2. 中国科学院地球科学研究院, 北京 100029;
3. 中国科学院大学, 北京 100049;
4. 中山大学地球科学与工程学院, 广东省地球动力作用与地质灾害重点实验室, 广州 510275;
5. 南方海洋科学与工程广东省实验室(珠海), 珠海 519000;
6. 新疆地矿局第三地质大队, 库尔勒 841000
2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. Guangdong Provincial Key Lab of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
5. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519000, China;
6. No.3 Geological Party, Xinjiang Bureau of Geology and Mineral Exploration and Development, Kuerle 841000, China
锂铍金属是国家战略关键金属资源,在新材料和信息技术等新兴产业,具有不可替代的重大用途(Linnen et al., 2012; Chakhmouradian et al., 2015)。其中,锂是动力电池与特种工程塑料的关键材料,铍是电子电器、航空航天和国防领域等军事工业产品和高科技科技产品的关键原材料。我国锂与铍金属高度依赖进口,属于“被卡脖子”紧缺资源(翟明国等,2019)。研究锂铍金属形成机制、寻找新的锂铍金属资源是目前矿床地质研究与找矿勘查的重要任务。
花岗岩-伟晶岩型锂铍矿床是锂铍金属矿床的重要类型(王登红等, 1998)。经过近一个世纪的研究,地质学家已基本查清此类型矿床的特征,但对锂铍金属异常富集机制仍不是十分清楚。目前,关于锂铍金属在源区花岗质岩浆形成过程的富集机制,岩石学家和矿床学家都强调锂铍花岗岩-伟晶岩的母花岗岩(淡色花岗岩)源于变沉积岩的白云母熔融(Holtz and Johannes, 1991; Harrison et al., 1997; Patiño Douce and Harris, 1998; 曾令森等, 2012; Gao and Zeng, 2014),但实验岩石学显示白云母熔融其熔体量小(< 10vol%)、熔体从岩石中提取锂铍的效率低(Gardien et al., 1995; London and Evensen, 2002)。基于黑云母熔融可以获得大体积熔体(可达50vol%)的实验结果(Vielzeuf and Holloway, 1988; Gardien et al., 1995),我们认为变杂砂岩(黑云母片麻岩)与含黑云母的英云闪长质片麻岩黑云母部分熔融形成的黑云母花岗质高温岩浆(>800℃)其结晶形成黑云母花岗岩并可分异演化为淡色花岗岩与锂铍花岗岩-伟晶岩、并构成高温花岗岩-伟晶岩锂铍成矿系统,指出高温花岗岩-伟晶岩系统锂铍成矿作用是锂铍大规模成矿的重要系统。
本文在回顾花岗岩-伟晶岩锂铍矿床研究现状基础上,介绍高温花岗岩-伟晶岩锂铍成矿系统提出的缘由,并介绍阿尔金中段地区高温花岗岩-伟晶岩锂铍成矿系统研究的初步认识。
1 花岗岩-伟晶岩锂铍富集机制的理论框架及其局限性 1.1 花岗岩-伟晶岩型锂铍矿是锂铍矿床的重要类型锂铍金属矿床从容矿载体划分,主要有花岗岩-花岗伟晶岩型、岩浆热液型(包括石英脉型、矽卡岩型、云英岩型等多个矿化形式)、火山岩型、沉积岩型(包括粘土岩与蒸发岩中成矿)及卤水型(王登红等, 1998; 李建康等, 2014, 2017; Benson et al., 2017; 刘丽君等, 2017; 翟明国等, 2019)。其中花岗岩-伟晶岩型是最重要的锂铍金属矿床类型之一,是锂铍金属的传统来源(Černý, 1991; Shaw et al., 2016)。如花岗岩-伟晶岩型Li矿床贡献一半的全球Li产品(Benson et al., 2017)。
花岗岩-伟晶岩型锂铍矿是指由花岗质岩浆结晶分异形成的锂铍花岗岩与锂铍伟晶岩。这种锂铍花岗岩与锂铍伟晶岩在成因上为花岗岩持续分异的结果、在空间上常相伴产出。典型的锂铍花岗岩有法国的Beauvoir钠长石花岗岩(Cuney et al., 1992),葡萄牙的Argemela花岗岩(Charoy and Noronha, 1996;Charoy, 1999),爱尔兰的Rosses花岗岩(Burke et al., 1964; Hall and Walsh, 1971),西班牙的Belvis de Monroy花岗岩(Merino et al., 2013),越南的Dong Ram钠长石花岗岩(Hien-Dinh et al., 2017),及我国宜春的钠长石花岗岩(Huang et al., 2002; Wang et al., 2004; Li et al., 2015)、阿尔泰阿斯喀尔特花岗岩(王春龙等, 2015)与四川甲基卡的细粒花岗岩(刘善宝等, 2019)。其中法国的Beauvoir钠长石花岗岩其全岩Li2O含量为1.94%,岩体强烈富集Be (20×10-6~300×10-6),是一个超大型Li-Be矿床(Raimbault et al., 1995)。这些花岗岩多伴生有锂铍花岗伟晶岩,并表现出连续的结晶分异关系。
尽管目前还存在稀有金属花岗伟晶岩是形成于花岗质岩浆的结晶分异还是地壳深熔成因的争论(Černý, 1992; Shaw et al., 2016; 张辉等, 2019),但大部分花岗伟晶岩与花岗岩在空间和成因上有一定的联系、并被认为是花岗岩结晶分异成因(Jahns and Burnham, 1969; Simmons and Webber, 2008; Černý et al., 2012; London and Morgan, 2012)。上述锂铍花岗岩边部或上部发育的锂铍花岗伟晶岩是典型的实例。我国近年新发现的四川甲基卡锂花岗伟晶岩(刘丽君等, 2015, 2017; 王登红等, 2017; Xu et al., 2020)与西昆仑大红柳滩锂花岗伟晶岩(王核等, 2017; Wang et al., 2020)都与二云母花岗岩有关。西澳皮尔布拉地区新太古宙的Mount Cassiterite、Pilgangoora与Greenbushes等锂钽伟晶岩与高分异的二长花岗岩或二云母花岗岩有关(Partington et al., 1995; Sweetapple and Collins, 2002; Sweetapple et al., 2017)。世界著名的Tanco锂伟晶岩尽管其附近没有与其有成因联系的花岗岩,但Stilling et al. (2006)基于占伟晶岩约40%体积的外带具有Tanco伟晶岩平均成份的特征并与Osis Lake淡色花岗岩成份相似,认为也源于富饶的淡色花岗岩的结晶分异。锂铍花岗伟晶岩为LCT型伟晶岩(Černý, 1991), 多具S型花岗岩的成份特征(Černý, 1992 Černý et al., 2012)。
1.2 锂铍花岗岩-伟晶岩研究现状锂铍花岗岩-伟晶岩是地球科学中较早被关注与研究的岩石与矿床类型。特别是花岗伟晶岩的研究工作可追溯到19世纪20年代(Černý, 1991),研究程度非常高。已有的研究工作可概括为以下几个方面:(1)伟晶岩的分类(Landes, 1933; Buddington, 1959; 邹天人和徐建国, 1975; Ginsburg et al., 1979; Černý, 1991; Černý and Ercit, 2005; Martin and De Vito, 2005; Simmons and Webber, 2008; Černý et al., 2012);(2)伟晶岩岩石学、矿物学、地球化学与年代学研究,这是稀有金属伟晶岩研究的基本工作与内容;(3)伟晶岩内部分带结构特征与岩浆内在演化机制(Jahns and Burnham, 1969; 邹天人等, 1986; Černý, 1991; London, 2005, 2008; London and Kontak, 2012; London and Morgan, 2012; Simmons et al., 2012);(4)不同类型伟晶岩空间分带及其与花岗岩的成因联系(Shearer et al., 1992; Partington et al., 1995; Jiang and Palmer, 1998; Trumbull and Chaussidon, 1999; 蒋少涌, 2000; Sweetapple and Collins, 2002; 邹天人与李庆昌, 2006; Linnen et al., 2012; 周起凤, 2013; Zhang et al., 2016; Bradley et al., 2017; 王登红等, 2017);(5)伟晶岩岩浆性质及岩浆结晶过程元素的分异与富集机制(Gresens, 1967; Linnen, 1998, 2005; Tonarini et al., 1998; Černý, 2002; Tagirov et al., 2002; Breaks et al., 2005; London, 2005, 2008; Stilling et al., 2006; Simmons and Webber, 2008; Linnen et al., 2012);及(6)伟晶岩成因,包括伟晶岩岩浆的特征、起源与侵位方式、及形成的大地构造背景(Jahns and Burnham, 1969; Černý, 1991; 王登红等, 2004; Martin and De Vito, 2005; Černý and Ercit, 2005; Qin et al., 2005; 李建康, 2006; Simmons and Webber, 2008; London and Morgan, 2012; 秦克章等, 2013; 许志琴等,2018)。伟晶岩成因是一百多年前就开始研究与讨论的话题(Kemp, 1924; Landes, 1933; Jahns, 1955; Brotzen, 1959),但问题并没有完全解决。关于伟晶岩岩浆是如何形成的问题,如上所述,目前一般认为花岗伟晶岩岩浆为花岗质岩浆结晶分异形成的富水残余岩浆(Jahns, 1953, 1955; Jahns and Tuttle, 1963; Jahns and Burnham, 1969; London, 1986, 2005; Shearer et al., 1992; London and Evensen, 2002; Simmons and Webber, 2008; Černý et al., 2012),而部分学者认为花岗伟晶岩岩浆可形成于在流体存在下地壳物质的低程度的部分熔融(Martin and De Vito, 2005),即深熔成因(Nabelek et al., 1992; Falster et al., 1997; Roda Robles et al., 1999; Shaw et al., 2016; 许志琴等,2018)。
1.3 花岗岩-伟晶岩锂铍富集机制的理论框架及其局限性花岗岩-伟晶岩中锂铍的富集伴随着花岗质岩浆形成与演化的整个过程,包括源区过程(地壳岩石的深熔作用与花岗质岩浆的形成和熔体从岩石中提取锂铍)、岩浆的结晶分异与锂铍花岗质岩浆和锂铍伟晶岩岩浆的形成、锂铍伟晶岩浆的抽取、流动与结晶分异和富集成矿(Shearer et al., 1992)。
Černý (1991, 1992)、Shearer et al. (1992)、London and Evensen (2002)、Černý and Ercit (2005)、London(2005, 2008)、Simmons and Webber (2008)、Černý et al. (2012)、Linnen et al. (2012)、London and Kontak (2012)、吴福元等(2015, 2017)、王汝成等(2017)、曾令森和高利娥(2017)等等曾就花岗岩-伟晶岩锂铍富集特征与机制进行梳理与总结,现有的理论框架可概括为如下(图 1)。
![]() |
图 1 地壳岩石熔融过程熔体产出率与温度关系曲线(据Gardien et al., 1995补充与修改) 资料来源:①Patiño Douce and Harris (1998); ② Vielzeuf and Holloway (1988); ③ Gardien et al. (1995); ④Patiño Douce and Johnston (1991); ⑤ Montel and Vielzeuf (1997); ⑥ Stevens et al. (1997); ⑦ Gardien et al. (1995); ⑧Patiño Douce and Beard (1995); ⑨ Rutter and Wyllie (1988); ⑩ Skjerlie and Johnston (1993) Fig. 1 Curve of melting amount versus temperature during the melting of crustal rock (revised after Gardien et al., 1995) |
(1) 花岗岩-伟晶岩型锂铍的富集与大规模成矿涉及源区花岗质岩浆形成过程中岩浆从源岩中提取锂铍与花岗质岩浆结晶分异过程中锂铍的富集两个重要机制。
(2) 强调通过变沉积岩白云母熔融获取锂铍金属。Černý(1992)与Černý et al.(2012)认为LCT型伟晶岩其母花岗岩中等到极度铝质,成因于未亏损的上-中地壳、或基底的深融作用最初始的熔融事件。基于喜马拉雅地区淡色花岗岩和实验岩石学的研究,目前岩石学家多认为二云母/白云母花岗岩、电气石花岗岩和石榴石花岗岩形成于白云母的脱水或饱和水熔融(Vielzeuf and Holloway, 1988; Holtz and Johannes, 1991; Patiño Douce and Johnston, 1991; Inger and Harris, 1993; Guillot and Le Fort, 1995; Harrison et al., 1997; Patiño Douce and Harris, 1998; Prince et al., 2001; 曾令森等, 2012; Gao and Zeng, 2014)。
(3) 花岗质岩浆通过结晶分异作用形成不同类型的淡色花岗岩与锂铍钠长花岗岩和锂铍花岗伟晶岩岩浆。Jahns and Burnham(1969)对伟晶岩的成因进行了实验研究,指出伟晶岩岩浆是水饱和岩浆。对于初始含水0.2%的花岗质岩浆其结晶程度达到98%时形成的残余岩浆为水饱和岩浆——伟晶岩岩浆。也就是说,花岗伟晶岩为花岗质岩浆高度分异结晶后的残余岩浆(Jahns, 1955; Jahns and Tuttle, 1963; Jahns and Burnham, 1969; Simmons and Webber, 2008; London and Morgan, 2012)。London and Evensen(2002)与London(2008)认为花岗伟晶岩岩浆铍富集的形成经历了3个阶段:初始花岗质岩浆Be含量为6×10-6,岩浆结晶程度达~80%时形成二云母花岗岩与铍初步富集的小体积熔体(Be含量~20×10-6 to 30×10-6);小体积熔体被有效的抽取,如压滤作用(Bea et al., 1994),然后持续结晶到~80%时形成富铍的钠长花岗岩与富铍的残余熔体(可达绿柱石饱和),此残余熔体被抽取可形成绿柱石伟晶岩。而王汝成等(2017)研究指出喜马拉雅二云母/白云母花岗岩、电气石花岗岩和石榴石花岗岩都发育程度不等的钠长石花岗岩和花岗伟晶岩,即钠长石花岗岩和花岗伟晶岩可分别从白云母花岗岩、电气石花岗岩和石榴石花岗岩分异演化形成。近来,吴福元等(2017)、Liu et al. (2019)、Wu et al. (2020)与Xie et al. (2020)等强调喜马拉雅地区的二云母花岗岩、白云母花岗岩和稀有金属花岗伟晶岩为连续结晶分异的产物。
(4) 锂铍花岗岩-伟晶岩岩浆侵位与流动和结晶分异过程伴随锂铍的富集与分带, 包括一个伟晶岩群中不同类型稀有金属伟晶岩从靠近花岗岩到远离花岗岩的分带产出与大型伟晶岩体内部的分带。对于前者,通常认为其与伟晶岩浆向外流动过程热稳定性和熔体组分的变化有关(Černý, 1992;London, 2008)。富气相与流体组分的岩浆易流动迁移的更远,绿柱石伟晶岩相对锂辉石和锂云母伟晶岩更靠近岩体。锂铍伟晶岩的内部分带是花岗伟晶岩浆内在结晶分异与演化的结果(Simmons et al., 2012)。London模型认为伟晶岩形成于富水均一熔体的分异结晶,从伟晶岩的边缘向中心演化(London, 2008; London and Morgan, 2012)。Jahns-Burnham模型指出伟晶岩浆水饱和与K的迁移对边部细晶岩的形成起重要的制约作用(Jahns and Burnham, 1969; Burnham and Nekvasil, 1986)。稀有金属在伟晶岩内的分带沉淀与其在熔体中溶解度与热稳定性有关(London, 2008)。
