35%~40%)、斜长石(~15%)、石英(~30%)和少量黑云母(3%~5%),副矿物有锆石、磷灰石和不透明矿物。长石多为半自形晶,部分微斜长石发生粘土化,石英基本为他形粒状充填于长石矿物之间,黑云母成细小鳞片状,并多已绿泥石化(图 2l)。角闪二长岩具中细粒粒状变晶结构,块状构造,由微斜长石(~45%)、斜长石(~20%)、角闪石(~20%)和石英(~15%)构成,副矿物由绿帘石,锆石和不透明金属矿物组成。长石矿物为半自形晶,角闪石呈半自形或他形,石英为他形,少量长石略有粘土岩化,角闪石发生绿泥石化(图 2n)。

克1井位于地块西北,北部正航磁异常西部乌海东北部约100km处(图 1),样品取自4038~4041.43m,为灰白色石英岩(图 2o),具粒状变晶结构,块状构造,主要由石英(>95%)构成,部分石英颗粒具有明显的次生加大边,并出现变质矿物典型三连点结构(图 2p)。

召探1井位于东西向正航磁异常南部乌审旗东北约110km处,岩芯取自3515~3519m深度,为灰色二云母片麻岩(图 2q),多见长英质矿物和黑云母矿物集合体长条带状相间定向分布,构成片麻状构造,岩石发育中粒鳞片粒状变晶结构,由板状斜长石(钠长石~35%)、粒状石英(~15%)、片状黑云母(~30%)和白云母(~8%)以及钛铁矿、锆石和独居石等副矿物组成。长石、石英矿物呈自形及半自形晶,部分颗粒发生绢云母化;云母矿物成鳞片状定向排列于长英质矿物之间(图 2r)(Wang et al. , 2019)。

棋探1井是该正航磁异常最西南部探井,位于鄂托克旗西南110km,采样深度为5233m,岩石为暗红灰色石榴夕线黑云片麻岩(图 2s),具斑状和中粗粒鳞片粒状变晶结构,片麻状构造,由钾长石(~25%)、石英(~30%)、黑云母(~15%)、斜长石(~10%)、石榴子石(~8%)、夕线石(~10%)和少量堇青石(< 3%)、白云母及锆石、独居石、金红石、钛铁矿等副矿物构成(图 2t)。长石和石英为半自形或他形晶,黑云母呈褐色片状定向排列,夕线石呈长柱状集合体定向分布基质中,部分也见有被包于钾长石和石英中。石榴子石呈变斑晶出现,内部常包含石英、长石和黑云母等矿物,裂隙多被绿泥石充填,周缘被堇青石取代,继而又被绢云母取代(Gou et al. , 2016)。

地块南部大同-华池断裂以南北东向正航磁异常带区域,在东北部绥德以北的龙探1井、镇钾1井和米131井中获得了基底岩芯(图 1)。其中,位于绥德北西约110km处的龙探1井3085m深度钻遇灰白色黑云二长片麻岩(图 3a),岩石具中粗粒花岗变晶结构,块状构造,由石英(30%~35%)、钾长石(25~30%)、斜长石(~25%)、黑云母(8%~10%)和少量白云母(< 3%)构成,副矿物有锆石、钛铁矿、独居石等。斜长石成半自形短板状,局部绢云母化,钾长石呈板状,不同程度绢云母或粘土化。石英多为他形,定向分布在长石矿物之间,黑云母呈棕红色片状,多成集合体定向分布于长英质矿物之间,个别颗粒有一定绿泥石化(图 3b)。

图 3 鄂尔多斯地块南部基底岩芯代表性岩石及其显微照片 Fig. 3 Photos and micro-photos of the representative rocks from the southern basement of Ordos Block

龙探1井以南约40km处的镇钾1井,在3425.20m和3440.16m分别获得黑云二长花岗片麻岩和夕线黑云母片麻岩(图 3c-e)。黑云二长花岗片麻岩具中粒鳞片粒状变晶结构和块状构造,由钾长石(~35%)、石英(25%)、斜长石(15%)、黑云母(15%)和白云母(10%)构成,斜长石及钾长石为不规则板状,石英呈不规则粒状,云母呈定向排列(图 3c)。夕线黑云母片麻岩,具中粗粒鳞片粒状变晶结构,矿物成分为石英(35~40%)、钾长石(~15%)、斜长石(~12%)、黑云母(18%)、白云母(10%)、夕线石(~5%)及少量石榴子石。其中,长石为不规则板状,发生弱绢云母化,石英为不规则粒状或长条状集合体定向排列,云母和夕线石在一起成集合体定向排列(图 3d, e)(吴素娟等,2015)。

米131井位于镇钾1井东南约40km处,在井深3310m获得黑云母二长片麻岩(图 3f),岩石呈灰白色,强烈混合岩化,显示中粗粒花岗变晶结构,片麻状构造,主要由石英(~25%)、斜长石(~25%)、钾长石(~35%)和黑云母(~15%)等构成,副矿物为锆石和磷灰石等组成。长石呈半自形板状,钾长石多已绢云母化和泥化,部分斜长石局部也发生绢云母化,石英多为他形粒状,黑云母多呈他形片状定向排列于长英质矿物之间(图 3g)。

庆深1井是北东向正航磁异常北缘最西南部钻遇基底并获得基底片麻岩岩芯的探井,位于华池县西南约60km处,在4608~4610m深度钻遇灰色黑云母花岗质片麻岩(图 3h),岩石具中粗粒花岗变晶结构,片麻状构造,由石英(~35%)、钾长石(~50%)、斜长石(<5%)、黑云母(8%~10%)构成,副矿物有锆石、磷灰石、钛铁矿和独居石等。钾长石多为半自形板状,部分发生绢云母化,褐红色黑云母成片状集合体定向分布与长英质矿物之间,个别发生一定程度的绿泥石化(图 3i)。

由前述钻遇基底探井的分布和所获基底岩芯岩石特征不难看出,现有获得鄂尔多斯地块结晶基底岩芯的探井数量不多、钻入结晶基底的深度也有限,而且这些探井的分布非常不均,因而还难以全面反映该地块基底的物质组成。尽管如此,这些探井岩芯的岩石组合特征分析,仍为我们提供了其基底物质最为直接的地质证据。总体来看,鄂尔多斯地块北部和中部地区结晶基底一定深度范围,主要由经历了角闪岩相到麻粒岩相变质的富铝的泥质或杂砂质碎屑岩和少量石英岩及大理岩构成,同时伴有不同程度的混合岩化作用,局部存在花岗质片麻岩类。区域分布上,地块北部基底岩石组合主要为含堇青石石榴夕线黑云二长片麻岩、石榴夕线堇青石黑云二长片麻岩、变粒岩和片岩及大理岩和石英岩类,还发育少量黑云钾长片麻岩、条带状二云母钾长花岗岩和混合片麻岩类,与地块北缘孔兹岩带分布区岩石组合十分类似。中部地区的东部也存在夕线斜长片麻岩、含石墨二长片麻岩以及片麻状黑云花岗岩类,而同属该区的中部(庆深1井地区)仅发现花岗片麻岩类。因此,现有的分布不均、钻入结晶基底有限深度探井岩芯的岩石组合特征揭示,该地块基底上部岩石组合以一套变泥质和杂砂质片麻岩、片岩及大理岩和石英岩建造为主,它们经历了强烈变质改造和混合岩化作用的改造,同时存在一些花岗片麻岩类。

2 讨论 2.1 基底组成

自然界不同组成的岩石,其密度和磁化率各异,表现为正变质岩的磁化率高于副变质岩,基性岩大于酸性岩(张抗,1982),因而不同特征的磁异常区,往往反映不同岩石组合、性质与结构的基岩块体的差异(贾进斗等,1997)。因此,根据地块磁异常强度及展布方向和范围,并结合周缘出露的基岩岩石类型对比分析,可合理推断地块覆盖区基底岩石组合、分布区域,进而预测基底物质组成和分区。鄂尔多斯地块中部,沿北东向大同-华池断裂北缘一线出现显著磁异常梯度带,其南北航磁异常强度、延伸方向和形态差异突出,暗示断裂两侧的基底组成、构造特征也存在差异(王涛等,2007)。断裂北部的伊盟地区EW向航磁正异常带与其北缘线状分布的孔兹岩带展布方向吻合,对应于该带的麻粒岩相岩石组合(伍家善等,1998);南部NE向航磁异常带向北东可延伸到地块东缘的吕梁-阜平-五台地区(贾进斗等,1997)(图 1),地块内外航磁异常强度及展布方向、范围十分一致,使得无论是地质学家还是地球物理学家均认为鄂尔多斯地块基底与其东缘出露的基底岩石类型一样,也由太古宙-古元古界变质岩系构成(张抗, 1982, 1989翟明国和卞爱国,2000; 邓军等,2005王涛等,2007Gao et al. , 2015包洪平等,2019)。

目前的地表地质研究揭示,鄂尔多斯地块北缘与阴山地块之间,由东向西沿集宁-大青山-乌拉山-千里山-贺兰山出露一长达近千千米的孔兹岩带(Zhao et al. , 2001, 2005, 2013),该孔兹岩带由石墨石榴夕线钾长片麻岩、长英质副片麻岩、石英岩及大理岩和少量斜长角闪岩构成(卢良兆等, 1996),其原岩沉积发生于2.0Ga之后(Yin et al. , 2011Dan et al. , 2012),在1.95~1.83Ga经历了麻粒岩相及其后的退变质作用改造(Santosh et al. , 2007, 2009; Yin et al. , 2009, 2011; Guo et al. , 2012Jiao et al. , 2013, 2015; Wan et al. , 2013; 蔡佳等, 2013),同时出现与变质同期的S型花岗岩浆活动(Yin et al. , 2009, 2011; Peng et al. , 2012a; Jiao et al. , 2013; Wang et al. , 2017c, d)。在集宁和乌拉山-大青山等地的孔兹岩带分布区出露新太古代桑干岩群(或兴和岩群)、新太古-古元古代乌拉山岩群和古元古代晚期美岱召岩群等变质表壳岩和变深成岩,其中的桑干岩群由高角闪岩-麻粒岩相变质的镁铁质-中酸性火山沉积岩构成,以透镜状或团块状中色和浅色麻粒岩产出于深成岩或乌拉山岩群中,其原岩可与乌拉山下亚群对比。乌拉山上亚群由麻粒岩相变质的砂岩、大理岩、钙硅酸盐及少量基性岩组成,它们与南部美岱召岩群一起成为该区孔兹岩系的主要组成部分(杨振升等,2000; Wan et al. , 2013)。年代学研究揭示,该区存在2.55~2.45Ga、2.30~2.0Ga、1.96~1.94Ga及1.85~1.82Ga的花岗岩类和2.55~2.50Ga、2.45~2.37Ga、2.06Ga、1.97~1.92Ga及1.84Ga的基性岩类多期岩浆活动的记录,同时伴有~2.5Ga、2.45~2.40Ga和1.95~1.85Ga的变质事件(Santosh et al. , 2007, 2009; Dong et al. , 2013, 2014; Wan et al. , 2013Liu et al. , 2014c, 2017; 钟长汀等,2014),说明该带曾经历新太古代末-古元古代多期地质事件演化而成。

鄂尔多斯地块北部伊盟隆起带EW向航磁异常带钻遇基底探井的多口探井岩芯组成揭示,该区主要由高角闪岩相到麻粒岩相变质的副变质片麻岩和部分花岗片麻岩组成。其中,在棋探1井、霍3井及准1井的片麻岩中存在夕线石、堇青石和石墨等富铝及碳的变质矿物(图 2)(Wang et al. , 2014, 2019; Gou et al. , 2016; He et al. , 2016),代表泥质表壳岩变质产物,它们与克1井中石英岩及大理岩(包红平等,2019)一同构成了与北部孔兹岩带类似的岩石组合,此后经历了峰期温压条件为T=775~825℃,P=6.3~9kbar的中压麻粒岩相高级变质作用(Wang et al. , 2014He et al. , 2016),由其4个世代变质矿物组合温压条件分析,获得与其北缘孔兹岩带类似的等温减压顺时针P-T轨迹(见Gou et al. , 2016, 图 10)。锆石及独居石U-Pb定年揭示存在1.96~1.94Ga和1.9~1.88Ga两组变质年龄(Hu et al. , 2013Wan et al. , 2013; Wang et al. , 2014, 2019; Zhang et al. , 2015; Gou et al. , 2016; He et al. , 2016)(表 1),与北缘乌拉山-大青山和贺兰山等地孔兹岩系中记录的~1.95Ga和~1.87Ga两组变质年龄一致(Yin et al. , 2011; 蔡佳等,2013)。另一方面,棋探1井碎屑锆石年龄谱及其两阶段模式年龄分布,也与孔兹岩带碎屑锆石年龄谱及模式年龄分布范围近乎一致(图 4)。此外,由胜2井和鄂1井中还确定存在~2.5Ga和~2.0Ga的花岗岩浆活动(Zhang et al. , 2015)(表 1),与其北缘孔兹岩带分布区2.55~2.45Ga和2.30~2.0Ga的花岗岩浆事件也相吻合。两个地区岩石组合的类似和所经历的岩浆变质事件的一致性充分表明,鄂尔多斯地块大同-华池断裂以北区域的基底与地块北缘孔兹岩带分布区可以类比,也具有~2.5Ga花岗片麻岩基底和上覆高级变质表壳岩类,并经历了古元古代中晚期2.30~2.0Ga岩浆活动和1.95~1.85Ga的变质改造的演化过程,这说明鄂尔多斯地块内大同-华池断裂以北的伊盟隆起区基底主要由新太古代-古元古代变质表壳岩和花岗片麻岩等构成,并经历了新太古代-古元古代多期岩浆变质事件的改造。

