岩石学报  2020, Vol. 36 Issue (11): 3537-3549, doi: 10.18654/1000-0569/2020.11.18   PDF    
克拉通盆地构造转折区中-新生界构造特征及其控藏意义——以鄂尔多斯盆地西南部镇泾地区延长组为例
张园园1,2, 任战利1,2, 何发岐3, 崔军平1,2, 杨桂林1,2, 王琨1,2, 吉园园3     
1. 大陆动力学国家重点实验室, 西安 710069;
2. 西北大学地质学系, 西安 710069;
3. 中国石化华北油气分公司, 郑州 450006
摘要: 基于三维地震、测井、岩矿测试等资料,分析了镇泾地区中生界断裂体系特征与成因,结合源岩热演化与储层物性反演结果,恢复了长8段油气成藏的动态演化过程,探讨了中生代以来构造活动对长8段油气成藏的影响作用。研究认为鄂尔多斯盆地内部镇泾构造转折区构造变形受盆地边缘影响明显,发育复杂断裂体系,构造特征及演化对油气藏的形成与分布有重要控制作用。结果表明:(1)中生界北西向、北东东向、近东西向3组断裂发育,平面上呈雁列式带状展布,剖面上为高陡产状且小断距错动。印支期北西向主断裂走滑明显,中、晚燕山期北东向断裂活动加强,喜山期北东东向次级断裂密度增大,并派生大量剪切裂隙。(2)长8段油藏经历了晚三叠世储集层、烃源岩层初始沉积形成,早白垩世初期少量低熟油近源充注形成岩性油藏,早白垩世末成熟油快速输导形成受断层及裂缝控制的构造-岩性油气藏,晚白垩世以来早期油藏调整等4个阶段。(3)印支运动控制了烃源岩及储层展布范围,Ⅰ类北西向走滑断裂控制了镇泾地区中生界构造格局;中、晚燕山运动加速烃源岩热演化进程,并改善储层物性,Ⅱ类断裂活动,为烃类输导提供垂向通道;喜山运动使先存中生界断裂活动,控制油气调整范围及油藏差异富集;其中北东东向Ⅱ类张性或张扭性断裂导流性能好,是最为有效的富油断层。
关键词: 鄂尔多盆地    镇泾地区    构造转换区    断裂特征    构造演化    成藏动态过程    断裂影响作用    
Meso-Cenozoic structural characteristics and their reservoir controls of structural transition area in China Craton: A case study of Yanchang Formation in Zhenjing area of southwestern Ordos Basin
ZHANG YuanYuan1,2, REN ZhanLi1,2, HE FaQi3, CUI JunPing1,2, YANG GuiLin1,2, WANG Kun1,2, JI YuanYuan3     
1. State Key Laboratory of Continental Dynamics, Xi'an 710069, China;
2. Department of Geology, Northwest University, Xi'an 710069, China;
3. Sinopec North China Petroleum Bureau, Zhengzhou 450006, China
Abstract: Characteristics and formation mechanisms of Mesozoic faults in Zhenjing area were analyzed according to 3D seismic data, logging curves and mineral testing, etc. Combining thermal evolution of source rock and reservoir physical property inversion, the dynamic evolution process of hydrocarbon accumulation in Chang 8 Member was restored, and the control effects of tectonic activities since Mesozoic on the formation of Chang 8 hydrocarbon accumulation was discussed. It is considered that the structural deformation of Zhenjing structural transition area in Ordos Basin is significantly affected by the basin margin, through which the complex fault system is developed. The structural characteristics and their evolution play important roles in controlling the formation and distribution of oil and gas reservoirs. The following conclusions are drawn finally:(1) Three groups of Mesozoic faults are developed in NW, NEE and nearly EW directions, with belt slip of en echelon type on the plane, short distance dislocation and high-steep output on the profile. Therein, NW-trending main faults were strike slip during Indosinian; The activity of NE-trending faults strengthened in the Mid-Late Yanshanian; and the density of NE-trending secondary faults increased and a large number of shear fractures were derived in Himalayan Period. (2) The Chang 8 reservoir experienced four stages:its primitive sediments were formed in Late Triassic; its lithologic reservoirs were formed by near-source charging of low-mature oil during Early Cretaceous; the rapid transportation of mature oil happened in Late Cretaceous to form structural-lithologic reservoirs controlled by faults and fractures; and the existing reservoirs have been adjusted since Late Cretaceous. (3) The Indosinian Movement controlled the distribution of source rocks and reservoirs, and the Type Ⅰ NW-trending strike-slip faults controlled the Mesozoic tectonic framework in Zhenjing area; The Mid-Late Yanshanian accelerated the thermal evolution of source rocks, affected the process of reservoir densification, and the Type Ⅱ faults provided vertical transport; The Himalayan Movement activated the pre-existing Mesozoic faults, controlled the adjustment range and the differential enrichment of oil reservoirs. Among them, the type Ⅱ tension-torsion faults in the NEE-trending have good conductivity, which are the most effective oil-rich faults.
Key words: Ordo Basin    Zhenjing area    Structural transformation area    Fault characteristics    Structural evolution    Dynamic process of hydrocarbon accumulation    Influence of fracture system    

鄂尔多斯盆地是以华北克拉通为基底的叠合型内陆坳陷盆地(赵重远,1990Liu et al., 2006朱日祥等,2011Wang et al., 2015)。盆内西南部地处陕北斜坡、天环坳陷、西缘冲断构造带与渭北隆起等不同构造单元的交汇区。该区地表形态复杂且有巨厚黄土堆叠,高精度地震勘探工作难以开展,导致中生界构造研究基础较为薄弱。部分研究认为鄂尔多斯盆地西南部构造稳定、变形微弱且少有断裂发育,长7段烃源岩所生成的烃类主要经由砂体运移至古河道、不整合面附近聚集成藏(许建红等,2007Zheng et al., 2008代金友和何顺利,2010)。近年来,伴随着三维地震可视化、成像测井等技术工艺的日臻完善,相继于盆地中部、东北部构造转折区内发现近直立状断裂的存在(刘震等,2013;王伟峰等,2015;潘杰等,2017徐兴雨等,2019)。考虑到鄂尔多斯盆地延长组油气成藏主要集中在印支期、燕山期、喜马拉雅期等几个关键时间段内(陈刚等,2005任战利等,2007张文正等,2009李士祥等,2010Bao et al., 2014Chen et al., 2015),推测盆内西南部中生界断裂体系的发育也会对该区三叠系延长组油气运聚过程产生重要影响。