(5) 熔剂B、P与F对岩浆中Li与Be富集起重要的促进作用。熔剂B、P与F可通过与Li和Be形成氟化物(如BeF2:Fedoseyev, 1961)、硼酸盐(如锂的硼酸盐:Burnham and Nekvasil, 1986;London, 1986)和磷酸盐(如磷锂铝石和磷酸钠铍石:Charoy, 1999)等稳定复合体并在熔体中富集。
然而,分析更多的实验结果可以发现,现有的花岗岩-伟晶岩锂铍富集机制理论框架中的源区岩浆形成过程锂铍提取机制存在一定局限性,主要有:
(1) 白云母脱水熔融形成熔体量少。Patiño Douce and McCarthy (1998)开展的白云母片岩白云母脱水熔融结果显示其形成的熔体 <5vol%。Gardien et al. (1995)的实验结果也显示二云母片岩白云母脱水熔融形成的熔体 < 10vol%。
(2) 白云母熔融形成的熔体从岩石中抽取锂铍效率低。London et al. (1988)针对Macusani流纹质黑曜岩的熔融实验结果显示,Li与Be在熔体/残留体的分配系数分别为0.8与0.9,这意味着流纹岩的熔融Li与Be更多的留在残留相。残留相相对富Li与残留相有黑云母形成有关(Patiño Douce and Harris, 1998),白云母脱水熔融反应为:
![]() |
(i) |
黑云母是Li的重要储库,堇青石与白云母是Be的重要储库(London et al., 1988; London, 2005, 2008)。在熔融过程残留相中若出现堇青石与黑云母将导致Be与Li留在残留相、在熔体中不富集Be与Li金属(London and Evensen, 2002)。
(3) 大规模锂铍富集与成矿需要大规模地壳岩石的部分熔融。地壳沉积岩、变沉积岩和白云母脱水熔融形成的岩浆具相似的稀有金属含量(London and Evensen, 2002)。泥质岩与变泥质岩Be含量0.2×10-6~5×10-6、平均接近3×10-6(Grew, 2002),白云母脱水熔融形成的岩浆平均的Be含量为0×10-6~5×10-6(London and Evensen, 2002)。变质过程和深熔过程没有Be的富集(London and Evensen, 2002)。为此,要形成大规模的稀有金属富集与成矿,需要大规模的地壳岩石的熔融。
London (2008)曾按熔体产出率为5vol%开展Tanco伟晶岩的质量平衡估算。结果显示体积约为0.8km3的Tanco伟晶岩其母花岗质岩浆的体积接近900km3、需要18000km3的岩石参与部分熔融。若参与熔融的岩石层厚度为3km,则需要6000km2(如60km×100km)岩石参与部分熔融。问题是如何保证如此大面积的部分熔融(如60km×100km)形成的岩浆都集中到一个形态如20km(长)×15km(宽)×3km(厚)的岩浆房中并且其结晶分异形成的稀有金属都富集在Tanco伟晶岩。实际上,Tanco地区有许多不相连的花岗岩体,距离Tanco伟晶岩5~10km的外围还有大量富含稀有元素矿物的伟晶岩(Crouse and Černý, 1972)。这意味着Tanco地区稀有金属的形成需要比London (2008)假设的模型(熔体产生率为5%)更高的机制。
因此,白云母熔融形成花岗质岩浆过程的锂铍提取可能不是锂铍大规模与高效提取机制。需要研究与寻找新的机制与动力学过程。
2 高温花岗岩-伟晶岩锂铍成矿系统概念的提出基于实验岩石学研究结果和我们在阿尔金中段地区的初步研究,我们提出:变杂砂岩(黑云母片麻岩)和含黑云母的英云闪长质片麻岩其黑云母脱水熔融形成的黑云母花岗质岩浆为高温岩浆(>800℃),其结晶形成黑云母花岗岩并分异与演化形成淡色花岗岩(二云母花岗岩与白云母花岗岩等)与锂铍花岗岩(钠长花岗岩)-伟晶岩,构成高温花岗岩-伟晶岩锂铍成矿系统。此系统是锂铍大规模成矿的重要系统,也是锂铍富集成矿的新机制。
2.1 开展高温花岗岩-伟晶岩锂铍成矿作用研究的科学基础开展黑云母脱水熔融形成的高温花岗质岩浆锂铍成矿作用研究,主要基于以下一些考虑:
(1) 在中下地壳花岗岩熔体的形成一般发生在气相缺失条件和含水矿物的脱水熔融(Skjerlie and Johnston, 1992; Gardien et al., 1995; Patiño Douce and Beard, 1995)。
(2) 实验岩石学与理论模拟计算结果显示:变杂砂岩(黑云母片麻岩)和含黑云母的英云闪长质片麻岩黑云母脱水熔融可形成黑云母花岗质岩浆与黑云母花岗岩(Skjerlie and Johnston, 1992; Patiño Douce and Beard, 1995; Patiño Douce and McCarthy, 1998; 魏春景和朱文萍, 2016)。杂砂岩是较泥质岩分布更广泛的沉积岩(Johnson et al., 2008),英云闪长岩也是地壳重要的岩石组成。黑云母花岗岩是地壳广泛分布的花岗岩类型。
(3) 黑云母是稀有金属重要的储库(Franz et al., 1986; London and Evensen, 2002; Zhu et al., 2018; 王汝成等, 2019)。沉积岩中黑云母Li2O含量达2.17%,而共生的白云母Li2O含量为0.46%(Icenhower and London, 1995)。Beus (1966)研究结果显示黑云母花岗岩中黑云母中Be含量是其共生的钾长石、斜长石与石英中Be含量的2倍、5倍和50倍。Bea et al. (1994)对混合岩中淡色体和残留相黑云母Be分析结果显示Be在黑云母与熔体中的分配系数达15.5。Icenhower and London (1995)的实验结果显示Li在黑云母与花岗质熔体间的分配系数为1.65。因此,白云母脱水熔融过程形成的黑云母将储存大量的Be(存留在黑云母中),花岗岩黑云母结晶过程也将储存一些Li。这些黑云母并可经过风化与搬运作用转移到沉积岩中。黑云母脱水熔融可形成更多的稀有金属。
(4) 黑云母脱水熔融有高的熔体产出率(图 1)。例如,Vielzeuf and Holloway (1988)针对Carifio片麻岩开展的脱水熔融实验结果显示,在压力为10kbar条件下,白云母在750℃以下分解与消失、形成熔体量约为10%,而黑云母800℃开始分解、862℃消失并形成熔体量达50%;Gardien et al. (1995)开展的二云母片岩脱水熔融结果显示,在压力为10kbar条件下,白云母在靠近750℃附近消失、形成的熔体其含量为13%~15%,而,黑云母在825℃时开始熔融、到950℃时熔体量高达60%(黑云母脱水熔融形成的熔体含量大于50%)。
(5) 黑云母脱水熔融可获锂铍的高效提取。黑云母脱水熔融反应为(Vielzeuf and Montel 1994; Gardien et al., 1995; Patiño Douce and Beard, 1995, 1996; Singh and Johannes, 1996):
![]() |
(ii) |
反应式(ii)显示残留相矿物主要为斜方辉石、石榴子石与钾长石,这些矿物与黑云母相比并不富集锂铍(Beus, 1966)。为此,进入黑云母熔融的高温熔融是高效提取岩石中稀有元素的有效途径。
(6) 高温花岗质岩浆可含有更高的锂铍溶解度、可以携带更多的锂铍元素(London, 2008)。例如,过铝质花岗质岩浆在200MPa和800℃时BeO溶解度可达2000×10-6(Evensen et al., 1999)。
(7) 高温花岗岩更易结晶分异,促进微量元素的富集与成矿(Chappell et al., 1998, 2004)。
值得指出的是,虽然变杂砂岩(黑云母片麻岩)黑云母脱水熔融也可形成二云母花岗岩(Holtz and Johannes, 1991; Vielzeuf and Montel, 1994; Montel and Vielzeuf, 1997; 杨晓松等, 2001),但是其熔体成份接近二云母花岗岩的黑云母片麻岩其斜长石排号有特别的限定(An=20~22)。这意味着变杂砂岩(黑云母片麻岩)黑云母脱水熔融形成二云母花岗岩可能是小概率事件。为此,我们强调变杂砂岩黑云母脱水熔融形成的黑云母花岗质岩浆在锂铍成矿中的作用。
另外,黑云母脱水熔融在变泥质岩部分熔融形成淡色花岗岩过程也起重要作用。Vielzeuf and Holloway (1988)关于Carifio二云母片麻岩的实验结果显示仅白云母脱水熔融(8kbar与800℃条件)形成的熔体不是淡色花岗岩, 其具高FeO+MgO(3.4%)与CaO(2.0%)和低Na2O(0.2%)与K2O(2.9%);而只有进入黑云母脱水熔融阶段形成的熔体才是二云母花岗岩。实际上,形成二云母花岗岩熔体的变泥质岩(二云母片岩与二云母片麻岩)的熔融实验都发生在进入黑云母脱水部分熔融阶段(Vielzeuf and Holloway, 1988; Patiño Douce and Johnston, 1991; Patiño Douce and McCarthy, 1998; Patiño Douce and Harris, 1998)。
2.2 黑云母脱水熔融形成的黑云母花岗质岩浆为高温岩浆高温花岗岩的概念最先由Chappell et al. (1998)提出。Chappell et al.(1998, 2004)将I型花岗岩分为高温与低温两种亚类,并指出:①高温Ⅰ型花岗岩形成于完全或大部分熔融的岩浆,锆石在最初并不出现,因为锆不饱和,没有继承锆石,形成于深地壳基性岩或交代的地幔的部分熔融,典型岩石包括英云闪长岩到低K花岗闪长岩。低温Ⅰ型花岗岩形成于古老地壳长英质火成岩的部分熔融,为成份变化的长英质熔体并含晶体残留,多含继承锆石。是否出现继承锆石是判别的基本标准;②低温花岗质岩浆形成于水不饱和、在800~850℃的白云母与黑云母的脱水熔融,而高温花岗岩温度高于900℃,A型花岗岩为高温花岗岩、形成温度约900℃;③S型花岗岩为低温花岗岩。
Vernon(2007)对Lachlan Fold Belt (LFB) S型花岗岩中包体进行了详细研究,结果显示LFB地区S型花岗岩中包体为捕虏体而不是残留体,指出该地区S型花岗岩岩浆形成于高温麻粒岩相源区,为热(hot)花岗岩/高温花岗岩、而不是Chappell et al. (2004)认为的低温花岗岩。基于实验资料认为该地区S型花岗岩岩浆早期结晶温度为950℃。
此后,Miller et al. (2003)根据花岗岩锆石饱和温度,提出热(hot)和冷(cold)花岗岩的概念。其中前者的温度大约在840℃左右,含源区残留物较少,其形成可能与外来热的加人有关;而后者的温度不超过800℃(平均为766℃),含源区残留物较多,其形成主要与流体加入有关。热的花岗岩形成有热的加入,晶体少易于喷发;而冷的花岗岩富继承物质与晶体需要流体,不易喷发。两种花岗岩形成温度以800℃为界。
吴福元等(2007, 2017)认为与麻粒岩相变质相关的、温度800℃以上的花岗岩为高温花岗岩。吴福元等(2015)认为喜马拉雅淡色花岗岩可能是从一种高温的花岗质岩浆演化而来的。鉴于二云母花岗岩形成温度为750~800℃(Scaillet et al., 1995; Patiño Douce and Harris, 1998),这种高温花岗岩岩浆温度高于800℃。魏春景(2016)指出麻粒岩相泥质岩的高温深融与花岗质熔体的形成作用主要通过黑云母脱水熔融反应实现。魏春景和朱文萍(2016)指出平均泥质岩白云母脱水熔融的温度在800℃以下,温度800℃是划分变质相的重要界线。
值得注意的是,实验岩石学结果显示变泥质岩与变杂砂岩中黑云母脱水熔融反应的温度可持续到900℃以上并可达1000℃。例如,Patiño Douce and Johnston (1991)开展变泥质岩在气相缺失情况下的熔融实验结果显示,在压力为10kbar时高Ti黑云母开始分解温度为850℃、完全消失温度为1000℃;Vielzeuf and Montel(1994)的实验结果显示杂砂岩大规模熔融温度在950℃附近。为此,Chappell et al.(1998, 2004)认为S型花岗岩形成温度低于900℃、并将S型花岗岩划为低温花岗岩是不合适的。实际上,LFB地区更长石英质的S型花岗岩可以没有老的锆石(Elburg, 1996),但Chappell et al. (2004)认为老锆石通过结晶分异被移走了,而不是初始岩浆就没有继承锆石。
综上,我们认为吴福元等(2007, 2017)关于高温花岗岩的定义是合理的,即麻粒岩相变质相关的、温度800℃以上的花岗岩为高温花岗岩。另外Smithies et al. (2011)认为高P与Ti的紫苏花岗岩形成于高F与Ti黑云母的脱水熔融,形成温度大于1000℃,为超高温花岗岩。基于此,我们采纳以800℃与1000℃为界将花岗岩分为低温花岗岩、高温花岗岩与超高温花岗岩(图 2)。基于此方案,部分涉及黑云母部分熔融的二云母片岩部分熔融形成的二云母花岗岩形成温度高于800℃、属于高温花岗岩,变杂砂岩(黑云母片麻岩)黑云母脱水熔融的温度也大于800℃(Patiño Douce and Beard, 1995)、形成的黑云母花岗岩也为高温花岗岩(图 3)。因此,高温淡色花岗岩是淡色花岗岩的重要组成部分,黑云母花岗岩是高温花岗岩、形成黑云母花岗岩的岩浆为高温岩浆。以黑云母花岗岩为初始结晶端元并分异演化形成淡色花岗岩与伟晶岩的黑云母花岗岩-淡色花岗岩-伟晶岩系统为高温花岗岩-伟晶岩系统;相对地,变沉积岩白云母熔融形成的淡色花岗岩与其分异演化形成的伟晶岩构成低温花岗岩-伟晶岩系统。
![]() |
图 2 花岗岩温度分类方案 Fig. 2 The classification scheme of granite basing the temperature |
![]() |
图 3 云母花岗岩形成的P-T图解 变泥质岩云母脱水熔融形成淡色花岗岩的区域以石英-钠长石-钾长石水饱和熔融曲线为初始边界、以平均泥质岩黑云母脱水熔融结束(黑云母消失)曲线为结束边界 Fig. 3 The P-T diagram of the formation of muscovite granite The initial boundary of the dehydration melting area of the metagraywacke to form the leucogranite is basing on the water saturation curve of quartz-albite-potassium feldspar. The end boundary is basing on the average dehydration melting of pelite (disappear of biotite) |
高温花岗岩-伟晶岩系统更利于锂铍成矿,是稀有金属大规模成矿的系统。如上所述,高温部分熔融(黑云母脱水熔融)过程将形成更大规模的高温花岗质岩浆并从围岩中提取更多的锂铍金属。
实际上,一些稀有金属花岗伟晶岩高温矿物和熔体包裹体的发育说明这些花岗伟晶岩形成的温度较高,部分已达到高温范畴。一些高分异花岗岩和花岗伟晶岩中含有岩浆成因金绿宝石(Jacobson, 1982),如西班牙Belvís de Monroy淡色花岗岩体中心相细晶花岗岩与边部相粗粒白云母花岗岩中金绿宝石呈包裹体状出现在斜长石、钾长石与白云母中(Merino et al., 2013),巴西Americana与Santana谷地猫眼金绿宝石的原生矿产于花岗伟晶岩中(Proctor, 1988),美国东北部Maine地区的花岗伟晶岩含丰富的金绿宝石(Cook, 1999),加拿大Manitoba地区Mavis Lake伟晶岩也发育金绿宝石(Breaks et al., 2005),我国阿尔泰地区的可可托海3号伟晶岩脉、阿斯喀尔特1号伟晶岩脉、塔拉特307号伟晶岩脉、及四川丹巴地区花岗伟晶岩也含有金绿宝石(张如柏等, 1991;邹天人与李庆昌, 2006;周起凤, 2013;王春龙等, 2015)。金绿宝石合成实验结果显示金绿宝石形成温度大于760℃(Gromalova et al., 2012),相平衡实验结果显示形成金绿宝石与石英共生需要高的温度(775~850℃)与压力(1.5~1.7kbar)(Barton, 1986)。这意味着这些高分异花岗岩岩浆或花岗伟晶岩浆的温度大于760℃,其母岩浆温度可能大于800℃,为高温花岗质岩浆。