表 1 鄂尔多斯地块基底岩石年龄数据表 Table 1 Age data of rocks from basement of Ordos Block

图 4 鄂尔多斯地块北部棋探1井副片麻岩与孔兹岩带碎屑锆石U-Pb年龄(a、c)及其Hf模式年龄(b、d)分布图 孔兹岩带碎屑锆石数据引自Xia et al., 2006, 2009; Yin et al., 2011Dan et al., 2012 Fig. 4 U-Pb age distribution of detrital zircons from both parageneses in Well Qitan 1 of Ordos Block and Konderite in its northern margin

鄂尔多斯地块东缘由离石断裂分割,与近南北向延伸长达1500km的古元古代构造带相邻,紧邻其东缘由北向南依次在北部出露恒山、五台和阜平岩群,中部吕梁杂岩,向南为中条和太华群等变质岩系,岩石类型为新太古至古元古代TTG片麻岩、表壳岩、镁铁质岩墙及同构造或后构造花岗岩类(Zhao et al. , 2005, 2013)。其中,最北部恒山群出露于滹沱河以北,由2.52~2.48Ga的TTG片麻岩(Kröner et al. , 2005),2.3~2.1Ga花岗片麻岩(Kröner et al. , 2005赵瑞福等, 2011)和2.2~2.1Ga及1.9Ga基性侵入岩(Kröner et al. , 2006; Wang et al. , 2010; Peng et al. , 2012b)及变质表壳岩构成。其南为五台群,是一套形成于2.7~2.5Ga的新太古中、低级变质火山-沉积建造(Wilde, 2004, 2005陈雪等,2015),记录有2.1Ga和1.8Ga两期岩浆活动(Wilde et al. , 1997, 1998; Du et al. , 2013)。阜平岩群由2.52~2.48Ga的TTG片麻岩和2.08~2.02Ga花岗片麻岩以及角闪质岩和钙硅酸岩等组成(Guan et al. , 2002; Tang et al. , 2015)。吕梁地区广泛出露变质表壳岩和片麻状花岗岩,表壳岩包括界河口、吕梁、岚河、野鸡山和黑茶山等群,其中界河口群由角闪岩相变质的富泥质碎屑岩及大理岩和少量斜长角闪岩组成,沉积于2.0Ga之后(万渝生等,2000;刘朝辉等,2013;田辉等,2014)。吕梁群为一套形成于2.2~2.0Ga的浅变质火山-沉积建造(于津海等,1997Liu et al. , 2012, 2014a杜利林等,2012赵娇等,2017)。岚河、野鸡山及黑茶山群形成于2.2~1.87Ga,由碎屑岩夹少量火山岩构成(Liu et al. , 2016胡育华等, 2017)。该区的片麻状花岗岩形成于~2.5Ga、~2.4Ga和2.2~2.0Ga三个主要期次,此后经历了1.95~1.85Ga变质改造和同期岩浆事件(耿元生等,2006Zhao et al. , 2008, 2017, 2018, 2020; 杜利林等,2012Santosh et al. , 2015; 赵娇等,2015)。中条地区涑水杂岩由~2.7Ga(Zhu et al. , 2013)和2.56~2.36Ga(田伟等,2005赵凤清,2006郭丽爽等,2008)两个期次的TTG片麻岩以及2.62~2.41Ga花岗岩类(赵凤清,2006张瑞英等, 2012, 2013)及形成于2.56~2.33Ga的变质表壳岩组成(赵凤清,2006)。绛县群由变泥质岩、火山岩及凝灰质沉积岩组成,形成于2.16~2.19Ga(刘玄等,2015)。中条群为陆源砂泥质-碳酸盐岩夹少量火山岩建造,形成于2.06~2.09Ga(刘玄等,2015)。南部小秦岭地区太华群下部的下太华群由形成于2.91~2.75Ga的TTG片麻岩(Huang et al. , 2010; Jia et al. , 2016)和~2.78Ga斜长角闪岩(Dong et al. , 2020)构成。上太华群由富铝质片麻岩、大理岩、石英岩和斜长角闪岩等表壳岩和花岗片麻岩构成,其中表壳岩年龄介于2.5~2.14Ga,花岗片麻岩可分为2.32~2.30Ga和2.19~2.07Ga两期(Xu et al. , 2009; Huang et al. , 2010, 2012, 2013; Diwu et al. , 2014; Wang et al. , 2017a; 第五春荣等,2018)。该中部带除记录了上述多期次岩浆活动外,不同地区各类岩石中还记录有1.97~1.91Ga和1.87~1.82Ga两个阶段变质作用,并构成一顺时针P-T演化轨迹(Zhao et al. , 2001; Guan et al. , 2002; 蒋宗胜等,2011; Lu et al. , 2013, 2015, 2017; Qian et al. , 2013, 2015, 2017; Zhao and Zhai, 2013; Peng et al. , 2014; Wei, et al. , 2014; Zhao et al. , 2017; Wang et al. , 2017b),代表了华北克拉通基底最终拼合构造事件。因此,鄂尔多斯地块东缘中部构造带记录了2.9~2.7Ga、2.52~2.48Ga、2.36~2.25Ga、2.20~2.00Ga和1.95~1.85Ga花岗岩浆和2.15~1.92 Ga基性岩浆作用以及1.95~1.82Ga变质作用等多期岩浆变质事件。然而,在中条山以北地区至今未见2.9~2.7Ga的TTG片麻岩的报道,预示南部地区较北部有更为古老的基底物质。

与中部带对应,鄂尔多斯地块中南部大同-华池断裂以南的北东向航磁异常带,整体上显示不规则正、负异常相间展布的特点,但在华池-兴县和灵台-吕梁之间,主要为一大范围正磁异常带,占据了鄂尔多斯地块南部广大区域(图 1),且该航磁异常带向地块东缘延伸至中部带与吕梁杂岩和五台-阜平基底出露区航磁异常的延伸方向一致(图 1张抗,1982),预示地块内该航磁异常带的变质基底岩系可与五台、阜平和吕梁群等变质基底系对比,并可能具有同样的属性(贾进斗等,1997邓军等,2005),其部分偏低的磁异常值很可能是界河口、野鸡山、岚河和黑茶山等表壳岩磁异常叠加的结果(贾进斗等,1997王涛等,2007Gao et al. , 2015及其引用文献)。该航磁正异常带北部钻遇基底岩系的龙探1、镇钾1井、米131井和庆深1井中,临近其东缘吕梁地区的镇钾1井岩芯获得了夕线黑云片麻岩基底岩石,其矿物组合及变质程度不仅与吕梁地区界河口群片岩类似,而且二者的锆石年龄分布也十分一致(万渝生等,2000; 刘超辉等, 2013田辉等, 2014吴素娟等,2015),揭示它们为相同原岩经历了同样变质改造而形成。该井与紧邻其南北的米131井和龙探1井中除副变质片麻岩外,还获得2.10~2.0Ga花岗片麻岩(表 1)(胡健民等,2012Wan et al. , 2013Zhang et al. , 2015; 吴素娟等,2015)。此外,地块内部西南方向华池西南的庆深1井中也获得2.05~2.0Ga花岗片麻岩(表 1)。这些形成于2.10~2.20Ga的片麻状花岗岩类与北东向航磁异常延伸至东缘至中部带吕梁地区赤坚岭和关帝山花岗片麻岩的形成年龄相一致(耿元生等,2006Zhao et al. , 2008, 2020; Santosh et al. , 2015),表明地块内部沿大同-华池断裂以南航磁异常带北部存在一期与吕梁地区相同的古元古代中期的花岗岩浆活动带。然而,目前在地块南部几口探井基底岩芯中并未发现~2.5Ga岩浆活动的记录,但根据地块内部与其东北部的吕梁-阜平-五台地区航磁异常带延伸的一致性以及这些探井中富泥质片麻岩和2.2~2.0Ga花岗片麻岩组合与吕梁地区基岩组合的类似性推断,鄂尔多斯地块内部大同-华池断裂以南航磁异常带北部基底上部具有与吕梁地区可以类比的岩石组成,也由变质表壳岩和花岗片麻岩构成。

2.2 基底属性及构造单元划分

长期以来,无论是地质学家还是地球物理学家,均将鄂尔多斯地块视为一具有太古代基底物质的古老陆块,但该陆块基底物质的形成时代以及是否由统一陆块基底构成目前仍无定论。早在二十世纪八、九十年代,管志宁等(1987)白瑾等(1993)以及Bai and Dai(1996)根据华北地区航磁异常分布特征分析,就认识到鄂尔多斯地块可能不具统一完整的基底,且可沿大同-吴起(或华池)一线将鄂尔多斯地块分为南、北两部分。此后,伍家善等(1998)将华北克拉通基底划分为胶辽、豫皖、迁怀、晋冀和蒙陕5个微陆块,且认为NE向航磁异常带北缘的大同-吴起(或华池)断裂为分割蒙陕陆块和晋冀陆块的边界断裂。按此划分,现今的鄂尔多斯地块仅占据了北部蒙陕陆块东部和南部晋冀陆块西部的部分区域。翟明国和卞爱国(2000)将华北克拉通基底分出胶辽、徐淮、迁怀、阜平、集宁、许昌和阿拉善等6个微陆块,现今的鄂尔多斯地块大致相当于北部集宁和南部阜平两个小陆块构成的主体区域,其范围超出现今鄂尔多斯地块的区域。最近,Zhai and Santosh (2011)在原有划分方案基础上,从东到西重新厘定出胶辽、迁怀、集宁、阿拉善和南部鄂尔多斯、许昌及徐淮等7个微陆块。新的方案将原阜平微地块南部划为许昌微陆块,剩余的北部部分与原集宁微陆块的南部构成鄂尔多斯微陆块,成为现今鄂尔多斯陆块的主体,且向东可延伸到五台-阜平地区,而南部则包括了2.5Ga的五台-登封绿岩带西南的延伸部分和许昌地块西南部(见翟明国, 2019, 图 5)。与多个微陆块划分不同,Zhao et al. (2005, 2012)和Zhao and Zhai (2013)在华北克拉通基底中识别出中东部胶-辽-吉带、中部带和西北部孔兹岩带三条早元古宙活动带,并以中部构造带为界,将华北克拉通划分为东、西两大陆块(见Zhao et al. , 2005, 图 4),其中的西部陆块为北部阴山和南部鄂尔多斯两微陆块于~1.95Ga沿孔兹岩带造山拼合而成,以此划分出的鄂尔多斯陆块与现今鄂尔多斯地块分布范围基本一致。Peng et al. (2014)在总结华北克拉通早元古宙晚期4期变质作用及确定东部朝鲜与西部徐武家两条古元古代边缘弧基础上,也将华北克拉通划分为东、西两个陆块,二者分界基本与现今航磁异常梯度带揭示的北东向延伸的大同-环县基底断裂一致(见Peng et al. , 2014, 图 3e)。鄂尔多斯地块北部东西向与南部北东向航磁异常展布方向和强度的差异反映,沿大同-华池一线的磁异常边界梯度带代表一基底断裂,并成为其基底南、北不同单元的边界分割带(王涛等,2007阮小敏等,2011),其南、北基底结构及物质组成存在不同。滕吉文等(2008)对鄂尔多斯地块及其北部上地壳速度结构研究揭示,块体内部及其北部孔兹岩带和阴山地块的上地壳速度结构存在明显差异,基底中发育多条深大断裂,并在大同-华池断裂(F0)与榆林断裂(F1,榆林-环县断裂)间的基底出现一明显间断,其南、北部的基底厚度及顶面深度均有差异(图 5)。其中,南部榆林-延川地段处于北东向正航磁异常带之上,为一薄于北部基底的高速结晶基底。榆林断裂(F1)以北地区为一连续结晶基底,但基底厚度和顶面深度在不同地区有一定变化,在榆林-刀兔之间,基底厚度明显增大,至刀兔断裂(F2)以北的刀兔-东胜北的结晶基底又有所减薄,此后在伊金霍洛旗北再度增厚,并于东胜北断裂(F3),基底顶面埋深迅速增大(达8km左右),与新生代断陷盖层沉积最厚的呼包凹陷带的孔兹岩带南部对应。显然,地壳速度结构反映的鄂尔多斯地块内部结晶基底厚度、性质和顶面埋深在榆林断裂南北存在明显差异,与其南北不同航磁异常带差异一致,反映榆林-环县与大同-华池断裂带之间存在一分割基底不同单元的重要边界构造带(图 1图 5)。

图 5 鄂尔多斯地块基底断裂及起伏特征(据滕吉文等,2008) Fig. 5 Faults and relief characteristics of basement in the Ordos Block(after Teng et al., 2008)

基于地质及地球物理学家目前对鄂尔多斯地块基底性质的认识,并结合鄂尔多斯基底探井岩芯的混合岩脉体或花岗片麻岩类的岩石地球化学及同位素示踪分析,以大同-华池断裂为地块基底分界带,进一步探讨和约束其南、北两个地质单元的基底性质及特征。