鄂尔多斯盆地镇原-泾川(以下简称镇泾)地区受多个期次、多种类型构造作用相互叠加改造——盆地边缘西缘冲断构造带、渭北隆起构造变形强烈,尤其是中生代以来盆缘多期构造运动对该区沉积、构造等有重要控制作用(图 1a, b)。该区面积约2500km2,高精度三维地震勘探近乎全区覆盖,钻井、测录井及分析测试等基础资料丰富,为盆地构造精细研究提供了难得的数据。以前人们普遍认为镇泾地区缺乏断裂构造,随着研究工作的深入,中国石化华北油气分公司发现该区断裂发育,中生界低压、低丰度油藏沿断裂带及高渗砂岩带分散式分布,在延长组内形成工业性油气聚集(图 1c-e)。迄今为止,总体而言,镇泾地区中生界断裂特征、形成期次及与油气成藏关系研究较弱,需要深入分析探讨。本文针对镇泾地区存在的以上问题,以研究区高精度三维连片地震资料、203口探井、120口典型水平井等分析测试数据为基础,对三维地震资料进行了精细构造解释,分析了中生界断裂特征、形成期次与成因演化,结合烃源岩热演化及储层孔隙度变化等,恢复了长8段油气成藏过程,探讨了中生代以来构造活动对油气成藏的控制作用。研究成果对我国克拉通盆地内构造转折区构造变化规律、油气富集机理与差异分布等研究具有重要参考价值,对研究区油气勘探有重要指导意义。

图 1 鄂尔多斯盆地镇泾地区构造格架及长8段测井响应特征 (a、b)镇泾地区位置图;(c)镇泾地区长7段底部反射界面(T6c)构造图;(d)长8-长9段测井综合柱状图;(e)延长组SSW-NNE向地层对比剖面图(延9段顶部拉平) Fig. 1 Structural maps and logging response characteristics of Chang 8 in Zhenjing area, Ordos Basin (a, b) location map of Zhenjing area; (c) structural diagram of reflection interface (T6c) at the bottom of Chang 7 Member in Zhenjing area; (d) comprehensive logging histogram of Chang 8-Chang 9 Member; (e) SSW-NNE trending stratigraphic section comparison map of Yanchang Formation (align the top of Yan 9 Member)
1 中生界构造特征与演化

收集镇泾地区2533.63km2三维地震资料,70余口钻井的VSP资料、时间-深度数据及部分前人解释结果,通过203口探井层位精细标定,共追踪、解释了长82底部地震反射T6a、长81底部地震反射T6b、长7底部油页岩地震反射T6c、延8底部煤层地震反射T5b1等7个标志性反射层位及300余条断裂。

1.1 断裂特征与分类

镇泾地区处于盆地边缘构造强烈变形到弱变形的转折及过渡部位,受盆地边缘强烈构造变形的影响明显。平面上,镇泾地区北西向、北东东向及近东西向3组断裂特征差异显著,易于识别(图 2a)。北西向大断裂主要分布于研究区中部及南部,线状延伸、横切全区且具走滑性质,延伸距离7~55km。北东东向断裂发育于工区北部,呈雁列式带状分布,断裂密度大,横向延伸5~25km,并在工区中部与北西向断裂交切。近东西向断裂在工区西南部沿北西向走滑断裂带附近少量分布。

图 2 镇泾地区中生界断裂分布图 (a)长7段底部界面(T6c)断裂分布平面图;(b、c)中生界断裂特征剖面图 Fig. 2 Distribution of Mesozoic faults in Zhenjing area (a) fracture plane distribution of Chang 7 bottom interface (T6c); (b, c) Mesozoic fracture characteristic profile

剖面上,断裂高陡产出,断距小、隐蔽性强且多具走滑性质,组合形成平行斜列式、“Y”字型、反“Y”字型、花状、阶梯状等多种构造样式。北西向断裂产状近于直立,平均倾角79°,断穿三叠系至白垩系并向浅部地层延伸,断距15~70m(图 2b)。北东东向断层倾角及断距较小,断穿上三叠统至中白垩统,多组合形成复杂断裂区。此外,长6、长8等油层组内部发育多条层间断裂,垂直断距小于10m,在地震剖面中难以直接识别。

断裂性质以压扭性为主,同时发育有张性、张扭性断层以及反转断层。由于多期构造活动叠加作用,不同性质断裂间的分带性并不明显。进而根据断裂发育规模、展布特征等,将镇泾地区中生界断裂划分为3类。Ⅰ类断裂以北西向及其伴生的北西西向走滑断裂为主;该类断裂近直立状产出,横向延伸距离大于7km,垂直断距大于40m,同相轴明显错断,纵向断穿三叠系至白垩系,并向上覆浅部地层延伸。Ⅱ类断裂高角度斜交分布,以北东东向断裂为主,包含部分北西向断裂;横向延伸3.5~7km,垂直断距10~40m,同相轴错断、合并或扭动,断开三叠系至侏罗系。Ⅲ类断裂于三叠系内部发育,横向延伸小于3.5km,垂直断距小于10m,同相轴扭动但无明显错断,难以直接识别。

1.2 构造成因与演化

鄂尔多斯盆地中-新生代经历了内陆克拉通盆地、内陆拗陷盆地、断陷盆地等演化阶段(张国伟等,2001)。

前三叠纪,鄂尔多斯盆地是一持续接受沉积的稳定地台(王伟锋等,2015);中三叠世,华北板块与扬子板块由东向西逐渐拼接;至三叠纪末晚印支期,秦岭、祁连海槽完全关闭,沿板块缝合带开始碰撞造山(Chen et al., 2007代金友和何顺利,2010任战利等,2020)。古特提斯构造域活动使祁连-秦岭褶皱带西段沿北东向挤压推覆,进而使鄂尔多斯盆地西南缘强烈变形,形成褶皱及断裂。盆地边缘渭北隆起发育的北西向彬县-官庄断裂自然延伸至镇泾区内,形成北西、北西西向线状走滑断裂,将研究区切割为南北两个构造单元。印支期的区域性挤压隆升致使镇泾地区北部的长4+5段至富县组普遍缺失;研究区西南部剥蚀程度较之东北部更甚,长6段及上覆延长组剥蚀残余,与上覆侏罗系不整合接触(图 3a)。

