岩石学报  2020, Vol. 36 Issue (12): 3607-3630, doi: 10.18654/1000-0569/2020.12.04   PDF    
哀牢山-大象山变质杂岩带中斜长角闪岩的地球化学、同位素年代学及其地质意义
徐文涛1, 刘福来1, 冀磊2, 许王1     
1. 自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 中国地质科学院, 北京 100037
摘要: 哀牢山-大象山变质杂岩带位于青藏高原东南缘,是西南三江地区重要的北西向造山带。杂岩带主要由各种类型的副片麻岩、片岩、石英岩、大理岩和斜长角闪岩构成,岩石发生强烈的糜棱岩化。本文在哀牢山变质杂岩带东南段元江和金平地区以及大象变质杂岩带北段老街和Pho Rang地区发现了中二叠-早三叠世的斜长角闪岩。岩石地球化学和锆石U-Pb年龄研究表明,这些斜长角闪岩可分为4组:第1组为元江斜长角闪岩,具有类似于E-MORB的稀土和微量元素配分曲线特征,锆石U-Pb定年显示其原岩形成年龄为272.5±1.7Ma;第2组为勐桥-马鞍底斜长角闪岩,相比于元江斜长角闪岩(第1组)具有更高的轻/重稀土分馏程度,其稀土和微量元素配分曲线类似于E-MORB,微量元素比值(Nb/Yb、Th/Yb等)显示具有沿MORB-OIB序列演化的趋势,勐桥和马鞍底斜长角闪岩中的Ti含量和Ti/Y比值等特征分别类似于峨眉山低Ti玄武岩和高Ti玄武岩。锆石U-Pb定年结果表明,勐桥-马鞍底斜长角闪岩形成于265.2±1.0Ma~266.2±1.0Ma和250.4±1.5Ma~248.7±1.6Ma,其中晚期岩石中含有261.2±1.5Ma~257.9±1.6Ma的继承锆石,该年龄与峨眉山玄武岩(约260Ma)近于同期。上述证据表明勐桥-马鞍底斜长角闪岩岩浆演化过程中可能混染了部分具有OIB属性的峨眉山地幔柱物质成分;第3组为大象山老街-Pho Rang斜长角闪岩,具有类似于OIB的稀土和微量元素配分曲线特征,微量元素含量和比值(TiO2=3.28%~4.31%,Nb/La=0.84~1.01,Ti/Y>500等)特征显示与峨眉山高Ti玄武岩相似的地球化学属性,表明峨眉山玄武岩在哀牢山-大象山变质杂岩带内广泛分布,该岩石成分可能为勐桥-马鞍底斜长角闪岩(第2组)的端元组分之一;第4组为大象山Pho Rang斜长角闪岩,该组岩石具有与元江斜长角闪岩(第1组)相似的E-MORB属性特征。进一步的研究表明,哀牢山-大象山变质杂岩带中具有类似于E-MORB属性的斜长角闪岩均表现出不同程度的Nb、Ta元素亏损和Rb、Ba等大离子元素富集,微量元素比值(Nb/Yb(0.72~5.29),Th/Yb(0.11~0.87),La/Nb(0.91~8.83))等特征类似于岛弧玄武岩,这些特征指示其原岩岩浆可能是俯冲环境下地幔楔岩石部分熔融的产物。结合哀牢山-大象山变质杂岩带、哀牢山-马江缝合带以及扬子地块之间的时-空关系,本文推测哀牢山-大象山变质杂岩带内的E-MORB类型岩浆岩形成于东古特提斯支洋(即哀牢山-马江洋)向东的俯冲过程,其俯冲持续时间为中二叠-早三叠世(272~248Ma)。
关键词: 哀牢山-大象山变质杂岩带    中二叠-早三叠世    斜长角闪岩    地球化学    U-Pb年龄    俯冲作用    
Geochemistry, geochronology and geological implication of amphibolites in Ailao Shan-Day Nui Con Voi metamorphic complex belt, southeastern Tibetan Plateau
XU WenTao1, LIU FuLai1, JI Lei2, XU Wang1     
1. Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Ailao Shan-Day Nui Con Voi metamorphic complex belt (ADB), located on the southeastern margin of Tibetan Plateau, is a vital NW trend orogenic belt in southeastern Tibetan Plateau. The ADB mainly consists of various paragneisses, schists, quartzites, marbles, amphibolites, which have experienced extensive mylonitization. In this paper, we discovered the Middle Permian-Early Triassic amphibolites in the Yuanjiang, Jinping, Lao Cai and Pho Rang areas within the ADB. The amphibolites can be subdivided into four groups by the integrated studies of the geochemistry and zircon U-Pb geochronology. Group 1 is distributed in Yuanjiang area. Its REE and trace element patterns are similar to those of E-MORB. LA-ICP-MS zircon U-Pb dating of these rocks yields an age of 272.5±1.7Ma. Group 2 is collected from Mengqiao and Maandi. Compared with Yuanjiang amphibolites (Group 1), it shows higher ratios of LREE/HREE, and the REE and trace element patterns are similar to the enriched mid-ocean ridge basalts (E-MORB). The signatures of trace element ratios (e.g. Nb/Yb, Th/Yb, etc.) show the trend from MORB to OIB. The Mengqiao and Maandi amphibolites are similar to Emeishan Low-Ti basalts and High-Ti basalts, respectively, based on their Ti contents and Ti/Y ratios. The zircon U-Pb dating results yield weighted mean ages of 265.2±1.0Ma~266.2±1.0Ma and 250.4±1.5Ma~248.7±1.6Ma for Mengqiao and Maandi amphibolites, in which the late rocks contain 261.2±1.5Ma~257.9±1.6Ma of inherited zircon. These ages of protoliths and inherited zircon are similar to Emeishan basalt (~260Ma). All of these evidences indicate that the Mengqiao-Maandi mafic rocks are mainly derived from the mixing of mantle source components (E-MORB-like) and Emeishan plume material (OIB-like). Group 3 is distributed in Lao Cai and Pho Rang in Day Nui Con Voi, and has OIB-like characteristics of rare earth and trace elements. The contents and radio of trace elements (TiO2=3.28%~4.31%, Nb/La=0.84~1.01, Ti/Y>500, and so on) are similar to high-Ti (HT) Emeishan basalt, indicating that the Emeishan basalt is widely distributed in the ADB, and these rocks may be one of the end-member components of the Mengqiao-Maandi amphibolites (Group 2). Group 4 is distributed in Pho Rang with geochemical features similar to the Yuanjiang amphibolites (Group 1). Further research suggests that the amphibolites (E-MORB-like) in ADB are characterized by varying degrees of negative Nb, Ta anomalies and positive Rb, Ba anomalies. The ratios of incompatible trace elements (Nb/Yb (0.72~5.29), Th/Yb (0.11~0.87), La/Nb (0.91~8.83), and so on) are similar to island arc basalts. Such geochemical signatures indicate that these rocks were derived from partial melting of mantle wedge in the subduction zone. In combination with previous studies on the time-space distribution between the ADB, Ailao Shan-Song Ma suture and Yangtze block, we proposed that the East Paleo-Tethys Branch Ocean (Ailao Shan-Song Ma Ocean) subducted eastward beneath the Yangtze Block during the Middle Permian-Early Triassic (272~248Ma), and accompanied formation of E-MORB-like magmas in the ADB.
Key words: The Ailao Shan-Day Nui Con Voi metamorphic complex belt    Middle Permian-Early Triassic    Amphibolite    Geochemistry    U-Pb dating    Subduction    

青藏高原及其东南缘的三江地区经历了复杂的构造演化,并完整保留了古特提斯洋打开-俯冲-闭合的相关地质记录,是研究古特提斯演化的关键地区之一(Metcalfe, 2013; Wang et al., 2018; Xu et al., 2020; 及其中参考文献)。哀牢山-大象山变质杂岩带位于青藏高原东南缘(图 1a),是三江地区重要的北西向造山带(Lepvrier et al., 2011; 钟大赉, 1998),记录了青藏高原东南缘古特提斯洋晚古生代的构造演化历史(Jian et al., 2009a; Metcalfe, 2006, 2013)。哀牢山-大象山变质杂岩带西侧紧邻哀牢山-马江缝合带,多数研究者认为西南三江东侧的哀牢山-马江缝合带代表东古特提斯支洋(即哀牢山-马江洋)的残余(Chung et al., 1997; Jian et al., 2009b; Liu et al., 2012; Metcalfe, 2013; Wang et al., 2000; Yumul et al., 2008)。但是,该分支洋的演化历史并不清楚,尤其是俯冲极性和俯冲时限存在很大的争议。关于其俯冲极性目前主要包括三种观点:(1)向西俯冲至思茅-印支地块之下(Jian et al., 2009a, b; Kamvong et al., 2014; Lai et al., 2014b; Liu et al., 2012, 2017b; Roger et al., 2012; 沈上越等, 1998; 魏启荣和沈上越, 1995; 钟大赉, 1998);(2)向东俯冲到华南地块之下(Lepvrier et al., 2004; Xu et al., 2019c; Zhang et al., 2013, 2014; 段新华和赵鸿, 1981; 王曼等, 2018);(3)双向俯冲(Wang et al., 2018; Xia et al., 2019; 黄潮, 2018)。引起上述争论的主要原因是哀牢山-马江缝合带受到后期变质变形作用的强烈改造,原始地质记录难以保留或识别。

图 1 三江地区构造纲要图(a, 据Deng et al., 2014; Wang et al., 2018修改)和哀牢山-大象山变质杂岩带区域地质图(b, 据Roger et al., 2012云南省地质矿产局, 1990修改) ALS-哀牢山缝合带;CMS-昌宁-孟连缝合带;GLS-甘孜-理塘缝合带;InS-Inthanon缝合带;JSJS-金沙江缝合带;LTSS-龙木错-双湖缝合带;NJS-怒江缝合带;NanS-Nan缝合带;SMS-马江缝合带;RRF-红河断裂 Fig. 1 Tectonic sketch map of the Sanjiang region in Southwest China (a, modified after Deng et al., 2014; Wang et al., 2018) and regional geological map of the ADB (b, modified after Roger et al., 2012; BGMRY, 1990) ALS-Ailaoshan Suture; CMS-Changning-Menglian Suture; GLS-Ganzhi-Litang Surture; InS-Inthanon Suture; JSJS-Jinshajiang Suture; LTSS-Longmucuo-Shuanghu Suture; NJS-Nujiang Suture; NanS-Nan Suture; SMS-Song Ma Suture; RRF-Red Rive Fault