2.2.1 鄂尔多斯地块北部基底

基底岩石特征表明,鄂尔多斯地块大同-华池断裂北部东西向正航磁异常带的伊盟隆起区基底岩石主要由经历了高角闪岩-麻粒岩相变质的副变质片麻岩类组成,伴有强烈的混合岩化,与混合岩化有关的深熔岩脉或花岗片麻岩的锆石U-Pb年龄记录了~2.5Ga和2.2~2.0Ga两期岩浆热事件(表 1)。

~2.5Ga花岗片麻岩为富钾花岗岩类(图 6a),它们有较高的SiO2(69.09%~73.71%),富碱(K2O+Na2O=8.40%~9.43%)、高钾(K2O/Na2O=1.80~3.69),A/CNK=1.18~1.19,δ=2.51~3.41(详细数据见电子版附表 1),属过铝质高钾钙碱性-超钾质系列(图 6b-d)。岩石稀土总量为76.57×10-6~165.0×10-6,中到高的轻重稀土分异((La/Yb)N=12.46~42.48),重稀土分馏变化大((Gd/Yb)N=1.93~5.21),δEu=0.51~1.06(附表 1),呈现为中等负或弱正铕异常的右倾稀土分布模式(图 7a)。微量元素富集Rb、Ba和Th等大离子亲石元素, 亏损Nb、Ta、Ti、Sr和P等(图 7b),与陆壳物质部分熔融高钾花岗岩类相类似。它们有较高的CaO/NaO2=0.20~0.59(平均0.32)和低的Rb/Sr(0.32~0.94,平均0.53)和Rb/Ba(0.07~0.29,平均0.13)比值,指示主要源自贫泥的杂砂岩类(CaO/NaO2>0.3)(Sylvester, 1998)。岩石的Hf-Nd同位素变化很大,锆石εHf(t)=-5.18~+8.49(图 8a),tDMC=2442~3083Ma (Zhang et al. , 2015),全岩εNd(t)=-4.0~+3.4(图 8b),tDM2=2594~3184Ma (附表 2),表明源自新太古代新生地壳和中太古代陆壳物质的混合源区的部分熔融。

图 6 鄂尔多斯地块基底花岗片麻岩球化学特征 Fig. 6 Geochemical characteristics of granitic gneisses from basement of Ordos Block

附表 1 鄂尔多斯地块基底花岗片麻岩主量(wt%)及微量元素(×10-6)分析结果 Appendix Table 1 Major(wt%) and trace elements (×10-6) data of granitic gneisses from the basement in the Ordos block

图 7 鄂尔多斯地块基底花岗片麻岩稀土及微量元素配分模式(球粒陨石标准值据Boynton, 1984;原始地幔标准值据Sun and McDonough, 1989) Fig. 7 REE and trace element distribute patterns of granitic gneisses from the basement of Ordos Block (chondrite normalization values after Boynton, 1984; primitive mantle normalization values after Sun and McDonough, 1989)

图 8 鄂尔多斯地块基底花岗片麻岩及邻区花岗岩类锆石t-εHf(t)图(a、c)及全岩t-εNd(t)图(b、d) (a)地块北部及孔兹岩带花岗岩类锆石Hf同位素组成;(b)地块北部及孔兹岩带花岗岩类全岩Nd同位素组成;(c)地块南部及五台-阜平-吕梁地区花岗岩类锆石Hf同位素组成;(d) 地块南部及五台-阜平-吕梁地区花岗岩类全岩Nd同位素组成. 数据引自Wu et al., 2005; Wang et al., 2009; Xia et al., 2006, 2009; Yin et al., 2011Dan et al., 2012; Ma et al., 2012; Han et al., 2012; Du et al., 2013; Wan et al., 2013; Zhang et al., 2015; Tang et al., 2015, 2016; Santosh et al., 2015; Li et al., 2017, 2018; Liu et al., 2017; Zhao et al., 2018; Sun et al., 2019; 赵瑞幅等,2011陈斌等,2006 Fig. 8 t-εHf(t) diagram for zircon (a, c) and t-εNd(t) diagram for whole rock (b, d) of granitic gneisses from the basement of Ordos Block and granitoids in its adjacent areas

附表 2 鄂尔多斯地块基底花岗片麻岩Nd同位素结果 Appendix Table 2 Whole-rock Nd isotopic data of granitic gneisses from the basement in the Ordos block

2.2~2.0Ga岩浆活动的产物,以石英二长岩和花岗片麻岩类为主(图 6a),具明显的钙碱性演化趋势(图 6b)。其中,石英二长岩低SiO2(60.58%~60.93%),中等的碱(K2O+Na2O=6.66~7.18),高钾(K2O/Na2O=1.04~1.40),A/CNK=0.62~0.71,δ=2.52~2.88(附表 1),属低铝钙碱性岩类。相比石英二长岩,花岗片麻岩高硅(SiO2=70.18%~75.40%),但碱和钾变化较大,K2O+Na2O=5.37%~9.45%;K2O/Na2O=0.68~3.67,A/CNK=0.96~1.58,δ=1.05~2.84,属准铝到过铝质高钾钙碱性岩类。石英二长岩稀土总量为76.57×10-6~165.0×10-6,中高程度的轻、重稀土分异((La/Yb)N=10.60~35.49),重稀土分馏变化大((Gd/Yb)N=1.56~4.41),δEu=0.50~0.76)(附表 1),具中度负铕异常的右倾稀土分布模式(图 7c)。花岗片麻岩的稀土总量(∑REE=47.09×10-6~366.7×10-6)、轻重稀土分异((La/Yb)N=2.98~39.50)和重稀土分馏((Gd/Yb)N=0.57~4.39)均有很大的变化,Eu异常表现为中度负到高度正异常(δEu=0.46~2.65),呈现出右倾程度不同、具负和正铕异常的稀土分布模式(图 7c)。所有岩石的微量元素图谱除重稀土元素含量变化较大外,明显富集Rb、Ba、Th和K等大离子亲石元素,贫高场强元素,Pb明显富集、亏损Nb、Ta、P和Ti等元素(图 7d)。这些岩石的化学成分没有显示随SiO2含量的变化而发生规律变化,因此轻重稀土分异和铕异常的巨大差异,显然与陆壳物质熔融时其岩浆残余相中石榴子石和斜长石矿物相的存在密切相关,应是不同深度陆壳物质熔融结果的反映。同位素组成上,锆石Hf同位素组成变化很大,具由负到正很大范围的εHf(t)(-17.24~+10.12)和tDMC(2039~3463Ma)(图 8aZhang et al. , 2015),它们的全岩Nd同位素也有很大的变化范围(εNd(t)=-4.0~+5.2,tDM2=2083~3184Ma)(附表 2图 8b),一致表明是既有幔源或新生陆壳源区也有太古代古老陆壳物质源区岩浆活动的结果,与典型弧环境岩浆活动存在幔源和古老陆壳物质源区花岗岩类特征一致(Kröner et al. , 2014),因而该期岩浆活动证明鄂尔多斯地块古元古代中晚期曾发生一期与弧环境有关的岩浆活动。

两期岩浆活动的锆石Hf和全岩Nd同位素的两阶段模式年龄除以新太古代为主外,还出现一定量的中太古代年龄(图 8a, b),这与这些岩石中存在新太古(2.6~2.8Ga)和中太古代(3.4Ga)捕获锆石(Zhang et al. , 2015; Wang et al. , 2019)一起证明,鄂尔多斯地块北部基底是一个主要由新太古代-古元古代陆壳和少量中太古代陆壳物质组成的陆块(图 8a, b)。覆盖于基底之上的长城系砂岩碎屑锆石年龄谱出现~2.5Ga、2.0Ga和1.9Ga年龄峰值,它们的二阶段模式年龄主要分布于新太古代(峰值为~2.6Ga)(附表 2附表 3附表 4图 9a, b),同样证明,该地块主要由新太古代和少量中太古代陆壳物质构成,并经历了强烈的~2.5Ga和~2.0Ga两期岩浆以及1.95~1.85Ga三期构造热事件的改造。类似的陆壳改造形成的~2.5Ga高钾钙碱性花岗岩类,在鄂尔多斯地块北部基底及其东缘的中部构造带乃至东部陆块均广泛发育(Wilde et al. , 2005; 陈斌等,2006Zhao et al. , 2008; Wan et al. , 2009, 2015Liu et al. , 2017Gao et al. , 2018),同时伴有同期新生地壳相关的TTG片麻岩和闪长岩(Liu et al. , 2009aDiwu et al. , 2011)及基性岩浆活动(Wan et al. , 2013; Liu et al. , 2014c),是华北陆块在~2.5Ga时期发生的一次陆壳改造与新生地壳形成并存的重要构造热事件,代表该陆块首次克拉通化过程构造岩浆热事件的重要记录(Zhai and Santosh, 2011)。同时也说明,鄂尔多斯地块基底物质在2.5Ga前已形成,并成为具一定规模的微陆块,在~2.5Ga与华北克拉通其它微陆块一同参与了华北陆块首次克拉通化的演化过程。而鄂尔多斯地块北部基底钻井揭示的孔兹岩类与其北缘古元古代孔兹岩的出现则是华北陆块完成首次克拉通化后形成的首套盖层沉积(钟焱等,2016)。

附表 3 鄂尔多斯地块盖层长城系砂岩锆石U-Pb年龄 Appendix Table 3 Zircons U-Pb ages from sandstones of Changcheng System in the covers of Ordos Block

附表 4 鄂尔多斯地块盖层长城系砂岩锆石Hf同位素数据 Appendix Table 4 Zircon Hf data for sandstones from the Changcheng system in Ordos Block

图 9 鄂尔多斯地块基底盖层长城系砂岩碎屑锆石年龄及陆壳Hf模式年龄(tDMC)分布图 (a)地块北部长城系砂岩碎屑锆石年龄图谱;(b)地块北部长城系砂岩碎屑锆石陆壳Hf模式年龄图谱;(c)地块南部长城系砂岩碎屑锆石年龄图谱;(d)地块南部长城系砂岩碎屑锆石陆壳Hf模式年龄图谱 Fig. 9 U-Pb age and tDMC histograms of detrital zircons from sandstones of Changcheng system in the cover of Ordos Block
2.2.2 鄂尔多斯地块南部基底

大同-华池断裂以南的鄂尔多斯地块南部,目前仅在有限钻遇基底探井中获取了基底岩石。这些探井主要位于北东向航磁异常带的北缘(图 1),除个别井(镇钾1井)的岩芯存在副变质片麻岩外,其它几口探井均获得了成分变化较大的花岗片麻岩(图 6a),并显示钙碱性演化趋势(图 6b),这些花岗岩类的SiO2=61.48%~78.19%,K2O+Na2O=3.98%~7.66%,Na2O=0.10%~2.89%,致使K2O/Na2O比值(1.30~49.80)变化非常大,它们的A/CNK很高(1.21~2.64),δ=0.45~1.85,表现为强过铝质高钾钙碱性、甚至超钾质岩类的特征(图 6cd)。岩石的稀土总量也呈现了很大变化(41.92×10-6~236.5×10-6),但轻重稀土分异不强((La/Yb)N=1.04~16.48),轻稀土分馏变化大((La/Sm)N=1.81~4.08),δEu=0.21~0.62,呈现了中等到较强负铕异常的右倾程度不等的稀土分布模式(图 7e)。微量元素富集Rb、Ba、Th和Pb等元素,不同程度亏损Nb、Ta、Ti、Sr和P等(图 7f)。因此,这种高硅、富钾,富集轻稀土和大离子元素、亏损Nb、Ta,高程度的负铕异常的花岗岩类不是岩浆强烈分异演化的结果,就是陆壳物质熔融过程与岩浆平衡残余相出现大量斜长石所致。结合钻井岩芯揭示的这些花岗片麻岩很不均匀,内部常出现含有难容暗色矿物较多的片麻岩残留体和区内无大岩体存在,显然不太可能是岩浆分异演化的结果,最大的可能应与部分熔融过程与岩浆平衡的残余相主要为斜长石密切相关。

这种富钾,高硅、碱的花岗岩类在地块东缘中部带的吕梁、赞皇等地也有报道,被认为是~2.1Ga左右在五台、阜平、吕梁和赞皇等地区同一拉张裂解背景的产物(杨崇辉等,2011; 杜利林等,2012Peng et al. , 2017)。与这些高钾花岗岩类相关,吕梁地区还存在同期与陆缘俯冲环境相关的钙碱性花岗岩类以及岛弧火山岩类(耿元生等,2006Liu et al. , 2012, 2014a, b; Santosh et al. , 2015; Zhao et al. , 2020),这种多种类型岩浆活动的出现无疑代表了华北克拉通中部古元古代中期2.2~2.0Ga期间一次重要的与大洋俯冲有关的大陆边缘弧岩浆活动。其中,~2.2Ga的弧火山岩及花岗岩类的出现表明,~2.2Ga已开始了与大洋俯冲挤压有关的活动陆缘演化(Liu et al. , 2012, 2014a; Santosh et al. , 2015; Zhao et al. , 2020),此后在~2.1Ga,出现了E-MORB型玄武岩(Liu et al. , 2014b)及与伸展有关的花岗岩类(耿元生等,2006Liu et al. , 2014b; Zhao et al. , 2020)则标志着由大洋俯冲挤压转入到局部伸展的弧后盆地演化阶段。