图 3 镇泾地区长7底界面(T6c)中-新生代构造演化平面图 Fig. 3 Meso-Cenozoic tectonic evolution plan of Chang 7 bottom interface (T6c) in Zhenjing area

早、中侏罗世,富县期至延安期完成了燕山期内盆地第Ⅰ拗陷阶段的充填沉积。盆地第Ⅰ拗陷阶段结束。其间,镇泾地区受近南北向挤压应力持续作用而形成北倾单斜形态。同时北西、北东向断裂剪切活动,但该期构造变动延续时间较短且作用强度较弱。随后盆地进入第Ⅱ拗陷阶段,形成了直罗期与安定期的内陆湖盆沉积。至晚侏罗世燕山运动中期,库拉-太平洋板块向西俯冲碰撞,使鄂尔多斯盆地遭受强烈挤压并形成西缘冲断构造带。此时镇泾地区继承了早燕山期构造格局,加强了北东东向逆断裂发育,前期存在的断裂间发生了复杂的剪切活动(图 3b图 4)。晚侏罗世中期至早白垩世晚期,在北西-南东向挤压应力作用下,左旋剪切活动持续发生,全湖盆隆升萎缩至消亡(吴奇之等,1997张国伟等,2001焦亚先等,2013)。此间镇泾地区转变为“东南高、西北低”的单斜形态(图 3c);同时先存断裂活化,部分断裂性质发生转换,北西向断裂以压扭活动为主,北东向断裂挤压逆冲。

图 4 镇泾地区中-新生代断裂构造演化剖面图 Fig. 4 Profile of Meso-Cenozoic fault structure evolution in Zhenjing area

古近系以来喜山期,受欧亚板块-印度板块碰撞的影响,鄂尔多斯盆地处于右旋剪切-拉张应力环境(李士祥等,2010),北东方向挤压,北西-南东方向产生拉张。此时,镇泾地区因北西向断裂切割分区及喜山期构造旋回改造,而呈现“东高西低、南陡北缓”的二台阶单斜格架。同时北东东向断裂张性活动,断裂密度增大,并且新产生了大量规模不等的张性雁列状、“X”型共轭剪切裂隙(图 3d)。

2 油气成藏地质特征 2.1 烃源岩性质与热演化

镇泾地区受晚三叠世近南北向挤压应力作用影响,于长7段沉积期达到最大湖侵(邓秀芹等,2008)。同时,基底断裂活动导致凝灰质火山沉积物上涌与长7段细粒沉积物互层产出(张文正等,2009Qiu et al., 2014Wang et al., 2014Zhang et al., 2019刘池洋等,2020),使有机质富集形成了一套深湖-半深湖相暗色泥岩及油页岩沉积(Lin et al., 2017)。其中,长7段底部黑色油页岩为镇泾地区延长组主力烃源岩:平均厚度约9.8m,有机质类型以Ⅰ型及Ⅱ1型为主,TOC平均含量约为8.16%,HC含量最高可达4339.5×10-6;21个油页岩样品测得有机质Ro介于0.95%~1.15%,平均值约为1.06%(任战利等,2019)。

①   任战利, 张园园, 于春勇等. 2019.红河油田主力油层组构造、断裂特征及与油藏成藏关系研究.中石化华北油气分公司科研报告

由HH105井、HH12井、HH36井等典型单井长7段烃源岩热演化史模拟结果可知,该套油页岩早期热演化受印支运动影响而进程缓慢,至侏罗纪末Ro普遍小于0.5%。早白垩世盆地快速沉降,发生构造热事件,地温梯度及大地热流值持续上升(任战利等, 2007, 2017, 2020)。在距今约130Ma长7段优质烃源岩Ro突破生烃门限,开始生成液态石油。在随后的早白垩世,长7段油页岩随地层快速埋深而进入中成熟热演化阶段,大量原油生成。烃源岩Ro在距今100Ma的早白垩世末期介于0.95%~1.15%。其后燕山晚期、喜山期盆地持续抬升,长7段烃源岩热演化基本停滞。

2.2 储层特征及成岩演化

镇泾地区长8段发育滨-浅湖相、三角洲相碎屑砂岩,是延长组主力产油层段之一(Yang and Deng, 2013杨智峰等,2017陈林等,2019吕文雅等,2020),其中长812小层油气资源最为富集。该小层平均砂岩百分含量62%,砂体横向连续且分布稳定,砂岩类型以中-细粒岩屑长石砂岩、长石岩屑砂岩为主,发育低孔特低渗、低孔低渗致密储层,砂岩平均孔隙度8.3%,平均渗透率0.35mD(图 5)。

图 5 镇泾地区长812砂岩物性参数分布直方图 Fig. 5 Distribution histogram of physical parameters of Chang 812 sandstone in Zhenjing area

根据岩石薄片、扫描电镜以及X衍射分析,长812砂岩储层现处于中成岩A期,主要成岩作用类型为压实作用、胶结作用、溶蚀作用、交代作用和破裂作用5种(图 6),成岩序列为:机械压实作用,碎屑矿物破碎、蚀变→蒙脱石脱水转化为混层粘土矿物→自生绿泥石膜→石英次生加大→亮晶方解石、浊沸石交互式胶结→有机酸进入孔隙→长石、岩屑等碎屑颗粒的溶蚀作用→硅质胶结以及自生高岭石等粘土矿物充填→铁方解石、铁白云石胶结、交代→微裂隙(图 7)。

