岩石学报  2020, Vol. 36 Issue (11): 3287-3308, doi: 10.18654/1000-0569/2020.11.03   PDF    
古亚洲洋东段晚古生代演化过程:辽宁北部法库地区花岗岩年代学和地球化学的制约
时溢1,2, 陈井胜1, 魏明辉1, 石绍山1, 张超1, 张立东1, 郝宇杰2     
1. 中国地质调查局沈阳地质调查中心, 沈阳 110034;
2. 自然资源部东北亚矿产资源评价重点实验室, 长春 130061
摘要: 本文对华北克拉通北缘东段辽宁北部法库地区东小陵岩体、前旧门岩体、胡家屯岩体及柏家沟岩体进行了岩相学、地球化学、锆石U-Pb定年以及Lu-Hf同位素研究,以此制约古亚洲洋东段演化过程。岩相学特征表明,本文所研究岩体主要为花岗质岩石,普遍遭受了后期的动力变质作用改造。锆石测年结果显示,东小陵岩体及前旧门岩体形成于中二叠世(264.6±5.9Ma、262.8±3.5Ma),胡家屯岩体及柏家沟岩体分别形成于晚二叠世(257.7±3.1Ma)及早三叠世(248.2±1.5Ma)。岩石地球化学表明,东小陵岩体及胡家屯岩体皆属于准铝质-弱过铝质、高钾钙碱性A型花岗岩,形成于造山后伸展环境;前旧门岩体属于准铝质-弱过铝质、钙碱性-高钾钙碱性高分异Ⅰ型花岗岩,形成于火山弧环境;柏家沟岩体属于准铝质-弱过铝质、高钾钙碱性-钾玄岩性Ⅰ型花岗岩,形成于同碰撞造山环境。研究区花岗质岩体皆富集大离子亲石元素(LILEs)和轻稀土元素(LREEs),并且亏损高场强元素(HFSEs)和重稀土元素(HREEs),结合Lu-Hf同位素特征,认为其原始岩浆应受到了俯冲流体交代的岩石圈地幔的影响。综合前人研究,本文认为在中二叠世-早三叠世期间,研究区经历了古亚洲板块的俯冲、闭合过程。
关键词: 华北克拉通    法库地区    古亚洲洋    锆石U-Pb定年    地球化学    
Evolution of eastern segment of the Paleo-Asian Ocean in the Late Paleozoic: Geochronology and geochemistry constraints of granites in Faku area, North Liaoning, NE China
SHI Yi1,2, CHEN JingSheng1, WEI MingHui1, SHI ShaoShan1, ZHANG Chao1, ZHANG LiDong1, HAO YuJie2     
1. Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110034, China;
2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China
Abstract: To constrain the evolution of the eastern segment of the Paleo-Asian Ocean (PAO), petrography, geochemistry, zircon U-Pb dating and Lu-Hf isotopic analyses were conducted over the Dongxiaoling, Qianjiumen, Hujiatun and Baijiagou plutons in the Faku area, northern Liaoning, in the eastern segment of the northern margin of the North China Craton (NCC). Petrographic characteristics suggest that these plutons are composed mainly of granitic rocks and have widely been remodified by late-stage dynamic metamorphism. Zircon dating results indicate that the Dongxiaoling and the Qianjiumen plutons were formed in the Middle Permian (264.6±5.9Ma and 262.8±3.5Ma), the Hujiatun and the Baijiagou plutons were formed in the Late Permian (257.7±3.1Ma) and the Early Triassic (248.2±1.5Ma), respectively. Petrogeochemical characteristics indicate that both of the Dongxiaoling and the Hujiatun plutons are metaluminous-weakly peraluminous, high-K calcalkalic A-type granites, and they are formed in a postorogenic extensional environment; the Qianjiumen pluton is of metaluminous-weakly peraluminous, calcalkalic-high-K calcalkalic, highly fractionated Ⅰ-type granite, and it is formed in a volcanic arc environment; the Baijiagou pluton is of metaluminous-weakly peraluminous, high-K calcalkalic-shoshonitic Ⅰ-type granite, and formed in a syn-collisional orogenic environment. All granitic plutons of the study area are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs) and heavy rare earth elements (HREEs). Combined with Lu-Hf isotopic characteristics, the initial magma is supposed to be influenced by partial melting of the lithospheric mantle that had been affected by replacement of subducting fluids. Combining with previous studies, we concluded that the study area experienced a subduction-closure process as part of the PAO during the Middle Permian-Early Triassic.
Key words: North China Craton    Faku area    Paleo-Asian Ocean    Zircon U-Pb dating    Geochemistry    

中亚造山带被认为是显生宙以来形成的世界上最大规模的年轻地壳(Xiao et al., 2003Windley et al., 2007刘正宏等,2011Kröner et al., 2014Shi et al., 2019a, b),其位于西伯利亚板块与华北克拉通之间(图 1a, bŞengör et al., 1993),是发展历史最长、改造作用最显著的增生型造山带(Şengör and Natal’in,1996Windley et al., 2007Xu et al., 2013, 2015)。其与古亚洲洋板块古生代-早中生代的双向俯冲消减密切相关(Kröner et al., 2007Safonova et al., 2011Safonova and Santosh, 2014)。岩浆活动作为增生型造山带动力学体制制约下的能量交换与多层次物质载体,是研究汇聚大陆边缘地壳演化与物质交换的最佳窗口(张晓晖和翟明国,2010)。辽宁北部地区地处中亚造山带的东南延部分(图 1b),位于汇聚大陆边缘上岩浆和构造活动最剧烈的地区,但因中新生代松辽盆地覆盖的缘故(Shi et al., 2019c),该区目前尚无完整的晚古生代-早中生代岩浆岩的相关报道,导致华北克拉通北缘东段松辽盆地覆盖区晚古生代-早中生代相关研究还存在不少问题和争议:(1)对古亚洲洋的闭合时间的争议,主流观点有两种:部分学者认为华北克拉通与北部地块于中、晚泥盆世-早石炭世闭合(Tang,1990Xu et al., 2013);另一种观点认为华北克拉通与北部地块于晚二叠世-早中三叠世之间发生碰撞闭合(Xiao et al., 2003刘建峰等, 2013时溢等,2013时溢,2020);(2)关于古亚洲洋闭合位置的争议,虽然大部分研究者认可古亚洲洋最后沿索伦-西拉木伦-长春-延吉缝合带闭合(孙德有等,2004Cao et al., 2013曹花花,2013张超,2014Liu et al., 2017),然而对于其准确的位置仍有争议,特别是其东段松辽盆地覆盖区,由于缺少蛇绿岩和地表露头,导致缝合带在盆地下的延伸情况仍是未知(Liu et al., 2017时溢,2020);(3)关于华北克拉通北缘的增生机制也存在不同观点:如单一火山弧走滑拼贴(Şengör et al., 1993),岛弧、洋岛及微陆块拼合(Xiao et al., 2003Windley et al., 2007),多板块碰撞增生(李锦轶等,2009)等模式,此外,刘建峰(2009)认为华北克拉通大陆边缘既有与俯冲相关的侧向增生,也有幔源岩浆底侵造成的垂向增生。

图 1 中亚造山带晚二叠世-现今洋-陆构造格架复原图(a、b,据Li, 2006修改)、研究区地质简图(c)和大地构造位置图(d, 据Wu et al., 2011修改) Fig. 1 Palinspastic reconstruction of the Late Permian-Nowadays ocean-continent framework of Central Asian Orogenic Belt (a, b, modified after Li, 2006) and geological sketch map (c) and regional location map (d, modified after Wu et al., 2011) of the study area