近年来,研究者们在哀牢山变质杂岩带内发现了大量早元古代-早新生代时期形成于不同构造背景下的镁铁质-超镁铁质岩石(Cai et al., 2014, 2015; Liu et al., 2013, 2017a, c; Zhou et al., 2013),为深入探讨特提斯洋的演化历史提供了可能。值得注意的是,最近有研究者在哀牢山缝合带北东侧太忠地区发现约261Ma的富Nb变质玄武岩,认为该套玄武岩浆由俯冲相关的MORB岩浆与地幔柱岩浆混合后组成,形成于哀牢山洋向东俯冲过程中的弧后盆地环境(Xu et al., 2019c),表明哀牢山缝合带东侧中二叠世晚期及其之后的岩浆事件可能普遍受到峨眉地幔柱的影响。然而,以往的研究大多认为哀牢山缝合带及越南北部地区出露的该时期岩石均来自于峨眉山地幔柱(Lai et al., 2014a; Liu et al., 2017d; Wang et al., 2007; Zhou et al., 2013)。鉴于此,准确识别该时期哀牢山-马江缝合带东侧岩浆作用的成因和演化过程是研究东古特提斯支洋是否存在向东俯冲的关键。在前人研究的基础上,本文对哀牢山-大象山变质杂岩带内的斜长角闪岩进行了系统的岩石地球化学和锆石U-Pb年代学研究,目的是对研究区内斜长角闪岩的形成时限、成因背景进行限定,并结合哀牢山-大象山变质杂岩带与周围地质体的时空关系,对东古特提斯支洋(即哀牢山-马江洋)的演化历史提供重要制约。

1 地质背景

哀牢山构造带位于西南三江造山系东部,是青藏高原东南缘一条重要的古特提斯构造带,将思茅地块与扬子地块分隔开来(图 1a)。该带沿北西-南东向延伸约500km,宽20~100km,东、西两侧分别以红河断裂和阿墨江-李仙江断裂为界(云南省地质矿产局, 1990; 钟大赉, 1998; 图 1b)。在哀牢山构造带内,哀牢山-藤条河断裂被认为是华南地块与思茅-印支地块之间缝合带的最终闭合位置(Xia et al., 2016; Xu et al., 2019a, b),分隔了构造带东部的哀牢山深变质带与浅变质带(Fan et al., 2010; Lai et al., 2014a; Xia et al., 2019)。深变质带的岩石被认为归属元古代哀牢山群或点苍山群,带内物质成分复杂,主要由角闪岩相-麻粒岩相岩石组成(Lin et al., 2012; Tang et al., 2013),包括多个时代的侵入岩和沉积岩,因此,又被称为哀牢山变质杂岩带(冀磊等, 2017; 王冬兵等, 2013),有学者认为该杂岩可能为新元古代洋-陆转换之后的复理石沉积+火山沉积(王铠元, 1993)。浅变质带主要由古生代海相沉积地层、三叠纪带陆相沉积地层和花岗质岩体组成,普遍遭受绿片岩相变质作用的改造(段新华和赵鸿, 1981)。研究表明,哀牢山深变质带与浅变质带分别隶属于华南地块与印支地块(Wang et al., 2014; Xia et al., 2016; Xu et al., 2019b)。由于新生代印度-欧亚板块碰撞,哀牢山变质杂岩带作为思茅-印支板块向东南逃逸的东侧边界,经历了岩石圈尺度的左行剪切运动和酸性-基性的岩浆侵入(Gilley et al., 2003; Leloup and Kienast, 1993; Leloup et al., 1995, 2001; Tapponnier et al., 1990)。哀牢山变质杂岩带内的镁铁质-超镁铁质岩石广泛出露,主要分布于元江、元阳、金平马鞍底、勐桥等地区,这些镁铁质-超镁铁质岩石通常以透镜状、豆荚状或独立的块体产出,主要由角闪辉长岩、斜长角闪岩、变质辉长岩、辉石岩和橄榄岩等组成。其中,金平等地区出露的镁铁质-超镁铁质岩石形成于约260Ma,其成因被认为与峨眉山地幔柱有关(Chung and Jahn, 1995; Wang et al., 2007; Zhou et al., 2013)。而带内其余地区出露的镁铁质-超镁铁质岩石形成时代相对复杂,包括新元古代(740~820Ma, Cai et al., 2014, 2015)、晚古生代(约261Ma, Xu et al., 2019c)和中生代(68~139Ma, Liu et al., 2017a),它们均被认为形成于弧后盆地环境。

大象山变质杂岩带作为哀牢山变质杂岩带向东南方向的延伸,其长约250km,宽约20km,呈北西-南东方向狭长展布,两侧分别以斋江断裂和红河断裂为界(图 1b)。主要由经历了麻粒岩相变质的片麻岩、石榴云母片岩、混合岩以及众多小规模的新生代花岗岩体组成(陈泽超等, 2013)。大象山变质杂岩带内的镁铁质-超镁铁质岩石主要分布于斋江断裂附近,沿斋江断裂发育一套具有蛇绿混杂岩特征的构造混杂带(Lepvrier et al., 2011; 林伟等, 2011),部分学者将该条蛇绿混杂岩带解释为斋江缝合带,是金沙江-哀牢山缝合带的东南向延伸(Faure et al., 2010; Lepvrier et al., 2011)。大象山变质杂岩带北东侧为扬子地块,南西侧自东向西分别为Nam Co杂岩和马江缝合带(图 1b),马江缝合带内发育一套晚古生代蛇绿岩以及早中生代榴辉岩和相关的高压变质岩石(Vu‘ọ’ng et al., 2013; Zhang et al., 2013, 2014),分别与哀牢山缝合带内的蛇绿岩以及大洋闭合时代一致(Jian et al., 2009b; Liu et al., 2013),因此,多数学者认为哀牢山缝合带向东南延伸到马江缝合带(Chung et al., 1997; Liu et al., 2012; Metcalfe, 2013)。

华南地块由扬子和华夏两个块体在新元古代-古生代拼合而成(Ren, 1996),扬子地块西缘与思茅-印支地块接壤(图 1a)。在扬子地块西缘广泛出露约260~240Ma(Shellnutt et al., 2008)与地幔柱活动相关的峨眉山溢流玄武岩(Chung and Jahn, 1995; Xu et al., 2001)。系统的全岩地球化学和Sr-Nd同位素研究表明,峨眉山玄武岩可分为高Ti和低Ti两类(Xiao et al., 2004),这些岩石在哀牢山构造带和越南北部地区亦有广泛出露(Wang et al., 2007; Zhou et al., 2002),可见,哀牢山构造带东部和越南北部地区的构造岩浆活动受到峨眉山地幔柱的影响显著(Xu et al., 2019c)。

2 样品及岩相学特征

本文样品主要为哀牢山-大象山变质杂岩带内的斜长角闪岩,分别采自哀牢山变质杂岩带中东部的元江、东南部的金平勐桥和马鞍底以及越南北部大象山变质杂岩带的老街和Pho Rang地区,靠近红河断裂(图 1b)。由于哀牢山-大象山变质杂岩带位于新生代思茅-印支地块向东南方向挤出的构造边界位置,构造变形强烈,斜长角闪岩与围岩的原有接触关系难以保存。野外地质调查显示,带内的斜长角闪岩与围岩通常呈构造接触关系,元江、老街和Pho Rang地区的斜长角闪岩以透镜体状或条带状(直径约1~10m)出露于变质沉积岩中(图 2a, g, j),勐桥和马鞍底斜长角闪岩出露面积较大(长约1.5~10km,宽约0.2~2km;图 2d),由多条北西-南东向展布的条带状基性-超基性岩体组成(图 1b)。它们的围岩主要由长英质片麻岩、含石榴石二云母片岩和大理岩等构成,普遍受到角闪岩相-麻粒岩相的变质作用。样品可分为4组,第1组为元江斜长角闪岩(17HA14-6、17HA18-2),具有中细粒变晶结构,主要由角闪石(45%~55%)和斜长石(35%~40%)组成,部分岩石中残留有早期的单斜辉石,次要矿物为石榴子石(5%)、石英(< 5%)和黑云母(< 5%),副矿物主要为不透明的Fe-Ti氧化物及榍石等,石榴子石周围发育明显的白眼圈结构(图 2b, c)。第2组为勐桥-马鞍底斜长角闪岩(17HA77-1、17HA77-4、17HA79-1、17HA79-2、17HA79-3、17HA79-4),呈独立的岩体产出于元古代的片麻岩中,岩体中岩石类型多样,包括中性-超基性的角闪斜长片麻岩、斜长角闪岩和角闪岩等,具有片麻状构造和细粒粒状变晶结构,主要矿物为浅绿色角闪石和斜长石,部分岩石含有角闪石的变斑晶,副矿物为榍石、金红石及不透明Fe-Ti氧化物等(图 2e, f)。第3组和第4组采自越南北部大象山地区,其中第3组为老街-Pho Rang斜长角闪岩(19YU39-1、19YU39-2、19YU39-5、19YU45-2、19YU48-1),主要矿物为斜长石(10%~35%)和角闪石(55%~80%),大部分岩石样品含有石榴石(约5%)和黑云母(约5%),石榴石具有明显的白眼圈结构(图 2h),副矿物主要为锆石和不透明Fe-Ti氧化物,椭圆状的锆石呈包体出现于角闪石和石榴石中(图 2i),部分岩石中含有单斜辉石,辉石部分转变为角闪石。第4组为Pho Rang斜长角闪岩(19YU49-1、19YU50-2),主要由斜长石(20%~30%)和角闪石(65%~80%)组成,含少量石榴石、单斜辉石和斜方辉石,副矿物主要为榍石和不透明Fe-Ti氧化物(图 2k, l)。由于受新生代强烈的构造剪切变形,这些斜长角闪岩与围岩具有一致的片理状构造。本文中使用的矿物名称缩写据Whitney and Evans (2010)

图 2 哀牢山-大象山变质杂岩带斜长角闪岩野外和镜下照片 元江斜长角闪岩(第1组)野外露头照片(a)和显微镜下照片(b, 正交偏光;c, 单偏光);勐桥-马鞍底斜长角闪岩(第2组)野外露头照片(d)和显微镜下照片(e, 单偏光;f, 正交偏光);老街-Pho Rang斜长角闪岩(第3组)野外露头照片(g)和镜下照片(h, 单偏光;i, 正交偏光);Pho Rang斜长角闪岩(第4组)野外露头照片(j)和镜下照片(k-正交偏光;l-正交偏光) Fig. 2 Outcrop and photomicrographs of amphibolites in the ADB Outcrop (a) and photomicrographs (b, cross-polarized light; c, plane-polarized light) of Yuanjiang amphibolites (Group 1); outcrop (d) and photomicrographs (e, plane-polarized light; f, cross-polarized light) of Mengqiao-Maandi amphibolites (Group 2); outcrop (g) and photomicrographs (h, plane-polarized light; i, cross-polarized light) of Lao Cai-Pho Rang amphibolites (Group 3); outcrop (j) and photomicrographs (k, cross-polarized light; l, cross-polarized light) of Pho Rang amphibolites (Group 4)
3 分析方法 3.1 锆石U-Pb

