2. 中国石化胜利油田分公司东辛采油厂, 东营 257000;
3. 山东省沉积成矿作用与沉积矿产重点实验室, 山东科技大学, 青岛 266590;
4. 山东省地质科学研究院, 济南 250013;
5. 中国科学院地质与地球物理研究所, 北京 100029
2. Dongxin Oil Production Plant, Shengli Oilfield Company, SINOPEC, Dongying 257000, China;
3. Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral, Shandong University of Science and Technology, Qingdao 266590, China;
4. Shandong Institute of Geological Sciences, Ji'Nan 250013, China;
5. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
郯庐断裂带是中国东部滨太平洋构造域内一条规模巨大的断裂带,其在山东境内的部分称为沂沭断裂带。沂沭断裂带由一系列NNE向的断裂构成,纵贯山东中部,带内出露有大面积的中生代岩浆岩,包括铁镁质侵入岩和基性-中酸性火山岩(邱检生等, 2001; Zhang et al., 2002; 裴福萍等, 2004; 刘燊等, 2004; 牛漫兰等, 2007; 李友连, 2013)。前人研究表明,铁镁质侵入岩和基性火山岩具有相似的元素地球化学特征,明显富集轻稀土元素(LREE)和Rb、Ba、K等大离子亲石元素(LILE),相对亏损重稀土元素(HREE)和Nb、Ta、Ti等高场强元素(HFSE),相对富集Sr-Nd-Pb同位素,这些特征表明,岩浆起源于地球化学不均一的富集岩石圈地幔(Xu et al., 2004a; 李全忠等, 2007; Liu et al., 2015; Meng et al., 2015; Yang et al., 2018),但关于源区富集机制还存在争议,部分学者认为富集作用与三叠纪时期扬子陆块与华北板块之间发生的深俯冲、碰撞作用有关,富集地幔由扬子大陆地壳对华北古老岩石圈地幔交代改造作用形成(Zhou et al., 2002; Yan et al., 2009; Lan et al., 2011; Huang et al., 2012);另一种观点认为其与华北克拉通岩石圈大规模拆沉作用有关,太古代古老地壳物质拆沉进入到地幔中,导致了岩石圈地幔成分改变(Gao et al., 2004; 邱检生等, 2013; Liu et al., 2015; Li et al., 2018)。还有学者认为部分地区富集岩石圈地幔与碳酸盐交代作用有关,交代作用使地幔中金云母和单斜辉石的模式比例发生了改变,导致岩石圈富集(Guo et al., 2001; Ying et al., 2006)。
虽然铁镁质岩石可以很好反映源区特征,但其包含的岩浆后期演化过程信息却十分有限。沂沭断裂带及其附近发育大量中酸性火山岩,可以更多反应岩浆形成以后穿过地壳的演化过程。其岩石成因存在三种观点:(1)大多数学者主张它们应该起源于富集岩石圈地幔,由基性岩浆发生了分离结晶作用形成,在岩浆上升过程中有/未受到地壳混染(牛漫兰等, 2001; Yang et al., 2018);(2)部分学者认为它们是华北或扬子下地壳和地幔物质部分熔融混合的产物(匡永生等, 2012; 曹光跃, 2018; Meng et al., 2018);(3)还有部分学者则认为部分地区中性火山岩是华北或扬子下地壳熔融产物(Fan et al., 2001; Ling et al., 2009; Yang et al., 2016)。
沂沭断裂带区域中酸性火山岩的源区组成和形成演化过程也存在争议。不同地区中酸性火山岩成因可能存在差别,前人的研究多集中在沂沭断裂带中南段,而北段研究较少。本次研究选取沂沭断裂带北段潍坊-安丘-鄌郚地区的晚中生代火山岩为研究对象,系统考察与取样后,进行详细的岩石学、锆石U-Pb年代学、岩石地球化学研究,探讨其源区组成特征及形成演化过程,为进一步整体揭示沂沭断裂带晚中生代岩浆活动特征提供重要信息。