值得指出的是,一些花岗伟晶岩熔体包裹体实验显示岩浆的温度很高。如:新疆可可托海3号伟晶岩中石英、锂辉石和电气石中熔体包裹体的高温加热台和淬火炉法熔融包裹体进行均一法测定获得的形成温度范围分别为1060~930℃(张恩世等, 1987)、900~700℃(卢焕章等, 1996; Lu et al., 1997)和1249℃(周起凤, 2013),这意味着可可托海伟晶岩岩浆初始温度可达900℃、局部可达1249℃。如此高温的伟晶岩岩浆其母花岗岩一定是高温花岗岩。
黑云母花岗岩在花岗岩-伟晶岩锂铍成矿系统中的作用,已被部分学者关注。如,Shearer et al.(1992)研究认为美国Black Hills地区的电气石花岗岩与稀有金属伟晶岩源于黑云母花岗岩的结晶分异;Villaseca et al. (2008)指出西班牙Belvís de Monroy含金绿宝石的淡色花岗岩源于成因于杂砂岩部分熔融形成的黑云母花岗岩的分异演化;许畅等(2019)指出幕阜山复式花岗岩基南缘的长庆黑云母花岗岩与其内部的二云母花岗岩和绿柱石伟晶岩具分异演化的关系。但是,黑云母花岗岩与淡色花岗岩和锂铍伟晶岩的关系没有被足够的重视。例如,近年来西昆仑大红柳地区新发现的白龙山巨型锂伟晶岩带其北东侧的水泉沟花岗岩为黑云母花岗岩、西侧的大红柳滩花岗岩基主体为黑云母二长花岗岩。又如,阿尔泰阿斯喀尔特铍矿区发育与二云母花岗岩同期的黑云母花岗岩(邹天人与李庆昌, 2006)。
为此,我们认为有必要开展高温花岗岩-伟晶岩锂铍成矿系统的研究。
3 阿尔金中段高温花岗岩-伟晶岩锂铍成矿系统初步研究阿尔金中段是锂铍金属成矿研究与找矿的空白区,研究团队率先于2018年进入阿尔金中段无人区开展花岗伟晶岩型稀有金属成矿作用的科考与调查(图 4)。在新疆地勘基金的支持下,近年来(2018-2019年)新发现2个中-大型花岗伟晶岩型锂铍矿(吐格曼铍锂矿与吐格曼北锂铍矿)和塔什萨依金绿宝石矿,并识别与发现大量的黑云母花岗岩、二云母花岗岩与伟晶岩(图 5)。初步的研究结果显示:这些淡色花岗岩与伟晶岩成因于黑云母花岗岩的分异演化并构成高温花岗岩-伟晶岩锂铍成矿系统,已识别出3种组构类型的系统(图 6)。
![]() |
图 4 阿尔金地区地质简图(据徐兴旺等,2019) 超高压变质岩出露位置与年龄据张建新等(1999)、Zhang et al.(2001, 2005)、曹玉亭等(2009)、Liu et al.(2009, 2012)与朱小辉等(2014)资料 Fig. 4 Simplified geographic map of the midle part of Altyn Tagh (after Xu et al., 2019) Locations and ages of the high-pressure metamorphic rocks were after Zhang et al.(1999, 2001, 2005), Cao et al. (2009), Liu et al.(2009, 2012) and Zhu et al. (2014) |
![]() |
图 5 阿尔金中段吐格曼地区区域地质图(据徐兴旺等, 2019修正) Fig. 5 Geological map of the Tugeman area in the midle part of Altyn Tagh (modified after Xu et al., 2019) |
![]() |
图 6 阿尔金中段高温花岗岩-伟晶岩锂铍成矿系统组构类型剖面模式图 Fig. 6 Patterns of high temperature Li-Be granitic pegmatite metallogenic system of the middle part of Altyn-Tagh |
组构A高温花岗岩-伟晶岩锂铍成矿系统以黑云母花岗岩、淡色花岗岩与不同类型伟晶岩在空间上垂向依次叠置为特征,是研究区最重要与普遍发育的类型。新发现的吐格曼层状岩体、阿亚格黑云母花岗岩-二云母花岗岩-钠长花岗岩-电气石伟晶岩、及托巴二云母花岗岩及与其有关的吐格曼铍锂矿、吐格曼北锂铍矿和瓦石峡南锂矿构成的托巴系统都属于组构A,并记录与构成了组构A的不同片段。不同类型的花岗伟晶岩在空间上具明显的分带与叠置特征,从黑云母花岗岩到二云母花岗岩、白云母花岗岩与钠长花岗岩、及从近岩体的电气石带到依次远离岩体的绿柱石带、锂辉石带和锂云母带。组构A其锂铍伟晶岩的分带与传统的淡色花岗岩-伟晶岩系统中锂铍伟晶岩的分带相似(Černý, 1992 London, 2008; Linnen et al., 2012)。
吐格曼层状花岗岩(A1) 岩体产出于中元古界复理石建造中(图 5),出露面积约30km2;岩体层状构造发育(图 7a),包括不同矿物组成花岗岩的岩性层及其内部矿物分带而显示的层状构造(图 7b-d);岩体岩石类型多样,有黑云母花岗岩、二云母花岗岩、白云母花岗岩和电气石石榴子石钠长花岗岩;层状黑云母二长花岗岩分布于岩体的外侧与边缘,而其它岩性层构成的淡色层状花岗岩体是岩体的主体;层状淡色花岗岩中发育从二云母花岗岩、白云母和钠长花岗岩的连续结晶分异与演化的多个韵律组合。部分地段可见从黑云母花岗岩到二云母花岗岩和白云母花岗岩叠置分布现象(图 7)。初步的锆石U-Pb测年与Ti含量温度估算结果显示,岩体形成于~900Ma(未发表数据),黑云母花岗岩、二云母花岗岩与白云母花岗岩锆石结晶温度的平均值分别为828℃、792℃和739℃(图 8)。目前没有发现与吐格曼层状岩体同期的花岗伟晶岩,可能已被剥蚀。
![]() |
图 7 吐格曼层状岩体遥感影像(a)与露头照片(b-d) Fig. 7 Remote sensing geological map (a) and outcrops (b-d) of the layered Tugeman granite |
![]() |
图 8 吐格曼层状花岗岩锆石结晶温度直方图 Fig. 8 Histograms of crystallization temperatures of zircons of layered granites from Tugeman area |
阿亚格高温花岗岩-伟晶岩系统(A2) 以新识别的阿亚格黑云母花岗岩为中心,二云母花岗岩与钠长花岗岩位于黑云母花岗岩的顶部与外侧(图 9a),以发育电气石为特征的花岗伟晶岩从淡色花岗岩中进入围岩(图 9b),花岗岩与伟晶岩明显截切片麻岩。伟晶岩中未见锂铍矿物,可能系统中的锂铍伟晶岩已被剥蚀。阿亚格黑云母花岗岩含少量的石榴子石、电气石与榍石,这可能意味着其原岩为变沉积岩。值得指出的是,在阿亚格岩体的南侧接触带发育一套透辉石角闪岩相-麻粒岩相的变质岩,其中发育沿片麻理发育的黑云母花岗岩层或条带(图 9a),麻粒岩中也可见一些垂直地层与花岗岩层的网脉状浅色体(图 9d)。变质岩中的黑云母颗粒细小,具与阿亚格黑云母花岗岩相似的矿物组成,包括含石榴子石、电气石与榍石(图 9c, e),但含相对多的榍石。这可能意味着麻粒岩中的黑云母花岗岩可能是黑云母脱水熔融形成的初始熔体。
![]() |
图 9 阿亚格岩体边部二云母花岗岩-钠长花岗岩-花岗伟晶岩与围岩接触关系 Bt-黑云母; Grt-石榴子石; Kf-钾长石; Pl-斜长石; Q-石英 Fig. 9 Contact relationship between two-mica granite, albite granite, granitic pegmatite and host wallrock Bt-biotite; Grt-garnet; Kf-K-feldspar; Pl-plagioclase; Q-quartz |
托巴二云母花岗岩-伟晶岩锂铍成矿系统 研究区新发现的吐格曼铍锂矿、吐格曼北锂铍矿和瓦石峡南锂矿在空间分布上以托巴二云母花岗岩为中心向北东与向西分带分布(徐兴旺等,2019),这3个矿床的形成可能与托巴二云母花岗岩有关或与其同期的花岗岩有关,并构成一个完成的成矿系统。初步的测年结果显示,吐格曼铍锂矿与吐格曼北锂铍矿的成矿年龄为468~460Ma, 与研究区南部的萨拉姆黑云母花岗岩相近,由此推测托巴二云母花岗岩和其周边的锂铍伟晶岩矿物也与黑云母花岗岩有关。
其中吐格曼铍锂矿为花岗伟晶岩型铍锂矿,产出于吐格曼层状花岗岩中(图 4)。矿区内发现伟晶岩脉43条,其中长度大于100m的有24条,最长的脉体tγρ1长度大于1300m;脉体宽1~7m。花岗伟晶岩呈较规则的陡倾脉带产出,矿区东北部与西南部的脉带其脉体呈近东西向展布,而中南部的脉带呈北东向展布。出露较好的中南部脉带部分脉体呈树枝状与雁列式展布(图 10a)。矿区花岗伟晶岩脉其矿物组成类型主要有电气石微斜长石伟晶岩、石英微斜长石伟晶岩、电气石绿柱石微斜长石伟晶岩、微斜长石伟晶岩、白云母电气石微斜长石伟晶岩和石英伟晶岩。一些较长和较宽的伟晶岩脉在侧向、纵向与垂向都表现出一定的分带特征(图 10b)。吐格曼矿区稀有金属花岗伟晶以富含绿柱石与微斜长石为特征,绿柱石晶体较大者其长柱长达20cm,绿柱石多发育在钾长石英带,位于钾长石与石英之间(图 10c)。矿区伟晶岩中绿柱石的产状与共生矿物组合与典型的含绿柱石花岗伟晶岩的特征相似(London,2005;London and Kontak, 2012)。伟晶岩BeO品位0.04%~1.78%、Li2O品位0.26%~3.66%、伴生Cs、Nb、Ta。初步估算铍锂金属资源量已达中型矿床规模。伟晶岩中热液锆石LA测年结果显示成矿年龄为460Ma(徐兴旺等,2019)。
![]() |
图 10 吐格曼铍锂矿区遥感地质图(a)和伟晶岩露头照片(b、c)(据徐兴旺等,2019修正) Fig. 10 Remote sensing geological map (a) and outcrops of pegmatite (b, c) of Tugman Li-Be deposit (after Xu et al., 2019) |
吐格曼北锂铍矿为花岗伟晶岩型锂铍矿,位于吐格曼岩体的北接触带。区内发现27条锂铍花岗伟晶岩脉,脉带整体呈东西向展布,各脉体规模大小不一,长200~1000m,宽1~35m,脉体呈透镜状和树枝状产出。伟晶岩主要由钠长石、钾长石、白云母、石英、电气石、锂辉石和绿柱石等矿物组成,含少量铌钽铁矿、磷锂铝石、磷灰石、独居石和锆石等副矿物。根据矿物组成,矿区伟晶岩可分为钠长石锂辉石伟晶岩、白云母钠长石锂辉石伟晶岩、钾长石绿柱石伟晶岩、白云母锡石伟晶岩四种类型。以钠长石锂辉石伟晶岩为主,可归为LCT型钠长石-锂辉石亚类(Černý et al., 2012)。锡石与铌钽铁U-Pb测年结果显示成矿年龄为468~464Ma(李杭等, 2020)。
吐格曼铍锂矿与吐格曼北锂铍矿为加里东期(468~460Ma)的锂铍伟晶岩区。伟晶岩年龄与矿区南部黑云母花岗岩年龄(约为470Ma)相近,这可能意味着吐格曼铍锂矿与吐格曼北锂铍矿的形成与470Ma的黑云母花岗岩有关。
3.1.2 组构B:高温花岗岩-伟晶岩锂铍成矿系统组构B以由塔什萨依黑云母花岗岩及与其伴生的锂铍花岗岩-伟晶岩组成的系统(图 11)为代表。塔什萨依系统的特征包括:黑云母花岗岩糜棱岩化(图 12a);白云母花岗岩岩墙与金绿宝石钠长花岗岩岩墙具从黑云母花岗岩中穿出进入地层的特征,部分钠长花岗岩富含磷灰石(含量局部可达5vol%);锂铍矿物除绿柱石和锂辉石外,以发育金绿宝石为特征;金绿宝石发育在钠长花岗岩与伟晶岩中(图 12b,c),绿柱石与锂辉石发育在伟晶岩(图 12e,f);不同类型的伟晶岩围绕塔什萨依黑云母花岗岩规律性分布,金绿宝石伟晶岩脉位于黑云母岩体中或其附近,而绿柱石伟晶岩与锂辉石伟晶岩依次远离(图 11);伟晶岩中金绿宝石与石榴子石和夕线石共生(图 12c,d),部分金绿宝石与夕线石被白云母包裹和石英中含有夕线石骸晶(图 12d);及绿柱石伟晶岩与锂辉石伟晶岩中含有电气石,即电气石与绿柱石和锂辉石共生(图 12e,f)。从白云母花岗岩和金绿宝石钠长花岗岩与黑云母花岗岩的空间关系推断黑云母花岗岩分异演化形成的二云母花岗岩与白云母花岗岩可能呈核幔状位于黑云母花岗岩中(图 6-组构B)。黑云母花岗岩糜棱岩化的特征可能意味着组构B形成于剪切构造背景。
![]() |
图 11 塔什萨依金绿宝石矿地质图 Fig. 11 Geological map of the Tashisayi chrysoberyl deposit |
![]() |
图 12 塔什萨依花岗岩-伟晶岩系统典型岩石矿石的标本与显微照片 Fig. 12 Specimens' images and micrographs of typical rocks and ores in the Tashisayi granite pegmatite deposit |
目前,已发现含金绿宝石钠长花岗岩脉1条、含金绿宝石伟晶岩脉13条、绿柱石伟晶岩脉4条、锂辉石伟晶岩脉2条(图 11)。部分伟晶岩中金绿宝石的含量可达5vol%,塔什萨依金绿宝石矿有望成为我国首个金绿宝石矿床。
3.1.3 组构C:片麻状黑云母花岗岩-二云母花岗质伟晶岩系统组构C片麻状黑云母花岗岩-二云母花岗质伟晶岩系统以岔路口片麻状黑云母花岗岩及与其伴生的二云母花岗质伟晶岩为代表。岔路口黑云母花岗岩呈长条状、平行区域片麻理构造产出(图 5),片麻状构造发育(图 13a),伴生的伟晶岩为二云母花岗伟晶岩、多顺片麻理发育于围岩片麻岩中(图 13b,c)。伟晶岩中流动构造发育,常见粗粒相与细粒或细晶相共生现象,伟晶岩含黑云母、少见石榴子石,未见锂铍矿物。细晶淡色花岗岩少见,伟晶岩大规模分布。黑云母花岗岩片麻状构造的发育与伟晶岩沿片麻理分布的特征意味着组构C可能形成于强挤压与剪切构造背景。二云母花岗质伟晶岩的发育意味着花岗伟晶岩可以形成于花岗质岩浆分异与演化程度不高的阶段,这种低分异花岗伟晶岩不成矿。
![]() |
图 13 岔路口黑云母花岗岩及其伴生的花岗伟晶岩的野外露头(a、b)和显微照片(c) Mus-白云母; Tur-电气石 Fig. 13 Outcrops' images of Chalukou biotite granite and its associated granitic pegmatite (a, b) and micrograph of two-mica granitic pegmatite (c) Mus-muscovite; Tur-tourmaline |
阿尔金中段地区是原特提斯构造的重要组成部分(张建新等, 2001;覃小锋等, 2007;杨文强等, 2012;董顺利等, 2013;康磊等, 2013;王立社等, 2016;吴才来等, 2016),也是我国重要的铁铅锌多金属成矿带(陈柏林等, 2009, 2017;乔耿彪等, 2014;王岩等, 2016;陈柏林与孟令通,2018;张辉善等, 2018)。近年来,在阿尔金东段余石山地区发现与碱性岩有关的铌钽稀有金属矿床(余君鹏等, 2012;杨再朝等, 2014)。
阿尔金中段地区沿江尕勒萨依-清水泉-英格利萨依-巴什瓦克一带发育一个超高压变质带(图 4),榴辉岩峰值变质时间为500~490Ma、退变质时间为475~450Ma(刘良等, 1999;张建新等,1999;Zhang et al., 2001, 2005; Liu et al., 2009, 2012; 曹玉亭等, 2009; 朱小辉等,2014),这意味着阿尔金中段是一个原特提斯碰撞带。新发现的吐格曼与吐格曼北花岗伟晶岩型锂铍矿床的形成时代为470~460Ma(徐兴旺等,2019;李杭等,2020),初步的研究显示与成矿有关的黑云母花岗岩年龄为480~470Ma,这意味着阿尔金中段锂铍花岗伟晶岩及其母花岗岩(黑云母花岗岩)形成于碰撞阶段,这与世界上花岗伟晶岩和淡色花岗岩多形成于碰撞或后碰撞构造背景是一致的(Harris et al., 1986;Pitcher,1997;Barbarin,1999;吴福元等,2015;Ma et al., 2017)。也就是说,阿尔金中段地区是一个原特提斯阶段的碰撞带与锂铍成矿带。阿尔金中段地区碰撞阶段黑云母花岗岩大规模发育与一些矿床的发现(图 5)显示阿尔金中段花岗岩-伟晶岩型锂铍矿床成矿条件好、找矿潜力大。
4 结语白云母熔融过程形成花岗质岩浆其熔体量小(< 10vol%)、熔体从岩石中提取锂铍的效率低,白云母熔融形成花岗质岩浆过程锂铍金属富集机制可能不是花岗质岩浆获取锂铍的主要机制。黑云母脱水熔融过程残留相没有富含锂铍矿物的形成,新形成的花岗质岩浆可以高效地从源岩中获取锂铍金属,是一种新的锂铍富集机制。变杂砂岩(黑云母片麻岩)与含黑云母的英云闪长质片麻岩黑云母部分熔融形成的黑云母花岗质高温岩浆(>800℃)其结晶形成黑云母花岗岩并可分异演化为淡色花岗岩与锂铍花岗岩-伟晶岩、并构成高温花岗岩-伟晶岩锂铍成矿系统,是花岗岩-伟晶岩型锂铍矿床形成的重要成矿系统。