选取野外采集的无矿化、无脉体的新鲜斜长角闪岩进行分析测试,锆石分选由河北省廊坊市地质调查研究所实验室采用常规重液和电磁分选完成,并在双目镜下挑选出晶型较好,无裂隙的锆石颗粒粘贴在环氧树脂表面制成锆石样品靶,打磨抛光至锆石中心位置。抛光后的样品靶放置于光学显微镜下拍摄透、反射光显微照片,观察锆石裂隙和包裹体发育情况,通过背散射(BSE)和阴极发光(CL)图像详细研究锆石的晶体形貌和内部结构特征。

LA-ICP-MS锆石U-Pb定年测试分析在北京科荟测试技术有限公司完成,锆石定年分析所用仪器为AnlyitikJena PQMS Elite型ICP-MS及与之配套的ESI NWR 193 nm准分子激光剥蚀系统。激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.01J/cm2,以He为载气。LA-ICP-MS激光剥蚀采样采用单点剥蚀的方式,测试前先用锆石标样GJ-1进行调试仪器,使之达到最优状态。锆石U-Pb定年以标样GJ-1为外标,微量元素含量利用NIST 610做为外标、Si做内标的方法进行定量计算,数据处理采用ICPMSDataCal程序(Liu et al., 2010),锆石年龄谐合图利用Isoplot 3.0程序完成。样品分析过程中,Plesovice标样作为已知样品的分析结果为337.7±0.8Ma(n=40, 2σ),对应的年龄推荐值为337.13±0.37Ma(2σ)(Sláma et al., 2008),两者在误差范围内完全一致。

3.2 全岩主微量

全岩粉末(200目)制备在河北省区域地质调查研究所完成,全岩主量和微量元素化学成分测试在广州澳实分析检测实验室完成。主量元素采用X射线荧光光谱仪(XRF,型号:PANalytical PW2424)测定,依据GB/T 14506.28—2010标准,检测项目包括Al2O3、CaO、Fe2O3、K2O、MgO、MnO、Na2O、P2O5、SiO2、TiO2等10项,测试精度优于2%~5%。FeO采用酸消解重铬酸钾滴定法(Fe-VOL05)测定,依据GB/T 14506.14— 2010标准,检出下限为0.01%。微量及稀土元素采用ICP-AES(型号:Agilent VISTA)和ICP-MS(型号:Agilent 7700X)组合测试完成。依据GB/T14506.30—2010标准,测试精度优于10%。

4 分析结果 4.1 锆石U-Pb年代学 4.1.1 锆石形貌及内部结构

元江石榴斜长角闪岩(17HA14-6)中的锆石具有自形的长柱状晶体外形,无色-浅棕黄色,长宽比接近1:2~1:3,明显的岩浆震荡环带且环带较宽(图 3),为典型的基性岩浆锆石(Corfu, 2003)。勐桥-马鞍底斜长角闪岩(17HA77-4、17HA79-1、17HA79-4、17HA79-5)中的锆石为浅棕黄色,分为两种类型:一类具有自形的短柱状晶体外形,长宽比接近1:,较宽的岩浆环带(图 4);另一类锆石粒度较粗(>200μm),普遍发生机械破碎,具有较窄的变质边以及密集的岩浆环带(图 4)。两种类型的锆石均为典型的岩浆锆石(Corfu, 2003)。

图 3 元江斜长角闪岩锆石U-Pb年龄谐合图,示代表性锆石CL图像 Fig. 3 Zircon U-Pb concordia diagram of Yuanjiang amphibolite, showing representative zircon CL images

图 4 勐桥-马鞍底斜长角闪岩锆石U-Pb年龄谐合图,示代表性锆石CL图像 Fig. 4 Zircon U-Pb concordia diagrams of Mengqiao-Maandi amphibolites, showing representative zircon CL images
4.1.2 锆石U-Pb年龄

17HA14-6样品共测30颗锆石的U-Pb年龄(表 1),其中6个分析点(02、07、10、15、17、30)可能发生Pb丢失,锆石206Pb/238U年龄较年轻且偏离谐合曲线。剩余24个分析点给出较为一致的206Pb/238U锆石年龄,加权平均年龄为272.5±1.7Ma(MSWD=2.3;图 3),Th/U=1.05~3.74,为典型的岩浆锆石,代表原岩的形成年龄。

表 1 哀牢山变质杂岩带斜长角闪岩LA-ICP-MS锆石U-Pb测年结果 Table 1 LA-ICP-MS zircon U-Pb analytical data for amphibolites in Ailao Shan metamorphic complex belt

17HA77-4样品共测30颗锆石的U-Pb年龄(表 1),其中18个分析点为继承锆石,Th/U=0.29~1.55,具有很好岩浆环带,颜色较浅,为典型的岩浆锆石,显示261.2±1.5Ma的加权平均年龄(图 4a),与峨眉山玄武岩的年龄一致(约260Ma);另外10个分析点显示250.4±1.5Ma的加权平均年龄(图 4b),Th/U=0.21~1.83,解释为原岩的形成年龄;剩余2个分析点(12、19)可能发生Pb丢失,206Pb/238U锆石年龄偏离谐合曲线。

17HA79-1样品共测30颗锆石的U-Pb年龄(表 1),其中5颗锆石(06、18、22、25、29)可能发生Pb丢失,年龄结果偏离谐合曲线,剩余25颗锆石具有较为一致的锆石206Pb/238U谐合年龄,加权平均年龄为265.2±1.0Ma(图 4c),Th/U=0.32~1.06,解释为原岩的形成年龄。

17HA79-4样品共测30颗锆石的U-Pb年龄(表 1),所有分析的锆石颗粒都显示一致的谐合年龄,加权平均年龄为266.2±1.0Ma(图 4d),Th/U=0.28~1.46,解释为原岩的形成年龄。

17HA79-5样品共测30颗锆石的U-Pb年龄(表 1),其中10颗锆石为继承锆石,8颗锆石的206Pb/238U加权平均年龄为257.9±1.6Ma(图 4f),与峨眉山玄武岩的年龄一致(约260Ma);另有2颗锆石具有更老的年龄(约267Ma),可能为该地区更早期岩浆中的锆石。1颗锆石(16)显示较年轻的年龄,可能发生了Pb的丢失。剩余的19颗锆石显示锆石206Pb/238U加权平均年龄为248.7±1.6Ma(图 4e),Th/U=0.48~1.10,解释为原岩的形成年龄。

4.2 主、微量元素特征 4.2.1 主量元素特征

样品的主、微量元素分析数据结果见表 2,烧失量为0.08%~1.48%,显示较弱的蚀变特征。4组样品均具有较低的SiO2含量(40.67%~49.31%)和Na2O+K2O含量(1.90%~4.58%),第1组和第4组斜长角闪岩具有较高的Mg#值(55.9~68.3),较低的TiO2含量(1.16%~1.31%)。第2组和第3组斜长角闪岩具有较低的Mg#值(36.3~62.7),第2组中的勐桥斜长角闪岩中TiO2(1.20%~1.32%)含量较低,与元江斜长角闪岩相似,而马鞍底和第3组斜长角闪岩的TiO2(2.27%~4.31%)含量较高。Nb/Y-Zr/TiO2图解(图 5a)显示第1、2、4组样品均为亚碱性系列,第3组样品则为碱性系列岩石,AFM图解中(图 5b),第1组和第4组样品落于钙碱性系列岩石区域,第2组样品中拉斑系列和钙碱性系列岩石均有出露。

表 2 哀牢山-大象山变质杂岩带斜长角闪岩主量(wt%)和微量(×10-6)元素分析结果 Table 2 Major (wt%) and trace (×10-6) elements data for the amphibolites in ADB

图 5 岩石系列判别图解 (a) Nb/Y-Zr/TiO2图解(Winchester and Floyd, 1977);(b) AFM图解(b, Irvine and Baragar, 1971),TH-拉斑系列;CA-钙碱性系列.图 7图 910图例同此图 Fig. 5 Discrimination diagrams for rock types (a) Nb/Y vs. Zr/TiO2 diagram (Winchester and Floyd, 1977); (b) AFM diagram (Irvine and Baragar, 1971); TH-tholeiitic; CA-calc-alkaline. Legendes of Fig. 7, Fig. 9 and Fig. 10 are the same as in this figure
4.2.2 稀土与微量元素特征

本文中的样品,根据标准化后的稀土和微量元素分配特征,可将其分为三种类型,类型1:主要为元江斜长角闪岩(第1组)和Pho Rang斜长角闪岩(第4组),其稀土元素总量(∑REE)47.93×10-6~59.04×10-6,轻-重稀土分馏程度较低((La/Yb)PM=0.88~2.56,(La/Sm)PM=0.93~1.53),无明显的Eu异常(δEu=0.90~1.26),具有平坦-轻微右倾的轻-重稀土元素配分曲线型式(图 6a),类似于典型的富集型洋中脊玄武岩(E-MORB)(Sun and McDonough, 1989)。富集大离子亲石元素Rb、Sr、Ba等,亏损Nb、Ta、Ti等高场强元素,较低的Nb/Yb(0.84~3.27)、Th/Yb(0.18~0.87)和Nb/U(8.54~24.81)比值,区别于洋中脊玄武岩(N-MORB)和洋岛玄武岩(OIB)。类型2:主要为勐桥-马鞍底斜长角闪岩(第2组),其稀土元素总量(∑REE)27.93×10-6 ~54.51×10-6,轻-重稀土分馏程度较高((La/Yb)PM=3.59~7.18,(La/Sm)PM=1.07~2.04),具有右倾的稀土元素配分曲线型式,类似于富集型洋中脊玄武岩(E-MORB)。富集Rb、Sr、Ba等大离子亲石元素,明显的Ti、Eu元素正异常,δEu=1.12~2.03,亏损Nb、Ta、Zr、Hf等高场强元素和重稀土元素(图 6a, b)。类型3:主要为大象山老街-Pho Rang斜长角闪岩(第3组),其稀土元素总量(∑REE)176.4×10-6~307.3×10-6,轻-重稀土明显分馏,LREE/HREE=6.02~7.79,(La/Yb)PM=7.23~10.79,(La/Sm)PM=1.90~2.38,具有显著右倾的稀土和微量元素配分曲线形式,类似于洋岛玄武岩(OIB),富集Rb、Ba、K等大离子元素,并亏损Th、U、Sr、Zr、Hf等元素(图 6a, b)。