1 区域地质概况及岩石学华北克拉通以中亚造山带南缘为北界,以秦岭-大别-苏鲁造山带为东南界,东临黄海,地质演化历史复杂(图 1a)(Liu et al., 2019)。中亚造山带形成于古生代时期华北克拉通与蒙古板块之间的碰撞作用(Xiao et al., 2003; 陈衍景等, 2009),秦岭-大别-苏鲁造山带则是由晚三叠世时期华北克拉通与扬子板块之间的陆陆碰撞作用产生(Yin and Nie, 1993; Li, 1994)。郯庐断裂带是华北东部的一个突出的地质构造,在中国境内宽约20~40km,长近2400km。断裂带整体呈近“S”状沿着NNE方向延伸,南起长江北岸湖北广济,向北途经安徽庐江、江苏宿迁,到达山东境内的郯城地区,北入渤海,最终穿过沈阳后一分为二形成了东支的密山-抚顺断裂带(又称敦化-密山断裂带)和西支的依兰-伊通断裂带。断裂带由南至北可划分为苏皖段、山东段(沂沭断裂带)和沈阳-渤海段(营潍断裂带)(朱光等, 2003)(图 1a)。
|
图 1 华北克拉通构造简图(a, 据Zhao et al., 2005)和沂沭断裂带晚中生代火山岩分布略图(b, 据匡永生等, 2012) Fig. 1 A simplified tectonic map of North China Craton (a, after Zhao et al., 2005) and distribution of Late Mesozoic volcanic rocks along the Yishu fault (b, after Kuang et al., 2012) |
山东地区晚中生代地层由莱阳群、大盛群、青山群、王氏群组成,早白垩世火山岩和燕山期花岗岩分布广泛,本次研究所采样品位于沂沭断裂带北段的潍坊、安丘、鄌郚地区(图 1b)。火山岩广泛分布在早白垩世青山群地层中(图 2),存在火山熔岩和火山碎屑岩两种类型,本次研究主要采集火山熔岩样品。岩石整体呈紫色、灰黑色、浅肉红色,块状构造,隐晶质结构,部分可见斑状结构(图 3a-d),取样过程去除表面风化物质,获得新鲜样品10件。
|
图 2 沂沭断裂带北段鄌郚地区地质图(a, 据山东省地质矿产局, 1990①)、安丘地区地质图(b, 据山东省地质矿产局, 1991②)和潍坊地区地质图(c, 据山东省地质调查研究院, 1996③) Fig. 2 Geological maps of Tangwu area (a), Anqiu area (b) and Weifang area (c) in the northern part of Yishu fault |
① 山东省地质矿产局. 1990年. 1:5万鄌郚幅地质图
② 山东省地质矿产局. 1991年. 1:20万高密幅地质图
③ 山东省地质调查研究院. 1996年. 1:20万潍坊幅地质图
|
图 3 沂沭断裂带北段早白垩世火山岩野外照片(a-d)和相应的显微照片(e-h) Pl-斜长石;Bt-黑云母;Px-辉石;Or-正长石 Fig. 3 Field photos (a-d) and corresponding micrographs (e-h) of the Early Cretaceous volcanic rocks from the northern part of Yishu fault Pl-plagioclase; Bt-biotite; Px-pyroxene; Or-orthoclase |
鄌郚地区火山岩为玄武安山岩(BTW样品)和粗安岩(SMT样品):玄武安山岩呈斑状结构,斑晶主要为斜长石、辉石、角闪石,斑晶含量约占10%(图 3e),基质主要由细小辉石、角闪石、斜长石、不透明矿物组成;粗安岩呈斑状结构,斑晶为正长石,含量约占15%(图 3f)。潍坊地区火山岩包括粗面岩(NMC样品)和英安岩(XFC样品):粗面岩呈斑状结构,斑晶为正长石,含量较低,约为5%(图 3g)。安丘地区火山岩主要为英安岩(QXCG样品),与潍坊地区英安岩岩石特征相似,都为斑状结构,斑晶含量较低,约为5%。斑晶由黑云母和斜长石组成,部分黑云母具有暗化边,基质成分肉眼不能辨认(图 3h)。
2 分析方法锆石挑选工作在河北省区域地质矿产调查研究所实验室完成。首先,用切割机将野外采集样品的风化面切除,保留内部新鲜部分,进行破碎、磁选以及重选完成锆石颗粒的初步分选;然后,双目镜下挑选出符合要求(颗粒大、表面光洁、晶型完整、色泽度好等)的锆石颗粒,再将锆石用双面胶贴在载玻片上注入环氧树脂;最后,用砂纸对固结后的锆石颗粒进行打磨并进行表面清洗工作,抛光后进行阴极发光照相(CL)、透反射光照相。锆石U-Pb年龄测试在北京锆年领航科技有限公司进行。使用AnlyitikJena PQMS Elite ICP-MS仪器和ESI NWR 193nm准分子激光剥蚀系统,激光光斑直径可达到35μm,频率高达10Hz,能量密度2.31J/cm2。采用国际标准锆石GJ-1为外标标准物质(Jackson et al., 2004)。使用ICPMSDataCal程序软件来进行测试数据的处理工作,采用Isoplot 4.15程序进行锆石年龄谐和图绘制,同位素比值和年龄误差为1σ,U-Pb加权平均年龄误差在95%的置信区间内。