辽宁北部地区在晚古生代-早中生代时期经历了古亚洲洋的俯冲-消减闭合过程(张晓晖和翟明国,2010Jing et al., 2020),构造过程复杂,岩浆活动强烈。近年来由于大比例尺填图工作的进行和地质研究的不断深入,原归属于“佟家屯岩组”、“照北山岩组”等杂岩体中变形极为强烈的晚古生代-早中生代花岗质岩体逐步被解体出来(Shi et al., 2019c),而对于这类变形的花岗质岩体的研究较为缺乏。综上,本文以辽宁北部法库地区晚古生代-早中生代深成侵入岩为研究对象,利用年代学、地球化学、Lu-Hf同位素特征等讨论其形成时代、岩浆源区性质及构造背景等,综合区域地质事件,讨论华北克拉通北缘东段松辽盆地覆盖区域晚古生代-早中生代的构造演化史,进而为古亚洲洋俯冲-闭合过程提供重要依据。

1 区域地质背景及岩相学特征

研究区地处辽宁北部法库地区(图 1c),位于华北克拉通北缘东段,大地构造上属于中亚造山带东南部,依兰-伊通断裂以西,松辽盆地的南缘(图 1d)。研究区中生代以前的地质体普遍遭受强烈的变质变形改造,总体上为低绿片岩相,局部可达高绿片岩相。中生代以来进入松辽盆地形成阶段,该区域被沉积岩、中基性-酸性火山岩所覆盖。研究区古生代-早中生代岩浆活动较为强烈,包括晚奥陶世、早二叠世变质火山岩和志留纪、中-晚二叠世、三叠纪及侏罗纪花岗质侵入体(图 1c)。本次针对研究区内中二叠世东小陵岩体及前旧门岩体、晚二叠世胡家屯岩体及早三叠世柏家沟岩体进行了野外调查和岩相学研究。

东小陵岩体及前旧门岩体主要分布在研究区西北部,前者出露面积约为13.28km2,后者出露面积约为3.22km2,为后期侵入到佟家屯岩组变质火山岩之中,被泉头组沉积岩不整合覆盖。东小陵岩体主要岩性为花岗岩、花岗闪长岩,其野外呈浅灰绿色,多为初糜棱结构,弱片麻状构造。矿物成分由斜长石(~50%)、石英(~30%)、钾长石(~15%)、绢云母(~5%)等组成。斜长石边缘多发生亚颗粒化,粒径为1.5~2mm;石英内部亚颗粒化明显;钾长石粒径为1~2mm(图 2a, b)。前旧门岩体主要岩性为黑云花岗闪长岩,呈浅棕色-灰褐色,中粒花岗结构,弱片麻状构造。矿物成分由斜长石(~60%)、石英(~20%)、钾长石(~10%)、角闪石(~5%)、绢云母(~5%)等组成。斜长石(奥-中长石),定向分布,粒径为0.5~1mm;重结晶石英细粒化呈粒状,集合体韧性变形呈条带状,粒径为0.5~1mm;钾长石多定向排列,粒径为0.3~1.8mm;角闪石局部可见,普遍黝帘石化,定向分布,粒径为0.3~0.8mm;绢云母主要呈细小集合条带定向排列,副矿物为锆石和钛铁矿(图 2c, d)。

图 2 中二叠世-早三叠世岩体的宏观特征(左栏)和正交偏光下显微特征(右栏) (a、b)东小陵岩体;(c、d)前旧门岩体;(e、f)胡家屯岩体;(g、h)柏家沟岩体. Qz-石英; Pl-斜长石; Kfs-碱性长石; Ser-绢云母; Hbl-角闪石 Fig. 2 Macro characteristics (left column) and micro characteristics under CPL (right column) of the Middle Permian-Early Triassic plutons (a, b) Dongxiaoling pluton; (c, d) Qianjiumen pluton; (e, f) Hujiatun pluton; (g, h) Baijiagou pluton. Qz-quartz; Pl-plagioclase; Kfs-alkali feldspar; Ser-sericite; Hbl-hornblende

胡家屯岩体主要分布在研究区北部,出露面积约为4.68km2,为后期侵入到磨盘山组大理岩及佟家屯岩组变质火山岩之中。主要以花岗岩为主,普遍糜棱岩化。胡家屯岩体野外呈浅灰褐色-灰绿色,花岗结构,弱片麻状构造。矿物成分由斜长石(~35%)、石英(~35%)、微斜长石(~25%)、绢云母(~5%)等组成。斜长石,多呈眼球状,粒径为0.3~0.5mm;石英呈拉长丝带状;微斜长石边缘多发生不规则破碎,粒径为0.2~0.3mm;此外见少量新生的绢云母(图 2e, f)。

柏家沟岩体主要分布在研究区北东部,出露面积约为7.76km2,为后期侵入到晚二叠世岩体之中,被侏罗纪岩体所侵入。岩性以花岗闪长岩、花岗岩为主,多糜棱岩化,其野外呈黄褐色,糜棱岩化结构,定向构造。矿物成分由斜长石(~50%)、石英(~25%)、钾长石(~15%)和绢云母(~10%)构成。斜长石,多呈眼球状定向分布,粒径为1.6~2.5mm;石英,细粒化呈齿状,粒径为1~1.6mm,集合体呈透镜状、条带状定向分布;钾长石多定向分布,粒径为1~2mm;绢云母,鳞片状,集合体呈丝纹状定向分布,粒径0.05~0.1mm(图 2g, h)。

2 测试方法

野外采集新鲜的测年样品,送往自然资源部东北矿产资源监督检测中心进行粉碎、淘洗和分离,然后进行挑选锆石的工作。锆石制靶和阴极发光、透射光、反射光图像的采集在长春市中能岩矿测试服务有限公司完成。LA-ICP-MS锆石U-Pb定年在在吉林大学东北亚矿产资源评价自然资源部重点实验室利用LA-ICP-MS分析完成。具体实验测试过程参见Yuan et al.(2004)。测试和数据处理的主要流程及仪器主要技术参数为:①激光剥蚀系统为COMPEx Pro型193nm ArF准分子激光器,与激光器联用的是Agilent 7900型ICP-MS仪器;②实验采用He作为剥蚀物质的载气,仪器最佳化采用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST610,采用91500标准锆石外部校正法进行锆石原位U-Pb分析;③采用直径为32μm、频率为7Hz的激光束斑进行样品分析;④用ICPMASDATACALL软件计算同位素比值和207Pb/206Pb、206Pb/238U、207Pb/235U的年龄值;⑤采用Andersen(2002)的方法对结果进行普通铅校正;⑥采用Isoplot程序计算其年龄。锆石Lu-Hf同位素分析在天津地质矿产研究所同位素实验室完成,主要使用了193nm激光剥蚀系统(New Wave)以及多接收器电感耦合等离子体质谱仪(MC-ICP-MS,Neptune)。Lu-Hf同位素分析测试方法以及同位素分馏校正请参见参考文献(Wu et al., 2006耿建珍等,2011)。主量、微量元素分析均在自然资源部东北矿产资源监督检测中心分析完成,整个过程均在无污染设备中进行。主量元素分析采用X射线荧光光谱法(XRF)完成,精度为1%~5%;微量元素分析则采用电感耦合等离子质谱法(ICP-MS)完成,精度优于10%。

3 年代学特征

本次研究共采集了4件花岗岩测年样品,包括东小陵岩体DXLC-TW1(123°17′41″N、42°35′33″E)、前旧门岩体QJM-TW2(123°18′12″N、42°32′1″E)、胡家屯岩体HJT-TW1(123°34′40″N、42°38′42″E)和柏家沟岩体BJGC-TW1(123°36′20″N、42°34′5″E)。这些样品的锆石多为浅黄白色,颗粒的Th/U比值范围为0.12~1.87 (表 1),显示出典型的振荡环带(图 3a, c, e, g),表明它们是典型的岩浆锆石(Hoskin and Ireland, 2000)。本次选择无色透明、无包裹体和裂隙的锆石进行U-Pb同位素分析,测年结果见表 1

表 1 研究区中二叠世-早三叠世岩体的LA-ICP-MS锆石U-Pb分析结果 Table 1 Zircon LA-ICP-MS U-Pb dating results for the Middle Permian-Early Triassic plutons of the study area

图 3 研究区中二叠世-早三叠世岩体锆石阴极发光图(左栏)和锆石U-Pb年龄谐和图(右栏) 红色实线圈及白色虚线圈分别代表锆石年龄及Hf同位素分析点位置 Fig. 3 Cathodoluminescence (CL) images of selected zircons (left column) and zircon U-Pb concordia diagram (right column) from the Middle Permian-Early Triassic plutons of the study area The red solid circles and the white dot circles with dotted line represent the analyzed locations of zircon age and Hf isotope