图 6 哀牢山-大象山变质杂岩带斜长角闪岩球粒陨石标准化稀土元素配分模式图(a)与原始地幔标准化微量元素蛛网图(b) NEB-富Nb玄武岩;HT EFB-高Ti峨眉山玄武岩;LT EFB-低Ti峨眉山玄武岩;N-MORB、E-MORB、OIB、球粒陨石和原始地幔值来源于Sun and McDonough, 1989;峨眉山玄武岩数据来源于Xiao et al., 2004;富Nb玄武岩数据来源于Xu et al., 2019c Fig. 6 Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace elementa pattern (b) for the amphibolites in ADB NEB-Nb-enriched basalts; HT EFB-High-Ti Emeishan basalt; LT EFB-Low-Ti Emeishan basalt; N-MORB, E-MORB, OIB, chondrite and primitive mantle (PM) values from Sun and McDonough (1989); the data forEmeishan basalt from Xiao et al., 2004; the data for Nb-enriched basalt from Xu et al., 2019c
5 讨论 5.1 变质作用的影响

本文中的样品均为非常新鲜的岩石,并具有较低的烧失量(0.08%~1.48%),但样品普遍受到低角闪岩相-高角闪岩相的变质作用,因此,在讨论其成因及构造环境之前,仍有必要验证是否受后期变质作用的影响。Zr元素作为低级交代和变质作用过程中最不活动的元素,它是判断其他微量元素是否发生迁移的最佳指示标志(Polat et al., 2002; Wu and Zheng, 2004)。Zr与部分稀土和微量元素活动性对比图中(图 7),除却Ti元素以外,其余高场强元素(HFSEs,如Nb、Ta、Hf)、稀土元素(REEs,如La、Sm、Yb、Y)等与Zr元素具有较强的相关性,表明这些元素在变质过程中没有发生明显的迁移(Polat et al., 2002)。因此,本文的讨论主要根据这些相对不活动元素的浓度和比值(如HFSEs、REEs、Y、Th等元素)。

图 7 哀牢山-大象山斜长角闪岩蚀变和变质过程中Zr与部分稀土和微量元素活动对比图 Fig. 7 Plots of selected trace elements versus Zr for the amphibolites in ADB to evaluate the mobility of these elements under different geochemical conditions during alteration and metamorphism
5.2 岩浆演化过程

元江斜长角闪岩(第1组)是哀牢山变质杂岩带内首次发现的中二叠世早期(约272Ma)镁铁质岩石,一致的稀土元素和微量元素标准化图,并伴随有Nb、Ta、Ba、Th等元素的异常,表明这些斜长角闪岩并没有受到后期作用的明显改造,元江斜长角闪岩的地球化学特征主要受原岩源区特征及成因过程的控制(Liu et al., 2017c)。通常亏损地幔源区的岩浆的Ni>400×10-6,Cr>1000×10-6,Mg#=73~81(Litvak and Poma, 2010),而富集地幔源区的原始岩浆的Mg#>65(Kamenetsky et al., 2001),元江斜长角闪岩具有较低的Mg#(55.9~56.0)、Cr(141×10-6~343×10-6)和Ni(43×10-6~127×10-6)元素含量,表明岩浆演化过程中橄榄石和单斜辉石的结晶分异。Sr和Eu与斜长石相容,元江斜长角闪岩中无明显的Sr和Eu异常,表明斜长石并没有发生结晶分异。而Nb、Ta元素的亏损表明岩浆形成过程中伴随俯冲带流体的参与,类似于岛弧或弧后盆地环境中形成的岩石(Lai et al., 2014b)。

勐桥-马鞍底斜长角闪岩(第2组)以低SiO2(40.67%~48.38%)、Cr(8×10-6~62×10-6)、Ni(79.3×10-6~199.5×10-6)元素含量以及Mg#值(38.5~48.0)为特征(样品17HA77-1的Cr(870×10-6)、Ni(375×10-6)元素含量和Mg#(62.7)值较高,可能是橄榄石或单斜辉石的局部集中)。勐桥-马鞍底斜长角闪岩样品随着SiO2含量的增加,Al2O3、Cr元素含量增加,CaO、MgO、FeOT、TiO2、Ni元素含量减少(图 8),同样表明其经历了橄榄石和单斜辉石的结晶分异。马鞍底斜长角闪岩(TiO2=2.27%~3.85%,δEu=1.66~2.20)相比勐桥斜长角闪岩(TiO2=1.20%~1.32%,δEu=1.12~1.41)具有更高的Ti元素含量和Eu的正异常,表明前者在形成过程中经历了高Ti岩浆物质的加入以及斜长石的结晶。而勐桥和马鞍底斜长角闪岩同时表现出明显的Nb、Ta元素负异常则说明在岩浆演化过程中伴随有俯冲流体的交代。锆石U-Pb定年结果显示,勐桥和马鞍底斜长角闪岩形成于约260Ma或含有约260Ma的继承岩浆锆石,该年龄与本地区广泛出露的峨眉山玄武岩年龄一致(约260Ma)。峨眉山玄武岩分为低Ti玄武岩和高Ti玄武岩(Xiao et al., 2004),其中低Ti玄武岩以Ti/Y < 500和TiO2=1.23%~2.23%为特征,该特征与勐桥斜长角闪岩相似,高Ti玄武岩通常Ti/Y>500,TiO2=3.58%~5.21%,类似于马鞍底斜长角闪岩。上述特征表明,勐桥和马鞍底斜长角闪岩原岩形成过程中可能分别混入了峨眉山低Ti和高Ti玄武岩的物质组分,是俯冲环境下地幔楔岩石与地幔柱物质组分相互作用的产物。我们注意到,类似的事件在哀牢山缝合带北部的太忠地区也有报道,Xu et al. (2019c)对太忠地区近同期(约261Ma)富Nb玄武岩的全岩地球化学和Nd同位素研究发现,该玄武岩由源于俯冲带的MORB类型玄武岩和源于地幔柱的富集组分混合形成,该模型表明哀牢山缝合带东侧晚二叠世及其之后形成的岩浆可能普遍受到峨眉山地幔柱的影响,导致同期的岩浆中不同程度的混染了地幔柱的物质成分。

图 8 勐桥-马鞍底斜长角闪岩哈克图解 Am-角闪石;Ap-磷灰石;Cpx-单斜辉石;Fe-Ti-Fe-Ti氧化物;Pl-斜长石;Ol-橄榄石 Fig. 8 Harker diagrams for Mengqiao-Maandi amphibolites Am-amphibolite; Ap-apatite; Cpx-clinopyroxene; Fe-Ti-Fe-Ti oxide; Pl-plagioclase; Ol-olivine

大象山老街-Pho Rang斜长角闪岩(第3组)具有类似于OIB的稀土和微量元素配分曲线特征,而较低的Mg#(36.3~44.8)、Cr(31×10-6~179×10-6)、Ni(37.35×10-6~95.0×10-6)表明其岩浆演化过程中同样经历了明显的橄榄石和单斜辉石的结晶分异。由于斜长石中的Sr为相容元素,相比于典型的OIB型岩浆,适度的Sr负异常表明该组岩石岩浆演化过程中发生了斜长石结晶分异(Sun and McDonough, 1989),但无明显的Eu异常,可能反映了岩浆具有较高的Eu3+/Eu2+比值(Frey et al., 1993)。越南北部及哀牢山构造带西南部广泛出露峨眉山玄武岩(Wang et al., 2007),老街-Pho Rang斜长角闪岩(第3组)表现出高TiO2(3.28%~4.31%)、FeOT(14.90%~18.80%)、Nb/La(0.84~1.01)以及Ti/Y>500的特征,与峨眉山高Ti玄武岩(TiO2(3.65%~4.7%)、FeOT(14.11%~18.23%)、Nb/La(0.75~1.1))相似(Xiao et al., 2004; Xu et al., 2001)。该组岩石无明显的Nb、Ta、Th等元素异常,表明其并没有发生俯冲流体或地壳物质的混染。因此,本文推测该组岩石来源于均一的OIB型地幔源区,无明显的壳幔物质混合。

Pho Rang斜长角闪岩(第4组)具有相对较低的SiO2(46.40%~48.64%)、TiO2(1.16%~1.30%)、FeOT(11.44%~12.06%)含量,该特征与元江斜长角闪岩(第1组)类似,较高的Mg#(58.7~68.3)、Cr(390×10-6~1070×10-6)和Ni(149×10-6~356×10-6)含量同样表明橄榄石和单斜辉石的结晶分异并不明显,稀土和微量元素配分型式(图 5)显示与元江斜长角闪岩相似的MORB类型,无明显的Eu(δEu=0.90~0.98)和Sr元素异常表明岩浆演化过程中斜长石未发生明显结晶分异,轻微的Nb、Ta负异常表明Pho Rang斜长角闪岩原岩岩浆演化过程中同样受到俯冲作用的影响。

5.3 源区特征对比和成因联系

不相容元素的比值(如La/Yb和Sc/Yb、Zr/Nb和Ce/Y等)通常能提供岩浆源区的属性特征(Liu et al., 2017c),元江斜长角闪岩(第1组)和Pho Rang斜长角闪岩(第4组)具有较低的(La/Yb)PM(0.88~2.56)、Sc/Yb(10.41~20.44)、Zr/Nb(10.30~25.88)和Ce/Y(0.34~0.79)比值,表明它们在岩浆演化过程中地壳混染程度较弱,在(La/Yb)PM-Sc/Yb图(图 9a)和Zr/Nb-Ce/Y图(图 9b)中,显示出与哀牢山构造带西部大龙凯-五素岛弧/弧后盆地镁铁质岩石相似的地球化学特征(Fan et al., 2010; Liu et al., 2017b)。勐桥-马鞍底斜长角闪岩(第2组)的Sc/Yb(29.42~60.00)比值较为分散,(La/Yb)PM(3.59~7.18)比值较高(图 9a),Zr/Nb(9.01~40.00)、Ce/Y(0.95~1.71)比值具有与峨眉山玄武岩一致的演化趋势(图 9b),同样表明其可能受到峨眉山地幔柱的影响。老街-Pho Rang斜长角闪岩(第3组)所有样品均投在与峨眉山玄武岩相同的区域(图 9a, b),具有与扬子地块西缘和越南北部地区峨眉山玄武岩相似的地球化学特征,这些特征表明它们可能来源于相同的岩浆源区。