全岩主微量元素在核工业北京地质研究院分析测试研究中心完成。主量元素利用X射线荧光光谱(XRF)法进行分析测定,仪器为AxiosmAX X射线荧光光谱仪,测试精度优于2%。微量元素的分析测试工作采用电感耦合等离子体质谱法(ICP-MS),仪器为德国ELEMENT质谱仪,元素含量大于10-5的元素测试精度优于5%,小于10-5的元素精度优于10%。详细分析测定步骤可以参照Qu et al. (2004)。Sr-Nd-Pb同位素在中国科学院地质与地球物理研究所固体同位素实验室进行分析。利用HF+HNO3+HClO4混合酸将50~100mg样品溶解,后分离提纯。同位素组成在FinniganMAT262同位素质谱仪上进行测定,Sr同位素比值采用86Sr/88Sr=0.1194进行质量分馏校正;Nd同位素比值采用146Nd/144Nd=0.7219进行校正;Pb同位素比值采用NBS-981标样进行校正。具体的实验步骤可见相关参考文献(Foland and Allen, 1991)。
3 分析测试结果 3.1 锆石U-Pb年龄选取潍坊粗面岩(NMC-01)、安丘英安岩(QXGC-01)和鄌郚玄武安山岩(BTW-01)三件样品进行LA-ICP-MS法锆石U-Pb同位素年代学测试,测试样品的详细经纬度坐标及U-Pb定年结果列于表 1。
|
|
表 1 沂沭断裂带北段早白垩世火山岩LA-ICP-MS锆石U-Pb定年结果 Table 1 LA-ICP-MS zircon U-Pb dating results of the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
NMC-01样品中锆石颗粒绝大多数以棱柱状为主,少数呈不规则的粒状,结晶程度较好,具透明-半透明状,长径主要变化于100~150μm,长宽比多为1.5:1~2:1,其Th/U比值在0.75~1.56范围内,阴极发光图像(CL)上均显示出较为清晰的震荡环带结构(图 4a),为明显的岩浆成因特征。该样品共获得了28个有效测试点数据(表 1),其中点21与其他分析点不谐和,剩余27个点均具有相似的206Pb/238U年龄,所有点在206Pb/238U-207Pb/235U图上(图 5a),均位于谐和线上,经计算获得206Pb/238U加权平均年龄为124±1Ma(MSWD=0.86,2σ)(图 5b),该年龄可以代表潍坊地区粗面岩的形成年龄。
|
图 4 沂沭断裂带北段早白垩世火山岩锆石CL图像和LA-ICP-MS分析点位以及206Pb/238U视年龄(单位:Ma) Fig. 4 CL images, localities of the points for LA-ICP-MS measurements and the 206Pb/238U apparent ages (Ma) of zircons from the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
|
图 5 沂沭断裂带北段早白垩世火山岩的锆石U-Pb谐和图 Fig. 5 U-Pb concordia diagrams of zircons from the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
QXGC-01样品中锆石颗粒发育不太完整,呈大小不一的短柱状、不规则粒状,其长径变化于60~100μm之间,长宽比为1:1~1.5:1,高Th/U比值为0.15~1.49,CL图像显示大多数锆石颗粒发育韵律环带但环带不清晰(图 4b),应为岩浆成因锆石。对锆石颗粒进行了20个分析点的测定(表 1),其中点2、4、5、7、13和18测试点的206Pb/238U表面年龄介于1470~2531Ma之间,为继承或捕获的锆石;点1、3、10、11、和19的206Pb/238U表面年龄分别为257Ma和432Ma,也为捕获锆石。除去2个不在谐和线上的测试点,剩余7个测试点206Pb/238U表面年龄均落在谐和线上(图 5c),经加权平均计算后其206Pb/238U年龄为131±2Ma(MSWD=1.6,2σ)(图 5d),代表安丘地区英安岩的形成年龄。
BTW-01样品中锆石颗粒较小,以柱状、不规则状为主,长径变化范围为50~90μm,长宽比多为1:1~1.5:1,其高Th/U比值为0.20~2.80,指示其为岩浆结晶产物,CL图像上韵律环带结构模糊或不发育(图 4c)。共进行了22个分析点的测试(表 1),其中2、12、16分析点的206Pb/238U表面年龄在2228~2695Ma之间,为继承锆石或捕获锆石;测试点4、17、18、19的206Pb/238U表面年龄244~439Ma之间,也为继承锆石或捕获锆石;除去1个非谐和测试点,其余14个测点数据集中在119~130Ma,均位于谐和线上(图 5e),其206Pb/238U加权平均年龄为124±2Ma(MSWD=2.2,2σ)(图 5f),代表鄌郚地区玄武安山岩的形成年龄。