阿尔金中段锂铍成矿系统为典型的高温花岗岩-伟晶岩锂铍成矿系统,有3种组构类型:1)组构A以黑云母花岗岩、淡色花岗岩与不同类型伟晶岩在空间上表现出垂向上依次叠置为特征, 从黑云母花岗岩到二云母花岗岩、白云母花岗岩与钠长花岗岩、及从近岩体的电气石带到依次远离岩体的绿柱石带、锂辉石带和锂云母带。组构A锂铍伟晶岩的分带与传统的淡色花岗岩-伟晶岩系统中锂铍伟晶岩的分带相似。2)组构B由从外到里依次为糜棱岩化黑云母花岗岩、二云母花岗岩与白云母花岗岩的环状岩体与从环状岩体中穿出、并向外演化为金绿宝石伟晶岩、绿柱石伟晶岩和锂辉石伟晶岩带构成。3)组构C由片麻状黑云母花岗岩和与其伴生的、顺围岩片麻理发育的二云母花岗质伟晶岩构成。这些特征显示构造动力作用影响与控制岩浆的结晶分异方式、金绿宝石可形成于高温花岗岩-伟晶岩锂铍成矿系统、及形成于花岗质岩浆分异与演化低程度阶段的低分异花岗伟晶岩不成矿。
致谢 研究过程得到了吴福元、王汝成、秦克章、杨进辉、杨志明、范宏瑞、郭敬辉、李晓峰、姜能、郭光军、钱青、任留东、张建新、张辉与王核等专家的建议与启示;阿尔金中段地区稀有金属成矿作用的野外地质调查与考察过程得到新疆地矿局第三地质大队石福品、刘兴忠、杨智全、刘建兵、张笋与宋俊华等的支持与帮助;审稿人给出了有益的建议与意见。在此向他们深表谢意。
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626 |
Barton MD. 1986. Phase equilibria and thermodynamic properties of minerals in the BeO-Al2O3-SiO2-H2O (BASH) system, with petrologic applications. American Mineralogist, 71(3-4): 277-300 |
Bea F, Pereira MD and Stroh A. 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4): 291-312 |
Benson TR, Coble MA, Rytuba JJ and Mahood GA. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications, 8: 270 |
Beus AA. 1966. Geochemistry of Beryllium and Genetic Types of Beryllium Deposits. San Francisco:W.H. Freeman and Company, 1-286 |
Bradley DC, McCauley AD and Stillings LL. 2017. Mineral-deposit Model for Lithium-Cesium-Tantalum Pegmatites. Reston, VA:U.S. Geological Survey, 1-48 |
Breaks FW, Selway JB and Tindle AG. 2005. Fertile peraluminous granites and related rare-element pegmatites, Superior Province, Ontario. In: Samson IM, Linnen RL and Martin RF (eds.). Rare-element Geochemistry and Mineral Deposits. Ottawa: Mineralogical Association of Canada, 87-125
|
Brotzen O. 1959. Outline of mineralization in zoned granitic pegmatites:A qualitative and comparative study. Geologiska Föreningen i Stockholm Förhandlingar, 81(1): 1-98 |
Buddington AF. 1959. Granite emplacement with special reference to North America. Geological Society of America Bulletin, 70(6): 671-747 |
Burke KC, Cunningham MA, Gallagher MJ and Hawkes JR. 1964. Beryl in the Rosses granite, north-west Ireland. Economic Geology, 59(8): 1539-1550 |
Burnham CW and Nekvasil H. 1986. Equilibrium properties of granite pegmatite magmas. American Mineralogist, 71(3-4): 239-263 |
Cao YT, Liu L, Wang C, Chen DL and Zhang AD. 2009. P-T path of Early Paleozoic pelitic high-pressure granulite from Danshuiquan area in Altyn Tagh. Acta Petrologica Sinica, 25(9): 2260-2270 (in Chinese with English abstract) |
Černý P. 1991. Rare-element granitic pegmatites. Part Ⅰ:Anatomy and internal evolution of pegmatitic deposits; Part Ⅱ:Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 49-67; 68-81 |
Černý P. 2002. Mineralogy of beryllium in granitic pegmatites. Reviews in Mineralogy and Geochemistry, 50(1): 405-444 |
Černý P and Ercit TS. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005-2026 |
Černý P, London D and Novák M. 2012. Granitic pegmatites as reflections of their sources. Elements, 8(4): 289-294 |
Černý PC. 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, 7(5): 393-416 |
Chakhmouradian AR, Smith MP and Kynicky J. 2015. From "strategic" tungsten to "green" neodymium:A century of critical metals at a glance. Ore Geology Reviews, 64: 455-458 |
Chappell BW, Bryant CJ, Wyborn D, White AJR and Williams IS. 1998. High-and low-temperature I-type granites. Resource Geology, 48(4): 225-235 |
Chappell BW, White AJR, Williams IS and Wyborn D. 2004. Low-and high-temperature granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 125-140 |
Charoy B and Noronha F. 1996. Multistage growth of a rare-element volatile-rich microgranite at Argemela (Portugal). Journal of Petrology, 37(1): 73-94 |
Charoy B. 1999. Beryllium speciation in evolved granitic magmas:Phosphates versus silicates. European Journal of Mineralogy, 11(1): 135-148 |
Chen BL, Jiang RB, Li L, Chen ZL, Qi WX, Liu R, Cui LL and Wang SX. 2009. Discovery of iron ore zones in the Kaladawan area within the eastern part of the Altun Mountains and its significance. Acta Geoscientica Sinica, 30(2): 143-154 (in Chinese with English abstract) |
Chen BL, Qi WX, Cui LL, Chen ZL, Liu B, Zhao L, Jiang RB, Han FB, Li L and Liu R. 2017. The Kaladaban volcanogenic massive sulfide-type Pb-Zn deposit in northern Altun Mountains, NW China. Acta Geologica Sinica, 91(8): 1818-1835 (in Chinese with English abstract) |
Chen BL and Meng LT. 2018. Characteristics of folds in the Kaladawan iron orefield, Altun Mountains, northwestern China and its prospecting implication. Geotectonica et Metallogenia, 42(1): 32-49 (in Chinese with English abstract) |
Cook RB. 1999. Connoisseur's choice:Chrysoberyl, Minas Gerais and Bahia, Brazil, and Takovaya, Russia. Rocks & Minerals, 74(5): 324-327 |
Crouse RA and Černý P. 1972. The Tanco pegmatite at Bernic Lake, Manitoba:I, Geology and paragenesis. The Canadian Mineralogist, 11(3): 591-608 |
Cuney M, Marignac C and Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France):The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87(7): 1766-1794 |
Dong SL, Li Z, Gao J and Zhu L. 2013. Progress of studies on Early Paleozoic tectonic framework and crystalline rock geochronology in Altun-Qilian-Kunlun Orogen. Geological Review, 59(4): 731-746 (in Chinese with English abstract) |
Ebadi A and Johannes W. 1991. Beginning of melting and composition of first melt in the system Qz-Ab-Or-H2O-CO2. Contributions to Mineralogy and Petrology, 106: 286-329 DOI:10.1007/BF00324558 |
Elburg MA. 1996. U-Pb ages and morphologies of zircon in microgranitoid enclaves and peraluminous host granite:Evidence for magma mingling. Contributions to Mineralogy and Petrology, 123(2): 177-189 DOI:10.1007/s004100050149 |
Evensen JM, London D and Wendlandt RF. 1999. Solubility and stability of beryl in granitic melts. American Mineralogist, 84(5-6): 733-745 |
Falster AU, Simmons WB and Webber KL. 1997. The origin of evolved LCT-type granitic pegmatites in the Hoskin Lake granite pegmatite field, Florence Co., Wisconsin. In: Proceedings of IAVCEI General Assembly. Puerto Vallarta, Mexico: Programme, 118
|
Fedoseyev AD. 1961. Synthesis of chrysoberyl and investigation of its suitability as a refractory. Refractories, 2(5-6): 230-235 DOI:10.1007/BF01301136 |
Franz C, Grundmann G and Ackermand D. 1986. Rock forming beryl from a regional metamorphic terrain (Tauern Window, Austria):Parageneses and crystal chemistry. Tschermaks Mineralogische Und Petrographische Mitteilungen, 35(3): 167-192 DOI:10.1007/BF01082084 |
Gao LE and Zeng LS. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochimica et Cosmochimica Acta, 130: 136-155 |
Gardien V, Thompson AB, Grujic D and Ulmer P. 1995. Experimental melting of biotite + plagioclase + quartz ±muscovite assemblages and implications for crustal melting. Journal of Geophysical Research, 100(B8): 15581-15591 |
Ginsburg AI, Timofeyev IN and Feldman LG. 1979. Principles of Geology of the Granitic Pegmatites. Nedra, Moscow:USSR, 296 |
Gresens RL. 1967. Tectonic-hydrothermal pegmatites:I. The model. Contributions to Mineralogy and Petrology, 15(4): 345-355 |
Grew ES. 2002. Beryllium in metamorphic environments (emphasis on aluminous compositions). Reviews in Mineralogy and Geochemistry, 50(1): 487-549 |
Gromalova NA, Mal'tsev VV, Dorokhova GI, Leonyuk NI and Urusov VS. 2012. Recrystallization of natural chrysoberyl in multicomponent melts. Crystallography Reports, 57(4): 603-608 DOI:10.1134/S1063774512030078 |