图 6 镇泾地区长812储层成岩作用显微照片 (a) HH21井,1786.61m,粒间孔中充填片状绿泥石、丝缕状伊利石及自生石英;(b) HH107井,2437.26m,次生石英晶体、石盐集合体、丝发状伊利石及叶片状绿泥石共同充填于粒间孔隙中;(c) HH92井,2265.19m,次生石英晶体及叶片状绿泥石集合体充填于粒间孔隙中,见次生溶蚀微孔隙;(d) HH361井,2024.30m,长石被溶蚀,其粒内溶蚀微孔发育,颗粒间见部分石盐晶体;(e) HH78井,2240.67m,粒间孔隙发育,次生石英晶体充填于粒间孔隙中,绿泥石集合体交代颗粒表面;(f) HH312井,2139.78m,颗粒间充填伊利石、伊蒙混层、绿蒙混层等,微裂隙发育 Fig. 6 Micrographs for diagenesis of Chang 812 sandstone reservoirs in Zhenjing area (a) Well HH21, 1786.61m, intergranular pores are filled with lamellar chlorite, filamentous illite and authigenic quartz; (b) Well HH107, 2437.26m, intergranular pores are filled with secondary quartz crystals, halite aggregates, filamentous illite and foliate chlorite; (c) Well HH92, 2265.19m, secondary quartz crystals and foliate chlorite aggregates are filled in intergranular pores, and secondary dissolution micropores are developed; (d) Well HH361, 2024.30m, the feldspar is corroded, the corrosion micropores are developed in the grains, and some halite crystals are distributed among the grains; (e) Well HH78, 2240.67m, intergranular pores are developed, secondary quartz crystals are filled in intergranular pores, and chlorite aggregates replace the surface of the grains; (f) Well HH312, 2139.78m, pores are filled with illite, I/S mixed layer, C/S mixed layer, etc., and microcracks are developed

图 7 镇泾地区长812砂岩储层成岩演化序列及孔隙度变化 Fig. 7 Diagenetic evolution sequence and porosity variation of Chang 812 sandstone reservoirs in Zhenjing area

以HH105井2251.0m长812灰褐色油浸中-细粒砂岩样品为例,采用成岩作用效应模拟的砂岩古孔隙度恢复方法,研究长812储层孔隙度演化特征(图 7)。样品砂岩原始孔隙度38.7%,矿物碎屑粒度细、成分成熟度低、塑性矿物及填隙物含量高导致砂岩抗压实强度较弱(Beard and Weyl, 1973Scherer,1987; Zhou et al., 2016)。晚三叠世早成岩A期,54.4%的原始孔隙因压实作用而快速减少。晚侏罗世至早白垩世的早成岩B期,压实作用强度明显减弱;方解石胶结物在经历生成高峰之后,生成作用随深度增加而降低;导致砂岩孔隙度持续减损至10%左右,减孔率约为41.45%。但随后因地层水中有机酸浓度持续升高,导致长石及岩屑颗粒溶解度增大(Lai et al., 2016Lin et al., 2017),石英次生加大、绿泥石包壳等的发育使孔隙度减损速率有所降低。早白垩世以来的中成岩A期,区域性构造抬升使断层及微裂隙发育,储层孔隙度由此增加4.13%。但受后期构造活动强度减弱、断裂快速关闭以及伊利石、绿泥石、铁方解石等晚期胶结物充填的影响,此次建设性增孔效果并不显著,砂岩孔隙度先增后减并最终维持在10%以下。

3 油气运聚过程与构造影响作用 3.1 油气成藏期次与时间

鄂尔多斯盆地延长组油气成藏期与印支期、燕山期、喜马拉雅期构造运动关系密切(陈刚等,2005张文正等,2009李士祥等,2010Bao et al., 2014Chen et al., 2015)。前人分别采用盆地构造热演化史、圈闭发育史分析、成岩矿物定年、流体包裹体定年等多种方法确定镇泾地区延长组油气充注期次与时间(任战利等,2008李士祥等,2010尹伟等,2011李潍莲等,2012Dou et al., 2017)。本次根据埋藏史、烃源岩热演化史结合包裹体测温,对延长组油气充注期次进行了分析。

长812砂岩烃类包裹体多分布于次生石英加大边、溶蚀孔隙边缘及钙质胶结物中,多表现为群体状、串珠状分布,直径≤3.5μm,发黄色、黄绿色荧光。利用激光拉曼光谱分析手段对其内部组分进行检测,发现不同的烃类包裹体都会出现1648cm-1、2873cm-1、2927cm-1、3018cm-1所分别代表的C4H6、C3H8、CH4、C2H4拉曼峰值,表明这些烃类包裹体组分相同,为同一期油气充注的产物(图 8)。经Linkam THMS600冷热平台包裹体测温发现,烃类伴生的盐水包裹体均一温度呈现90~105℃、110~125℃两组主峰分布特征。结合埋藏史、烃源岩热演化史分析认为,镇泾地区长8段在距今130~100Ma的早白垩世发生了一期连续油气充注事件,同时该事件也是整个研究区中生界延长组油气成藏的关键(图 9)。

图 8 长812烃类包裹体显微特征及其拉曼谱图 (a) HH111井,2029.35m,烃类包裹体串珠状分布于石英颗粒表面愈合缝中,发黄绿色荧光;(b) HH361井,2029.25m,烃类包裹体群体状分布于次生石英加大边中,发黄绿色荧光 Fig. 8 Microscopic characteristics and Raman spectra of hydrocarbon inclusions in Chang 812 (a) Well HH111, 2029.35m, hydrocarbon inclusions are distributed in the healing fractures on the surface of quartz grains in the form of moniliform, and emitting yellowish green fluorescence; (b) Well HH361, 2029.25m, hydrocarbon inclusions are distributed in groups in the enlarged edge of secondary quartz, with yellowish green fluorescence

图 9 镇泾地区延长组长8段储层成岩-油气成藏匹配关系图(HH105井,2252.30m长812) Fig. 9 Matching relationship between diagenesis and accumulation of Chang 8 reservoir in Yanchang Formation, Zhenjing area (Well HH105, 2252.30m, Chang 812)
3.2 油气动态成藏过程

综合上述镇泾地区富油区构造演化、烃源岩热演化及储层孔隙度反演结果,按照时间顺序恢复镇泾地区长8段油气成藏动态过程。

(1) 晚三叠世,储集层、烃源岩层初始沉积形成期。印支期盆地西南缘抬升形成古高地,为镇泾地区提供沉积物源供给,在长8期沉积发育湖相-三角洲相河道砂岩。之后盆地水体持续加深于长7期达到最大湖泛,沉积了延长组最为重要的一套半深湖-深湖相暗色泥岩及油页岩。至印支期晚期,受盆地边缘强烈挤压影响,北西、北西西向断裂走滑切割全区为南、北两个构造单元,加之地层差异隆升使西南部长7段及上覆延长组淋滤、剥蚀。因此,镇泾地区西南部整体源岩质量差、热演化程度低。