样品DXLC-TW1中锆石呈短柱状,自形-半自形,大小约80~220μm,长宽比为1:1~1:1.5(图 3a),样品共进行了15个点的有效测试分析,这些锆石的206Pb/238U年龄值都落在谐和曲线上或附近,得到的206Pb/238U加权平均年龄为264.6±5.9Ma(MSWD=1.7,n=15)(图 3b)。样品QJM-TW1锆石呈短柱状,自形-半自形,大小约50~200μm,长宽比为1:1~1:1.7(图 3c),样品共进行了17个点的有效测试分析,这些锆石的206Pb/238U年龄值都落在谐和曲线上或附近,得到的206Pb/238U加权平均年龄为262.8±3.5Ma(MSWD=0.73,n=17)(图 3d)。样品HJT-TW1锆石呈短柱状,自形-半自形,大小约70~180μm,长宽比为1:1~1:1.8(图 3e),样品共进行了23个点的有效测试分析,其中17个锆石的206Pb/238U年龄都落在谐和曲线上或附近,得到的206Pb/238U加权平均年龄为257.7±3.1Ma(MSWD=1.5,n=17)(图 3f)。样品BJGC-TW1锆石呈短柱状,自形-半自形,大小约120~210μm,长宽比为1:1~1:2(图 3g),样品共进行了20个点的有效测试分析,其中18个锆石的206Pb/238U年龄都落在谐和曲线上或附近,得到的206Pb/238U加权平均年龄为248.2±1.5Ma(MSWD=0.29,n=18)(图 3h)。

4 地球化学特征

东小陵岩体的SiO2含量为68.74%~69.55%,Na2O+K2O含量为9.45%~10.15%,表现为钠碱系列(K2O/Na2O=0.64~0.73)(表 2),TAS图解显示样品主要落在石英正长岩-花岗岩过渡范围内(图 4a)。里特曼指数(σ)为3.37~3.98,SiO2-K2O图解显示样品主要落在高钾钙碱性系列中(图 4b)。样品Al2O3含量为14.78%~15.07%,铝饱和指数A/CNK值为0.91~1.00,为准铝质岩石(图 4c)。样品的稀土总量较高(ΣREE=251.9×10-6~274.1×10-6),LREE/HREE比值为9.29~9.84,(La/Yb)N值为9.00~9.75,显示轻稀土右倾型[(La/Sm)N=3.94~4.10]和重稀土相对平坦分配形式[(Gd/Yb)N=1.41~1.49]。样品显示出轻微负Eu异常特征(δEu=0.71~0.78)(图 5a),微量元素蜘蛛图显示样品相对富集大离子亲石元素Rb、K(LILEs),并且亏损高场强元素Nb、P、Ti(HFSEs)(图 5b)。

表 2 东小陵岩体和前旧门岩体的主量元素(wt%)和微量元素(×10-6)分析结果 Table 2 Major (wt%) and trace (×10-6) elements for the samples of the Dongxiaoling and Qianjiumen plutons

图 4 研究区中二叠世-早三叠世岩体SiO2-(Na2O+K2O)图解(a, 据Irvine and Baragar, 1971)、SiO2-K2O图解(b, 据Peccerillo and Taylor, 1976)和A/NK-A/CNK图解(c, 据Maniar and Piccoli, 1989) Fig. 4 SiO2 vs. total alkali (Na2O+K2O) (a, after Irvine and Baragar, 1971), SiO2 vs. K2O (b, after Peccerillo and Taylor, 1976) and A/NK vs. A/CNK (c, after Maniar and Piccoli, 1989) diagrams for the Middle Permian-Early Triassic plutons of the study area

图 5 研究区中二叠世-早三叠世岩体球粒陨石标准化稀土元素配分图(a,据Boynton, 1984)和球粒陨石标准化微量元素蛛网图(b,据Thompson,1982) Fig. 5 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and Chondrite-normalized trace element spider diagrams (b, normalization values after Thompson, 1982) for the Middle Permian-Early Triassic plutons of the study area

前旧门岩体的SiO2含量为64.35%~65.91%,Na2O+K2O含量为6.00%~6.54%,表现为钠碱系列(K2O/Na2O=0.53~0.75)(表 2),TAS图解显示样品主要落在花岗闪长岩范围内(图 4a)。MgO含量为1.35%~1.78%,镁质指数(Mg#)相对较高(34.6~39.6);里特曼指数(σ)为1.54~1.89,SiO2-K2O图解显示样品主要落在钙碱性-高钾钙碱性系列中(图 4b)。Al2O3含量为14.89%~15.23%,铝饱和指数A/CNK为0.96~1.02,为准铝质-弱过铝质岩石(图 4c)。样品的稀土总量较低(ΣREE=68.74×10-6~81.67×10-6),LREE/HREE比值为5.12~5.72,(La/Yb)N值为3.89~4.50,显示轻稀土右倾型[(La/Sm)N=2.40~2.59]和重稀土平坦分配形式[(Gd/Yb)N=0.93~1.03](图 5a)。微量元素蜘蛛图显示样品相对富集Rb、K(LILEs),亏损Nb、Ta、Hf(HFSEs)(图 5b)。

胡家屯岩体的SiO2含量为67.38%~71.12%,Na2O+K2O含量为8.09%~8.61%,表现为钠碱系列(K2O/Na2O=0.67~0.99)(表 3),TAS图解显示样品主要落在石英正长岩-花岗岩过渡范围内(图 4a)。里特曼指数(σ)为2.32~3.01,SiO2-K2O图解显示样品主要落在高钾钙碱性系列中(图 4b)。Al2O3含量为14.51%~16.96%,铝饱和指数A/CNK为1.04~1.19,为准铝质-弱过铝质岩石(图 4c)。样品的稀土总量较高(ΣREE=133.6×10-6~312.5×10-6),LREE/HREE比值为7.94~8.54,(La/Yb)N值为7.31~10.41,显示轻稀土右倾型[(La/Sm)N=3.31~3.86]和重稀土轻微右倾型分配形式[(Gd/Yb)N=1.22~1.97],Eu负异常较为明显(δEu=0.61~0.73)(图 5a),微量元素蜘蛛图显示样品相对富集Rb、Th、K(LILEs),并且亏损Nb、Ta、P、Ti(HFSEs)(图 5b)。

表 3 胡家屯岩体和柏家沟岩体的主量元素(wt%)和微量元素(×10-6)分析结果 Table 3 Major (wt%) and trace (×10-6) elements for the samples of Hujiatun and Baijiagou plutons

柏家沟岩体的SiO2含量为73.60%~75.56%,Na2O+K2O含量为7.81%~8.68%,表现为富钾系列(K2O/Na2O=1.79~1.83)(表 3),TAS图解显示样品主要落在花岗岩范围内(图 4a)。里特曼指数(σ)值为1.87~2.41,SiO2-K2O图解显示样品主要落在高钾钙碱性-钾玄岩系列中(图 4b)。样品的铝指数A/CNK值为0.98~1.07,为准铝质-弱过铝质岩石(图 4c)。样品的稀土总量较低(ΣREE=120.6×10-6~175.3×10-6),LREE/HREE比值为15.51~17.75,(La/Yb)N值为20.54~24.65,显示轻稀土右倾型[(La/Sm)N=6.72~7.95]和重稀土轻微右倾型分配形式[(Gd/Yb)N=1.85~1.98]。Eu负异常较明显(δEu=0.56~0.75;图 5a),微量元素蜘蛛图显示样品相对富集Rb、Th、K(LILEs),并且亏损Nb、P、Ti(HFSEs)(图 5b)。