与地块东缘吕梁地区2.2~2.0Ga花岗岩类相对应,在鄂尔多斯地块南部NE向航磁异常带北缘中东部存在同期花岗岩类外,在其西南部香1井中侵入于中三叠世延长组中的斑岩脉中也发现~2.0Ga和1.95~1.85Ga的捕获/或继承锆石(待发表数据),说明鄂尔多斯地块南部基底沿大同-华池断裂南呈线状分布的花岗岩带横穿了鄂尔多斯地块中部(图 1)。这些花岗片麻岩无论是锆石Hf同位素还是全岩Nd同位素均与中部带同期花岗岩类一样,有很大的变化(图 8c, d),它们的锆石εHf(t)=-10.91~+14.36,tDMC=2143~3084Ma(图 8c, Zhang et al. , 2015),全岩εNd(t)=-3.7~+3.9,tDM2=2178~2787Ma(附表 2图 8d),反映了弧环境幔源和古老陆壳物质源区岩浆活动的特征(Kröner et al. , 2014),因而它们与中部带一样记录了古元古代中期2.2~2.0Ga岩浆活动和晚期1.95~1.85Ga变质事件的改造。因此,华北克拉通中部2.2~2.0Ga大陆边缘弧岩浆活动在鄂尔多斯地块内部也有发生,并沿地块南部NE向航磁异常带北缘构成该时期一活动陆缘带,成为该地块中部一条重要分界带。

然而,南部地块内部至今还未有探井钻遇基底并取得基底岩芯,且在其北缘几口探井岩芯中也未发现~2.5Ga的岩浆活动记录。尽管如此,在庆深1井和中部宜探1井(图 1)覆于基底之上的长城系盖层砂岩碎屑锆石,和中部宜探1井(图 1)覆于基底之上的长城系盖层砂岩碎屑锆石,存在2446Ma、2164Ma和1831Ma三个年龄主峰和2675Ma次级年龄峰值,不但记录了古元古代多期地质事件,也存在更为古老的古-中太古代锆石年龄信息(图 9c)。此外,这些砂岩碎屑锆石还出现3298Ma和3555Ma古、中太古代年龄(附表 3),同时相当量碎屑锆石有很高的负εHf(t)值(附表 4),其陆壳滞留年龄除新太古代外,还出现相当的古、中太古代年龄(附表 3图 9d),充分证明南部地块除新太古代-古元古代陆壳物质外,还存在古-中太古代陆壳物质。此外,大于3.5Ga甚至4.0Ga的地壳滞留年龄碎屑锆石(附表 3图 9d)的出现,暗示可能有更古老的陆壳物质存在。

华北克拉通内>3.2Ga的捕获锆石在许多地区已有报道,在鞍山-本溪地区太古代绿岩带发现4.17Ga捕获锆石(Cui et al. , 2013),河北曹庄和卢龙地区铬云母石英岩中存在大量3.88~3.2Ga的碎屑锆石(Liu et al. , 1992初航等,2016; Wilde et al. , 2008),河南焦作地区长英质片麻岩(高林志等,2005)和嵩山石英岩中也发现了~3.4Ga碎屑锆石(第五春荣等,2008)。此外,在信阳中生代长英质麻粒岩捕掳体中存在3.66Ga锆石(Zheng et al. , 2004),鄂尔多斯地块南缘古生代火山岩中还发现了4.1Ga捕获锆石(王洪亮等,2007五春荣等,2010a)。这些古老陆壳物质的陆续发现暗示,华北克拉通存在古太古代甚至始太古宙的物质源区。但目前除在东部鞍山发现有限的3.8Ga的TTG片麻岩古老陆壳物质(Liu et al. , 1992Wu et al. , 2008; Wan et al. , 2015)外,在其它地区至今未发现>3.2Ga的陆壳物质。Wan et al. (2015)依据>2.6Ga的TTG片麻岩和碎屑或捕获锆石的空间分布,在华北克拉通基底确定了东部、南部和中部3个古陆块(见万渝生等, 2017, 图19),它们是否可能成为上述古老锆石的源区值得关注。其中,南部古陆块向西延伸于鄂尔多斯地块南缘,在该古陆块东部河南鲁山地区和中部小秦岭地区均报道存在2.8~2.9Ga的岩石(Kröner et al. , 1988; Sun et al. , 1994; Liu et al. , 2009b; Huang et al. , 2010; 第五春荣等,2010bLu et al. , 2013, 2015; 谢士稳等,2016; Jia et al. , 2016; 张瑞英和孙勇,2017)。Zhu et al. (2013)在中条地区也发现~2.7Ga的奥长花岗岩,这些岩石主体岩浆锆石具高的正εHf(t)值和与形成年龄近一致的Hf模式年龄(2.7~2.9Ga),它们也具有全岩Nd同位素εNd(t)正值,二阶段Nd模式年龄主要介于2.7~2.9Ga之间(图 10g, h),表明该古陆块这期间有大量幔源新生陆壳增生。这些岩石中还保存有>2.9Ga继承锆石,且有相当量的锆石Hf模式年龄>3.0Ga(图 10g),揭示存在>3.0Ga中太古代古老陆壳物质,因而该古陆块是一定规模中太古代基底基础上,于2.7~3.0Ga期间有大量新生陆壳添加而形成的古老陆块。与该南部古陆块相比,大同-华池断裂南部基底花岗片麻岩的锆石Hf模式年龄和全岩Nd二阶段模式年龄接近或略早于它们的形成年龄,同时出现新太古代甚至中太古代的古老年龄(图 10g, h),反映它们源自幔源新生陆壳和古老陆壳物质的混合源区。另一方面,该区覆盖于基底之上长城系砂岩中发现了新太古代和古中太古代的碎屑锆石(图 9c附表 3),且这些砂岩碎屑锆石Hf模式年龄除新太古代外,还出现相当古、中太古代模式年龄(图 9d附表 4),这意味着如同南部古陆块一样,大同-华池断裂以南的鄂尔多斯地块基底也是古-中太古代陆壳基础上于新太古代期间发生进一步的新生陆壳生长而成的古老陆块。

图 10 鄂尔多斯地块基底花岗片麻岩及邻区岩浆锆石tDMC和全岩tDM2直方图 数据引自Wu et al., 2005; 第五春荣等, 2007, 2010b; 郭丽爽等, 2008; Liu et al., 2009b, 2017; 周艳艳等, 2009a, b; Huang et al., 2010, 2012, 2013; Yin et al., 2011; Dan et al., 2012; Ma et al., 2012; 张瑞英等, 2012; Wan et al., 2013; Yu et al., 2013; Diwu et al., 2014; Zhou et al., 2014, 2019; Zhang et al., 2015; 王雪等, 2015; Chen et al., 2016; Jia et al., 2016; Sun et al., 2017, 2019; Li et al., 2019 Fig. 10 tDMC and tDM2 histograms of igneous zircons from granitic gneisses of basement in the Ordos Bloch and its adjacent areas

综上所述,鄂尔多斯地块内中部沿大同-华池北东向基底断裂,其南北航磁异常的展布及其基底物质组成具有显著差异,沿该断裂带南缘存在一条2.2~2.0Ga古元古代花岗岩浆活动带,并记录了1.96~1.85Ga的变质作用改造,与陆块东缘中部带记录了古元古代中晚期大洋消减汇聚到陆陆碰撞过程一样,极有可能代表鄂尔多斯地块内部古元古代中晚期形成的一条构造活动带。该活动带南北基底岩芯样品的岩石组合及其花岗岩类的锆石Hf同位素及全岩Nd同位素组成揭示,其北部基底与其北缘孔兹岩带分布区基底片麻岩和变质表壳岩的物质组成(图 10c, d)和演化过程十分类似,是一主要由新太古代基底物质构成的地块(图 8a, b图 9a, b图 10a, b)。而南部基底除新太古代-古元古代陆壳物质外,还存在相当量的古、中太古代陆壳物质(图 8cd图 9c, d图 10e, f),与万渝生等(2017)确定的华北克拉通南部古陆块一样,也是由一定规模中太古代甚至少量古太古代陆壳物质和新太古代新生陆壳添加构成的较为古老的地块。因此,鄂尔多斯地块很可能是由沿中部大同-华池基底断裂带发育的古元古代中晚期活动带分割的不具完整统一基底构成的陆块,这一活动带与其东缘中部带一样记录了古元古代中晚期大洋俯冲汇聚到陆陆碰撞过程,揭示鄂尔多斯地块内部也可能存在一条类似其东缘中部带的古元古代中晚期与俯冲有关的构造活动带。然而,目前的地质与地球物理资料揭示的地块基底中部这条可能的分界带,是否如同其东缘中部带一样代表了东、西两大陆块碰撞结合带,或是其一个分支,目前还难以做出定论,有待今后进一步验证与再认识,并需要得到更多基底岩石样品的深入研究和详细工作的证实。

3 结论

根据鄂尔多斯地块内部数量不多的钻遇基底的探井所揭露的基底岩石组合及其花岗片麻岩锆石U-Pb年代学、Hf同位素及其全岩Nd同位素数据,并结合该地块航磁异常等地球物理资料分析,就鄂尔多斯地块基底性质与时代提出如下认识:

(1) 鄂尔多斯地块北部基底主要由变泥质和杂砂质片麻岩、片岩及大理岩和石英岩等变质表壳岩和一些花岗片麻岩类构成,它们发生了强烈混合岩化作用,记录了新太古代末~2.50Ga和古元古代中期2.2~2.0Ga两期岩浆活动及其末期1.95~1.85Ga的变质作用改造;南部基底除其北缘发现少量副变质岩外,主要为花岗片麻岩类,记录了古元古代中期2.2~2.0Ga岩浆热事件以及1.95~1.85Ga的变质作用改造;

(2) 鄂尔多斯地块中部沿大同-华池北东向基底断裂存在一条航磁异常梯度带,其南、北的航磁异常形态、地壳速度结构和基底物质组成显著不同,沿该断裂南缘存在一条古元古代2.2~2.0Ga花岗岩浆活动和1.96~1.85Ga变质作用改造的构造活动带,可与地块东缘五台-阜平-吕梁地区同期花岗片麻岩类相对比,代表鄂尔多斯地块基底一条重要分界带;

(3) 大同-华池断裂北航磁异常梯度带北部基底与其北缘孔兹岩带分布区基底片麻岩和变质表壳岩的物质组成和演化过程十分类似,花岗片麻岩的锆石Hf同位素及其全岩Nd同位素揭示,其是一由新太古代和古元古代陆壳物质构成的陆块;而南部地块基底除新太古代-古元古代陆壳物质外,还存在古、中太古代陆壳物质,与前人划分的华北克拉通南部古陆块组成类似,因而可能是由一定规模中太古代甚至少量古太古代陆壳物质和新太古代新生陆壳添加构成的古老地块。

致谢      文中除本研究测试数据外,还引用了前人发表的大量锆石年龄和Hf同位素及全岩Nd同位素数据,这些成果为本研究提供了对比分析的基础,由于篇幅所限这些数据未列入正文中,除以附表形式列出本文的数据外,引用的他人数据仅在参考文献中列出其文献。感谢万渝生研究员的热情邀稿!耿元生研究员和胡健民研究员提出的建设性建议,促进了本文的进一步提高与完善,在此一并致谢!

谨以此文衷心祝贺沈其韩院士百岁寿辰,祝沈先生健康长寿!