Guillot S and Le Fort P. 1995. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35(3-4): 221-234 |
Hall A and Walsh JN. 1971. The beryls of the rosses district, Donegal. Mineralogical Magazine, 38(295): 328-334 |
Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward MP and Ries AC (eds.). Collision Tectonics. Geological Society, London, Special Publications, 19(1): 67-81
|
Harrison TM, Lovera OM and Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25(10): 899-902 |
Hien-Dinh TT, Dao DA, Tran T, Wahl M, Stein E and Gieré R. 2017. Lithium-rich albite-topaz-lepidolite granite from Central Vietnam:A mineralogical and geochemical characterization. European Journal of Mineralogy, 29(1): 35-52 |
Holtz F and Johannes W. 1991. Genesis of peraluminous granites:I. Experimental investigation of melt compositions at 3 and 5kb and various H2O activities. Journal of Petrology, 32(5): 935-958 |
Huang XL, Wang RC, Chen XM, Hu H and Liu CS. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40(4): 1047-1068 |
Icenhower J and London D. 1995. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200MPa (H2O). American Mineralogist, 80(11-12): 1229-1251 |
Inger S and Harris N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34(2): 345-368 |
Jacobson MI. 1982. Chrysoberyl:A U.S. review. Rocks & Minerals, 57(2): 49-57 |
Jahns RH. 1953. The genesis of pegmatites:I. Occurrence and origin of giant crystals. American Mineralogist, 38(7-8): 563-598 |
Jahns RH. 1955. The study of pegmatites. In: Bateman AM (ed.). Economic Geology, 50th Anniversary, 1025-1130
|
Jahns RH and Tuttle OF. 1963. Layered pegmatite-aplite intrusives. Mineralogical Society of America, Special Papers, 1: 78-92 |
Jahns RH and Burnham CW. 1969. Experimental studies of pegmatite genesis:I, A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864 |
Jiang SY and Palmer MR. 1998. Boron isotope systematics of tourmaline from granites and pegmatites:A synthesis. European Journal of Mineralogy, 10(6): 1253-1266 |
Jiang SY. 2000. Boron isotope and its geological applications. Geological Journal of China Universities, 6(1): 1-16 (in Chinese with English abstract) |
Johnson TE, White RW and Powell R. 2008. Partial melting of metagreywacke:A calculated mineral equilibria study. Journal of Metamorphic Geology, 26(8): 837-853 |
Kang L, Liu L, Cao YT, Wang C, Yang WQ and Liang S. 2013. Geochemistry, zircon U-Pb age and its geological significance of the gneissic granite from the eastern segment of the Tatelekebulake composite granite in the South Altyn Tagh. Acta Petrologica Sinica, 29(9): 3039-3048 (in Chinese with English abstract) |
Kemp JF. 1924. The pegmatites. Economic Geology, 19(8): 697-723 |
Landes KK. 1933. Origin and classification of pegmatites. American Mineralogist, 18(2): 33-56 |
Li H, Hong T, Yang ZQ, Chen JZ, Ke Q, Wang XH, Niu L and Xu XW. 2020. Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites:A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh. Acta Petrologica Sinica, 36(9): 2869-2892 (in Chinese with English abstract) |
Li J, Huang XL, He PL, Li WX, Yu Y and Chen LL. 2015. In situ analyses of micas in the Yashan granite, South China:Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793-810 |
Li JK. 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-225 (in Chinese with English summary)
|
Li JK, Liu XF and Wang DH. 2014. The metallogenetic regularity of lithium deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract) |
Li JK, Zou TR, Wang DH and Ding X. 2017. A review of beryllium metallogenic regularity in China. Mineral Deposits, 36(4): 951-978 (in Chinese with English abstract) |
Linnen RL. 1998. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F:Constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93(7): 1013-1025 |
Linnen RL. 2005. The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts. Lithos, 80(1-4): 267-280 |
Linnen RL, van Lichtervelde M and Cěrný P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275-280 |
Liu L, Che ZC, Wang Y, Luo JH and Chen DL. 1999. The petrological characters and geotectonic setting of high-pressure metamorphic rock belts in Altun Mountains. Acta Petrologica Sinica, 15(1): 57-64 (in Chinese with English abstract) |
Liu L, Wang C, Chen DL, Zhang AD and Liu JG. 2009. Petrology and geochronology of HP-UHP rocks from the south Altyn Tagh, northwestern China. Journal of Asian Earth Sciences, 35(3-4): 232-244 |
Liu L, Wang C, Cao YT, Chen DL, Kang L, Yang WQ and Zhu XH. 2012. Geochronology of multi-stage metamorphic events:Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 136-139: 10-26 |
Liu LJ, Fu XF, Wang DH, Hao XF, Yuan LP and Pan M. 2015. Geological characteristics and metallogeny of Jiajika-style rare metal deposits. Mineral Deposits, 34(6): 1187-1198 (in Chinese with English abstract) |
Liu LJ, Wang DH, Liu XF, Li JK, Dai HZ and Yan WD. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine. Geology in China, 44(2): 263-278 (in Chinese with English abstract) |
Liu SB, Yang YQ, Wang DH, Dai HZ, Ma SC, Liu LJ and Wang CH. 2019. Discovery and significance of granite type lithium industrial orebody in Jiajika orefield, Sichuan Province. Acta Geologica Sinica, 93(6): 1309-1320 (in Chinese with English abstract) |
Liu ZC, Wu FY, Liu XC, Wang JG, Yin R, Qiu ZL, Ji WQ and Yang L. 2019. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba dome, southern Tibet. Lithos, 340-341: 71-86 |
London D. 1986. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite:Evidence from fluid inclusions and phase-equilibrium experiments. American Mineralogist, 71(3-4): 376-395 |
London D, Hervig RL and Morgan VI GB. 1988. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems:Experimental results with Macusani glass at 200MPa. Contributions to Mineralogy and Petrology, 99(3): 360-373 DOI:10.1007/BF00375368 |
London D and Evensen JM. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Reviews in Mineralogy and Geochemistry, 50(1): 445-486 |
London D. 2005. Granitic pegmatites:An assessment of current concepts and directions for the future. Lithos, 80(1-4): 281-303 |
London D. 2008. Pegmatites. Ottawa: Mineralogical Association of Canada, 1-347
|
London D and Kontak DJ. 2012. Granitic pegmatites:Scientific wonders and economic bonanzas. Elements, 8(4): 257-261 |
London D and Morgan VI GB. 2012. The pegmatite puzzle. Elements, 8(4): 263-268 |
Lu HZ, Wang ZG and Li YS. 1996. Magma/fluid transition and genesis of pegmatite dike No. 3 at Altay, Xinjiang. Acta Mineralogica Sinica, 16(1): 1-7 (in Chinese with English abstract) |
Lu HZ, Wang ZG and Li YS. 1997. Magma-fluid transition and the genesis of pegmatite dike No.3, Altay, Xinjiang, Northwest China. Chinese Journal of Geochemistry, 16: 43-52 |
Ma L, Wang Q, Kerr AC, Yang JH, Xia XP, Ou Q, Yang ZY and Sun P. 2017. Paleocene (c. 62Ma) leucogranites in southern Lhasa, Tibet:Products of syn-collisional crustal anatexis during slab roll-back?. Journal of Petrology, 58(11): 2089-2114 |
Martin RF and De Vito C. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist, 43(6): 2027-2048 |