5 Hf同位素特征

本文对测得锆石年龄的DXLC-TW1、QJM-TW2、HJT-TW1和BJGC-TW1进行了Lu-Hf同位素分析,所有分析结果得出fLu/Hf值在-0.98~-0.92之间(表 4),明显小于铁镁质地壳fLu/Hf值(-0.34,Amelin et al., 2000)和硅铝质地壳fLu/Hf值(-0.72,Vervoort et al., 1996),故二阶段模式年龄更能反应其源区物质从亏损地幔被抽取的时间或其源区物质在地壳的平均存留年龄(刘春花等,2014)。

表 4 研究区中二叠世-早三叠世岩体的锆石原位Hf同位素分析结果 Table 4 Zircon in-situ Hf isotope data for the Middle Permian-Early Triassic plutons of the study area

样品DXLC-TW1(东小陵岩体)的13颗锆石初始176Hf/177Hf比值为0.282895~0.283051,εHf(t)值为+9.97~+15.35(图 6),亏损地幔二阶段模式年龄(tDM2)范围为305.5~649.7Ma。样品QJM-TW2(前旧门岩体)的12颗锆石初始176Hf/177Hf比值为0.282851~0.283014,εHf(t)值为+8.38~+14.05(图 6),亏损地幔二阶段模式年龄(tDM2)范围为384.8~750.0Ma。样品HJT-TW1(胡家屯岩体)的13颗锆石初始176Hf/177Hf比值为0.282855~0.282986,εHf(t)值为+8.09~+12.89(图 6),亏损地幔二阶段模式年龄(tDM2)范围为457.0~760.4Ma。样品BJGC-TW1(柏家沟岩体)的12颗锆石初始176Hf/177Hf比值为0.282739~0.282822,εHf(t)值为+3.98~+6.91(图 6),亏损地幔二阶段模式年龄(tDM2)范围为832.7~1019.8Ma。

图 6 研究区中二叠世-早三叠世岩体Hf同位素特征图(a,据Yang et al., 2006)和εHf(t)对U-Pb锆石年龄(b) Fig. 6 Correlations between Hf isotopic compositions and the formation ages (a, after Yang et al., 2006) and εHf(t) vs. U-Pb ages for zircons (b) of the Middle Permian-Early Triassic plutons of the study area
6 讨论 6.1 岩体形成时代

沿华北克拉通北缘东段,西拉木伦河缝合带南侧报道了很多数据,指示了晚古生代-早中生代弧岩浆活动的存在(图 7Xiao et al., 2003Xu et al., 2013)。主体上为钙碱性系列,说明华北克拉通北缘在此期间仍属于活动大陆边缘环境(Zhang et al., 2004Wu et al., 2011Cao et al., 2013关庆彬等,2016)。这一时期的典型岩体包括石人卜黑云母花岗闪长岩(265Ma;Shi et al., 2019c)、小里河二长花岗岩(260Ma;Wang et al., 2015)、永义正长花岗岩(259Ma;曹花花,2013)、孟山石英二长岩(249Ma;Wang et al., 2015)、百里坪斑状二长花岗岩(248~245Ma;Zhang et al., 2004)、建平镇二长花岗岩(249Ma;曹花花,2013)、大玉山花岗闪长岩(248Ma;孙德有等,2004)等(图 7)。

图 7 华北板块北缘法库以东地区晚古生代-早中生代岩浆活动、混杂岩带分布图(据关庆彬,2018修改) Fig. 7 Distribution map of the Late Paleozoic-Early Mesozoic magmatism and mélange zones in the east of the Faku area at the northern margin of the NCC (modified after Guan, 2018)

然而,由于松辽盆地覆盖的缘故,西拉木伦河缝合带南侧的弧岩浆岩在空间上并不连续。20世纪90年代前后主要以地质体间的接触关系和K-Ar、Rb-Sr等测年手段来划分地质时代(辽宁省地质矿产局,1989郝永利和黄志安,1996)。近年来由于大比例尺填图工作的进行和地质研究的不断深入,原本属于“佟家屯岩组”、“照北山岩组”等杂岩体中变形极为强烈的花岗质岩体逐步被解体出来(Shi et al., 2019c),而对于这类变形的花岗质岩体的研究极度匮乏。本文针对此类岩体进行了锆石LA-ICP-MS U-Pb定年结果表明,其形成于中二叠世-早三叠世(264~248Ma),锆石具有岩浆成因的生长环带,其Th/U比值介于0.12~1.87,暗示这些锆石为岩浆成因,其定年结果应代表了岩浆事件的时代,其大地构造位置上位于华北克拉通北缘东段,西拉木伦河缝合带的南侧附近,从产出位置和就位时间来看,它应是古亚洲洋洋壳向华北克拉通北缘俯冲-闭合过程中构造热事件的产物(图 1c, dJing et al., 2020)。

6.2 花岗岩岩石成因类型

东小陵岩体及胡家屯岩体皆具有相对富硅、富碱,贫镁的特征,属于高钾钙碱性系列、准铝质-弱过铝质岩石,二者皆富铁(FeOT=2.60%~3.18%),且贫Sr、Eu、Ba、Ti、P的特征与典型的A型花岗岩一致(Whalen et al., 1987张旗,2013)。在FeOT/MgO-(Zr+Nb+Ce+Y)及(NaO2+K2O)/CaO-(Zr+Nb+Ce+Y)图解中(图 8a, b),东小陵岩体及胡家屯岩体均落入A型花岗岩区。A型花岗岩产于伸展的构造背景得到了普遍认同(Whalen et al., 1987Maniar and Piccoli, 1989Eby,1992),其形成构造环境大体可以分为非造山和后造山两种环境(邓晋福等,2004)。Eby(1992)将A型花岗岩分为A1型和A2型两类,A1型与洋岛玄武岩(OIB)类似,形成于陆内裂谷、地幔热柱构造环境有关,具有很低Y/Nb、Yb/Ta比值;而A2型与岛弧玄武岩(IAB)相似,形成于后碰撞或后造山环境,具有高Y/Nb、Yb/Ta比值。东小陵岩体的Y/Nb平均值为1.00,Yb/Ta平均值为1.28,都明显接近1,与A1型花岗岩更为接近;而胡家屯岩体的Y/Nb平均值为2.45,Yb/Ta平均值为3.41,都明显>1,与A2型花岗岩更为接近。同时,在Nb-Y-Ce图解中(图 8c),东小陵岩体落在A1型花岗岩区,胡家屯岩体落在A2型花岗岩区。

图 8 研究区中二叠世-早三叠世岩体FeOT/MgO-(Zr+Nb+Ce+Y)(a)、(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)(b)和Y-Nb-Ce(c)图解(a、b, 据Whalen et al., 1987修改;c, 据Eby, 1992修改) OTG-未分异的M、I、S型花岗岩; FG-分异的Ⅰ型花岗岩; A-A型花岗岩; A1-A1型花岗岩; A2-A2型花岗岩 Fig. 8 FeOT/MgO vs. (Zr+Nb+Ce+Y) (a), (Na2O+K2O)/CaO vs. (Zr+Nb+Ce+Y) (b) and Y-Nb-Ce (c) diagrams for the Middle Permian-Early Triassic plutons of the study area (a, b, modified after Whalen et al., 1987; c, modified after Eby, 1992) OTG-unfractionated M-, I- and S-type granites; FG-fractionated type-I granites; A-A-type granites; A1-A1-type granites; A2-A2-type granites