(2) 早白垩世初期,少量早期低熟油近源充注期。早期燕山运动不仅使研究内逆断层发育,而且使地层倾向发生转变,长8段砂体向北东及北部倾斜。长812河道砂体横向连通,早成岩B期压实、石英次生加大、绿泥石衬边、少量自生粘土矿物充填,以及有机酸诱发的溶解作用等使砂岩孔隙度维持在15%~20%,形成早期的砂岩物性圈闭。与此同时,上覆长7段烃源岩热演化突破生烃门限,有机质Ro达到0.5%~0.7%,少量低熟液态烃类开始生成,并在浮力及生烃增压作用下向烃源岩附近有利砂体前端缓慢充注,完成第一幕小规模、近距离油气聚集成藏(图 9图 10a)。

图 10 镇泾地区长8段油气成藏过程示图 Fig. 10 Oil and gas accumulation process of Chang 8 Member in Zhenjing area

(3) 早白垩世末期,成熟油快速充注成藏期。受早白垩世区域热事件影响(任战利等, 2007, 2017, 2020),镇泾地区长7段迅速埋深至2650~3000m,致使优质烃源岩热演化加剧,Ro高达0.95%~1.15%。该过程不仅使成熟原油高效排出,而且烃源岩短期内快速生烃增压,为油气长距离运移提供动力(朱光有等,2013)。持续埋深压实、方解石胶结、硅质胶结、粘土矿物充填、碎屑颗粒溶解等综合影响下,长812储层砂岩孔隙度降低至10%附近。此时源岩与储层间所产生的压力差为原油输导提供了充注动力(Liu et al., 2008Guo et al., 2012)。另外,早白垩世末晚期燕山构造运动增强,一方面使研究区转变为“东南高、西北低”单斜形态,进而改变了砂岩圈闭倾向及闭合幅度;另一方面全盆地抬升卸压,使镇泾地区北西向断裂性质转化、北北东向剪切断裂大规模发育,沟通长7段烃源岩层与长8段储集体。因此,大量生成的液态石油沿断裂由源岩区向下伏长8段储层快速输导,并在断裂附近砂岩带聚集,完成第二次油气幕式快速充注。随后储层受压溶、粘土矿物充填、晚期铁方解石胶结等作用而持续致密化。长812砂岩中所捕获的大量液态烃类包裹体为该期原油充注提供了佐证。

(4) 晚白垩世以来,原生油藏调整期。喜山期构造旋回作用对镇泾地区中生界产生的影响如下:一是长7段烃源岩热演化停滞;二是长8段砂岩储层致密化;三是北北东向张性、张扭性断裂产出密度加大、活动强度增强,并伴有剪切裂隙发育,改善致密砂岩储层孔渗性。三者共同作用下,早期油藏动态平衡被破坏,烃类物质沿北东东向断裂与连续性优质砂体发生调整或局部聚集,最终形成研究区中生界低压、低丰度油藏沿断裂带及高渗砂岩带分散式分布的现状。

3.3 构造作用对油气成藏的影响及控制作用

就鄂尔多斯盆地而言,刘震等(2013)指出高陡断裂的发育控制着盆地中生界油气藏的形成与分布。王伟峰等(2015)强调构造运动引发的断裂活动不仅可以改善储层物性,还可提供油气运移通道。结合镇泾地区中生界构造演化与长8段油气成藏动态过程,笔者认为中-新生代构造活动对镇泾地区中生界油气成藏的影响作用主要体现在以下方面。

印支期,Ⅰ类北西向走滑断裂控制了镇泾地区中生界构造格局,地层差异隆升影响延长期沉积体系及优质烃源岩展布范围。受盆地边缘强烈挤压影响,北西、北西西向走滑断裂强烈活动,将镇泾地区切裂为南、北两个次级鼻状褶皱单元。此外构造活动对烃源岩分布的控制作用显著(Zhu et al., 2017),具体到镇泾地区表现为西南部大幅隆升形成古高地,一方面使长7沉积期母源物质由西南向北东方向分散入湖,另一方面使隆起区长6段及上覆延长组剥蚀残余、长7段剥蚀淋滤,导致工区南部长7段烃源岩展布面积、有效厚度、有机质丰度、热演化程度等,均比北部同层段烃源岩有所降低。

中、晚燕山期,地层快速沉降加速了长7段烃源岩热演化,影响了储层致密化进程;Ⅱ类断裂有效沟通源储,为烃类运移提供垂向输导通道。早白垩世长7段烃源岩受区域性构造热事件影响而加速演化,于早白垩世末进入成熟阶段并开始生成大量液态石油。此外,早白垩世末燕山运动晚期,地层抬升诱导多组剪切断裂活动,一方面使储层砂岩孔缝扩容,有效减缓了储层致密化,加强了油气的充注能力;另一方面Ⅱ类断裂贯通长7源岩层与长8储集层,使烃类物质沿断裂垂向输导,并在断裂带附近的长8段优质砂体内聚集。

喜山期,断裂控制油气调整范围及次生油藏差异富集。喜山运动使先存中生界断裂活化,其中Ⅰ类断裂相关的长8油藏遭到改造及调整,油气向上运移至上覆侏罗系形成岩性油藏等,不利于长8段油藏保存;该类断裂相关长8段平均录井全烃值为3.2%,以HH37P18井为例,长8段综合试油日产量1.28t,试采1个月后日产油量仅为0.57t。Ⅲ类北东东向断裂规模小,多为油层组内部发育,渗流能力较弱且储层改善范围有限,相关水平井长8段平均录井全烃值仅为2.6%;以HH50P4井为例,综合试油日产量0.99t,试采1个月后日产油量1.49t。Ⅱ类断裂相关长8油藏仅在组内运移调整,相关水平井长8段平均录井全烃值高达35.1%;以HH73P61井为例,综合试油日产量21.96t,试采1个月后日产油量17.5t。另外,北西向Ⅱ类断裂多呈压扭性,导流性相对较差,对产量贡献较小;而北东东向Ⅱ类断裂多呈张扭性,导流性较好,是最为有效的富油断层。镇泾地区HH36井区、HH12井区、HH37井区长81主力产层钻遇北东东向断裂的水平井原油日产量分别为10.9 t/d、10.1 t/d、8.3t/d,钻遇北西西向断裂的水平井原油产量仅为5.5t/d、2.5 t/d、5.8t/d。