参考文献
Bai J, Huang XG and Dai FY, et al. 1993. The Precambrian Evolution of China. Beijing: Geological Publishing House, 34-36 (in Chinese)
Bai J and Dai FY. 1996. The Early Precambrian crustal evolution of China. Journal of Southeast Asian Earth Science, 13(3-5): 205-214 DOI:10.1016/0743-9547(96)00027-X
Bao HP, Shao DB, Hao SL, Zhang GS, Ruan ZZ, Liu G and Ouyang ZJ. 2019. Basement structure and evolution of early sedimentary cover of the Ordos Basin. Earth Science Frontiers, 26(1): 33-43 (in Chinese with English abstract)
Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archaean bimodal trondhjemite-basalt suites. Geology, 4(10): 596-600 DOI:10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
Barker F. 1979. Trondhjemites: Definition, environment and hypotheses of origin. In: Barker F (ed. ). Trondhjemites Dacites and Related Rocks. Amsterdam: Elsevier, 1-12
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and planetary Science Letters, 148: 243-258 DOI:10.1016/S0012-821X(97)00040-X
Boynton WV. 1984. Geochemistry of the rear earth elements: Meteorite studies. In: Henderson (ed. ). Rare Earth Element Geochemistry. Elsevier, 63-114
Cai J, Liu PH, Liu FL, Liu JH, Wang F and Shi JR. 2013. Genetic mineralogy and metamorphic evolution of Al-rich gneisses in the Shiguai area, Daqingshan-Wulashan metamorphic complex belt. Acta Petrologica Sinica, 29(2): 437-461 (in Chinese with English abstract)
Chen B, Liu SW, Geng YS and Liu CQ. 2006. Zircon U-Pb ages, Hf isotopes and significance of the Late Archean-Paleoproterozoic granitoids from the Wutai-Lüliang terrain, North China. Acta Petrologica Sinica, 22(2): 296-304 (in Chinese with English abstract)
Chen HX, Wang HYC, Peng T and Wu CM. 2016. Petrogenesis and geochronology of the Neoarchean-Paleoproterozoic granitoid and monzonitic gneisses in the Taihua complex: Episodic magmatism of the southwestern Trans-North China Orogen. Precambrian Research, 287: 31-47 DOI:10.1016/j.precamres.2016.10.014
Chen X, Chen YL, Li DP, Liu Y, Wei JJ and Yan JP. 2015. LA-ICP-MS zircon U-Pb and Hf isotopic studies of the Wutai Group and their geological significance. Geological Bulletin of China, 34(5): 861-876 (in Chinese with English abstract)
Chu H, Wang HC, Rong GL, Chang QS, Kang JL, Jin S and Xiao ZB. 2016. The geological significance of the rediscovered fuchsite quartzite with abundant Eoarchean detrital zircons in eastern Hebei Province. Science Bulletin, 61(20): 2299-2308 (in Chinese)
Cui PL, Sun JG, Sha DM, Wang XJ, Zhang P, Gu AL and Wang ZY. 2013. Oldest zircon xenocryst (4.17Ga) from the North China Craton. International Geology Review, 55(15): 1902-1908 DOI:10.1080/00206814.2013.805925
Dan W, Li XH, Guo JH, Liu Y and Wang XC. 2012. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin?. Precambrian Research, 222-223: 143-158 DOI:10.1016/j.precamres.2011.07.016
Deng J, Wang QF, Huang DH, Gao BF, Yang LQ and Xu H. 2005. Basement evolution of the Ordos Basin and its constraint on cap rock. Earth Science Frontiers, 12(3): 91-99 (in Chinese with English abstract)
Diwu CR, Sun Y, Lin CL, Liu XM and Wang HL. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province, China. Acta Petrologica Sinica, 23(2): 253-262 (in Chinese with English abstract)
Diwu CR, Sun Y, Yuan HL, Wang HL, Zhong XP and Liu XM. 2008. U-Pb geochronology, Hf isotopic composition and geological significance of detrital zircons from Songshan quartzite in Dengfeng, Henan. Chinese Science Bulletin, 53(16): 1923-1934 (in Chinese) DOI:10.1360/csb2008-53-16-1923
Diwu CR, Sun Y, Dong ZC, Wang HL, Chen DT, Chen L and Zhang H. 2010a. In situ U-Pb geochronology of Hadean zircon xenocryst (4.1~3.9Ga) from the western of the Northern Qinling Orogenic Belt. Acta Petrologica Sinica, 26(4): 1171-1174 (in Chinese with English abstract)
Diwu CR, Sun Y, Lin CL and Wang HL. 2010b. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua Complex on the southern margin of the North China Craton. Chinese Science Bulletin, 55(23): 2557-2571 (in Chinese) DOI:10.1007/s11434-010-3273-6
Diwu CR, Sun Y, Guo AL, Wang HL and Liu XM. 2011. Crustal growth in the North China Craton at ~2.5Ga: Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Research, 20(1): 149-170 DOI:10.1016/j.gr.2011.01.011
Diwu CR, Sun Y, Zhao Y and Lai SC. 2014. Early Paleoproterozoic (2.45~2.20Ga) magmatic activity during the period of global magmatic shutdown: Implications for the crustal evolution of the southern North China Craton. Precambrian Research, 255: 627-640 DOI:10.1016/j.precamres.2014.08.001
Diwu CR, Liu X and Sun Y. 2018. The composition and evolution of the Taihua Complex in the southern North China Craton. Acta Petrologica Sinica, 34(4): 999-1018 (in Chinese with English abstract)
Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ and Xie HQ. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China (Earth Sciences), 56(1): 115-125 DOI:10.1007/s11430-012-4459-3
Dong CY, Wan YS, Wilde S A, Xu ZY, Ma MZ, Xie HQ and Liu DY. 2014. Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt: Constraints on craton evolution. Gondwana Research, 25(4): 1535-1553 DOI:10.1016/j.gr.2013.05.021
Dong MM, Wang CM, Santosh M, Shi KX, Du B, Chen Q, Zhu JX and Liu XJ. 2020. Geochronology and petrogenesis of the Neoarchean-Paleoproterozoic Taihua Complex, NE China: Implications for the evolution of the North China Craton. Precambrian Research, 346: 105792 DOI:10.1016/j.precamres.2020.105792
Du LL, Yang CH, Ren LD, Song HX, Geng YS and Wan YS. 2012. The 2.2~2.1Ga magmatic event and its tectonic implication in the Lüliang Mountains, North China Craton. Acta Petrologica Sinica, 28(9): 2751-2769 (in Chinese with English abstract)
Du LL, Yang CH, Wang W, Ren LD, Wan YS, Wu JS, Zhao L, Song HX, Geng YS and Hou KJ. 2013. Paleoproterozoic rifting of the North China Craton: Geochemical and zircon Hf isotopic evidence from the 2137Ma Huangjinshan A-type granite porphyry in the Wutai area. Journal of Asian Earth Sciences, 72: 190-202 DOI:10.1016/j.jseaes.2012.11.040
Gao GM, Kang GF, Li GQ and Bai CH. 2015. Crustal magnetic anomaly in the Ordos region and its tectonic implications. Journal of Asian Earth Sciences, 109: 63-73 DOI:10.1016/j.jseaes.2015.04.033
Gao L, Liu SW, Sun GZ, Guo RR, Hu YL, Fu JH, Wang MJ, Ma CC and Hu FY. 2018. Petrogenesis of Late Neoarchean high-K granitoids in the western Shandong terrane, North China Craton, and their implications for crust-mantle interactions. Precambrian Research, 315: 138-161 DOI:10.1016/j.precamres.2018.07.006
Gao LZ, Zhao T, Wan YS, Zhao X, Ma YS and Yang SZ. 2005. Zircon SHRIMP U-Pb age of the Yuntaishan Procambrian metamorphic basement, Jiaozuo, Henan, China. Geological Bulletin of China, 24(12): 1089-1093 (in Chinese with English abstract)
Geng YS, Yang CH and Wan YS. 2006. Paleoproterozoic granitic magmatism in the Lüliang area, North China Craton: Constraint from isotopic geochronology. Acta Petrologica Sinica, 22(2): 305-314 (in Chinese with English abstract)
Gou LL, Zhang CL, Brown M, Piccoli PM, Lin HB and Wei XS. 2016. P-T-t evolution of pelitic gneiss from the basement underlying the northwestern Ordos Basin, North China Craton, and the tectonic implications. Precambrian Research, 276: 67-84 DOI:10.1016/j.precamres.2016.01.030
Griffin WL, Pearson NJ, Bleousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133-147 DOI:10.1016/S0016-7037(99)00343-9
Guan H, Sun M, Wilde S A, Zhou XH and Zhai MG. 2002. SHRIMP U-Pb zircon geochronology of the Fuping Complex: Implications for formation and assembly of the North China Craton. Precambrian Research, 113(1-2): 1-18 DOI:10.1016/S0301-9268(01)00197-8
Guan ZN, An YL and Wu CJ. 1987. Magnetic interface inversion and deducing of deep structure of North China area. In: Wang MJ and Cheng JY (eds. ). Corpus of Investment Geophysics and Geochemistry, Sixth Volume. Regional Geophysical Research of China. Beijing: Geological Publishing House, 80-100 (in Chinese)
Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142 DOI:10.1016/j.precamres.2011.07.020
Guo LS, Liu SW, Liu YL, Tian W, Yu SQ, Li QG and Lü YJ. 2008. Zircon Hf isotopic features of TTG gneisses and formation environment of Precambrian Sushui complex in Zhongtiao Mountains. Acta Petrologica Sinica, 24(1): 139-148 (in Chinese with English abstract)
Han BF, Xu Z, Ren R, Li LL, Yang JH and Yang YH. 2012. Crustal growth and intracrustal recycling in the middle segment of the Trans-North China Orogen, North China Craton: A case study of the Fuping Complex. Geological Magazine, 149(4): 729-742 DOI:10.1017/S0016756811001014
He XF, Santosh M, Bockmann K, Kelsey D E, Hand M, Hu JM and Wan YS. 2016. Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton. Lithos, 262: 44-57 DOI:10.1016/j.lithos.2016.06.022
Hu JM, Liu XS, Li ZH, Zhao Y, Zhang SH, Liu XC, Qu HJ and Chen H. 2013. SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance. Chinese Science Bulletin, 58(1): 118-127 DOI:10.1007/s11434-012-5274-0
Hu YH, Zhang CL, Zhao J, Guo XJ, Liu XY, Wang L and Liu BX. 2017. Deposition age and sedimentary setting of the Lanhe Group in Lüliang area of Shanxi Province: Evidences from detrital zircon U-Pb dating and their Hf isotopes. Chinese Journal of Geology, 52(4): 1195-1219 (in Chinese with English abstract)
Huang XL, Niu YL, Xu YG, Yang QJ and Zhong JW. 2010. Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: Implications for Late Archean crustal accretion. Precambrian Research, 182(1-2): 43-56 DOI:10.1016/j.precamres.2010.06.020
Huang XL, Wilde S A, Yang QJ and Zhong JW. 2012. Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong'er in the southern segment of the Trans-North China Orogen: Implications for tectonic transformation in the Early Paleoproterozoic. Lithos, 134-135: 236-252 DOI:10.1016/j.lithos.2012.01.004
Huang XL, Wilde S A and Zhong JW. 2013. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary. Precambrian Research, 233: 337-357 DOI:10.1016/j.precamres.2013.05.016
Jia JD, He GQ, Li MS, Zhou DC and Zhang LX. 1997. Structural feature of basement in the Ordos Basin and its control to Paleozoic gas. Geological Journal of China Universities, 3(2): 144-153
Jia XL, Zhu XY, Zhai MG, Zhao Y, Zhang H, Wu JL and Liu T. 2016. Late Mesoarchean crust growth event: Evidence from the ca. 2.8Ga granodioritic gneisses of the Xiaoqinling area, southern North China Craton. Science Bulletin, 61(12): 974-990 DOI:10.1007/s11434-016-1094-y
Jiang ZS, Wang GD, Xiao LL, Diwu CR, Lu JS and Wu CM. 2011. Paleoproterozoic metamorphic P-T-t path and tectonic significance of the Luoning metamorphic complex at the southern terminal of the Trans-North China Orogen, Henan Province. Acta Petrologica Sinica, 27(12): 3701-3717 (in Chinese with English abstract)
Jiao SJ, Guo JH, Harley S L and Peng P. 2013. Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237: 78-100 DOI:10.1016/j.precamres.2013.09.008