前旧门岩体具有相对富硅、富钙、富铝、相对富镁的特征,属于钙碱性-高钾钙碱性、准铝质-弱过铝质岩石。岩体实际矿物可见角闪石,未出现原生白云母等富铝矿物,明显不同于富铝的S型花岗岩(邱检生等,2008),显示Ⅰ型花岗岩的特征(孙德有等,2004);岩体无明显负Eu异常,与典型的A型花岗岩不符。柏家沟岩体属于高钾钙碱性-钾玄岩系列、准铝质-弱过铝质岩石,其主量元素P2O5含量随着SiO2含量的增加而减少,呈明显的负相关性,铝指数A/CNK皆小于1.1,具有典型的Ⅰ型花岗岩的特征(孙德有等,2004关庆彬等,2016),且具有相对高SiO2、富碱,以及富K、Rb、Th,亏损Nb、Ta、Ti,与高分异Ⅰ型花岗岩的特征一致(王珍珍等,2017)。其实际矿物中未发现钠闪石-钠铁闪石、霓石-霓辉石、铁橄榄石等标志性矿物,与A型花岗岩矿物学标志不符(Chappell,1999),且A型花岗岩具有明显的负Eu异常,这与柏家沟岩体弱负Eu异常不一致。其副矿物中普遍出现榍石,且未见富铝矿物,明显不同于S型花岗岩(邱检生等,2008)。在FeOT/MgO-(Zr+Nb+Ce+Y)及(NaO2+K2O)/CaO-(Zr+Nb+Ce+Y)图解中(图 8a, b),柏家沟岩体除一个分析点分布在未分异I、M、S型花岗岩区域外,其他分析点皆分布在分异Ⅰ型花岗岩区域内,而前旧门岩体集中分布在未分异I、M、S型花岗岩区域内。

花岗质岩体富集LILEs和LREEs元素,亏损HFSEs和HREEs元素,在Rb/Zr-Th/Zr图解中,样品主要分布在流体交代富集区域内(图 9a),表明其原始岩浆不同程度地受到了来自俯冲流体交代岩石圈地幔的影响(曹花花,2013),显示岩浆弧特征(Wu et al., 2006)。在Rb-(Y+Nb)和Nb-Y构造判别图解中,东小陵岩体样品落入板内型花岗岩区域,柏家沟岩体落入火山弧-同碰撞过渡区域,前旧门岩体及胡家屯岩体主要分布在火山弧花岗岩区域,柏家沟岩体分布在火山弧及同碰撞花岗岩过渡区域(图 10a, b);在R1-R2图解中,前旧门岩体主要分布在板块碰撞前区域,柏家沟岩体分布在同碰撞区域,东小陵岩体及胡家屯岩体分布在造山晚期区域(图 10c)。综上所述,东小陵岩体及胡家屯岩体为高钾钙碱性A型花岗岩,且东小陵岩体具有A1型特征,胡家屯岩体具有A2型特征。柏家沟岩体为高钾钙碱性-钾玄岩型高分异Ⅰ型花岗岩,前旧门岩体为钙碱性-高钾钙碱性Ⅰ型花岗岩。

图 9 研究区中二叠世-早三叠世岩体Rb/Zr-Th/Zr(a)和La/Sm-Sm(b)图解(据Labanieh et al., 2012修改) Fig. 9 Rb/Zr vs. Th/Zr (a) and La/Sm vs. Sm (b) diagrams of the Middle Permian-Early Triassic plutons of the study area (modified after Labanieh et al., 2012)

图 10 研究区中二叠世-早三叠世岩体Y-Nb(a)、(Y+Nb)-Rb(b)和R1-R2(c)图解(a、b,据Pearce et al., 1984修改;c, 据Batchelor and Bowden, 1985修改) VAG-火山弧型花岗岩; Syn-COLG-同碰撞型花岗岩; WPG-板内型花岗岩; ORG-洋脊型花岗岩 Fig. 10 Y vs. Nb (a), (Yb+Ta) vs. Rb (a) and R1 vs. R2 (c) diagrams for the Middle Permian-Early Triassic plutons of the study area (a, b, modified after Pearce et al., 1984; c, modified after Batchelor and Bowden, 1985) VAG-volcanic-arc granite; Syn-COLG-syn-collision granite; WPG-within plate grantie; ORG-ocean-ridge granite
6.3 花岗岩岩浆源区性质

研究区中二叠世-早三叠世岩体中皆未见暗色闪长质包体,也没有岩浆混合现象,且四个岩体的SiO2含量皆较高,说明在岩浆上升形成过程中,基本不存在岩浆混合作用,混合作用可能发生在岩浆源区;在La/Sm-Sm图解中,显示中-晚二叠世岩体主要是分离结晶作用产生的,而早三叠世柏家沟岩体主要为部分熔融作用产生的(图 9b)。另外,张旗等(2006)认为Sr和Yb的含量可以用于判定花岗岩源区特征。东小陵岩体(Sr=183×10-6~204×10-6;Yb=3.93×10-6~4.05×10-6)、前旧门岩体(Sr=341×10-6~363×10-6;Yb=1.88×10-6~2.34×10-6)、胡家屯岩体(Sr=239×10-6~350×10-6;Yb=2.55×10-6~4.33×10-6)皆具有低Sr、高Yb的特征,说明岩浆形成于相对低压、角闪岩相环境,残留相有斜长石无石榴石,这类花岗岩在地球上分布最广(张旗等,2006);柏家沟岩体(Sr=221×10-6~251×10-6;Yb=0.98×10-6~1.37×10-6)具有低Sr、低Yb的特征,其富硅、富钾、贫铝,说明岩浆形成于中等或较高压力、麻粒岩相条件下(张旗等,2006)。

东小陵岩体、胡家屯岩体及柏家沟岩体的Nb/Ta平均比值为7.14~12.45,皆小于地幔平均值17.5,与地壳平均值11比较接近,显示壳源岩浆性质,而前旧门岩体Nb/Ta比值为9.97~21.42(平均14.76),与地幔平均值17.5相对接近,显示幔源岩浆混合性质(Taylor and Mclennan, 1985Sun and McDonough, 1989);东小陵岩体及前旧门岩体的Zr/Hf平均比值为41.52~143.7,皆高于壳源岩浆的Zr/Hf比值(33, Taylor and Mclennan, 1985),与幔源岩浆的Zr/Hf比值(39,McDonough and Sun, 1995)相对接近,显示幔源岩浆性质,而胡家屯岩体及柏家沟岩体的Zr/Hf平均比值为30.11~35.98,皆低于幔源岩浆的Zr/Hf比值39,与壳源岩浆的Zr/Hf比值相对接近,显示壳源岩浆性质。东小陵岩体13个测点的εHf(t)值均为正值(+9.97~+15.35),二阶段模式年龄(tDM2)为305.5~649.7Ma;胡家屯岩体的13个测点的εHf(t)值均为正值(+8.09~+12.89),二阶段模式年龄(tDM2)为457.0~760.4Ma,结合微量元素地球化学特征表明,东小陵岩体及胡家屯岩体形成于伸展环境,二者来源于俯冲流体交代的幔源岩浆底侵并与角闪岩相新元古代-晚石炭世增生地壳混染产生的;前旧门岩体具有高的锆石εHf(t)值(+8.38~+14.05),二阶段模式年龄(tDM2)为384.8~750.0Ma,综合地球化学特征认为,其源岩主要是俯冲流体交代的幔源岩浆底侵并发生结晶分离作用产生的,形成于火山弧-弧后环境;柏家沟岩体的12个测点的εHf(t)值为+3.98~+6.91,二阶段模式年龄(tDM2)为832.7~1019.8Ma,综合地球化学特征认为,柏家沟岩体是在同碰撞造山环境下中-新元古代麻粒岩相地壳在较高压力下部分熔融产生的。

6.4 构造意义

古生代-早中生代花岗质岩体在研究区大面积分布,由于遭受了后期动力变质作用改造,导致其动态重结晶呈细粒化、隐晶质化和“层”状化,被前人划归为“佟家屯岩组”(辽宁省地质矿产局,1989)。东小陵岩体、前旧门岩体及胡家屯岩体皆是从佟家屯岩组中解体出来的变形岩体,柏家沟岩体也遭受了不同程度的糜棱岩化作用,本文针对此类花岗质岩体进行了详尽的研究工作。其中东小陵岩体及胡家屯岩体分别形成于中二叠世晚期(264Ma)及晚二叠世早期(257Ma),属于准铝质-弱过铝质、高钾钙碱性A型花岗岩,是幔源岩浆底侵并与增生地壳发生混染作用产生的,形成于伸展环境。在区域上,和龙地区类“双峰式”侵入岩、开原地区高镁安山岩、A型花岗岩以及图们地区玄武岩与研究区二叠纪A型花岗岩成因相似(曹花花等,2012张超,2014Liu et al., 2020),它们的形成与古亚洲洋板片断离造成的局部伸展作用有关(关庆彬,2018Liu et al., 2020)。黄志安等(1996)在研究区北部瓦房地区发现有照北山岩组大理岩及变粒岩(产海百合茎化石及珊瑚化石),认为其属于内源沉积地层,形成于晚古生代;Shi et al.(2019c)在研究区西部哈户硕及何屯地区发现有早二叠世A型花岗岩(283~276Ma)。因此,认为研究区在晚古生代期间应属于弧后盆地浅海相环境(图 11a)。研究区东小陵岩体为A1型花岗岩,而胡家屯岩体为A2型花岗岩,说明区内既有与陆内地幔热柱有关的岩浆活动,还有与岛弧玄武岩(IAB)相似的岩浆活动。综上所述,本文认为在晚古生代期间研究区应位于弧后盆地靠近陆缘弧一侧构造环境,东小陵岩体及胡家屯岩体的产出代表了洋板片拆离导致幔源岩浆底侵造成的垂向增生作用(图 11b)。