4 结论

(1) 鄂尔多斯盆地西南部镇泾地区处于盆地边缘强烈变形与盆内弱变形的过渡转折区,发育复杂断裂体系。中生界主要发育北西向、北东东向、近东西向3组断裂,平面上北西向断裂线状延伸走滑、北东东向断裂雁列式带状分布,剖面上断裂直立高陡产状且小断距错动、不易识别。受多期构造运动影响,断裂多期次叠加,性质复杂。印支期近南北向挤压应力作用下形成北西向压扭性走滑断裂;中、晚燕山期左旋剪切-挤压应力环境下北东向断裂活动加强;喜山期右旋剪切-拉张应力作用使北西向断裂挤压闭合、北东东向断裂呈张性且导流能力强,同时派生大量规模不等的剪切裂隙。

(2) 镇泾地区中生界长8段油气藏的形成先后经历4个阶段,分别为:晚三叠世,储集层、烃源岩层初始沉积形成,产生北西向走滑断裂;早白垩世初期,少量早期低熟油近源充注,形成常规岩性油藏;早白垩世末,成熟油快速输导,形成受断层及裂缝控制的构造-岩性油气藏;晚白垩世以来,油藏发生调整。其中早白垩世末的中、晚燕山期,长7段烃源岩达到了最高热演化程度,并且断裂构造活动加强,是镇泾地区中生界油气成藏的关键时期。

(3) 中、新生代构造活动对镇泾地区中生界油气成藏产生了深远的影响。印支运动控制了沉积储层及优质烃源岩展布范围;该阶段Ⅰ类北西向走滑断裂活动,控制了镇泾地区中生界构造格局。中、晚燕山运动加速了烃源岩热演化,Ⅱ类断裂活动不仅能有效沟通源储,提供垂向输烃通道,而且改善储层孔渗性,减缓储层致密化进程,增强了油气充注能力。喜山期,先存中生界断裂活动,控制了油藏调整范围及差异富集;其中,北东东向Ⅱ类张性或张扭性断裂导流性好,是最为有效的富油断层。

致谢      感谢中国石化华北油气分公司采油一厂的工作人员在此次研究过程中所给予的支持与帮助。感谢审稿专家及本刊编辑提出了有益的修改意见!