Merino E, Villaseca C, Orejana D and Jeffries T. 2013. Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton:The Belvís de Monroy leucogranite (Cáceres, Spain). Lithos, 179: 137-156 |
Miller CF, McDowell SM and Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532 |
Montel JM and Vielzeuf D. 1997. Partial melting of metagreywackes:Part Ⅱ. Compositions of minerals and melts. Contributions to Mineralogy and Petrology, 128(2-3): 176-196 |
Nabelek PI, Russ-Nabelek C and Denison JR. 1992. The generation and crystallization conditions of the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota, USA:Petrologic and geochemical constraints. Contributions to Mineralogy and Petrology, 110(2-3): 173-191 DOI:10.1007/BF00310737 |
Partington GA, McNaughton NJ and Williams IS. 1995. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia. Economic Geology, 90(3): 616-635 |
Patiño Douce AE and Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107(2): 202-218 DOI:10.1007/BF00310707 |
Patiño Douce AE and Beard JS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology, 36(3): 707-738 |
Patiño Douce AE and Beard JS. 1996. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology, 37(5): 999-1024 |
Patiño Douce AE and Harris N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39(4): 689-710 |
Patiño Douce AE and McCarthy TC. 1998. Melting of crustal rocks during continental collision and subduction. In: Hacker BR and Liou JG (eds.). When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-pressure Rocks. Dordrecht: Springer, 27-55
|
Petö P. 1976. An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2-H2O to 15kb total pressure. Progress in Experimental Petrology, 3: 41-45 |
Pitcher WS. 1997. The sources of granitic magmas in their various global tectonic niches. In: Pitcher WS (ed.). The Nature and Origin of Granite. Dordrecht: Springer, 316-339
|
Prince C, Harris N and Vance D. 2001. Fluid-enhanced melting during prograde metamorphism. Journal of the Geological Society, 158(2): 233-241 |
Proctor K. 1988. Chrysoberyl and alexandrite from the pegmatite districts of Minas Gerais, Brazil. Gems & Gemology, 24(1): 16-32 |
Qiao GB, Yang HQ, Du W and Zhao XJ. 2014. Discussion on metallogenic series and metallogenic unit division in Altun metallogenic belt. Northwestern Geology, 47(4): 209-220 (in Chinese with English abstract) |
Qin KZ, Xiao WJ, Zhang LC, Xu XW, Hao J, Sun S, Li JL and Tosdal RM. 2005. Eight stages of major ore deposits in northern Xinjiang, NW-China: Clues and constraints on the tectonic evolution and continental growth of Central Asia. In: Mao JW and Bierlein FP (eds.). Mineral Deposit Research: Meeting the Global Challenge. Berlin, Heidelberg: Springer, 1327-1330
|
Qin KZ, Shen MD, Tang DM, Guo ZL, Zhou QF, Wang CL, Guo XJ, Tian Y and Ding JG. 2013. Types, intrusive and mineralization ages of pegmatite rare-element deposits in Chinese Altay. Xinjiang Geology, 31(Suppl.1): 1-7 (in Chinese with English abstract) |
Qin XF, Xia B, Li J, Li CQ, Lu JP, Xu H, Zhou FS, Hu GA and Li Q. 2007. Metamorphism of the Neoproterozoic-Early Paleozoic metamorphic series in the western segment of the southern Altyn Tagh tectonic belt. Journal of Jilin University (Earth Science Edition), 37(5): 856-867 (in Chinese with English abstract) |
Raimbault L, Cuney M, Azencott C, Duthou JL and Joron JL. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology, 90(3): 548-576 |
Roda Robles E, Pesquera Perez A, Velasco Roldan F and Fontan F. 1999. The granitic pegmatites of the Fregeneda area (Salamanca, Spain):Characteristics and petrogenesis. Mineralogical Magazine, 63(4): 535-558 |
Rutter MJ and Wyllie PJ. 1988. Melting of vapour-absent tonalite at 10kbar to simulate dehydration-melting in the deep crust. Nature, 331(6152): 159-160 |
Scaillet B, Pichavant M and Roux J. 1995. Experimental crystallization of leucogranite magmas. Journal of Petrology, 36(3): 663-705 |
Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR and Gunn AG. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes:A case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Research, 281: 338-362 |
Shearer CK, Papike JJ and Jolliff BL. 1992. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota. The Canadian Mineralogist, 30: 785-809 |
Simmons WB and Webber KL. 2008. Pegmatite genesis:State of the art. European Journal of Mineralogy, 20(4): 421-438 |
Simmons WB, Pezzotta F, Shigley JE and Beurlen H. 2012. Granitic pegmatites as sources of colored gemstones. Elements, 8(4): 281-287 |
Singh J and Johannes W. 1996. Dehydration melting of tonalites:Part Ⅰ. Beginning of melting. Contributions to Mineralogy and Petrology, 125(1): 16-25 DOI:10.1007/s004100050203 |
Skjerlie KP and Johnston AD. 1992. Vapor-absent melting at 10kbar of a biotite-and amphibole-bearing tonalitic gneiss:Implications for the generation of A-type granites. Geology, 20(3): 263-266 |
Skjerlie KP and Johnston AD. 1993. Fluid-absent melting behavior of a F-rich tonalitic gneiss at mid-crustal pressures:Implications for the generation of anorogenic granites. Journal of Petrology, 34(4): 785-815 |
Smithies RH, Howard HM, Evins PM, Kirkland CL, Kelsey DE, Hand M, Wingate MTD, Collins AS and Belousova E. 2011. High-temperature granite magmatism, crust-mantle interaction and the mesoproterozoic intracontinental evolution of the Musgrave Province, central Australia. Journal of Petrology, 52(5): 931-958 |
Stevens G, Clemens JD and Droop GTR. 1997. Melt production during granulite-facies anatexis:Experimental data from "primitive" metasedimentary protoliths. Contributions to Mineralogy and Petrology, 128(4): 352-370 |
Stilling A, Černý P and Vanstone PJ. 2006. The Tanco pegmatite at Bernic Lake, Manitoba:XVI. Zonal and bulk compositions and their petrogenetic significance. The Canadian Mineralogist, 44(3): 599-623 |
Storre B and Karotke E. 1972. Experimental data on melting reactions of muscovite + quartz in the system K2O-Al2O3-SiO2-H2O to 20kb water pressure. Contributions to Mineralogy and Petrology, 36: 343-345 DOI:10.1007/BF00444341 |
Sweetapple MT and Collins PLF. 2002. Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia. Economic Geology, 97(4): 873-895 |
Sweetapple MT, Holmes J, Young J, Grigson MW, Barnes L and Till S. 2017. The geology and mineralogy of the Pilgangoora lithium-tantalum pegmatite deposit. In: Phillips N (ed.). Australian Ore Deposits. 6th Edition. Melbourne: Office of the Congress and of the Australasian Institute of Mining and Metallurgy, 1-4
|
Tagirov B, Schott J, Harrichourry JC and Salvi S. 2002. Experimental study of aluminum speciation in fluoride-rich supercritical fluids. Geochimica et Cosmochimica Acta, 66(11): 2013-2024 |
Tonarini S, Dini A, Pezzotta F and Leeman WP. 1998. Boron isotopic composition of zoned (schorl-elbaite) tourmalines, Mt. Capanne Li-Cs pegmatites, Elba (Italy). European Journal of Mineralogy, 10(5): 941-952 |
Trumbull RB and Chaussidon M. 1999. Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland. Chemical Geology, 153(1-4): 125-137 |
Vernon RH. 2007. Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves. The Canadian Mineralogist, 45(1): 147-178 |
Vielzeuf D and Holloway JR. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system:Consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98(3): 257-276 |