图 11 研究区二叠纪-早三叠世构造演化模式图 Fig. 11 Schematic models of the tectonic evolution of the study area during the Permo-Early Triassic

研究区前旧门岩体形成于中二叠世晚期(262Ma),属于准铝质-弱过铝质、钙碱性-高钾钙碱性Ⅰ型花岗岩,结合Liu et al.(2020)在开原地区发现的中-晚二叠世埃达克质岩体(270~257Ma),认为研究区及邻区在此期间已经进入地壳加厚过程,记录了华北克拉通和北部地块碰撞之前古亚洲洋板块俯冲-闭合引起的垂向增生作用(图 11b曹花花,2013Wang et al., 2015关庆彬等,2016);此外,法库地区花岗质糜棱岩在中二叠世(~262Ma)的变质事件,被认为是古亚洲洋俯冲导致的多陆块碰撞背景下花岗岩抬升至浅部层位的冷却时间(张晓晖等,2004);区域古沉积物表明,古亚洲洋在晚二叠世是一个残余的海盆(Shi,2006)。综合上述地质事件,本文认为华北克拉通北缘在中-晚二叠世期间已逐渐开始与北部地块碰撞造山。研究区柏家沟岩体形成于早三叠世晚期(248Ma),属于准铝质-弱过铝质、高钾钙碱性-钾玄岩性高分异Ⅰ型花岗岩,是麻粒岩相地壳在较高压力下部分熔融的产物,处于同碰撞造山环境(图 11c)。在华北克拉通北缘东段孟山、百里坪、建平镇、大玉山等地区也存在着大量早-中三叠世(250~245Ma)的同碰撞型花岗岩(图 7),表明在此期间,华北克拉通已与北部地块碰撞闭合,汇聚大陆边缘碰撞造山作用逐渐加强(Zhang et al., 2004孙德有等,2004曹花花,2013Wang et al., 2015);李朋武等(2006)根据古地磁学证据得出了几乎同样的结论,认为北部地块于二叠纪末(约255~250Ma)与华北克拉通碰撞;法库地区花岗质糜棱岩、吉林中部地区呼兰群和五道沟群发生在晚二叠世-早三叠世(256~250Ma)的变质事件,也被认为是代表华北克拉通与北部地块发生碰撞抬升作用造成的(孙德有等,2004张晓晖等,2004Wu et al., 2011);此外,吉林中部地区在早三叠世卢家屯组底部发现的磨拉石建造以及辽宁北部尖山子发现的花岗质埃达克岩也佐证了区域上的碰撞抬升作用(曹花花,2013刘锦等,2016)。与此同时,作者在法库北部地区发现了晚古生代辉长岩和含橄榄玄武岩岩石组合,根据地球化学特征认为其属于俯冲带型(SSZ)蛇绿岩,形成于弧后盆地环境,应是弧后有限洋盆反向俯冲消减残留下来的(时溢,未发表)。而早三叠世同碰撞花岗质岩体的侵位也间接说明因洋盆消减导致的华北克拉通与大陆边缘弧的弧-陆碰撞作用(图 11c)。因此,认为研究区应处在索伦-西拉木伦-长春-延吉缝合带的南侧。

7 结论

(1) 通过锆石U-Pb定年研究,得到柏家沟岩体及前旧门岩体的侵位年龄分别为264.6±5.9Ma、262.8±3.5Ma,皆形成于中二叠世晚期;胡家屯岩体的侵位年龄为257.7±3.1Ma,形成时代为晚二叠世早期;柏家沟岩体的侵位年龄为248.2±1.5Ma,形成时代为早三叠世晚期。

(2) 本文所研究岩体皆富硅、富碱,且富集LILEs和LREEs元素,并且亏损HFSEs和HREEs元素,锆石εHf(t)值皆为正值,表明其岩浆与俯冲带环境的亲缘性。东小陵岩体及胡家屯岩体属于高钾钙碱性A型花岗岩,是幔源岩浆发生底侵并与增生地壳混染产生的;前旧门岩体属于钙碱性-高钾钙碱性Ⅰ型花岗岩,其源岩主要是幔源岩浆底侵并发生结晶分离作用产生的;柏家沟岩体属于高钾钙碱性-钾玄岩性高分异Ⅰ型花岗岩,是麻粒岩相地壳在较高压力下部分熔融的产物。

(3) 研究表明,辽宁北部法库地区在中二叠世-早三叠世期间经历了古亚洲洋板片俯冲-闭合、弧后洋盆的反向消减以及华北克拉通与大陆边缘弧的弧-陆碰撞过程,地壳增生方式以幔源岩浆底侵造成的垂向增生为主,并因此形成了与俯冲消减、板片断离、碰撞造山作用相关的岩浆岩记录。综合区域地质事件,本文认为古亚洲洋东段应闭合于晚二叠世-早三叠世期间,研究区处于索伦-西拉木伦-长春-延吉缝合带的南侧。

致谢      样品分析得到自然资源部东北矿产资源监督检测中心、吉林大学东北亚矿产资源评价自然资源部重点实验室和天津地质矿产研究所同位素实验室的大力支持,在此表示衷心的感谢。