参考文献
Bao C, Chen YL, Li DP and Wang SH. 2014. Provenances of the Mesozoic sediments in the Ordos Basin and implications for collision between the North China Craton (NCC) and the South China Craton (SCC). Journal of Asian Earth Sciences, 96: 296-307 DOI:10.1016/j.jseaes.2014.09.006
Beard D C and Weyl P K. 1973. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin, 57(2): 349-369
Chen G, Li XP, Zhou LF, Li SH, Li XD and Zhang HR. 2005. Ordos basin tectonics relative to the coupling coexistence of multiple energy resources. Earth Science Frontiers, 12(4): 535-541 (in Chinese with English abstract)
Chen G, Sun JB, Zhou LF, Zhang HR, Li XP and Wang ZW. 2007. Fission-track-age records of the Mesozoic tectonic-events in the southwest margin of the Ordos Basin, China. Science in China (Series D), 50(2): 133-143
Chen L, Lu YC, Wu JY, Xing FC, Liu L, Ma YQ, Rao D and Peng L. 2015. Sedimentary facies and depositional model of shallow water delta dominated by fluvial for Chang 8 oil-bearing group of Yanchang Formation in southwestern Ordos Basin, China. Journal of Central South University, 22(12): 4749-4763 DOI:10.1007/s11771-015-3027-3
Chen L, Lu YC, Lin WB, Xing FC, Chen P, Liu L, Hu HY and Wei W. 2019. Sequence stratigraphy and sedimentary filling model of Chang-8 oil layer of Yanchang Formation in southwestern Ordos Basin. Acta Petrolei Sinica, 40(4): 434-447 (in Chinese with English abstract)
Dai JY and He SL. 2010. Discovery and significance of faults in the Mid Gasfield, Ordos Basin. Petroleum Exploration and Development, 37(2): 188-195 (in Chinese with English abstract)
Deng XQ, Lin FX, Liu XY, Pang JL, Lü JW, Li SX and Liu X. 2008. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin. Journal of Palaeogeography, 10(2): 159-166 (in Chinese with English abstract)
Dou WC, Liu LF, Wu KJ, Xu ZJ and Feng X. 2017. Origin and significance of secondary porosity:A case study of Upper Triassic tight sandstones of Yanchang Formation in Ordos basin, China. Journal of Petroleum Science and Engineering, 149: 485-496 DOI:10.1016/j.petrol.2016.10.057
Guo YR, Liu JB, Yang H, Liu Z, Fu JH, Yao JL, Xu WL and Zhang YL. 2012. Hydrocarbon accumulation mechanism of low permeable tight lithologic oil fields in the Yanchang Formation, Ordos Basin, China. Petroleum Exploration and Development, 39(4): 447-456 DOI:10.1016/S1876-3804(12)60061-5
Jiao YX, Qiu NS, Li WZ, Zuo YH, Que YQ and Liu FL. 2013. The Mesozoic-Cenozoic evolution of lithospheric thickness in the Ordos basin constrained by geothermal evidence. Chinese Journal of Geophysics, 56(9): 3051-3060 (in Chinese with English abstract)
Lai J, Wang GW, Ran Y, Zhou ZL and Cui YF. 2016. Impact of diagenesis on the reservoir quality of tight oil sandstones:The case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China. Journal of Petroleum Science and Engineering, 145: 54-65 DOI:10.1016/j.petrol.2016.03.009
Li SX, Deng XQ, Pang JL, Lü JW and Liu X. 2010. Relationship between petroleum accumulation of Mesozoic and tectonic movement in Ordos Basin. Acta Sedimentologica Sinica, 28(4): 798-807 (in Chinese with English abstract)
Li WL, Liu Z, Wang W, Pan GF, Zhao S and Zhang J. 2012. Hydrocarbon accumulation process of Chang-8 low-permeability lithological reservoirs in Zhenjing area, Ordos Basin. Oil & Gas Geology, 33(6): 845-852 (in Chinese with English abstract)
Lin WB, Chen L, Lu YC, Hu HY, Liu L, Liu XC and Wei W. 2017. Diagenesis and its impact on reservoir quality for the Chang 8 oil group tight sandstone of the Yanchang Formation (Upper Triassic) in southwestern Ordos Basin, China. Journal of Petroleum Exploration and Production Technology, 7(4): 947-959 DOI:10.1007/s13202-017-0340-4
Liu CY, Wang JQ, Qiu XW, Zhang DD, Zhao JF, Zhao HG and Deng Y. 2020. Geodynamic environment and tectonic attributes of the hydrocarbon-rich sag in Yanchang Period of Middle-Late Triassic, Ordos Basin. Acta Petrologica Sinica, 36(6): 1913-1930 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.17
Liu MJ, Mooney WD, Li SL, Okaya N and Detweiler S. 2006. Crustal structure of the northeastern margin of the Tibetan Plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 420(1-2): 253-266 DOI:10.1016/j.tecto.2006.01.025
Liu XS, Xi SL, Huang DJ, Zhang Q and Wang X. 2008. Dynamic conditions of Mesozoic petroleum secondary migration, Ordos Basin. Petroleum Exploration and Development, 35(2): 143-147 DOI:10.1016/S1876-3804(08)60020-8
Liu Z, Yao X, Hu XD, Xia L and Wang J. 2013. Discovery of the Mesozoic fault and its implication on the hydrocarbon accumulation in Ordos Basin. Journal of Earth Sciences and Environment, 35(2): 56-66 (in Chinese with English abstract)
Lü WY, Zeng LB, Zhou SB, Ji YY, Liang F, Hui C and Yu JS. 2020. Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin:Case study of the eighth member of the Yanchang Formation in Honghe Oilfield. Natural Gas Geoscience, 31(1): 37-46 (in Chinese with English abstract)
Pan J, Liu ZQ, Pu RH, Zhou SB, Fan JX and Liu YN. 2017. Fault characteristics and oil-controlling effects in Zhenyuan-Jingchuan District, southwestern Ordos Basin. Oil Geophysical Prospecting, 52(2): 360-370 (in Chinese with English abstract)
Qiu XW, Liu CY, Mao GZ, Deng Y, Wang FF and Wang JQ. 2014. Late Triassic tuff intervals in the Ordos basin, Central China:Their depositional, petrographic, geochemical characteristics and regional implications. Journal of Asian Earth Sciences, 80: 148-160 DOI:10.1016/j.jseaes.2013.11.004
Ren ZL, Zhang S, Gao SL, Cui JP, Xiao YY and Xiao H. 2007. Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos Basin. Science in China (Series D), 37(Suppl.1): 23-32 (in Chinese)
Ren ZL, Liu L, Cui JP, Xiao H and Gao SL. 2008. Application of tectonic-thermal evolution history to hydrocarbon accumulation timing in sedimentary basins. Oil & Gas Geology, 29(4): 502-506 (in Chinese with English abstract)
Ren ZL, Yu Q, Cui JP, Qi K, Chen ZJ, Cao ZP and Yang P. 2017. Thermal history and its controls on oil and gas of the Ordos Basin. Earth Science Frontiers, 24(3): 137-148 (in Chinese with English abstract)
Ren ZL, Qi K, Liu RC, Cui JP, Chen ZP, Zhang YY, Yang GL and Ma Q. 2020. Dynamic background of Early Cretaceous tectonic thermal events and its control on various mineral accumulations such as oil and gas in the Ordos Basin. Acta Petrologica Sinica, 36(4): 1213-1234 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.04.15