图 9 哀牢山-大象山变质杂岩带斜长角闪岩岩浆演化图 (a) (La/Yb)PM-Sc/Yb图解(Wyman et al., 2000);(b) Zr/Nb-Ce/Y图解(Deniel, 1998);(c) La/Yb-Sm/Yb图解(Zi et al., 2010);(d) (Tb/Yb)PM-(Yb/Sm)PM图解(Zhang et al., 2006), 源区组成为平均亏损地幔(Workman and Hart, 2005)与标准富集地幔(Ito and Mahoney, 2005)橄榄岩的1:1混合;EFB-峨眉山玄武岩;PM-原始地幔标准化数值;EFB数据来源于Wang et al., 2007; Xiao et al., 2004;大龙凯-五素镁铁质岩石数据来源于Liu et al., 2017b;双沟蛇绿岩数据来源于Hu et al., 2015; Jian et al., 2009a; Lai et al., 2014a, 图 10数据来源同此图 Fig. 9 Magmatic evolution diagram for amphibolites in ADB (a) (La/Yb)PM vs. Sc/Yb diagram (Wyman et al., 2000); (b) Zr/Nb vs. Ce/Y diagram (Deniel, 1998); (c) La/Yb vs. Sm/Yb diagram (Zi et al., 2010); (d) (Tb/Yb)PM vs. (Yb/Sm)PM diagram (Zhang et al., 2006), the curves are for a source consisting of a 1:1 mix of estimated average depleted mantle (Workman and Hart, 2005) and model enriched mantle peridotite (Ito and Mahoney, 2005); EFB-Emeishan basalt; PM-primitive mantle nomalized data; the data for EFB from Wang et al., 2007 and Xiao et al., 2004; the data for Dalongkai-Wusu mafic rock from Liu et al., 2017b; the data for Shuanggou ophiolite from Hu et al., 2015, Jian et al., 2009a and Lai et al., 2014a; The data in Fig. 10 is the same as in this figure

石榴石中的Yb为相容元素,而La和Sm元素为不相容元素,La/Yb和Sm/Yb比值在低程度部分熔融条件下将会强烈的分异,如在尖晶石稳定域,La/Yb比值只发生有限的变化,而Sm/Yb几乎不发生变化(Aldanmaz et al., 2000),因此La/Yb和Sm/Yb比值可区分岩浆来源于尖晶石橄榄岩和石榴石橄榄岩(Zi et al., 2010)。图 9c显示元江斜长角闪岩(第1组)与Pho Rang斜长角闪岩(第4组)原岩岩浆形成于地幔源区高程度部分熔融(25%~30%)过程,而老街-Pho Rang斜长角闪岩(第3组)的部分熔融程度(约10%)较低,勐桥-马鞍底斜长角闪岩(第2组)的部分熔融程度(约15%)介于元江斜长角闪岩(第1组)和老街-Rho Rang斜长角闪岩(第3组)之间。勐桥-马鞍底斜长角闪岩(第2组)和老街-Pho Rang斜长角闪岩(第3组)大部分岩石偏离石榴橄榄岩熔融曲线,显示出相似的分布特征,结合前文中提到,勐桥-马鞍底斜长角闪岩(第2组)的(La/Yb)PM和Ce/Y比值同样介于元江斜长角闪岩(第1组)和老街-Pho Rang斜长角闪岩(第3组)之间(图 9a, b),而老街-Pho Rang斜长角闪岩(第3组)与峨眉山玄武岩的地球化学特征相似,这些特征均表明,勐桥-马鞍底斜长角闪岩(第2组)的原岩岩浆可能混染了部分峨眉山地幔柱的物质成分。

(Tb/Yb)PM-(Yb/Sm)PM图解(图 9d)显示,元江斜长角闪岩(第1组)和Pho Rang斜长角闪岩(第4组)虽然落于石榴二辉橄榄岩熔体曲线上,但该熔体对原岩岩浆的贡献率仅为0~40%,指示其可能形成于石榴石域与尖晶石域地幔橄榄岩交界的位置或尖晶石域地幔橄榄岩源区。勐桥-马鞍底斜长角闪岩(第2组)和老街-Pho Rang斜长角闪岩(第3组)的原岩岩浆来自于石榴石域地幔橄榄岩源区的贡献率则达到了相同的70%~90%,表明勐桥-马鞍底斜长角闪岩和老街-Pho Rang斜长角闪岩起源于地幔深部(石榴石稳定域)。需要注意的是,图 9d中的曲线位置受熔体模型、分配系数、源区成分和矿物组合的影响,这些数值不能简单认为反应了实际的情况(Zhang et al., 2006),但无疑能反映大多数熔体的地幔橄榄岩源区。

5.4 构造意义 5.4.1 形成构造环境

哀牢山变质杂岩带元江、勐桥、马鞍底地区以及大象山变质杂岩带Pho Rang地区的E-MORB类型斜长角闪岩均显示不同程度的Nb、Ta亏损,导致其Nb/U、Nb/Yb、Nb/La比值降低,Th/Yb、La/Nb比值升高。在Nb-Nb/U图和Nb/Yb-Th/Yb图(图 10a, b)中,元江斜长角闪岩(第1组)和Pho Rang斜长角闪岩(第4组)均落入哀牢山缝合带西侧的大龙凯-五素岛弧/弧后盆地镁铁质岩石相近的区域,显示出类似于岛弧玄武岩(IAB)的地球化学特征。而勐桥-马鞍底斜长角闪岩(第2组)的轻-重稀土分馏程度高,微量元素比值图解(图 10b)中显示具有沿MORB-OIB序列的演化趋势,可见,勐桥和马鞍底地区的镁铁质岩石可能与OIB类型的岩浆发生相互作用,导致其Nb、Th等高场强元素含量的升高,重稀土元素含量降低。该特征类似于哀牢山缝合带北部太忠地区出露的富Nb玄武岩,其形成于俯冲环境下地幔楔熔体与地幔柱岩浆之间的相互作用(Xu et al., 2019c),但勐桥-马鞍底斜长角闪岩(第2组)中Nb、Ta元素含量相对较低,重稀土元素更加亏损,表明勐桥-马鞍底斜长角闪岩(第2组)受俯冲带流体和深部地幔岩浆的影响较大。老街-Pho Rang斜长角闪岩(第3组)的Nb、Ta、Th含量较高,图 10a, b中显示典型的OIB型岩石特征,显示与峨眉山玄武岩相似的微量元素比值特征,表明老街-Pho Rang斜长角闪岩(第3组)与峨眉山地幔柱之间应该存在成因上的联系。

图 10 哀牢山-大象山变质杂岩带斜长角闪岩构造判别图 (a) Nb-Nb/U图解(Kepezhinskas et al., 1996);(b) Nb/Yb-Th/Yb图解(Pearce, 2008);(c) Ni-La/Nb图解(Condie, 1999);(d) Nb/La-(La/Sm)N图解(Zhou et al., 2007) Fig. 10 Tectonic discrimination diagrams of amphibolites in ADB (a) Nb vs. Nb/U diagram (Kepezhinskas et al., 1996); (b) Nb/Yb vs. Th/Yb diagram (Pearce, 2008); (c) Ni vs. La/Nb diagram (Condie, 1999); (d) Nb/La vs. (La/Sm)N diagram (Zhou et al., 2007)

La/Nb比值可以明显的区分地幔柱/洋中脊玄武岩(MORB/OIB)与岛弧相关玄武岩,地幔柱/洋中脊玄武岩具有低的La/Nb比值(La/Nb < 1.4),岛弧相关玄武岩的La/Nb比值较高,范围较宽(La/Nb>1.4)(Condie, 1999)。元江和勐桥-马鞍底斜长角闪岩(第1组和第2组)的La/Nb比值均大于1.4(图 10c),表明它们均是与岛弧作用相关的岩石,形成于俯冲带环境。老街-Pho Rang斜长角闪岩(第3组)和Pho Rang斜长角闪岩(第4组)的La/Nb比值均小于1.4,但结合它们的稀土和微量元素配分曲线特征(图 6a, b),表明老街-Pho Rang斜长角闪岩(第3组)应该形成于地幔柱环境,而Pho Rang斜长角闪岩(第4组)的地球化学特征则更接近于洋中脊玄武岩,考虑到其Nb、Ta等高场强元素的轻微亏损,推测其形成环境可能为弧后盆地环境。Nb/La-(La/Sm)N图中(图 10d),元江、勐桥、马鞍底以及Pho Rang斜长角闪岩同样显示出与岛弧/弧后盆地岩石相似的地球化学特征。因此,上述证据均表明,本文中哀牢山-大象山变质杂岩带内出露的E-MORB类型斜长角闪岩均形成于俯冲带环境。

5.4.2 时空关系与演化历史

根据上述讨论,哀牢山-大象山变质杂岩带内出露的中二叠-早三叠世E-MORB类型斜长角闪岩来源于俯冲相关的构造环境,结合前人研究和区域地质资料表明,该环境与晚古生代东古特提斯支洋的俯冲作用相关。然而,关于哀牢山-大象山变质杂岩带地区的构造归属,目前仍然存在争议。前人根据其同位素年龄资料和区域地质资料对比分析,认为哀牢山变质杂岩带内的岩石形成于新元古代,并将其视为扬子陆块结晶基底的组成部分(王义昭和丁俊, 1996; 云南省地质矿产局, 1990; 翟明国等, 1990)。近年来,研究者对哀牢山变质杂岩带内云母石英岩、二长片麻岩、花岗片麻岩及斜长角闪岩等的年代学研究发现,哀牢山变质杂岩带内存在新元古代(700~820Ma)酸性-基性侵入岩,中寒武世(约500Ma)变质沉积地层以及三叠纪(220~240Ma)酸性侵入岩和地层(Cai et al., 2014, 2015; Lai, 2012; Liu et al., 2017c; Qi et al., 2014; Wang et al., 2016; 冀磊等, 2017; 李宝龙等, 2008; 刘汇川等, 2014; 王冬兵等, 2013),本文在该杂岩带内发现具有岛弧岩石相关属性的中二叠-早三叠世(272~248Ma)斜长角闪岩,进一步表明该带内物质组成的复杂性。中寒武世(约500Ma)变质沉积地层作为带内斜长角闪岩的围岩,其岩石成因及构造归属对于解释斜长角闪岩的成因具有重要意义。该变质沉积地层中的碎屑锆石年龄信息显示扬子地块西缘是其的重要物源区(王冬兵等, 2013),但变质沉积岩中最年轻碎屑锆石(约500Ma)的岩浆记录主要是发生在冈瓦纳大陆上的泛非运动(Song et al., 2007),指示该变质沉积岩的物源可能同时来源于两侧的冈瓦纳大陆和扬子地块,形成于500Ma之后。需要指出的是,华南地块由扬子和华夏两个块体在新元古代-古生代拼合而成(Ren, 1996),全球超大陆重建研究表明,约500Ma时期,华南地块紧邻冈瓦纳大陆(Li et al., 2018),华南地块的大地构造属性与冈瓦纳大陆依然具有密切的亲缘关系,表明华南地块是在500Ma之后才逐渐远离冈瓦纳大陆,这与Liu et al. (2018)提出的华南地块自晚奥陶世(约446Ma)开始逐渐从冈瓦纳大陆裂解的观点一致。据此,本文推测哀牢山变质杂岩带中的变沉积岩可能为哀牢山洋打开之前的裂谷阶段沉积的一套碎屑岩,其物质来源于两侧的冈瓦纳大陆和扬子地块。