3.2 主量元素沂沭断裂带北段潍坊-安丘-鄌郚地区晚中生代火山岩样品的主量元素地球化学组成列于表 2。区内火山岩为一套中性岩石,SiO2含量变化范围为51.25%~66.47%,火山岩样品在TAS图解上(图 6a)落入玄武安山岩、安山岩、粗安岩、粗面岩和英安岩区域中。其K2O含量在2.07%~4.35%范围内变化,在SiO2-K2O关系图(图 6b)中落入高钾钙碱性系列。区域内火山岩样品MgO含量(0.48%~3.22%)变化较大,而TiO2含量较低,变化范围为0.30%~0.73%,Al2O3含量为12.65%~17.90%,Na2O含量为2.41%~6.29%,Fe2O3T含量为3.83%~7.52%。沂沭断裂带所有岩石样品的MgO、CaO、Fe2O3T、TiO2总体上均与SiO2含量呈明显负相关关系,而K2O与SiO2含量呈显著正相关关系,Na2O、P2O5、Al2O3则随着SiO2含量的增加无明显变化(图 7)。
|
|
表 2 沂沭断裂带北段早白垩世火山岩主量元素(wt%)及微量元素(×10-6)含量 Table 2 Major (wt%) and trace (×10-6) element concentrations of the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
|
图 6 沂沭断裂带北段早白垩世火山岩TAS(a, 据Le Bas et al., 1986)和K2O-SiO2(b, 据Foley and Peccerillo, 1992)图解 安丘数据张永清等, 2017.图 7-图 14图例及数据引用同此图 Fig. 6 TAS (a, after Le Bas et al., 1986) and K2O vs. SiO2 (b, after Foley and Peccerillo, 1992) diagrams of the Early Cretaceous volcanic rocks in the northern part of Yishu fault Anqiu data from Zhang et al., 2017. Symbols and data in fig. 7-fig. 14 are as same as those in this figure |
|
图 7 沂沭断裂带北段早白垩世火山岩元素协变图解 Fig. 7 Elements against SiO2 diagrams of the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
|
图 8 沂沭断裂带北段早白垩世火山岩球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) 数据来源:方城玄武岩(Zhang et al., 2002; Ying et al., 2006);潍坊辉绿岩(Liu et al., 2015) Fig. 8 Chondrite-normalized rare earth element pattern (a) and primitive mantle-normalized trace element spidergrams (b) of the Early Cretaceous volcanic rocks in the northern part of Yishu fault (normalization values after Sun and McDonough, 1989) Data resources: Fancheng basalt (Zhang et al., 2002; Ying et al., 2006); Weifang diabase (Liu et al., 2015) |
|
图 9 沂沭断裂带北段早白垩世火山岩(87Sr/86Sr)i-εNd(t)关系图(底图据Li et al., 2018修改) 数据来源:MORB (Hofmann, 2007);鲁西EMⅠ型基性岩(Guo et al., 2001; 闫峻, 2001; Xu et al., 2004b; Yang et al., 2005; Liu et al., 2006, 2008a; 李全忠等, 2007);鲁西EMⅡ型基性岩(Zhang et al., 2002; Xu et al., 2004a; Ying et al., 2006);软流圈地幔来源基性岩(107~78Ma)和岩石圈地幔来源基性岩脉(Ma et al., 