参考文献
Amelin Y, Lee DC and Halliday AN. 2000. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225 DOI:10.1016/S0016-7037(00)00493-2
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 DOI:10.1016/S0009-2541(02)00195-X
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geology, 48(1-4): 43-55 DOI:10.1016/0009-2541(85)90034-8
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
Bureau of Geology and Mineral Resources of Liaoning Province. 1989. Regional Geology of Liaoning Province. Beijing: Geological Publishing House (in Chinese with English abstract)
Cao HH, Xu WL, Pei FP, Guo PY and Wang F. 2012. Permian tectonic evolution of the eastern section of the northern margin of the North China Plate:Constraints from zircon U-Pb geochronology and geochemistry of the volcanic rocks. Acta Petrologica Sinica, 28(9): 2733-2750 (in Chinese with English abstract)
Cao HH. 2013. Geochronology and Geochemistry of the Late Paleozoic-Early Mesozoic igneous rocks in the eastern segment of the northern margin of the North China Block. Ph. D. Dissertation. Changchun: Jilin University, 1-171 (in Chinese with English summary)
Cao HH, Xu WL, Pei FP, Wang ZW, Wang F and Wang ZJ. 2013. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos, 170-171: 191-207 DOI:10.1016/j.lithos.2013.03.006
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551
Deng JF, Luo ZH, Su SG, Mo XX, Yu BS, Lai XY and Chen HW. 2004. Petrogenesis, Tectonic Setting and Metallogeny. Beijing: Geological Publishing House, 1-381 (in Chinese with English abstract)
Eby GN. 1992. Chemical Subdivision of the A-type granitoids-petrogenetic and tectonic implications. Geology, 20(7): 641-644 DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Geng JZ, Li HK, Zhang J, Zhou HY and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract)
Guan QB, Li SC, Zhang C, Shi Y and Li PC. 2016. Zircon U-Pb dating, geochemistry and geological significance of the Ⅰ-type granites in Helong area, the eastern section of the southern margin of Xing-Meng Orogenic Belt. Acta Petrologica Sinica, 32(9): 2690-2706 (in Chinese with English abstract)
Guan QB. 2018. Permian-Early Jurassic tectonic evolution of Kaiyuan-Yanji area in the eastern segment of the northern margin of the North China Block. Ph. D. Dissertation. Changchun: Jilin University, 1-145 (in Chinese with English summary)
Hao YL and Huang ZA. 1996. Analysis to geniesis and emplacement mechanism of Shijianfang ultra-unit granite in Faku area. Liaoning Geology, (4): 274-283 (in Chinese with English abstract)
Hoskin PWO and Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630 DOI:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
Huang H, Zhang ZC, Zhang DY, Du HX, Ma LT, Kang JL and Xue CJ. 2011. Petrogenesis of Late Carboniferous to Early Permian granitoid plutons in the Chinese South Tianshan:Implications for crustal accretion. Acta Geologica Sinica, 85(08): 1305-1333 (in Chinese with English abstract)
Huang ZA, Yang YJ and Han XD. 1996. Discovered Crinoid fossils in metamorphic strata in Faku area of northern Liaoning. Liaoning Geology, (2): 157-159 (in Chinese with English abstract)
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(50): 523-548
Jing Y, Ji Z, Ge WC, Dong Y, Yang H and Bi JH. 2020. Middle-Late permian Ⅰ-type granitoids from the Diaobingshan region in the northern margin of the North China Craton:Insight into southward subduction of the Paleo-Asian Ocean. International Geology Review DOI:10.1080/00206814.2020.1712556
Kröner A, Windley BF, Badarch G, Tomurtogoo O, Hegner E, Jahn BM, Gruschka S, Khain EV, Demoux A, Wingate MTD, Hatcher Jr. RD, Carlson MP, McBride JH and Catalan JM. 2007. Accretionary growth and crust-formation in the central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. The 4-D Framework of the Continental Crust-Integrating Crustal Processes through Time. Geol. Soc. Am. Mem., 200: 181-209
Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE and Rytsk E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25: 103-125 DOI:10.1016/j.gr.2012.12.023
Labanieh S, Chauvel C, Germa A and Quidelleur X. 2012. Martinique:A clear case for sediment melting and slab dehydration as a function of distance to the trench. Journal of Petrology, 53: 2441-2464 DOI:10.1093/petrology/egs055
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224 DOI:10.1016/j.jseaes.2005.09.001
Li JY, Zhang J, Yang TN, Li YP, Sun GH, Zhu ZX and Wang LJ. 2009. Crustal tectonic division and evolution of the southern part of the North Asian Orogenic Region and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract)
Li PW, Gao R, Guan Y and Li QS. 2006. Palaeomagnetic constraints on the final closure time of Solonker-Linxi suture. Journal of Jilin University (Earth Science Edition), 36(5): 744-758 (in Chinese with English abstract)
Liu CH, Wu CL, Gao YH, Lei M, Qin HP and Li MZ. 2014. Zircon LA-ICP-MS U-Pb dating and Lu-Hf isotopic system of A-type granitoids in South Tianshan, Baicheng County, Xinjiang. Acta Petrologica Sinica, 30(6): 1595-1614 (in Chinese with English abstract)
Liu J, Liu ZH, Li SC, Zhao C, Wang CJ, Peng YB, Yang ZJ and Dou SY. 2016. Geochronology and geochemistry of Triassic intrusive rocks in Kaiyuan area of the eastern section of the northern margin of North China. Acta Petrologica Sinica, 32(9): 2739-2756 (in Chinese with English abstract)
Liu J, Zhang J, Liu ZH, Yin CQ, Zhao C, Yu XY, Chen Y, Tian Y and Dong Y. 2020. Petrogenesis of Permo-Triassic intrusive rocks in northern Liaoning Province, NE China:Implications for the closure of the eastern Paleo-Asian Ocean. International Geology Review, (9): 1-27
Liu JF. 2009. Late Paleozoic magmatism and its constraints on regional tectonic evolution in Linxi-Dongwuqi area, Inner Mongolia. Ph. D. Dissertation. Changchun: Jilin University, 1-157 (in Chinese with English summary)
Liu JF, Li JY, Chi XG, Feng QW, Hu ZC and Zhou K. 2013. Early Devonian felsic volcanic rocks related to the arc-continent collision on the northern margin of North China Craton:Evidences of zircon U-Pb dating and geochemical characteristics. Geological Bulletin of China, 32(2): 267-278 (in Chinese with English abstract)
Liu S, Hu RZ, Gao S, Feng CX, Feng GY, Coulson IM, Li C, Wang T and Qi YQ. 2010. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of Permian granodiorite and associated gabbro in the Songliao Block, NE China and implications for growth of juvenile crust. Lithos, 114(3-4): 423-436 DOI:10.1016/j.lithos.2009.10.009
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148 DOI:10.1016/j.gr.2016.03.013
Liu ZH, Xu ZY and Yang ZS. 2011. Tectonic-gneiss and its origin mechanism. Journal of Jilin University (Earth Science Edition), 41(5): 1314-1321 (in Chinese with English abstract)
Maniar PD and Piccoli PM. 1989. Tectonic Discrimination of Granitoids. GSA Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
McDonough WF and Sun SS. 1995. The composition of the earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Qiu JS, Xiao E, Hu J, Xu XS, Jiang SY and Li Z. 2008. Petrogenesis of highly fractionated Ⅰ-type granites in the coastal area of northeastern Fujian Province:Constraints from zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes. Acta Petrologica Sinica, 24(11): 2468-2484 (in Chinese with English abstract)
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299-307 DOI:10.1038/364299a0
Şengör AMC and Natal'in BA. 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin A and Harrison TM (eds.). The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 486-641
Safonova IY, Seltmann R, Kröner A, Gladkochub D, Schulmann K, Xiao WJ, Kim JY, Komiya T and Sun M. 2011. A new concept of continental construction in the Central Asian Orogenic Belt. Episodes, 34: 186-196 DOI:10.18814/epiiugs/2011/v34i3/005