Jiao SJ, Guo JH, Wang LJ and Peng P. 2015. Short-lived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research, 269: 31-57 DOI:10.1016/j.precamres.2015.08.002
Kröner A, Compston W, Zhang GW, Guo AL and Todt W. 1988. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16(3): 211-215 DOI:10.1130/0091-7613(1988)016<0211:AATSOL>2.3.CO;2
Kröner A, Wilde S A, Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595 DOI:10.1016/j.jseaes.2004.01.001
Kröner A, Wilde S A, Zhao GC, O'Brien P J, Sun M, Liu DY, Wan YS, Liu SW and Guo JH. 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for Late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research, 146(1-2): 45-67 DOI:10.1016/j.precamres.2006.01.008
Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE and Rytsk E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103-125 DOI:10.1016/j.gr.2012.12.023
Li CJ, Bai DH, Xue S, Li X, Ma XB, Yan YL and Kong XR. 2017. A magnetotelluric study of the deep electric structure beneath the Ordos Block. Chinese Journal of Geophysics, 60(5): 1788-1799 (in Chinese with English abstract)
Li L and Zhai WJ. 2019. Geochemistry and Petrogenesis of the ca. 2.5Ga high-K granitoids in the southern North China Craton. Journal of Earth Science, 30(3): 647-665 DOI:10.1007/s12583-019-0895-8
Li W, Dong YP and Liu XM. 2018. Geochronology, geochemistry and Nd-Hf isotopes of the Xiaokouzi granite from the Helanshan complex: Constraints on the Paleoproterozoic evolution of the Khondalite Belt, North China Craton. Precambrian Research, 317: 57-76 DOI:10.1016/j.precamres.2018.08.021
Li WJ, Yin CQ, Long XP, Zhang J, Xia XP and Wang LJ. 2017. Paleoproterozoic S-type granites from the Helanshan Complex in Inner Mongolia: Constraints on the provenance and the Paleoproterozoic evolution of the Khondalite Belt, North China Craton. Precambrian Research, 299: 195-209 DOI:10.1016/j.precamres.2017.07.009
Liu CH, Liu FL and Zhao GC. 2013. Provenance and tectonic setting of the Jiehekou Group in the Lüliang Complex: Constraints from zircon U-Pb age and Hf isotopic studies. Acta Petrologica Sinica, 29(2): 517-532 (in Chinese with English abstract)
Liu CH, Zhao GC, Liu FL and Shi JR. 2014a. 2.2Ga magnesian andesites, Nb-enriched basalt-andesites, and adakitic rocks in the Lüliang Complex: Evidence for Early Paleoproterozoic subduction in the North China Craton. Lithos, 208-209: 104-117 DOI:10.1016/j.lithos.2014.08.025
Liu CH, Zhao GC, Liu FL and Shi JR. 2014b. Geochronological and geochemical constraints on the Lüliang Group in the Lüliang Complex: Implications for the tectonic evolution of the Trans-North China Orogen. Lithos, 198-199: 298-315 DOI:10.1016/j.lithos.2014.04.003
Liu CH, Zhao GC, Liu FL, Shi JR, Ji L, Liu PH, Yang H, Liu LS, Wang W and Tian ZH. 2016. Zircon U-Pb and Lu-Hf isotopic and whole-rock geochemical constraints on the Lanhe and Heichashan groups: Implications for the Paleoproterozoic tectonic basin evolution of the Lüliang Complex. Lithos, 262: 526-545 DOI:10.1016/j.lithos.2016.07.025
Liu DY, Nutman A P, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342 DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
Liu DY, Wilde S A, Wan YS, Wang SY, Valley JW, Kita N, Dong CY, Xie HQ, Yang CX, Zhang YX and Gao LZ. 2009b. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1-2): 140-154 DOI:10.1016/j.chemgeo.2008.10.041
Liu F, Guo JH, Lu XP and Diwu CR. 2009a. Crustal growth at ~2.5Ga in the North China Craton: Evidence from whole-rock Nd and zircon Hf isotopes in the Huaian gneiss terrane. Chinese Science Bulletin, 54(24): 4704-4713
Liu JH, Liu FL, Ding ZJ, Liu PH, Chen JQ, Liu CH, Wang F, Yang H, Cai J and Shi JR. 2017. Late Neoarchean-Paleoproterozoic arc-continent accretion along the Khondalite Belt, Western Block, North China Craton: Insights from granitoid rocks of the Daqingshan-Wulashan area. Precambrian Research, 303: 494-519 DOI:10.1016/j.precamres.2017.06.006
Liu PH, Liu FL, Liu CH, Liu JH, Wang F, Xiao LL, Cai J and Shi JR. 2014c. Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 246: 334-357 DOI:10.1016/j.precamres.2014.02.015
Liu SW, Zhang J, Li QG, Zhang LF, Wang W and Yang PT. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173-190 DOI:10.1016/j.precamres.2011.07.006
Liu X, Fan HR, Qiu ZJ, Yang KF, Hu FF, Guo SL and Zhao FC. 2015. Formation ages of the Jiangxian and Zhongtiao groups in the Zhongtiao Mountain region, North China Craton: Insights from SIMS U-Pb dating on zircons of intercalated plagioclase amphibolites. Acta Petrologica Sinica, 31(6): 1564-1572 (in Chinese with English abstract)
Lu JS, Wang GD, Wang H, Chen HX and Wu CM. 2013. Metamorphic P-T-t paths retrieved from the amphibolites, Lushan terrane, Henan Province and reappraisal of the Paleoproterozoic tectonic evolution of the Trans-North China Orogen. Precambrian Research, 238: 61-77 DOI:10.1016/j.precamres.2013.09.019
Lu JS, Wang GD, Wang H, Chen HX, Peng T and Wu CM. 2015. Zircon SIMS U-Pb geochronology of the Lushan terrane: Dating metamorphism of the southwestern terminal of the Palaeoproterozoic Trans-North China Orogen. Geological Magazine, 152(2): 367-377 DOI:10.1017/S0016756814000430
Lu JS, Zhai MG, Lu LS, Wang HYC, Chen HX, Peng T, Wu CM and Zhao TP. 2017. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton. Journal of Asian Earth Sciences, 134: 352-364 DOI:10.1016/j.jseaes.2016.12.001
Lu LZ, Xu XC and Liu FL. 1996. The Early Cambrian Khounds Series in Northern China. Changchun: Changchun Publishing House, 1-273 (in Chinese)
Ludwig KR. 2003. Isoplot: Ageochronology toolkit for Microsoft Excel 3.00. Berkeley Geochronology Center Special Publication, 1(5): 1-75
Ma MZ, Wan YS, Santosh M, Xu ZY, Xie HQ, Dong CY, Liu DY and Guo CL. 2012. Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Research, 22(3-4): 810-827 DOI:10.1016/j.gr.2012.02.020
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101: 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Middlemost EAK. 1975. The Basalt Clan. Earth Science Review, 11: 337-364 DOI:10.1016/0012-8252(75)90039-2
Peng P, Guo JH, Windley B F, Liu F, Chu Z and Zhai MG. 2012a. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: Implications for ridge subduction. Precambrian Research, 222-223: 107-123 DOI:10.1016/j.precamres.2011.06.002
Peng P, Guo JH, Zhai MG, Windley B F, Li TS and Liu F. 2012b. Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics. Lithos, 148: 27-44 DOI:10.1016/j.lithos.2012.05.021
Peng P, Wang XP, Windley B F, Guo JH, Zhai MG and Li Y. 2014. Spatial distribution of 1950~1800Ma metamorphic events in the North China Craton: Implications for tectonic subdivision of the craton. Lithos, 202-203: 250-266 DOI:10.1016/j.lithos.2014.05.033
Peng P, Yang SY, Su XD, Wang XP, Zhang J and Wang C. 2017. Petrogenesis of the 2090Ma Zanhuang ring and sill complexes in North China: A bimodal magmatism related to intra-continental process. Precambrian Research, 303: 153-170 DOI:10.1016/j.precamres.2017.03.015
Qian JH, Wei CJ, Zhou XW and Zhang YH. 2013. Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton. Precambrian Research, 233: 282-296 DOI:10.1016/j.precamres.2013.05.012
Qian JH, Wei CJ, Clarke G L and Zhou XW. 2015. Metamorphic evolution and Zircon ages of garnet-orthoamphibole rocks in southern Hengshan, North China Craton: Insights into the regional Paleoproterozoic P-T-t history. Precambrian Research, 256: 223-240 DOI:10.1016/j.precamres.2014.11.013
Qian JH, Wei CJ and Yin CQ. 2017. Paleoproterozoic P-T-t evolution in the Hengshan-Wutai-Fuping area, North China Craton: Evidence from petrological and geochronological data. Precambrian Research, 303: 91-104 DOI:10.1016/j.precamres.2017.02.016
Qiu RZ, Deng JF, Zhou S, Li JF, Xiao QH, Wu ZX and Liu C. 2005. Lithosphere types in North China: Evidence from geological and geophysics. Science in China (Series D), 48(11): 1809-1827 DOI:10.1360/03yd0380
Ruan XM, Teng JW, An YL, Yan YF and Wang QS. 2011. Analysis of magnetic anomaly and crystalline basement of the Yinshan orogen and the northern Ordos basin regions. Chinese Journal of Geophysics, 54(9): 2272-2282 (in Chinese with English abstract)
Santosh M, Wilde S A and Li JH. 2007. Timing of Palaeoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178-196 DOI:10.1016/j.precamres.2007.06.006
Santosh M, Wan YS, Liu DY, Dong CY and Li JH. 2009. Anatomy of zircons from an Ultrahot Orogen: The amalgamation of the North China Craton within the supercontinent Columbia. Journal of Geology, 117(4): 429-443 DOI:10.1086/598949
Santosh M, Yang QY, Teng XM and Tang L. 2015. Paleoproterozoic crustal growth in the North China Craton: Evidence from the Lüliang Complex. Precambrian Research, 263: 197-231 DOI:10.1016/j.precamres.2015.03.015
Soderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and planetary Science Letters, 219: 311-324 DOI:10.1016/S0012-821X(04)00012-3
Sun D, Li QG, Liu SW, Chen X, Wang ZQ, Chen YJ, Gao ST and Wang XY. 2019. Neoarchean-Paleoproterozoic magmatic arc evolution in the Wutai-Hengshan-Fuping area, North China Craton: New perspectives from zircon U-Pb ages and Hf isotopic data. Precambrian Research, 331: 105368 DOI:10.1016/j.precamres.2019.105368
Sun QY, Zhou YY, Wang W, Li CD and Zhao TP. 2017. Formation and evolution of the Paleoproterozoic meta-mafic and associated supracrustal rocks from the Lushan Taihua Complex, southern North China Craton: Insights from zircon U-Pb geochronology and whole-rock geochemistry. Precambrian Research, 303: 428-444 DOI:10.1016/j.precamres.2017.05.018
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Sun Y, Yu ZP and Kröner A. 1994. Geochemistry and single zircon geochronology of Archaean TTG gneisses in the Taihua high-grade terrain, Lushan area, central China. Journal of Southeast Asian Earth Sciences, 10(3-4): 227-233 DOI:10.1016/0743-9547(94)90022-1
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44 DOI:10.1016/S0024-4937(98)00024-3
Tang L, Santosh M and Teng XM. 2015. Paleoproterozoic (ca. 2.1~2.0Ga) arc magmatism in the Fuping Complex: Implications for the tectonic evolution of the Trans-North China Orogen. Precambrian Research, 268: 16-32 DOI:10.1016/j.precamres.2015.07.001
Tang L, Santosh M, Tsunogae T and Teng XM. 2016. Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: Evidence from the Fuping Complex. Lithos, 248-251: 324-338 DOI:10.1016/j.lithos.2016.01.022
Teng JW, Wan FY, Zhao WZ, Zhao JR, Li M, Tian XB, Yan YF, Zhang YQ, Zhang CK, Duan YH, Yang ZX and Xu CF. 2008. Velocity distribution of upper crust, undulation of sedimentary formation and crystalline basement beneath the Ordos Basin in North China. Chinese Journal of Geophysics, 51(6): 1753-1766 (in Chinese with English abstract)