区域地质资料显示,代表哀牢山洋壳残余的双沟、平掌蛇绿岩等出露于哀牢山变质杂岩带西侧,表明伴随着哀牢山洋的打开和扩张,哀牢山变质沉积岩与扬子地块一起逐渐远离冈瓦纳大陆。我们注意到,根据目前的研究,扬子地块西缘中-晚三叠世沉积序列中显示280~237Ma的单一峰值碎屑锆石年龄和正的εHf(t)值,表明在哀牢山缝合带东侧存在二叠-三叠纪的岩浆弧(Xu et al., 2019a),Xia et al. (2019)对扬子地块西缘个旧和米勒地区龙潭组砂岩中的碎屑锆石研究发现,这些砂岩形成于约240Ma的弧前盆地环境,表明直至中三叠世早期,哀牢山洋仍处于向东俯冲的过程。因此,我们认为哀牢山变质杂岩带中出露的这套中二叠-早三叠世岛弧或弧后盆地相关的镁铁质岩浆岩应该形成于哀牢山洋向东(现今方向)的俯冲过程。

大象山变质杂岩带紧邻斋江断裂西南侧(图 1b),沿斋江断裂出露大量淡色辉长岩、基性火山岩、火山沉积岩、大理岩和硅质泥岩等,如Pho Rang地区多处露头中混杂有泥质和火山质的片岩,被认为是增生杂岩中的蛇绿混杂岩(Barber and Brown, 1988)。由于斋江断裂北侧的变形和变质作用发生于三叠纪,因此,这些蛇绿混杂岩被认为是形成于同一时期,代表晚古生代华南地块边缘向南俯冲到如今大象山变质杂岩带之下的构造事件(Lepvrier et al., 2011)。本文在大象山变质杂岩带中采集的E-MORB类型斜长角闪岩同样位于Pho Rang地区,可能为该地区蛇绿混杂岩的组成部分,形成于同一时代,后续仍需要更多的年龄数据加以支持。马江缝合带位于大象山变质杂岩带西南方向(图 1b),该缝合带内出露的蛇绿岩(387~313Ma)与哀牢山蛇绿岩(383~328Ma)近于同期(Jian et al., 2009a, b; Vu‘ọ’ng et al., 2013; 简平等, 1998),由碰撞造山过程形成的高压/超高压榴辉岩和相关的高压岩石形成于约230Ma,表明陆块之间的碰撞发生于中三叠世时期(Zhang et al., 2013, 2014),同样与哀牢山构造带中的岩石记录一致(Liu et al., 2013; Xu et al., 2019a; 钟大赉, 1998),因此,多数学者认为马江缝合带是哀牢山缝合带向东南方向的延伸,分隔了华南地块和印支地块(Chung et al., 1997; Liu et al., 2012; Metcalfe, 2013; Yumul et al., 2008)。马江缝合带以东的Nam Co杂岩被认为是华南地块南缘的增生杂岩(图 1b),形成于马江洋向华南地块之下的俯冲增生过程(Zhang et al., 2013, 2014),因此,我们认为出露于大象山变质杂岩带内的E-MORB类型镁铁质-超镁铁质岩石以及蛇绿混杂岩应该与马江洋壳向东俯冲后的弧后伸展有关,该弧后伸展导致大象山小洋盆的产生,并在华南地块西南缘形成了与弧后盆地相关的岩浆岩。然而,目前在马江缝合带和斋江断裂之间并没有发现同期的岛弧岩浆记录,因此,后续仍需要对该地区进行更加详细的野外地质调查和岩石学研究。

综上所述,哀牢山-大象山变质杂岩带构造上隶属于扬子地块,本文在哀牢山-大象山变质杂岩带内采集的这套中二叠-早三叠世(272~248Ma)岛弧或弧后盆地相关的斜长角闪岩形成于东古特提斯支洋(哀牢山-马江洋)向东的俯冲增生过程。中二叠世时期,由于洋壳开始向东俯冲,在扬子西缘的弧后伸展环境中形成类似于E-MORB的镁铁质侵入岩和喷出岩;晚二叠-早三叠世时期,受到同处于扬子西缘的峨眉山地幔柱影响,该时期形成的俯冲相关岩浆与地幔柱岩浆物质混合,岩石中轻-重稀土元素比值升高,Fe-Ti氧化物含量增加,地球化学属性逐渐从E-MORB型向OIB型过渡,反映洋壳俯冲作用不同阶段构造环境的差异性,以及由此导致的岩石地球化学属性的变化(图 11)。

图 11 哀牢山-大象山变质杂岩带镁铁质-超镁铁质岩石成因模式图 (a)中二叠世时期,哀牢山-马江洋向东的俯冲导致哀牢山-大象山地区发生弧后伸展;(b)晚二叠-早三叠世时期,受到同处于扬子西缘的峨眉山地幔柱影响,哀牢山-大象山地区的弧后岩浆中混入地幔柱岩浆物质,导致其地球化学属性发生改变 Fig. 11 Tectonic model showing petrogenesis of mafic-ultramafic rocks in the ADB (a) Middle Permian, eastward subduction of Ailaoshan-Song Ma Ocean leads to back-arc extension at Ailao Shan-Day Nui Con Voi area; (b) Late Permian-Early Triassic, affected by the Emeishan Mantle Plume, which is also on the western margin of the Yangtze terrane, the mantle plume magma material was mixed into the back-arc magma in Ailao Shan-Day Nui Con Voi area, resulting in changes in its geochemical properties
6 结论

(1) LA-ICP-MS锆石U-Pb年龄显示,哀牢山变质杂岩带内存在中二叠世-早三叠世(272~248Ma)的斜长角闪岩,岩石地球化学特征表明,这些斜长角闪岩的地球化学属性类似于E-MORB,并具有明显的Nb、Ta元素负异常,晚二叠世-早三叠世斜长角闪岩(第2组)受峨眉山地幔柱影响,Fe、Ti元素含量升高,轻-重稀土比值增加,并且在早三叠世斜长角闪岩中发现了与峨眉山玄武岩同期(约260Ma)的继承岩浆锆石。

(2) 大象山变质杂岩带内的斜长角闪岩可分为两组:类似于OIB的老街-Pho Rang斜长角闪岩(第3组)与峨眉山高Ti(HT)玄武岩具有相似的地球化学特征,表明峨眉山玄武岩在哀牢山-大象山变质杂岩带内广泛分布;类似于E-MORB的Pho Rang斜长角闪岩(第4组)具有与元江斜长角闪岩(第1组)相似的地球化学特征,出露于斋江缝合带附近,可能为该地区蛇绿混杂岩的组成部分,形成于弧后盆地环境。

(3) 综合前人研究成果以及本文中的锆石U-Pb年龄和地球化学数据,指示哀牢山-马江洋存在向东的俯冲过程,其俯冲持续时间为中二叠世(约272Ma)-早三叠世(约248Ma)。

致谢      本文在锆石制靶和阴极发光图像的拍摄工作中得到了中国地质科学院谢士稳老师的悉心帮助;张建新研究员和董永胜教授对文章提出了宝贵的修改意见,为文章的完善提供的极大帮助,在此一并深表感谢。