Vielzeuf D and Montel JM. 1994. Partial melting of metagreywackes:Part Ⅰ. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117(4): 375-393 DOI:10.1007/bf00307272 |
Vielzeuf D and Schmidt MW. 2001. Melting relations in hydrous systems revisited:Application to metapelites, metagreywackes and metabasalts. Contributions to Mineralogy and Petrology, 141(3): 251-267 DOI:10.1007/s004100100237 |
Villaseca C, Pérez-Soba C, Merino EM, Orejana D, López-García JA and Billström K. 2008. Contrasted crustal sources for peraluminous granites of the segmented Montes de Toledo Batholith (Iberian Variscan Belt). Journal of Geosciences, 53(3-4): 263-280 |
Wang CL, Qin KZ, Tang DM, Zhou QF, Shen MD, Guo ZL and Guo XJ. 2015. Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implications. Acta Petrologica Sinica, 31(8): 2337-2352 (in Chinese with English abstract) |
Wang DH, Zou TR and Li HY. 1998. Advance in the study on economic geology of rare metal deposits. Geological Science and Technology Information, 17(3): 64-69 (in Chinese with English abstract) |
Wang DH, Zou TR, Xu ZG, Yu JJ and Fu XF. 2004. Advance in the study of using pegmatite deposits as the tracer of orogenic process. Advances in Earth Science, 19(4): 614-620 (in Chinese with English abstract) |
Wang DH, Liu LJ, Hou JL, Dai HZ, Yu Y, Dai JJ and Tian SH. 2017. A preliminary review of the application of "five levels+basement" model for Jiajika-style rare metal deposits. Earth Science Frontiers, 24(5): 1-7 (in Chinese with English abstract) |
Wang H, Li P, Ma HD, Zhu BY, Qiu L, Zhang XY, Dong R, Zhou KL, Wang M, Wang Q, Yan QH, Wei XP, He B, Lu H and Gao H. 2017. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication. Geotectonica et Metallogenia, 41(6): 1053-1062 (in Chinese with English abstract) |
Wang H, Gao H, Zhang XY, Yan QH, Xu YG, Zhou KL, Dong R and Li P. 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China. Lithos, 360-361: 105449 |
Wang LS, Li ZM, Yang PF, Liu YF, Zhou NC and Wei XY. 2016. New evidences for the closure of the Altyn Proto-Tethys Ocean:A case study of high pressure basic granulites from Ring Hills in the Altyn Mountains. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 897-907 (in Chinese with English abstract) |
Wang RC, Hu H, Zhang AC, Huang XL and Ni P. 2004. Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China. The Canadian Mineralogist, 42(3): 883-896 |
Wang RC, Wu FY, Xie L, Liu XC, Wang JM, Yang L, Lai W and Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China (Earth Sciences), 60(9): 1655-1663 |
Wang RC, Xie L, Zhu ZY and Hu H. 2019. Micas:Important indicators of granite-pegmatite-related rare-metal mineralization. Acta Petrologica Sinica, 35(1): 69-75 (in Chinese with English abstract) |
Wang Y, Xing SW and Xiao KY. 2016. Metallgoenic features and resource potential of the West Kunlun to Altun Fe-Pb-Zn-Au-rare metals metallogenic belt. Acta Geologica Sinica, 90(7): 1353-1363 (in Chinese with English abstract) |
Wei CJ. 2016. Granulite facies metamorphism and petrogenesis of granite (Ⅱ):Quantitative modeling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite. Acta Petrologica Sinica, 32(6): 1625-1643 (in Chinese with English abstract) |
Wei CJ and Zhu WP. 2016. Granulite facies metamorphism and petrogenesis of granite (I):Metamorphic phase equilibria for HT-UHT metapelites/greywackes. Acta Petrologica Sinica, 32(6): 1611-1624 (in Chinese with English abstract) |
Wu CL, Lei M, Zhang X, Chen HJ, Wu D and Li TX. 2016. Petrogenesis and zircon Lu-Hf isotopic characteristics of the granites from the southern Altun area, Northwest China. Geology in China, 43(6): 1853-1883 (in Chinese with English abstract) |
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract) |
Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract) |
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites:Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 |
Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 |
Xie L, Tao XY, Wang RC, Wu FY, Liu C, Liu XC, Li XK and Zhang RQ. 2020. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354-355: 105286 |
Xu C, Li JK, Shi GH, Li P, Liu X and Zhang LP. 2019. Zircon U-Pb age and Hf isotopic composition of porphyaceous biotite granite in south margin of Mufushan and their geological implications. Mineral Deposits, 38(5): 1053-1068 (in Chinese with English abstract) |
Xu XW, Li H, Shi FP, Yao FJ, Chen JZ, Yang ZQ, Hong T and Ke Q. 2019. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, middle part of Altyn Tagh. Acta Petrologica Sinica, 35(11): 3303-3316 (in Chinese with English abstract) |
Xu ZQ, Wang RC, Zhao ZB and Fu XF. 2018. On the structural backgrounds of the large-scale "Hard-rock Type" lithium ore belts in China. Acta Geologica Sinica, 92(6): 1091-1106 (in Chinese with English abstract) |
Xu ZQ, Fu XF, Wang RC, Li GW, Zheng YL, Zhao ZB and Lian DY. 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354-355: 105281 |
Yang WQ, Liu L, Ding HB, Xiao PX, Cao YT and Kang L. 2012. Geochemistry, geochronology and zircon Hf isotopes of the Dimunalike granite in South Altyn Tagn and its geological significance. Acta Petrologica Sinica, 28(12): 4139-4150 (in Chinese with English abstract) |
Yang XS, Jin ZM, Huenges E, Schilling FR and Wunder B. 2001. Experimental study on dehydration melting of natural biotite-plagioclase gneiss from High Himalayas and implications for Himalayan crust anatexis. Chinese Science Bulletin, 46(10): 867-872 DOI:10.1007/BF02900441 |
Yang ZC, Xiao PX, Gao XF, Kang L, Xie CR and Yu JP. 2014. LA-ICP-MS dating of the aegirine-augite syenite of Yushishan Nb-Ta deposit in eastern Altun and its constraints on the metallogenetic age. Northwestern Geology, 47(4): 187-197 (in Chinese with English abstract) |
Yu JP, Zhang XH, Zhao JG, Li TG, Dong GQ, Ye DJ and Liu JH. 2012. Prospecting discovery and significance of rare niobium and tantalum ore in Yushi Mountain, Altun Mountain, Gansu Province. Mineral Deposits, 31(Suppl.1): 391-392 (in Chinese) |
Zeng LS, Chen J, Gao LE and Chen ZY. 2012. The geochemical nature of apatites in high Sr/Y two-mica granites from the North Himalayan gneiss domes, southern Tibet. Acta Petrologica Sinica, 28(9): 2981-2993 (in Chinese with English abstract) |
Zeng LS and Gao LE. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrologica Sinica, 33(5): 1420-1444 (in Chinese with English abstract) |
Zhai MG, Wu FY, Hu RZ, Jiang SY, Li WC, Wang RC, Wang DH, Qi T, Qin KZ and Wen HJ. 2019. Critical metal mineral resources:Current research status and scientific issues. Bulletin of National Natural Science Foundation of China, (2): 106-111 (in Chinese with English abstract) |
Zhang ES, Zhang WH and Liu W. 1987. On formation mechanism of Keketuohai pegmatite, Xinjiang, China. Earth Science (Journal of China University of Geosciences), 12(4): 381-388 (in Chinese with English abstract) |
Zhang H, Lü ZH and Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract) |
Zhang HS, Li YG, Quan SC, Hong J, Sun C, Li JX, Yang XY and Zhou JX. 2018. Geochemical characteristics of metallic sulfides from the Kaladaban deposit in Xinjiang and its implications for Pb-Zn ore-forming mechanism. Acta Petrologica Sinica, 34(8): 2295-2311 (in Chinese with English abstract) |