Tian H, Wang HC, Ren YW, Xiang ZQ, Liu H and Li HK. 2014. Petrographic characteristics, LA-ICP-MS zircon U-Pb dating and affinity of Jiehekou Rock Group in Yunzhong Mountain-Guandi Mountain area, Shanxi Province. Geological Bulletin of China, 33(5): 672-683 (in Chinese with English abstract)
Tian W, Liu SW, Liu CH, Yu SQ, Li QG and Wang YR. 2006. Zircon SHRIMP geochronology and geochemistry of TTG rocks in Sushui Complex from Zhongtiao Mountain with its geological implications. Progress in Natural Science, 16(5): 492-500 DOI:10.1080/10020070612330025
Wan YS, Geng YS, Sheng QH and Zhang RX. 2000. Khondalite series: Geochronology and geochemistry of the Jiehekou Group in Lüliang area, Shanxi Province. Acta Petrologica Sinica, 16(1): 49-58 (in Chinese with English abstract)
Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society, London, Special Publications, 323(1): 73-97 DOI:10.1144/SP323.4
Wan YS, Xu ZY, Dong CY, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC and Cu H. 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93 DOI:10.1016/j.precamres.2012.09.014
Wan YS, Liu DY, Dong CY, Xie HQ, Kröner A, Ma MZ, Liu SJ, Xie SW and Ren P. 2015. Formation and evolution of the Archean continental crust of the North China Craton. In: Zhai MG (ed). Precambrian Geology of China. Berlin Heidelberg: Springer, 59-136
Wan YS, Dong CY, Ren P, Bai WQ, Xie HQ, Liu SJ, Xie SW and Liu DY. 2017. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: A synthesis. Acta Petrologica Sinica, 33(5): 1405-1419 (in Chinese with English abstract)
Wang GD, Wang HYC, Chen HX, Zhang B, Zhang Q and Wu CM. 2017a. Geochronology and geochemistry of the TTG and potassic granite of the Taihua complex, Mts. Huashan: Implications for crustal evolution of the southern North China Craton. Precambrian Research, 288: 72-90 DOI:10.1016/j.precamres.2016.11.006
Wang GD, Wang HYC, Chen HX, Lu JS, Zhang B, Pham VT, Zhang JJ, Zhang Q and Wu CM. 2017b. Metamorphic P-T-t paths of pelitic granulites of the Taihua metamorphic complex in the Mts. Huashan area and tectonothermal implications for the Palaeoproterozoic Trans-North China Orogen. Precambrian Research, 290: 147-162 DOI:10.1016/j.precamres.2016.12.008
Wang HL, Chen L, Sun Y, Liu XM, Xu XY, Chen XL, Zhang H and Diwu CR. 2007. ~4.1Ga xenocrystal zircon from Ordovician volcanic rocks in the western part of North Qinling Orogenic Belt. Science Bulletin, 52(42): 3002-3010
Wang L, Guo J, Yin C and Peng P. 2017c. Petrogenesis of ca. 1.95Ga meta-leucogranites from the Jining Complex in the Khondalite Belt, North China Craton: Water-fluxed melting of metasedimentary rocks. Precambrian Research, 303: 355-371 DOI:10.1016/j.precamres.2017.04.036
Wang T, Xu MJ, Wang LS, Liu SW and Hu XZ. 2007. Aeromagnetic anomaly analysis of Ordos and adjacent regions and its tectonic implications. Chinese Journal of Geophysics, 50(1): 163-170 (in Chinese with English abstract)
Wang W(RZ), Liu XS, Hu JM, Li ZH, Zhao Y, Zhai MG, Liu XC, Geoffrey C, Zhang SH and Qu HJ. 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U-Pb geochronology. Precambrian Research, 251: 181-196 DOI:10.1016/j.precamres.2014.06.016
Wang W(RZ), Zhao Y, Liu XC, Hu JM, Wei CJ, Xiao WJ, Du JX, Wang SL and Zhan LQ. 2019. Metamorphism of diverse basement gneisses of the Ordos Basin: Record of multistage Paleoproterozoic orogenesis and constraints on the evolution of the western North China Craton. Precambrian Research, 328: 48-63 DOI:10.1016/j.precamres.2019.03.012
Wang X, Huang XL, Ma JL, Zhong JW and Yang QJ. 2015. Hf-Nd isotopes of the Early Precambrian metamorphic complexes in the southern segment of the Trans-North China Orogen: Implications for crustal evolution. Geotectonica et Metallogenia, 39(6): 1108-1118 (in Chinese with English abstract)
Wang X, Huang XL, Yang F and Luo ZX. 2017d. Late Neoarchean magmatism and tectonic evolution recorded in the Dengfeng Complex in the southern segment of the Trans-North China Orogen. Precambrian Research, 302: 180-197 DOI:10.1016/j.precamres.2017.10.005
Wang ZH. 2009. Tectonic evolution of the Hengshan-Wutai-Fuping complexes and its implication for the Trans-North China Orogen. Precambrian Research, 170: 73-87 DOI:10.1016/j.precamres.2008.11.003
Wang ZH, Wilde SA and Wan JL. 2010. Tectonic setting and significance of 2.3~2.1Ga magmatic events in the Trans-North China Orogen: New constraints from the Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area. Precambrian Research, 178(1-4): 27-42 DOI:10.1016/j.precamres.2010.01.005
Wang ZT, Zhou HR, Wang XL and Jing XC. 2015. Characteristics of the crystalline basement beneath the Ordos Basin: Constraint from aeromagnetic data. Geoscience Frontiers, 6: 465-475 DOI:10.1016/j.gsf.2014.02.004
Wei CJ, Qian JH and Zhou XW. 2014. Paleoproterozoic crustal evolution of the Hengshan-Wutai-Fuping region, North China Craton. Geoscience Frontiers, 5(4): 485-497 DOI:10.1016/j.gsf.2014.02.008
Wilde SA, Cawood PA and Wang KY. 1997. The relationship and timing of granitoid evolution with respect to felsic volcanism in the Wutai Complex, North China Craton. In: Proceedings of the 30th International Geological Congress. Precambrican Geolgy and Metamorphic Petrology, 17: 75-87
Wilde SA, Cawood PA, Wang KY and Nemchin AA. 1998. SHRIMP U-Pb zircon dating of granites and gneisses in the Taihang-Wutaishan area: Implications for the timing of crustal growth in the North China Craton. Chinese Science Bulletin, 43(1): 144
Wilde SA, Cawood PA, Wang KY, Nemchin AA and Zhao GC. 2004. Determining Precambrian crustal evolution in China: A case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. Geological Society, London, Special Publications, 226: 5-25 DOI:10.1144/GSL.SP.2004.226.01.02
Wilde SA, Cawood PA, Wang KY and Nemchin AA. 2005. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24(5): 597-613 DOI:10.1016/j.jseaes.2003.11.006
Wilde SA, Valley JW, Kita NT, Cavosie AJ and Liu DY. 2008. SHRIMP U-Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, eastern Hebei, North China Craton: Evidence for crustal reworking 3.8Ga ago. American Journal of Science, 380(3): 185-199
Writing Group for Petroleum Geology of the Changqing Oil Field (WGPGCOF). 2021. Petroleum Geology of China, Vol. 12, Changqing Part. Beijing: Petroleum Industry Press, in press (in Chinese)
Wu FY, Zhao GC, Wilde S A and Sun DY. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545 DOI:10.1016/j.jseaes.2003.10.011
Wu FY, Zhang YB, Yang JH, Xie LW and Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 3339-362
Wu JS, Geng YS and Sheng QH. 1998. Archean Geological Characteristics and Tectonic Evolution of China-Korea Paleo-continent. Beijing: Geological Publishing House, 192-211 (in Chinese with English abstract)
Wu SJ, Zhang YS and Xing EY. 2015. LA-ICP-MS U-Pb dating of detrital zircons of the Ordos Basin metamorphic basement and its tectonic significance. Acta Geologica Sinica, 89(11): 2171-2186 (in Chinese with English abstract)
Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JH and Luo Y. 2006. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581-593 DOI:10.1016/j.epsl.2005.11.024
Xia XP, Sun M, Zhao GC, Wu FY and Xie LW. 2009. U-Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications. Geological magazine, 146(5): 701-716 DOI:10.1017/S0016756809006396
Xie SW, Xie HQ, Liu SJ and Dong CY. 2016. Archean crustal formation and evolution of the Lushan area in the southern margin of the North China Craton. Geology in China, 43(6): 1884-1893 (in Chinese with English abstract)
Xu XS, Griffin W L, Ma X, O'Reilly S Y, He ZY and Zhang CL. 2009. The Taihua Group on the southern margin of the North China Craton: Further insights from U-Pb ages and Hf isotope compositions of zircons. Mineralogy and Petrology, 97(1-2): 43-59 DOI:10.1007/s00710-009-0062-5
Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Liu ZX. 2011. The age and petrogenesis of the Xuting granite in the Zanhuang Complex, Hebei Province: Constraints on the structural evolution of the Trans-North China Orogen, North China Craton. Acta Petrologica Sinica, 27(4): 1003-1016 (in Chinese with English abstract)
Yang ZS, Xu ZY and Liu ZH. 2000. Khondalite event and Archean crust structure evolvement. Progress in Precambrian Research, 23(4): 206-212 (in Chinese with English abstract)
Yin CQ, Zhao GC, Sun M, Xia XP, Wei CJ, Zhou XW and Leung WH. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1-2): 78-94 DOI:10.1016/j.precamres.2009.06.008
Yin CQ, Zhao GC, Guo JH, Sun M, Xia XP, Zhou XW and Liu CH. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1-2): 25-38 DOI:10.1016/j.lithos.2010.11.010
Yu JH, Wang DZ, Wang CY and Li HM. 1997. Ages of the Lüliang Group and its main metamorphism in the Lüliang Mountains, Shanxi: Evidence from single-grain zircon U-Pb ages. Geological Review, 43(4): 403-408 (in Chinese with English abstract)
Yu XQ, Liu JL, Li CL, Chen SQ and Dai YP. 2013. Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex: Constraints on the formation and evolution of the Trans-North China Orogen. Precambrian Research, 230: 31-44 DOI:10.1016/j.precamres.2012.12.008
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determination of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370 DOI:10.1111/j.1751-908X.2004.tb00755.x
Zhai MG and Bian AG. 2000. The supercontinent patchwork in the Late Archean and dissociation during Late Paleoproterozoic-Mesoproterozoic of North China Craton. Science in China (Series D), 30(Suppl.): 129-137 (in Chinese)
Zhai MG. 2011. Cratonization and the ancient North China Continent: A summary and review. Science China (Earth Sciences), 54(8): 1110-1120 DOI:10.1007/s11430-011-4250-x
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25 DOI:10.1016/j.gr.2011.02.005
Zhai MG. 2019. Tectonic evolution of the North China Craton. Journal of Geomechanics, 25(5): 722-745 (in Chinese with English abstract)
Zhang CL, Diwu CR, Kröner A, Sun Y, Luo JL, Li QL, Gou LL, Lin HB, Wei XS and Zhao J. 2015. Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton: Constraints from zircon U-Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Research, 267: 121-136 DOI:10.1016/j.precamres.2015.06.001
Zhang JS, Li Y and Han ZJ. 2003. Deformation responses to eastwards escaping of the Qinghai-Tibet Plateau and tectonics of the South-North Seismic zones in China. Earth Science Frontiers, 10(Suppl.): 168-175 (in Chinese with English abstract)
Zhang K. 1982. The structural characteristics of Ordos fault-block during Archaen era and Early Proterozoic era. Scientia Geologica Sinica, (4): 352-363 (in Chinese with English abstract)
Zhang K. 1989. Structure and Resources of the Ordos Fault Block. Xi'an: Shaanxi Science and Technology Press, 1-302 (in Chinese)
Zhang RY, Zhang CL, Diwu CR and Sun Y. 2012. Zircon U-Pb geochronology, geochemistry and its geological implications for the Precambrian granitoids in Zhongtiao Mountain. Acta Petrologica Sinica, 28(11): 3559-3573 (in Chinese with English abstract)