参考文献
Aldanmaz E, Pearce JA, Thirlwall MF and Mitchell JG. 2000. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95 DOI:10.1016/S0377-0273(00)00182-7
Barber T and Brown K. 1988. Mud diapirism:The origin of melanges in accretionary complexes?. Geology Today, 4(3): 89-94 DOI:10.1111/j.1365-2451.1988.tb00562.x
Bureau of Geology and Mineral Resource of Yunnan Province (BGMRY). 1990. Regional Geology of Yunnan Province. Beijing: Geological Publishing House, 1-728 (in Chinese)
Cai YF, Wang YJ, Cawood PA, Fan WM, Liu HC, Xing XW and Zhang YZ. 2014. Neoproterozoic subduction along the Ailaoshan zone, South China:Geochronological and geochemical evidence from amphibolite. Precambrian Research, 245: 13-28 DOI:10.1016/j.precamres.2014.01.009
Cai YF, Wang YJ, Cawood PA, Zhang YZ and Zhang AM. 2015. Neoproterozoic crustal growth of the southern Yangtze Block:Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone. Precambrian Research, 266: 137-149 DOI:10.1016/j.precamres.2015.05.008
Chen ZC, Lin W, Faure M, Lepvrier C, Chu Y and Wang QC. 2013. Geochronological constraint of Early Mesozoic tectonic event at Northeast Vietnam. Acta Petrologica Sinica, 29(5): 1825-1840 (in Chinese with English abstract)
Chung SL and Jahn B. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889-892 DOI:10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2
Chung SL, Lee TY, Lo CH, Wang PL, Chen CY, Yem NT, Hoa TT and Wu GY. 1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology, 25(4): 311-314 DOI:10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2
Condie KC. 1999. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos, 46(1): 95-101
Corfu F. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500
Deng J, Wang QF, Li GJ and Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299 DOI:10.1016/j.earscirev.2014.05.015
Deniel C. 1998. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean). Chemical Geology, 144(3-4): 281-303 DOI:10.1016/S0009-2541(97)00139-3
Duan XH and Zhao H. 1981. The Ailaoshan-Tengtiaohe fracture-the subduction zone of an ancient plate. Acta Geological Sinica, 55(4): 258-266 (in Chinese with English abstract)
Fan WM, Wang YJ, Zhang AM, Zhang FF and Zhang YZ. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos, 119(3-4): 553-568 DOI:10.1016/j.lithos.2010.08.010
Faure M, Lepvrier C, Lin W, N'guyen V, Vu V and Chu Y. 2010. Triassic tectonics in the southwestern margin of the South China Block and the welding of the South China-Indochina blocks. International Association for Gondwana Research Conference Series, 9: 9-10
Frey FA, Walker N, Stakes D, Hart SR and Nielsen R. 1993. Geochemical characteristics of basaltic glasses from the AMAR and FAMOUS axial valleys, Mid-Atlantic Ridge (36°~37°N):Petrogenetic implications. Earth and Planetary Science Letters, 115(1-4): 117-136 DOI:10.1016/0012-821X(93)90217-W
Gilley LD, Harrison TM, Leloup PH, Ryerson FJ, Lovera OM and Wang JH. 2003. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research:Solid Earth, 108(B2): 2127
Hu WJ, Zhong H, Zhu WG and He XH. 2015. Elemental and Sr-Nd isotopic geochemistry of the basalts and microgabbros in the Shuanggou ophiolite, SW China:Implication for the evolution of the Palaeotethys Ocean. Geological Magazine, 152(2): 210-224 DOI:10.1017/S0016756814000259
Huang C. 2018. Provenance analyses on detrital sedimentary rock from the Longtan Formation in the Ailaoshan Belt: Constraint on the polarity of the Ailaoshan Ocean subduction. Master Degree Thesis. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of earth Sciences, 8(5): 523-548 DOI:10.1139/e71-055
Ito G and Mahoney JJ. 2005. Flow and melting of a heterogeneous mantle:1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth and Planetary Science Letters, 230(1-2): 29-46 DOI:10.1016/j.epsl.2004.10.035
Ji L, Liu FL, Wang F, Cai J, Wang W, Tian ZH and Liu LS. 2017. Ployphase metamorphism in Diancang Shan-Ailao Shan complex zone:Constraints from U-Pb dating and trace elements of zircons in metasedimenary rocks, Gasa area. Acta Petrologica Sinica, 33(2): 605-621 (in Chinese with English abstract)
Jian P, Wang XF, He LQ and Wang CS. 1998. U-Pb zircon dating of the Shuanggou ophiolite from Xingping County, Yunnan Province. Acta Petrologica Sinica, 14(2): 207-211 (in Chinese with English abstract)
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in Southwest China (I):Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113(3-4): 748-766 DOI:10.1016/j.lithos.2009.04.004
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009b. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ):Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767-784 DOI:10.1016/j.lithos.2009.04.006
Kamenetsky VS, Crawford AJ and Meffre S. 2001. Factors controlling chemistry of magmatic spinel:An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4): 655-671 DOI:10.1093/petrology/42.4.655
Kamvong T, Zaw K, Meffre S, Maas R, Stein H and Lai CK. 2014. Adakites in the truong son and loei fold belts, Thailand and Laos:Genesis and implications for geodynamics and metallogeny. Gondwana Research, 26(1): 165-184 DOI:10.1016/j.gr.2013.06.011
Kepezhinskas P, Defant MJ and Drummond MS. 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229 DOI:10.1016/0016-7037(96)00001-4
Lai CK. 2012. Tectonic evolution of the Ailaoshan fold belt in southwestern Yunnan, China. Ph. D. Dissertation. Hobart: University of Tasmania
Lai CK, Meffre S, Crawford AJ and Zaw K. 2014a. The Central Ailaoshan ophiolite and modern analogs. Gondwana Research, 26(1): 75-88 DOI:10.1016/j.gr.2013.03.004
Lai CK, Meffre S, Crawford AJ, Zaw K, Xue CD and Halpin JA. 2014b. The western Ailaoshan volcanic belts and their SE Asia connection:A new tectonic model for the eastern Indochina Block. Gondwana Research, 26(1): 52-74 DOI:10.1016/j.gr.2013.03.003
Leloup PH and Kienast JR. 1993. High-temperature metamorphism in a major strike-slip shear zone:The Ailao Shan-Red River, People's Republic of China. Earth and Planetary Science Letters, 118(1-4): 213-234 DOI:10.1016/0012-821X(93)90169-A
Leloup PH, Lacassin R, Tapponnier P, Schärer U, Zhong DL, Liu XH, Zhang LS, Ji SC and Trinh PT. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 3-84 DOI:10.1016/0040-1951(95)00070-4
Leloup PH, Arnaud N, Lacassin R, Kienast JR, Harrison TM, Trong TTP, Replumaz A and Tapponnier P. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research:Solid Earth, 106(B4): 6683-6732 DOI:10.1029/2000JB900322
Lepvrier C, Maluski H, Van Tich V, Leyreloup A, Thi PT and Van Vuong N. 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif):Implications for the geodynamic evolution of Indochina. Tectonophysics, 393(1-4): 87-118 DOI:10.1016/j.tecto.2004.07.030
Lepvrier C, Faure M, Van VN, Vu TV, Lin W, Trong TT and Hoa PT. 2011. North-directed Triassic nappes in northeastern Vietnam (East Bac Bo). Journal of Asian Earth Sciences, 41(1): 56-68
Li BL, Ji JQ, Fu XY, Gong JF, Song B, Qing JC and Zhang C. 2008. Zircon SHRIMP dating and its geological implications of the metamorphic rocks in Ailao Shan-Diancang Mountain Ranges, West Yunnan. Acta Petrologica Sinica, 24(10): 2322-2330 (in Chinese with English abstract)
Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY and Suo YH. 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37-75 DOI:10.1016/j.earscirev.2017.01.011
Lin TH, Chung SL, Chiu HY, Wu FY, Yeh MW, Searle MP and Iizuka Y. 2012. Zircon U-Pb and Hf isotope constraints from the Ailao Shan-Red River shear zone on the tectonic and crustal evolution of southwestern China. Chemical Geology, 291: 23-37 DOI:10.1016/j.chemgeo.2011.11.011
Lin W, Faure M, Lepvrier C, Chen ZC, Chu Y, Wang QC, Van Vuong N and Van Tich V. 2011. The early Mesozoic thrust and folds sheet structure along the southern margin of South China Block and its geodynamic. Chinese Journal of Geology, 46(1): 134-145 (in Chinese with English abstract)
Litvak VD and Poma S. 2010. Geochemistry of mafic Paleocene volcanic rocks in the Valle del Cura region:Implications for the petrogenesis of primary mantle-derived melts over the Pampean flat-slab. Journal of South American Earth Sciences, 29(3): 705-716 DOI:10.1016/j.jsames.2010.01.001
Liu FL, Wang F, Liu PH and Liu CH. 2013. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Research, 24(1): 429-450 DOI:10.1016/j.gr.2012.10.016
Liu HC, Wang YJ, Fan WM, Zi JW, Cai YF and Yang GL. 2014. Petrogenesis and tectonic implications of Late-Triassic high εNd(t)-εHf(t) granites in the Ailaoshan tectonic zone (SW China). Science China (Earth Sciences), 57(9): 2181-2194 DOI:10.1007/s11430-014-4854-z
Liu HC, Wang YJ, Cawood PA and Guo XF. 2017a. Episodic slab rollback and back-arc extension in the Yunnan-Burma region:Insights from Cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks. Geological Society of America Bulletin, 129(5-6): 698-714 DOI:10.1130/B31604.1
Liu HC, Wang YJ and Zi JW. 2017b. Petrogenesis of the Dalongkai ultramafic-mafic intrusion and its tectonic implication for the Paleotethyan evolution along the Ailaoshan tectonic zone (SW China). Journal of Asian Earth Sciences, 141: 112-124 DOI:10.1016/j.jseaes.2016.07.015
Liu HC, Wang YJ, Guo XF, Fan WM and Song JJ. 2017c. Late Triassic post-collisional slab break-off along the Ailaoshan suture:Insights from OIB-like amphibolites and associated felsic rocks. International Journal of Earth Sciences, 106(4): 1359-1373
Liu HC, Xia XP, Lai CK, Gan CS, Zhou YZ and Huangfu PP. 2018. Break-away of South China from Gondwana:Insights from the Silurian high-Nb basalts and associated magmatic rocks in the Diancangshan-Ailaoshan fold belt (SW China). Lithos, 318-319: 194-208
Liu JL, Tran MD, Tang Y, Nguyen QL, Tran TH, Wu WB, Chen JF, Zhang ZC and Zhao ZD. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam:Geochronology, geochemistry and tectonic implications. Gondwana Research, 22(2): 628-644