Scherer M. 1987. Parameters influencing porosity in sandstones:A model for sandstone porosity prediction. AAPG Bulletin, 71(5): 485-491
Wang DY, Xin BS, Yang H, Fu JH, Yao JL and Zhang Y. 2014. Zircon SHRIMP U-Pb age and geological implications of tuff at the bottom of Chang-7 Member of Yanchang Formation in the Ordos Basin. Science China (Earth Sciences), 57(12): 2966-2977 DOI:10.1007/s11430-014-4979-0
Wang WF, Zhou WW, Shan XJ and Liu YR. 2015. Characteristics of hidden fault zone and its significance in geology in sedimentary basin. Journal of Central South University (Science and Technology), 46(6): 2236-2243 (in Chinese with English abstract)
Wang ZT, Zhou HR, Wang XL and Jing XC. 2015. Characteristics of the crystalline basement beneath the Ordos Basin:Constraint from aeromagnetic data. Geoscience Frontiers, 6(3): 465-475
Wu QZ, Wang TH, Li MJ and Yang DY. 1997. Tectonic Evolution and Hydrocarbon Accumulation of Petroleum Basins in China. Beijing: Petroleum Industry Press, 1-361 (in Chinese)
Xu JH, Cheng LS, Bao P, Qu XF and Wang XR. 2007. Reservoir characteristics of Yanchang Formation, in Triassic, Ordos Basin. Journal of Southwest Petroleum University, 29(5): 13-17 (in Chinese with English abstract)
Xu XY, Wang WF and Chen M. 2019. Characteristics of faults and their significance in hydrocarbon accumulation in Ordos Basin. Journal of China University of Mining & Technology, 48(4): 830-841 (in Chinese with English abstract)
Yang H and Deng XQ. 2013. Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events in the Ordos Basin. Petroleum Exploration and Development, 40(5): 549-557 DOI:10.1016/S1876-3804(13)60072-5
Yang ZF, Zeng JH, Han F, Feng X, Feng S, Zhang YD and Qiao JC. 2017. Characterization of microscopic pore texture of Chang 6-Chang 8 members tight sandstone reservoirs in the southwestern part of Ordos Basin, China. Natural Gas Geoscience, 28(6): 909-919 (in Chinese with English abstract)
Yin W, Hu ZQ, Li S, Liu Z, Shang XF and Zhang HZ. 2011. Dynamic analysis and accumulation process recovery of typical reservoirs in Zhenjing region, south of Ordos Basin. Petroleum Geology and Experiment, 33(6): 592-596 (in Chinese with English abstract)
Zhang GW, Zhang BR, Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1-806 (in Chinese)
Zhang K, Liu R, Liu ZJ, Li BL, Han JB and Zhao KG. 2019. Influence of volcanic and hydrothermal activity on organic matter enrichment in the Upper Triassic Yanchang Formation, southern Ordos Basin, Central China. Marine and Petroleum Geology, 112: 104059
Zhang WZ, Yang H, Peng PA, Yang YH, Zhang H and Shi XH. 2009. The influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin. Geochimica, 38(6): 573-582 (in Chinese with English abstract)
Zhao ZY. 1990. Geological background of natural gas occurrence in North China Craton Basin. Advances in Earth Science, 5(2): 40-42 (in Chinese)
Zheng JM, You J and He DB. 2008. Comparison between control factors of high quality continental reservoirs in Bohai Bay basin and Ordos basin. Frontiers of Earth Science in China, 2(1): 83-95 DOI:10.1007/s11707-008-0002-4
Zhou Y, Ji YL, Xu LM, Che SQ, Niu XB, Wan L, Zhou YQ, Li ZC and You Y. 2016. Controls on reservoir heterogeneity of tight sand oil reservoirs in Upper Triassic Yanchang Formation in Longdong area, Southwest Ordos Basin, China:Implications for reservoir quality prediction and oil accumulation. Marine and Petroleum Geology, 78: 110-135 DOI:10.1016/j.marpetgeo.2016.09.006
Zhu GY, Yang HJ, Zhang B, Su J, Zhang C, Zhang K, Liu YF and Lu YH. 2013. Ultra-long distance migration of hydrocarbon. Acta Petrologica Sinica, 29(9): 3192-3212 (in Chinese with English abstract)
Zhu GY, Ren R, Chen FR, Li TT and Chen YQ. 2017. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China. Journal of Asian Earth Sciences, 150: 63-72 DOI:10.1016/j.jseaes.2017.09.018
Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China (Earth Sciences), 54(6): 789-797 (in Chinese) DOI:10.1007/s11430-011-4203-4
陈刚, 李向平, 周立发, 李书恒, 李向东, 章辉若. 2005. 鄂尔多斯盆地构造与多种矿产的耦合成矿特征. 地学前缘, 12(4): 535-541.
陈林, 陆永潮, 林卫兵, 邢凤存, 陈平, 刘璐, 胡海燕, 魏巍. 2019. 鄂尔多斯盆地西南部延长组长8油层组层序地层特征及沉积充填模式. 石油学报, 40(4): 434-447.
代金友, 何顺利. 2010. 鄂尔多斯盆地中部气田断层发现及其意义. 石油勘探与开发, 37(2): 188-195.
邓秀芹, 蔺昉晓, 刘显阳, 庞锦莲, 吕剑文, 李士祥, 刘鑫. 2008. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨. 古地理学报, 10(2): 159-166.
焦亚先, 邱楠生, 李文正, 左银辉, 阙永泉, 刘芳龙. 2013. 鄂尔多斯盆地中-新生代岩石圈厚度演化——来自地热学的证据. 地球物理学报, 56(9): 3051-3060.
李士祥, 邓秀芹, 庞锦莲, 吕剑文, 刘鑫. 2010. 鄂尔多斯盆地中生界油气成藏与构造运动的关系. 沉积学报, 28(4): 798-807.
李潍莲, 刘震, 王伟, 潘高峰, 赵舒, 张健. 2012. 镇泾地区延长组八段低渗岩性油藏形成过程动态分析. 石油与天然气地质, 33(6): 845-852.
刘池洋, 王建强, 邱欣卫, 张东东, 赵俊峰, 赵红格, 邓煜. 2020. 鄂尔多斯盆地延长期富烃坳陷形成的动力学环境与构造属性. 岩石学报, 36(6): 1913-1930.
刘震, 姚星, 胡晓丹, 夏鲁, 王菁. 2013. 鄂尔多斯盆地中生界断层的发现及其对成藏的意义. 地球科学与环境学报, 35(2): 56-66.
吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 2020. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素——以红河油田长8储层为例. 天然气地球科学, 31(1): 37-46.
潘杰, 刘忠群, 蒲仁海, 周思宾, 范久霄, 刘祎楠. 2017. 鄂尔多斯盆地镇原-泾川地区断层特征及控油意义. 石油地球物理勘探, 52(2): 360-370.
任战利, 张盛, 高胜利, 崔军平, 肖媛媛, 肖晖. 2007. 鄂尔多斯盆地构造热演化史及其成藏成矿意义. 中国科学(D辑), 37(增1): 23-32.
任战利, 刘丽, 崔军平, 肖晖, 高胜利. 2008. 盆地构造热演化史在油气成藏期次研究中的应用. 石油与天然气地质, 29(4): 502-506.
任战利, 于强, 崔军平, 祁凯, 陈占军, 曹展鹏, 杨鹏. 2017. 鄂尔多斯盆地热演化史及其对油气的控制作用. 地学前缘, 24(3): 137-148.
任战利, 祁凯, 刘润川, 崔军平, 陈志鹏, 张园园, 杨桂林, 马骞. 2020. 鄂尔多斯盆地早白垩世构造热事件形成动力学背景及其对油气等多种矿产成藏(矿)期的控制作用. 岩石学报, 36(4): 1213-1234.
王伟锋, 周维维, 单新建, 刘玉瑞. 2015. 沉积盆地隐性断裂带特征及其地质意义. 中南大学学报(自然科学版), 46(6): 2236-2243.
吴奇之, 王同和, 李明杰, 杨德垠. 1997. 中国油气盆地构造演化与油气聚集. 北京: 石油工业出版社, 1-361.
徐兴雨, 王伟锋, 陈谋. 2019. 鄂尔多斯盆地断裂特征及其石油地质意义. 中国矿业大学学报, 48(4): 830-841.
许建红, 程林松, 鲍朋, 屈雪峰, 王选茹. 2007. 鄂尔多斯盆地三叠系延长组油藏地质特征. 西南石油大学学报, 29(5): 13-17.
杨智峰, 曾溅辉, 韩菲, 冯枭, 冯森, 张译丹, 乔俊程. 2017. 鄂尔多斯盆地西南部长6-长8段致密砂岩储层微观孔隙特征. 天然气地球科学, 28(6): 909-919.
尹伟, 胡宗全, 李松, 刘震, 商晓飞, 张华照. 2011. 鄂尔多斯盆地南部镇泾地区典型油藏动态解剖及成藏过程恢复. 石油实验地质, 33(6): 592-596.
张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-806.
张文正, 杨华, 彭平安, 杨奕华, 张辉, 石小虎. 2009. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响. 地球化学, 38(6): 573-582.
赵重远. 1990. 华北克拉通盆地天然气赋存的地质背景. 地球科学进展, 5(2): 40-42.
朱光有, 杨海军, 张斌, 苏劲, 张超, 张科, 刘永福, 卢玉红. 2013. 油气超长运移距离. 岩石学报, 29(9): 3192-3212.
朱日祥, 陈凌, 吴福元, 刘俊来. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学(地球科学), 54(6): 789-797.