Zhang JX, Zhang ZM, Xu ZQ, Yang JS and Cui JW. 1999. The ages of U-Pb and Sm-Nd for eclogite from the western segment of Altyn Tagh tectonic belt:Evidence for existence of Caledonian orogenic root. Chinese Science Bulletin, 44(24): 2256-2259 |
Zhang JX, Zhang ZM, Xu ZQ, Yang JS and Cui JW. 2001. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56(2-3): 187-206 |
Zhang JX, Xu ZQ, Yang JS, Zhang ZM and Cui JW. 2001. Petology geochemistry and geochronology of eclogites from the western segment of the Altun tectionic belt, northwestern China. Acta Geologica Sinica, 75(2): 186-197 (in Chinese with English abstract) |
Zhang JX, Mattinson CG, Meng FC and Wan YS. 2005. An Early Palaeozoic HP/HT granulite-garnet peridotite association in the South Altyn Tagh, NW China:P-T history and U-Pb geochronology. Journal of Metamorphic Geology, 23(7): 491-510 |
Zhang RB, Du CL, Zhou RB and Wang SY. 1991. Discovery of alumoberyl in Danba, Sichuan, China. Chinese Science Bulletin, 36(4): 319-320 (in Chinese) |
Zhang X, Zhang H, Ma ZL, Tang Y, Lv ZH, Zhao JY and Liu YL. 2016. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155 |
Zhou QF. 2013. The geochronology, mineralogy, melt-fluid evolution and metallogenesis of the Koktokay No. 3 pegmatitic rare-element deposit, Altai, China. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-222 (in Chinese with English summary)
|
Zhu XH, Cao YT, Liu L, Wang C and Chen DL. 2014. P-T path and geochronology of high pressure granitic granulite from Danshuiquan area in Altyn Tagh. Acta Petrologica Sinica, 30(12): 3717-3728 (in Chinese with English abstract) |
Zhu ZY, Wang RC, Marignac C, Cuney M, Mercadier J, Che XD and Lespinasse MY. 2018. A new style of rare metal granite with Nb-rich mica:The Early Cretaceous Huangshan rare-metal granite suite, Northeast Jiangxi Province, southeast China. American Mineralogist, 103(10): 1530-1544 |
Zou TR and Xu JG. 1975. On the origin and classification of granite pegmatites. Geochimica, (3): 161-174 (in Chinese with English abstract) |
Zou TR, Zhang XH, Jia FY, Wang RC, Cao HZ and Wu BQ. 1986. The origin of No. 3 pegmatite in Altayshan, Xinjiang. Mineral Deposits, 5(4): 34-48 (in Chinese with English abstract) |
Zou TR and Li QC. 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Beijing: Geological Publishing House, 1-284 (in Chinese)
|
曹玉亭, 刘良, 王超, 陈丹玲, 张安达. 2009. 阿尔金淡水泉早古生代泥质高压麻粒岩及其P-T演化轨迹. 岩石学报, 25(9): 2260-2270. |
陈柏林, 蒋荣宝, 李丽, 陈正乐, 祁万修, 刘荣, 崔玲玲, 王世新. 2009. 阿尔金山东段喀腊大湾地区铁矿带的发现及其意义. 地球学报, 30(2): 143-154. |
陈柏林, 祁万修, 崔玲玲, 陈正乐, 刘兵, 赵雷, 蒋荣宝, 韩凤彬, 李丽, 刘荣. 2017. 阿尔金北缘喀腊达坂火山岩型铅锌矿床研究. 地质学报, 91(8): 1818-1835. |
陈柏林, 孟令通. 2018. 阿尔金喀腊大湾铁矿田褶皱构造特征及找矿意义. 大地构造与成矿学, 42(1): 32-49. |
董顺利, 李忠, 高剑, 朱炼. 2013. 阿尔金-祁连-昆仑造山带早古生代构造格架及结晶岩年代学研究进展. 地质论评, 59(4): 731-746. |
蒋少涌. 2000. 硼同位素及其地质应用研究. 高校地质学报, 6(1): 1-16. |
康磊, 刘良, 曹玉亭, 王超, 杨文强, 梁莎. 2013. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义. 岩石学报, 29(9): 3039-3048. |
李杭, 洪涛, 杨智全, 陈建中, 柯强, 王学海, 牛磊, 徐兴旺. 2020. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究——以阿尔金中段吐格曼北锂铍矿床为例. 岩石学报, 36(9): 2869-2892. |
李建康. 2006.川西典型伟晶岩型矿床的形成机理及其大陆动力学背景.博士学位论文.北京: 中国地质大学(北京), 1-225
|
李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283. |
李建康, 邹天人, 王登红, 丁欣. 2017. 中国铍矿成矿规律. 矿床地质, 36(4): 951-978. |
刘丽君, 付小方, 王登红, 郝雪峰, 袁蔺平, 潘蒙. 2015. 甲基卡式稀有金属矿床的地质特征与成矿规律. 矿床地质, 34(6): 1187-1198. |
刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状. 中国地质, 44(2): 263-278. |
刘良, 车自成, 王焰, 罗金海, 陈丹玲. 1999. 阿尔金高压变质岩带的特征及其构造意义. 岩石学报, 15(1): 57-64. |
刘善宝, 杨岳清, 王登红, 代鸿章, 马圣钞, 刘丽君, 王成辉. 2019. 四川甲基卡矿田花岗岩型锂工业矿体的发现及意义. 地质学报, 93(6): 1309-1320. |
卢焕章, 王中刚, 李院生. 1996. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因. 矿物学报, 16(1): 1-7. |
乔耿彪, 杨合群, 杜玮, 赵晓健. 2014. 阿尔金成矿带成矿单元划分及成矿系列探讨. 西北地质, 47(4): 209-220. |
秦克章, 申茂德, 唐冬梅, 郭正林, 周起凤, 王春龙, 郭旭吉, 田野, 丁建刚. 2013. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代. 新疆地质, 31(增1): 1-7. |
覃小锋, 夏斌, 李江, 黎春泉, 陆济璞, 许华, 周府生, 胡贵昂, 李乾. 2007. 阿尔金南缘构造带西段新元古代-早古生代变质岩系的变质作用. 吉林大学学报(地球科学版), 37(5): 856-867. |
王春龙, 秦克章, 唐冬梅, 周起凤, 申茂德, 郭正林, 郭旭吉. 2015. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义. 岩石学报, 31(8): 2337-2352. |
王登红, 邹天人, 李红阳. 1998. 稀有金属经济地质的研究进展. 地质科技情报, 17(3): 64-69. |
王登红, 邹天人, 徐志刚, 余金杰, 付小方. 2004. 伟晶岩矿床示踪造山过程的研究进展. 地球科学进展, 19(4): 614-620. |
王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017. 初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型. 地学前缘, 24(5): 1-7. |
王核, 李沛, 马华东, 朱炳玉, 邱林, 张晓宇, 董瑞, 周楷麟, 王敏, 王茜, 闫庆贺, 魏小鹏, 何斌, 卢鸿, 高昊. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义. 大地构造与成矿学, 41(6): 1053-1062. |
王立社, 李智明, 杨鹏飞, 刘亚非, 周宁超, 魏晓燕. 2016. 阿尔金原特提斯洋闭合新证据——环形山高压基性麻粒岩研究. 矿物岩石地球化学通报, 35(5): 897-907. |
王汝成, 吴福元, 谢磊, 刘小驰, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学(地球科学), 47: 871-880. |
王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物. 岩石学报, 35(1): 69-75. |
王岩, 邢树文, 肖克炎. 2016. 西昆仑-阿尔金Fe-Pb-Zn-Au-稀有金属成矿带成矿特征及资源潜力. 地质学报, 90(7): 1353-1363. |
魏春景. 2016. 麻粒岩相变质作用与花岗岩成因:Ⅱ.变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟. 岩石学报, 32(6): 1625-1643. |
魏春景, 朱文萍. 2016. 麻粒岩相变质作用与花岗岩成因:Ⅰ.变质泥质岩/杂砂岩高温-超高温变质相平衡. 岩石学报, 32(6): 1611-1624. |
吴才来, 雷敏, 张昕, 陈红杰, 吴迪, 李天啸. 2016. 南阿尔金花岗岩锆石Lu-Hf同位素特征及岩石成因. 中国地质, 43(6): 1853-1883. |
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. |
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36. |
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765. |
许畅, 李建康, 施光海, 李鹏, 刘翔, 张立平. 2019. 幕阜山南缘似斑状黑云母花岗岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 38(5): 1053-1068. |
徐兴旺, 李杭, 石福品, 姚佛军, 陈建中, 杨智全, 洪涛, 柯强. 2019. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测. 岩石学报, 35(11): 3303-3316. |
许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆"硬岩型"大型锂矿带的构造背景. 地质学报, 92(6): 1091-1106. |
杨文强, 刘良, 丁海波, 校培喜, 曹玉亭, 康磊. 2012. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义. 岩石学报, 28(12): 4139-4150. |
杨晓松, 金振民, Huenges E, Schilling FR, Wunder B. 2001. 高喜马拉雅黑云斜长片麻岩脱水熔融实验:对青藏高原地壳深熔的启示. 科学通报, 46(3): 246-250. |
杨再朝, 校培喜, 高晓峰, 康磊, 谢从瑞, 余君鹏. 2014. 阿尔金山东端余石山铌钽矿区霓辉正长岩的LA-ICP-MS定年及对成矿时代的制约. 西北地质, 47(4): 187-197. |
余君鹏, 张新虎, 赵建国, 李通国, 董国强, 叶得金, 刘建宏. 2012. 甘肃阿尔金山余石山铌钽稀有金属矿找矿发现及意义. 矿床地质, 31. |
曾令森, 陈晶, 高利娥, 陈振宇. 2012. 藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义. 岩石学报, 28(9): 2981-2993. |
曾令森, 高利娥. 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩. 岩石学报, 33(5): 1420-1444. |
翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源:现状与问题. 中国科学基金, (2): 106-111. |
张恩世, 张文淮, 刘伟. 1987. 新疆可可托海伟晶岩形成机理的研究. 地球科学(武汉地质学院学报), 12(4): 381-388. |
张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814. |
张辉善, 李艳广, 全守村, 洪俊, 孙超, 李建星, 杨晓勇, 周家喜. 2018. 阿尔金喀腊达坂铅锌矿床金属硫化物元素地球化学特征及其对成矿作用的制约. 岩石学报, 34(8): 2295-2311. |
张建新, 张泽明, 许志琴, 杨经绥, 崔军文. 1999. 阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据. 科学通报, 44(10): 1109-1112. |
张建新, 许志琴, 杨经绥, 张泽明, 崔军文. 2001. 阿尔金西段榴辉岩岩石学、地球化学和同位素年代学研究及其构造意义. 地质学报, 75(2): 186-197. |
张如柏, 杜崇良, 周瑞波, 王思映. 1991. 四川丹巴发现金绿宝石. 科学通报, 36(4): 319-320. |
周起凤. 2013.阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、矿物学、熔-流体演化与成矿作用.博士学位论文.北京: 中国科学院大学, 1-222
|
朱小辉, 曹玉亭, 刘良, 王超, 陈丹玲. 2014. 阿尔金淡水泉花岗质高压麻粒岩P-T演化及年代学研究. 岩石学报, 30(12): 3717-3728. |
邹天人, 徐建国. 1975. 论花岗伟晶岩的成因和类型的划分. 地球化学, (3): 161-174. |
邹天人, 张相宸, 贾富义, 王汝聪, 曹惠志, 吴柏青. 1986. 论阿尔泰3号伟晶岩脉的成因. 矿床地质, 5(4): 34-48. |
邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社, 1-284.
|