Liu PP, Zhou MF, Zhao GC, Chung SL, Chen WT and Wang F. 2017d. Eocene granulite-facies metamorphism prior to deformation of the Mianhuadi mafic complex in the Ailao Shan-Red River shear zone, Yunnan Province, SW China. Journal of Asian Earth Sciences, 145: 626-640
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:The Korean Peninsula in context. Gondwana Research, 9(1-2): 24-46
Metcalfe I. 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48
Polat A, Hofmann AW and Rosing MT. 2002. Boninite-like volcanic rocks in the 3.7~3.8Ga Isua greenstone belt, West Greenland:Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3-4): 231-254
Qi XX, Santosh M, Zhu LH, Zhao YH, Hu ZC, Zhang C and Ji FB. 2014. Mid-Neoproterozoic arc magmatism in the northeastern margin of the Indochina block, SW China:Geochronological and petrogenetic constraints and implications for Gondwana assembly. Precambrian Research, 245: 207-224
Ren JS. 1996. The continental tectonics of China. Journal of Southeast Asian Earth Sciences, 13(3-5): 197-204
Roger F, Maluski H, Lepvrier C, Vu Van T and Paquette JL. 2012. LA-ICPMS zircons U/Pb dating of Permo-Triassic and Cretaceous magmatisms in Northern Vietnam:Geodynamical implications. Journal of Asian Earth Sciences, 48: 72-82
Shellnutt JG, Zhou MF, Yan DP and Wang YB. 2008. Longevity of the Permian Emeishan mantle plume (SW China):1Ma, 8Ma or 18Ma?. Geological Magazine, 145(3): 373-388
Shen SY, Wei QR, Cheng HL and Mo XX. 1998. Tectonomagmatic types of volcanic rocks in Ailaoshan-Lixianjiang belt, Nujiang River-Lanchangjiang River-Jinshajiang River area in China. Mineralogy and Petrology, 18(2): 18-24 (in Chinese with English abstract)
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35
Song SG, Ji JQ, Wei CJ, Su L, Zheng YD, Song B and Zhang LF. 2007. Early Paleozoic granite in Nujiang River of Northwest Yunnan in southwestern China and its tectonic implications. Chinese Science Bulletin, 52(17): 2402-2406
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Tang Y, Liu JL, Tran MD, Song ZJ, Wu WB, Zhang ZC, Zhao ZD and Chen W. 2013. Timing of left-lateral shearing along the Ailao Shan-Red River shear zone:Constraints from zircon U-Pb ages from granitic rocks in the shear zone along the Ailao Shan Range, western Yunnan, China. International Journal of Earth Sciences, 102(3): 605-626
Tapponnier P, Lacassin R, Leloup PH, Schärer U, Zhong D, Wu H, Liu XH, Ji SC, Zhang LS and Zhong JY. 1990. The Ailao Shan/Red River metamorphic belt:Tertiary left-lateral shear between Indochina and South China. Nature, 343(6257): 431-437
Vu'ọ'ng NV, Hansen BT, Wemmer K, Lepvrier C, Tích VV and Thǎ'ng TT. 2013. U/Pb and Sm/Nd dating on ophiolitic rocks of the Song Ma suture zone (northern Vietnam):Evidence for Upper Paleozoic Paleotethyan lithospheric remnants. Journal of Geodynamics, 69: 140-147
Wang CY, Zhou MF and Qi L. 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district:Mantle sources, crustal contamination and sulfide segregation. Chemical Geology, 243(3-4): 317-343
Wang DB, Tang Y, Liao SY, Yin FG, Sun ZM, Wang LQ and Wang BD. 2013. Zircon U-Pb dating and its geological implications of the metamorphic rock series in Ailao Shan Ranges, western Yunnan. Acta Petrologica Sinica, 29(4): 1261-1278 (in Chinese with English abstract)
Wang KY. 1993. Several key issues of Ailao Shan metamorphic belt. Yunnan Geology, 12(1): 130-135 (in Chinese)
Wang M, Zhong YT, Hou YL, Shen SZ, Xu YG and He B. 2018. Source and extent of the felsic volcanic ashes at the Permian-Triassic boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract)
Wang QF, Deng J, Li CS, Li GJ, Yu L and Qiao L. 2014. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438-448
Wang XF, Metcalfe I, Jian P, He LQ and Wang CS. 2000. The Jinshajiang-Ailaoshan Suture Zone, China:Tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences, 18(6): 675-690
Wang YJ, Zhou YZ, Cai YF, Liu HC, Zhang YZ and Fan WM. 2016. Geochronological and geochemical constraints on the petrogenesis of the Ailaoshan granitic and migmatite rocks and its implications on Neoproterozoic subduction along the SW Yangtze Block. Precambrian Research, 283: 106-124
Wang YJ, Qian X, Cawood PA, Liu HC, Feng QL, Zhao GC, Zhang YH, He HY and Zhang PZ. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 186: 195-230
Wang YZ and Ding J. 1996. Structural deformation and evolution of the medium to high grade metamorphic rock series in the Ailao Mountains, Yunnan. Tethyan Geology, (20): 52-69 (in Chinese with English abstract)
Wei QR and Shen SY. 1995. Ophiolites in the Laowangzhai-Langnitang area, northern Ailao Mountains. Tethyan Geology, (19): 56-70 (in Chinese with English abstract)
Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343
Workman RK and Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569
Wyman DA, Ayer JA and Devaney JR. 2000. Niobium-enriched basalts from the Wabigoon subprovince, Canada:Evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters, 179(1): 21-30
Xia XP, Nie XS, Lai CK, Wang YJ, Long XP and Meffre S. 2016. Where was the Ailaoshan Ocean and when did it open:A perspective based on detrital zircon U-Pb age and Hf isotope evidence. Gondwana Research, 36: 488-502
Xia XP, Xu J, Huang C, Long XP and Zhou ML. 2019. Subduction polarity of the Ailaoshan Ocean (eastern Paleotethys):Constraints from detrital zircon U-Pb and Hf-O isotopes for the Longtan Formation. GSA Bulletin, 132(5-6): 987-996
Xiao L, Xu YG, Mei HJ, Zheng YF, He B and Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China:Implications for plume-lithosphere interaction. Earth and Planetary Science Letters, 228(3-4): 525-546
Xu J, Xia XP, Lai C, Long XP and Huang C. 2019a. When did the paleotethys ailaoshan ocean close:New insights from detrital zircon U-Pb age and Hf isotopes. Tectonics, 38(5): 1798-1823
Xu J, Xia XP, Huang C, Cai KD, Yin CQ and Lai CK. 2019b. Changes of provenance of Permian and Triassic sedimentary rocks from the Ailaoshan suture zone (SW China) with implications for the closure of the eastern Paleotethys. Journal of Asian Earth Sciences, 170: 234-248
Xu J, Xia XP, Lai CK, Zhou ML and Ma PF. 2019c. First identification of late permian Nb-enriched basalts in ailaoshan region (SW Yunnan, China):Contribution from emeishan plume to subduction of eastern paleotethys. Geophysical Research Letters, 46(5): 2511-2523
Xu W, Liu FL and Dong YS. 2020. Cambrian to Triassic geodynamic evolution of central Qiangtang, Tibet. Earth-Science Reviews, 201: 103083
Xu YG, Chung SL, Jahn BM and Wu GY. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3-4): 145-168
Yumul Jr GP, Zhou MF, Wang CY, Zhao TP and Dimalanta CB. 2008. Geology and geochemistry of the Shuanggou ophiolite (Ailao Shan ophiolitic belt), Yunnan Province, SW China:Evidence for a slow-spreading oceanic basin origin. Journal of Asian Earth Sciences, 32(5-6): 385-395
Zhai MG, Cong BL, Qiao GS and Zhang RY. 1990. Sm-Nd and Rb-Sr geochronology of metamorphic rocks from SW Yunnan orogenic zones, China. Acta Petrologica Sinica, 6(4): 1-11 (in Chinese with English abstract)
Zhang RY, Lo CH, Chung SL, Grove M, Omori S, Iizuka Y, Liou JG and Tri TV. 2013. Origin and tectonic implication of ophiolite and eclogite in the Song Ma suture zone between the South China and Indochina blocks. Journal of Metamorphic Geology, 31(1): 49-62
Zhang RY, Lo CH, Li XH, Chung SL, Anh TT and Van Tri T. 2014. U-Pb dating and tectonic implication of ophiolite and metabasite from the Song Ma suture zone, northern Vietnam. American Journal of Science, 314(2): 649-678
Zhang ZC, Mahoney JJ, Mao JW and Wang FS. 2006. Geochemistry of picritic and associated basalt flows of the western emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997-2019
Zhong DL. 1998. The Paleotethys Orogenic Belt in West of Sichuan and Yunnan. Beijing: Science Press, 1-231 (in Chinese)
Zhou JB, Li XH, Ge WC and Li ZX. 2007. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research, 12(1-2): 184-197
Zhou MF, Malpas J, Song XY, Robinson PT, Sun M, Kennedy AK, Lesher CM and Keays RR. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters, 196(3-4): 113-122
Zhou MF, Chen WT, Wang CY, Prevec SA, Liu PP and Howarth GH. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geoscience Frontiers, 4(5): 481-502
Zi JW, Fan WM, Wang YJ, Cawood PA, Peng TP, Sun LH and Xu ZQ. 2010. U-Pb geochronology and geochemistry of the Dashibao basalts in the Songpan-Ganzi Terrane, SW China, with implications for the age of Emeishan volcanism. American Journal of Science, 310(9): 1054-1080
陈泽超, 林伟, Faure M, Lepvrier C, 褚杨, 王清晨. 2013. 越南东北部早中生代构造事件的年代学约束. 岩石学报, 29(5): 1825-1840.
段新华, 赵鸿. 1981. 论哀牢山-藤条河断裂-古板块俯冲带. 地质学报, 55(4): 258-266.
黄潮. 2018.哀牢山构造带龙潭组碎屑沉积岩物源示踪及其对哀牢山洋俯冲方向的限制.硕士学位论文.广州: 中国科学院广州地球化学研究所
冀磊, 刘福来, 王舫, 蔡佳, 王伟, 田忠华, 刘利双. 2017. 点苍山-哀牢山杂岩带多期变质作用:嘎洒地区变沉积岩锆石微量元素与U-Pb年代学制约. 岩石学报, 33(2): 605-621.
简平, 汪啸风, 何龙清, 王传尚. 1998. 云南新平县双沟蛇绿岩U-Pb年代学初步研究. 岩石学报, 14(2): 207-211.
李宝龙, 季建清, 付孝悦, 龚俊峰, 宋彪, 庆建春, 张臣. 2008. 滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义. 岩石学报, 24(10): 2322-2330.
林伟, Faure M, Lepvrier C, 陈泽超, 褚杨, 王清晨, Van Vuong N, Van Tich V. 2011. 华南板块南缘早中生代的逆冲推覆构造及其相关的动力学背景. 地质科学, 46(1): 134-145.
刘汇川, 王岳军, 范蔚茗, Zi JW, 蔡永丰, 杨光林. 2014. 滇西哀牢山地区晚三叠世高εNd(t)-εHf(t)花岗岩的构造指示. 中国科学(地球科学), 44(11): 2373-2388.
沈上越, 魏启荣, 程惠兰, 莫宣学. 1998. "三江"哀牢山-李仙江带火山岩构造岩浆类型. 矿物岩石, 18(2): 18-24.
王冬兵, 唐渊, 廖世勇, 尹福光, 孙志明, 王立全, 王保弟. 2013. 滇西哀牢山变质岩系锆石U-Pb定年及其地质意义. 岩石学报, 29(4): 1261-1278.
王铠元. 1993. 论哀牢山构造-变质带的几个主要问题. 云南地质, 12(1): 130-135.
王曼, 钟玉婷, 侯莹玲, 沈树忠, 徐义刚, 何斌. 2018. 华南地区二叠纪-三叠纪界线酸性火山灰的源区与规模. 岩石学报, 34(1): 36-48.
王义昭, 丁俊. 1996. 云南哀牢山中深变质岩系构造变形特征及演变. 特提斯地质, 20: 52-69.
魏启荣, 沈上越. 1995. 哀牢山北段老王寨-浪泥塘一带蛇绿岩的形成环境. 特提斯地质, 19: 56-70.
云南省地质矿产局. 1990. 云南省区域地质志. 北京: 地质出版社, 1-728.
翟明国, 从柏林, 乔广生, 张儒瑗. 1990. 中国滇西南造山带变质岩的Sm-Nd和Rb-Sr同位素年代学. 岩石学报, 6(4): 1-11.
钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 1-231.