Zhang RY, Zhang CL and Sun Y. 2013. Crustal reworking in the North China Craton at ~2.5Ga: Evidence from zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the TTG gneisses in the Zhongtiao Mountain. Acta Petrologica Sinica,, 29(7): 2265-2280 (in Chinese with English abstract)
Zhang RY and Sun Y. 2017. Formation and evolution of Early Precambrian basement in the southern North China Craton. Acta Petrologica Sinica, 33(10): 3027-3041 (in Chinese with English abstract)
Zhao FQ. 2006. Geochronologic and geochemical constraints on the Paleoproterozoic crustal evolution of Zhongtiao Mountains from Shanxi Province. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-161 (in Chinese with English summary)
Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73 DOI:10.1016/S0301-9268(00)00154-6
Zhao GC, Cawood PA, Wilde SA and Sun M. 2002. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162 DOI:10.1016/S0012-8252(02)00073-9
Zhao GC, Sun M, Wilde S A and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002
Zhao GC, Wilde S A, Sun M, Li SZ, Li XP and Zhang J. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research, 160(3-4): 213-226 DOI:10.1016/j.precamres.2007.07.004
Zhao GC, Cawood P A, Li SZ, Wilde S A, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223(12): 55-76
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240 DOI:10.1016/j.gr.2012.08.016
Zhao GZ, Zhan Y, Wang LF, Wang JJ, Tang J, Chen XB and Xiao QB. 2010. Electric structure of the crust beneath the Ordos Fault Block. Seismology and Geology, 32(3): 345-359 (in Chinese with English abstract)
Zhao J, Zhang CL, Guo XJ and Wang Q. 2015. Determination of the 2.4Ga A-type granite in the Lüliang area of the North China Craton and its geological significance. Acta Petrologica Sinica, 31(6): 1606-1620 (in Chinese with English abstract)
Zhao J, Gou LL, Zhang CL, Guo AL, Guo XJ and Liu XY. 2017. P-T-t path and tectonic significance of pelitic migmatites from the Lüliang Complex in Xiyupi area of Trans-North China Orogen, North China Craton. Precambrian Research, 303: 573-589 DOI:10.1016/j.precamres.2017.07.010
Zhao J, Zhang CL, Liu XY and Guo XJ. 2017. Protolith age and geochemical characteristics of meta-basic volcanic rocks from the Lüliang Group in the Lüliang complex and its tectonic setting. Chinese Journal of geology, 52(4): 1120-1240 (in Chinese with English abstract)
Zhao J, Zhang CL, Guo XJ and Liu YX. 2018. The Late-Paleoproterozoic I- and A-type granites in Lüliang Complex, North China Craton: New evidence on post-collisional extension of Trans-North China Orogen. Precambrian Research, 318: 70-88 DOI:10.1016/j.precamres.2018.09.007
Zhao J, Zhang CL, Liu XY and Gan J. 2020. Middle Paleoproterozoic tectonic evolution of the Trans-North China Orogen, North China Craton: Constraint from the intermediate-acid magmatism in the Lüliang area. Lithos, 378-379: 105804 DOI:10.1016/j.lithos.2020.105804
Zhao RF, Guo JH, Peng P and Liu F. 2011. 2.1Ga crustal remelting event in Hengshan Complex: Evidence from zircon U-Pb dating and Hf-Nd isotopic study on potassic granites. Acta Petrologica Sinica, 27(6): 1607-1623 (in Chinese with English abstract)
Zheng JP, Griffin WL, O'Reilly SY, Lu FX, Wang CY, Zhang M, Wang FZ and Li HM. 2004. 3.6Ga lower crust in central China: New evidence on the assembly of the North China Craton. Geology, 32(3): 229-232 DOI:10.1130/G20133.1
Zhong CT, Deng JF, Wan YS and Tu WP. 2014. Paleoproterozoic granitoids in the Daqingshan Mountain area, Inner Mongolia: Geochemistry, SHRIMP zircon dating and geological significance. Acta Petrologica Sinica, 30(11): 3172-3188 (in Chinese with English abstract)
Zhong Y, Chen YL, Zhai MG and Ma XD. 2016. Stratigraphic correlation and lithofacies paleogeography of khondalite series in the western North China Craton. Acta Petrologica Sinica, 32(3): 713-726 (in Chinese with English abstract)
Zhou YY, Zhao TP, Xue LW, Wang SY and Gao JF. 2009a. Petrological, geochemical and chronological constraints for the origin and geological significance of Neoarchean TTG gneiss in the Songshan area, North China Craton. Acta Petrologica Sinica, 25(2): 331-347 (in Chinese with English abstract)
Zhou YY, Zhao TP, Xue LW and Wang SY. 2009b. Geochemistry and origin of Neoarchean amphibolites in Songshan, Henan Province. Acta Petrologica Sinica, 25(11): 3043-3056 (in Chinese with English abstract)
Zhou YY, Zhao TP, Zhai MG, Gao JF and Sun QY. 2014. Petrogenesis of the Archean tonalite-trondhjemite-granodiorite (TTG) and granites in the Lushan area, southern margin of the North China Craton: Implications for crustal accretion and transformation. Precambrian Research, 255: 514-537 DOI:10.1016/j.precamres.2014.06.023
Zhou YY, Zhao TP, Sun QY, Zhai MG, Lan ZW and Hofmann A. 2019. Petrogenesis of the Neoarchean diorite-granite association in the Wangwushan area, southern North China Craton: Implications for continental crust evolution. Precambrian Research, 326: 84-104 DOI:10.1016/j.precamres.2017.12.040
Zhu XY, Zhai MG, Chen FK, Lyu B, Wang W, Peng P and Hu B. 2013. ~2.7Ga crustal growth in the North China Craton: Evidence from zircon U-Pb ages and Hf isotopes of the Sushui Complex in the Zhongtiao Terrane. The Journal of Geology, 121(3): 239-254 DOI:10.1086/669977
白瑾, 黄学光, 戴凤岩, 等. 1993. 中国早前寒武纪地壳演化. 北京: 地质出版社, 34-36.
包洪平, 邵东波, 郝松立, 章贵松, 阮正中, 刘刚, 欧阳征健. 2019. 鄂尔多斯盆地基底结构及早期沉积盖层演化. 地学前缘, 26(1): 33-43.
蔡佳, 刘平华, 刘福来, 刘建辉, 王舫, 施建荣. 2013. 大青山-乌拉山变质杂岩带石拐地区富铝片麻岩成因矿物学与变质演化. 岩石学报, 29(2): 437-461.
长庆油田石油地质志编写组. 2021. 中国石油地质志卷十二——长庆油田. 北京: 石油工业出版社, 待出版
陈斌, 刘树文, 耿元生, 刘超群. 2006. 吕梁-五台地区晚太古宙-古元古代花岗质岩石锆石U-Pb年代学和Hf同位素性质及其地质意义. 岩石学报, 22(2): 296-304.
陈雪, 陈岳龙, 李大鹏, 刘烊, 魏娟娟, 闫家盼. 2015. 华北克拉通五台群LA-ICP-MS锆石U-Pb年龄和Hf同位素特征. 地质通报, 34(5): 861-876. DOI:10.3969/j.issn.1671-2552.2015.05.006
初航, 王惠初, 荣桂林, 常青松, 康健丽, 靳松, 肖志斌. 2016. 冀东地区含大量始太古代碎屑锆石的太古宙铬云母石英岩再次发现及地质意义. 科学通报, 61(20): 2299-2308.
邓军, 王庆飞, 黄定华, 高帮飞, 杨立强, 徐浩. 2005. 鄂尔多斯盆地基底演化及其对盖层控制作用. 地学前缘, 12(3): 91-99. DOI:10.3321/j.issn:1005-2321.2005.03.011
第五春荣, 孙勇, 林慈銮, 柳小明, 王洪亮. 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, 23(2): 253-262.
第五春荣, 孙勇, 袁洪林, 王洪亮, 钟兴平, 柳小明. 2008. 河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义. 科学通报, 53(16): 1923-1934. DOI:10.3321/j.issn:0023-074X.2008.16.009
第五春荣, 孙勇, 董增产, 王洪亮, 陈丹玲, 陈亮, 张红. 2010a. 北秦岭西段冥古宙锆石(4.1~3.9Ga)年代学新进展. 岩石学报, 26(4): 1171-1174.
第五春荣, 孙勇, 林慈銮, 王洪亮. 2010b. 河南鲁山地区太华杂岩LA-(MC)-ICPMS锆石U-Pb年代学及Hf同位素组成. 科学通报, 55(21): 2112-2123.
第五春荣, 刘祥, 孙勇. 2018. 华北克拉通南缘太华杂岩组成及演化. 岩石学报, 34(4): 999-1018.
杜利林, 杨崇辉, 任留东, 宋会侠, 耿元生, 万渝生. 2012. 吕梁地区2.2~2.1Ga岩浆事件及其构造意义. 岩石学报, 28(9): 2751-2769.
高林志, 赵汀, 万渝生, 赵逊, 马寅生, 杨守政. 2005. 河南焦作云台山早前寒武纪变质基底锆石SHRIMP U-Pb年龄. 地质通报, 24(12): 1089-1093. DOI:10.3969/j.issn.1671-2552.2005.12.002
耿元生, 杨崇辉, 万渝生. 2006. 吕梁地区古元古代花岗岩浆作用——来自同位素年代学的证据. 岩石学报, 22(2): 305-314.
管志宁, 安玉林, 吴朝均. 1987. 磁性界面反演及华北地区深部地质结构的推断. 见: 王懋基, 程家印(主编). 勘查地球物理勘查地球化学文集(第6集), 中国东部区域地球物理研究. 北京: 地质出版社, 80-100
郭丽爽, 刘树文, 刘玉琳, 田伟, 余盛强, 李秋根, 吕勇军. 2008. 中条山涑水杂岩中TTG片麻岩的锆石Hf同位素特征及其形成环境. 岩石学报, 24(1): 139-148.
胡健民, 刘新社, 李振宏, 赵越, 张拴宏, 刘晓春, 渠洪杰, 陈虹. 2012. 鄂尔多斯盆地基底变质岩与花岗岩锆石SHRIMP U-Pb定年. 科学通报, 57(26): 2482-2491.
胡育华, 张成立, 赵娇, 郭晓俊, 刘欣雨, 王璐, 刘炳旭. 2017. 山西吕梁地区岚河群沉积时代及形成环境: 来自碎屑锆石U-Pb年龄和Hf同位素的证据. 地质科学, 52(4): 1195-1219.
贾进斗, 何国琦, 李茂松, 周鼎潮, 张林祥. 1997. 鄂尔多斯盆地基底结构特征及其对古生界天然气的控制. 高校地质学报, 3(2): 17-26.
蒋宗胜, 王国栋, 肖玲玲, 第五春荣, 卢俊生, 吴春明. 2011. 河南洛宁太华变质杂岩区早元古代变质作用P-T-t轨迹及其大地构造意义. 岩石学报, 27(12): 3701-3717.
李晨晶, 白登海, 薛帅, 李鑫, 马晓冰, 闫永利, 孔祥儒. 2017. 鄂尔多斯地块深部岩石圈电性结构研究. 地球物理学报, 60(5): 1788-1799.
刘超辉, 刘福来, 赵国春. 2013. 吕梁杂岩界河口群的源区特征及构造背景: 来自锆石U-Pb年龄和Hf同位素的证据. 岩石学报, 29(2): 517-532.
刘玄, 范宏瑞, 邱正杰, 杨奎锋, 胡芳芳, 郭双龙, 赵凤春. 2015. 中条山地区绛县群和中条群沉积时限: 夹层斜长角闪岩SIMS锆石U-Pb年代学证据. 岩石学报, 31(6): 1564-1572.
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社, 1-273.
邱瑞照, 邓晋福, 周肃, 李金发, 肖庆辉, 吴宗絮, 刘翠. 2004. 华北地区岩石圈类型: 地质与地球物理证据. 中国科学(D辑), 34(8): 698-711.
阮小敏, 滕吉文, 安玉林, 闫雅芬, 王谦身. 2011. 阴山造山带和鄂尔多斯盆地北部磁异常场与结晶基底特征研究. 地球物理学报, 54(9): 2272-2282. DOI:10.3969/j.issn.0001-5733.2011.09.010
滕吉文, 王夫运, 赵文智, 赵金仁, 李明, 田小波, 闫雅芬, 张永谦, 张成科, 段永红, 杨卓欣, 徐朝繁. 2008. 鄂尔多斯盆地上地壳速度分布与沉积建造和结晶基底起伏的构造研究. 地球物理学报, 51(6): 1753-1766. DOI:10.3321/j.issn:0001-5733.2008.06.016
田辉, 王慧初, 任云伟, 相振群, 刘欢, 李怀坤. 2014. 山西云中山-关帝山地区界河口岩群岩石学特征、LA-ICP-MS锆石U-Pb年龄及其归属. 地质通报, 33(5): 672-683. DOI:10.3969/j.issn.1671-2552.2014.05.008
田伟, 刘树文, 刘超辉, 余盛强, 李秋根, 王月然. 2005. 中条山涑水杂岩中TTG系列岩石的锆石SHRIMP年代学和地球化学及其地质意义. 自然科学进展, 15(12): 1476-1484. DOI:10.3321/j.issn:1002-008X.2005.12.010
万渝生, 耿元生, 沈其韩, 张如心. 2000. 孔兹岩系——山西吕梁地区界河口群的年代学和地球化学. 岩石学报, 16(1): 49-58.
万渝生, 董春艳, 任鹏, 白文倩, 颉颃强, 刘守偈, 谢士稳, 刘敦一. 2017. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述. 岩石学报, 33(5): 1405-1419.
王洪亮, 陈亮, 孙勇, 柳小明, 徐学义, 陈隽璐, 张红, 第五春荣. 2007. 北秦岭西段奥陶纪火山岩中发现近4.1Ga的捕虏锆石. 科学通报, 52(14): 1685-1693. DOI:10.3321/j.issn:0023-074x.2007.14.015
王涛, 徐鸣洁, 王良书, 刘绍文, 胡旭芝. 2007. 鄂尔多斯及邻区航磁异常特征及其大地构造意义. 地球物理学报, 50(1): 163-170. DOI:10.3321/j.issn:0001-5733.2007.01.023
王雪, 黄小龙, 马金龙, 钟军伟, 杨启军. 2015. 华北克拉通中部造山带南段早前寒武纪变质杂岩的Hf-Nd同位素特征及其地壳演化意义. 大地构造与成矿学, 39(6): 1108-1118.
伍家善, 耿元生, 沈其韩. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社, 192-211.
吴素娟, 张永生, 邢恩袁. 2015. 鄂尔多斯盆地变质基底中碎屑锆石的LA-ICP-MS U-Pb年龄及其构造意义. 地质学报, 89(11): 2171-2186.
谢士稳, 颉颃强, 刘守偈, 董春艳. 2016. 华北克拉通南缘鲁山太古宙基底的形成和演化. 中国地质, 43(6): 1884-1893.
杨崇辉, 杜利林, 任留东, 宋会侠, 万渝生, 颉颃强, 刘增校. 2011. 河北赞皇地区许亭花岗岩的时代及成因: 对华北克拉通中部带构造演化的制约. 岩石学报, 27(4): 1003-1016.
杨振升, 徐仲元, 刘正宏. 2000. 孔兹岩系事件与太古宙地壳构造演化. 前寒武纪研究进展, 23(4): 206-212.
于津海, 王德滋, 王赐银, 李惠民. 1997. 山西吕梁群和其主变质作用的锆石U-Pb年龄. 地质论评, 43(4): 403-408. DOI:10.3321/j.issn:0371-5736.1997.04.009
翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(增): 129-137.
翟明国. 2019. 华北克拉通构造演化. 地质力学学报, 25(5): 722-745.
张家声, 李燕, 韩竹均. 2003. 青藏高原向东挤出的变形响应及南北地震带构造组成. 地学前缘, 10(增): 168-175.
张抗. 1982. 鄂尔多斯断块太古代至早元古代构造发育特征. 地质科学, 4: 352-363.
张抗. 1989. 鄂尔多斯断块构造和资源. 西安: 陕西科学技术出版社, 1-302.
张瑞英, 张成立, 第五春荣, 孙勇. 2012. 中条山前寒武纪花岗岩地球化学、年代学及其地质意义. 岩石学报, 28(11): 3559-3573.
张瑞英, 张成立, 孙勇. 2013. 华北克拉通~2.5Ga地壳再造事件: 来自中条山TTG质片麻岩的证据. 岩石学报, 29(7): 2265-2280.
张瑞英, 孙勇. 2017. 华北克拉通南部早前寒武纪基底形成与演化. 岩石学报, 33(10): 3027-3041.
赵凤清.2006. 山西中条山地区古元古代地壳演化的年代学和地球化学制约. 博士学位论文. 北京: 中国地质大学, 1-161
赵国泽, 詹艳, 王立凤, 王继军, 汤吉, 陈小斌, 肖骑彬. 2010. 鄂尔多斯断块地壳电性结构. 地震地质, 32(3): 345-359. DOI:10.3969/j.issn.0253-4967.2010.03.001
赵娇, 张成立, 郭晓俊, 刘欣雨, 王权. 2015. 华北吕梁地区2.4Ga A型花岗岩的确定及地质意义. 岩石学报, 31(6): 1020-1606.
赵娇, 张成立, 刘欣雨, 郭晓俊. 2017. 山西吕梁地区吕梁群变基性火山岩原岩形成年龄、地球化学特征及形成环境. 地质科学, 52(4): 1120-1240.
赵瑞幅, 郭敬辉, 彭澎, 刘富. 2011. 恒山地区古元古代2.1Ga地壳重熔事件: 钾质花岗岩锆石U-Pb定年及Hf-Nd同位素研究. 岩石学报, 27(6): 1607-1623.
钟长汀, 邓晋福, 万渝生, 涂伟萍. 2014. 内蒙古大青山地区古元古代花岗岩: 地球化学、锆石SHRIMP定年及其地质意义. 岩石学报, 30(11): 3172-3188.
钟焱, 陈雅丽, 翟明国, 马旭东. 2016. 华北克拉通西部古元古代孔兹岩系的地层对比、岩相古地理特征及其地质意义. 岩石学报, 32(3): 713-726.
周艳艳, 赵太平, 薛良伟, 王世炎, 高剑峰. 2009a. 河南嵩山地区新太古代TTG质片麻岩的成因及其地质意义: 来自岩石学、地球化学及同位素年代学的制约. 岩石学报, 25(2): 331-347.
周艳艳, 赵太平, 薛良伟, 王世炎. 2009b. 河南嵩山地区新太古代斜长角闪岩的地球化学特征与成因. 岩石学报, 25(11): 3043-3056.