Safonova IY and Santosh M. 2014. Accretionary complexes in the Asia-Pacific region:Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25(1): 126-158 DOI:10.1016/j.gr.2012.10.008
Shi GR. 2006. The marine Permian of East and Northeast Asia:An overview of biostratigraphy, palaeobiogeography and palaeogeographical implications. Journal of Asian Earth Sciences, 26(3-4): 175-206 DOI:10.1016/j.jseaes.2005.11.004
Shi Y, Liu ZH, Xu ZY, Wang XA, Zhang C, Liu WZ and Chen X. 2013. Isotopic chronology and geochemistry of the Hercynian Yongxin granitoid in Longjing, Jilin Province. Geology and Resources, 22(1): 6-13 (in Chinese with English abstract)
Shi Y, Shi SS, Liu ZH, Liu J, Ju N, You HX and Zhang ZB and Zhao. 2019a. Petrogenesis of the Late Early Palaeozoic adakitic granitoids in the southern margin of the Songliao Basin, NE China:Implications for the subduction of the Palaeo-Asian Ocean. Geological Journal, 54: 3821-3839 DOI:10.1002/gj.3377
Shi Y, Yao Y, Liu ZH, Liu J, Wei MH, Gu YC, Yang F, Zhang L and Shi SS. 2019b. Petrogeochemical characteristics, zircon SHRIMP U-b ages and Lu-Hf isotopic compositions of Late Carboniferous A-type granitoids, Yili area, Inner Mongolia (China). Geological Journal, 54(2): 770-790 DOI:10.1002/gj.3406
Shi Y, Liu ZH, Liu YJ, Shi SS, Wei MH, Yang JJ and Gao T. 2019c. Late Paleozoic-Early Mesozoic southward subduction-closure of the Paleo-Asian Ocean:Proof from geochemistry and geochronology of Early Permian-Late Triassic felsic intrusive rocks from North Liaoning, NE China. Lithos, 346-347: 105165 DOI:10.1016/j.lithos.2019.105165
Shi Y. 2020. Late Ordovician-Late Triassic tectonic evolution of Faku area in the eastern segment of the northern margin of the North China Craton: Evidence from magmatic activity. Ph. D. Dissertation. Changchun: Jilin University, 1-184 (in Chinese with English summary)
Sun DY, Wu FY and Zhang YB, et al. 2004. The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone:Evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2): 174-181 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Tang KD. 1990. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton. Tectonics, 9(2): 249-260
Taylor SR and McLennan SM. 1985. The Continental Crust Its Composition and Evolution:An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific Publication
Thompson RN. 1982. Magmatism of the British tertiary volcanic province. Scottish Journal of Geology, 18(1): 49-107 DOI:10.1144/sjg18010049
Vervoort JD, Patchett PJ, Gehrels GE and Nutman AP. 1996. Constraints on early earth differentiation from Hafnium and Neodymium isotopes. Nature, 379(6566): 624-627 DOI:10.1038/379624a0
Wang ZJ, Xu WL, Pei FP, Wang ZW, Li Y and Cao HH. 2015. Geochronology and geochemistry of Middle Permian-Middle Triassic intrusive rocks from central-eastern Jilin Province, NE China:Constraints on the tectonic evolution of the eastern segment of the Paleo-Asian Ocean. Lithos, 238: 13-25 DOI:10.1016/j.lithos.2015.09.019
Wang ZZ, Liu D, Zhao ZD, Yan JJ, Shi QS and Mo XX. 2017. The Sangri highly fractionated Ⅰ-type granites in southern Gangdese:Petrogenesis and dynamic implication. Acta Petrologica Sinica, 33(8): 2479-2493 (in Chinese with English abstract)
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419 DOI:10.1007/BF00402202
Windley BF, Alexeiev D and Xiao WJ, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164: 31-47 DOI:10.1144/0016-76492006-022
Wu CZ, Zhang ZZ, Zaw K, Della-Pasque F, Tang JH, Zheng YC, Wang CS and San JZ. 2006. Geochronology, geochemistry and tectonic significances of the Hongyuntan granitoids in the Qoltag area, eastern Tianshan. Acta Petrologica Sinica, 22(5): 1121-1134 (in Chinese with English abstract)
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30
Xiao WJ, Windley BF and Hao J. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22: 1069-1090
Xu B, Charvet J and Chen Y. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23: 1342-1364 DOI:10.1016/j.gr.2012.05.015
Xu B, Zhao P, Wang YY, Liao W, Luo ZW, Bao QZ and Zhou YH. 2015. The pre-Devonian tectonic framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183-196 DOI:10.1016/j.jseaes.2014.07.020
Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW and Liu XM. 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246(3-4): 336-352 DOI:10.1016/j.epsl.2006.04.029
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370 DOI:10.1111/j.1751-908X.2004.tb00755.x
Zhang C. 2014. The Mesozoic tectonic evolution of Yanbian area in the eastern segment of northern margin of the North China Block. Ph. D. Dissertation Changchun: Jilin University, 1-135 (in Chinese with English summary)
Zhang Q, Wang Y, Li CD, Wang YL, Jin WJ and Jia XQ. 2006. Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract)
Zhang Q. 2013. The criteria and discrimination for A-type granites:A reply to the question put forward by Wang Yang and some other persons for "A-type granite:what is the essence?. Acta Petrologica et Mineralogica, 32(2): 267-274 (in Chinese with English abstract)
Zhang XH, Wang H and Li TS. 2004. 40Ar/39Ar geochronology of the Faku tectonites:Implications for the tectonothermal evolution of the Faku block, northern Liaoning. Science in China (Series D), 48(5): 601-612
Zhang XH and Zhai MG. 2010. Magmatism and its metallogenetic effects during the Paleozoic continental crustal construction in northern North China. Acta Petrologica Sinica, 26(5): 1329-1341 (in Chinese with English abstract)
Zhang YB, Wu FY, Wilde SA, Zhai MG, Lu XP and Sun DY. 2004. Zircon U-Pb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian, Jilin Province, Northeast China. Island Arc, 13(4): 484-505 DOI:10.1111/j.1440-1738.2004.00442.x
曹花花, 许文良, 裴福萍, 郭鹏远, 王枫. 2012. 华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约. 岩石学报, 28(9): 2733-2750.
曹花花. 2013.华北板块北缘东段晚古生代-早中生代火成岩的年代学与地球化学研究.博士学位论文.长春: 吉林大学, 1-171
邓晋福, 罗照华, 苏尚国, 莫宣学, 于炳松, 赖兴运, 湛宏伟. 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社.
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513.
关庆彬, 李世超, 张超, 时溢, 李鹏川. 2016. 兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石U-Pb定年、地球化学特征及其地质意义. 岩石学报, 32(9): 2690-2706.
关庆彬. 2018.华北板块北缘东段开原-延吉地区二叠纪-早侏罗世构造演化.博士学位论文.长春: 吉林大学, 1-145
郝永利, 黄志安. 1996. 法库地区十间房超单元花岗岩岩石成因及侵位机制探讨. 辽宁地质, (4): 274-283.
黄志安, 杨雅君, 韩新德. 1996. 辽北法库变质地层发现海百合茎化石. 辽宁地质, (2): 157-159.
李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605.
李朋武, 高锐, 管烨, 李秋生. 2006. 内蒙古中部索伦林西缝合带封闭时代的古地磁分析. 吉林大学学报(地球科学版), 36(5): 744-758.
辽宁省地质矿产局. 1989. 辽宁省区域地质志. 北京: 地质出版社.
刘春花, 吴才来, 郜源红, 雷敏, 秦海鹏, 李名则. 2014. 南天山拜城县波孜果尔A型花岗岩类锆石U-Pb定年及其Lu-Hf同位素组成. 岩石学报, 30(6): 1595-1614.
刘建峰. 2009.内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约.博士学位论文.长春: 吉林大学, 1-157
刘建峰, 李锦轶, 迟效国, 冯乾文, 胡兆初, 周坤. 2013. 华北克拉通北缘与弧-陆碰撞相关的早泥盆世长英质火山岩——锆石U-Pb定年及地球化学证据. 地质通报, 32(Z1): 267-278.
刘锦, 刘正宏, 李世超, 赵辰, 王楚杰, 彭游博, 杨仲杰, 豆世勇. 2016. 华北北缘东段开原地区三叠纪侵入岩年代学及岩石地球化学研究. 岩石学报, 32(9): 2739-2756.
刘正宏, 徐仲元, 杨振升. 2011. 构造片麻岩含义及其成因机制. 吉林大学学报(地球科学版), 41(5): 1314-1321.
邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008. 福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约. 岩石学报, 24(11): 2468-2484.
时溢, 刘正宏, 徐仲元, 王兴安, 张超, 刘万臻, 陈旭. 2013. 吉林勇新海西期花岗质岩石的同位素年代学及地球化学. 地质与资源, 22(1): 6-13.
时溢. 2020.华北板块北缘东段法库地区晚奥陶世-晚三叠世构造演化——来自岩浆活动证据.博士学位论文.长春: 吉林大学, 1-184
孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据. 吉林大学学报(地球科学版), 34(2): 174-181.
王珍珍, 刘栋, 赵志丹, 闫晶晶, 石卿尚, 莫宣学. 2017. 冈底斯带南部桑日高分异Ⅰ型花岗岩的岩石成因及其动力学意义. 岩石学报, 33(8): 2479-2493.
吴昌志, 张遵忠, Zaw K, Della-Pasque F, 唐俊华, 郑远川, 汪传胜, 三金柱. 2006. 东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义. 岩石学报, 22(5): 1121-1134.
张超. 2014.华北板块北缘东段延边地区中生代构造演化.博士学位论文.长春: 吉林大学, 1-135
张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义. 岩石学报, 22(9): 2249-2269.
张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑. 岩石矿物学杂志, 32(2): 267-274.
张晓晖, 王辉, 李铁胜. 2004. 辽北法库构造岩系的40Ar/-39Ar年代学研究及地质意义. 中国科学(D辑), 34(6): 504-513.
张晓晖, 翟明国. 2010. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应. 岩石学报, 26(5): 1329-1341.