2014);鲁西早白垩世埃达克质岩石(Liu et al., 2008a; Wang et al., 2016);鲁东早白垩世埃达克岩(Huang et al., 2016);沂南辉长岩(Xu et al., 2004a);方城玄武岩(Zhang et al., 2002; Guo et al., 2013) Fig. 9 (87Sr/86Sr)i vs. εNd(t) diagram of the Early Cretaceous volcanic rocks in the northern part of Yishu fault (base map after Li et al., 2018) Data resources: MORB (Hofmann, 2007); EMⅠ-type rocks in Luxi (Guo et al., 2001; Yan et al., 2001; Xu et al., 2004b; Yang et al., 2005; Liu et al., 2006, 2008a; Li et al., 2007); EMⅡ-type rocks in Luxi (Zhang et al., 2002; Xu et al., 2004a; Ying et al., 2006); asthenospheric mantle-derived mafic rocks (107~78Ma) and lithospheric mantle-derived mafic dykes (Ma et al., 2014); Early Cretaceous adakitic rocks in western Shandong (Liu et al., 2008a; Wang et al., 2016); Early Creaceous adakitic rocks in eastern Shandong (Huang et al., 2016); Yi'nan gabbro (Xu et al., 2004a); Fancheng basalt (Zhang et al., 2002; Guo et al., 2013) |
|
图 10 沂沭断裂带北段早白垩世火山岩(207Pb/204Pb)i-(206Pb/204Pb)i (a)和(208Pb/204Pb)i-(206Pb/204Pb)i (b)关系图(底图据Zindler and Hart, 1986) 数据来源:方城玄武岩(Zhang et al., 2002);沂南辉绿岩(Xu et al., 2004a);鲁西EMⅠ型基性岩(Guo et al., 2001; 闫峻等, 2001; 杨承海, 2007);鲁西EMⅡ型基性岩(Zhang et al., 2002; Ying et al., 2004; 杨承海, 2007) Fig. 10 (207Pb/204Pb)i vs. (206Pb/204Pb)i (a) and (208Pb/204Pb)i vs. (206Pb/204Pb)i (b) diagrams of the Early Cretaceous volcanic rocks in the northern part of Yishu fault (base map after Zindler and Hart, 1986) Data resources: Fangcheng basalt (Zhang et al., 2002); Yi'nan diabases (Xu et al., 2004a); EMⅠ-type basic rocks in Luxi (Guo et al., 2001; Yan et al., 2001; Yang, 2007); EMⅡ-type basic rocks in Luxi (Zhang et al., 2002; Ying et al., 2004; Yang, 2007) |
|
图 11 沂沭断裂带北段早白垩世火山岩(87Sr/86Sr)i-SiO2 (a)和εNd(t)-SiO2 (b)关系图 Fig. 11 (87Sr/86Sr)i vs. SiO2 (a) and εNd(t) vs. SiO2 (b) diagrams of the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
|
图 12 沂沭断裂带北段早白垩世火山岩La-La/Sm关系图 Fig. 12 La vs. La/Sm diagram of the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
|
图 13 沂沭断裂带北段早白垩世火山岩(Ta/La)N-(Hf/Sm)N关系图(底图据邱检生等, 2013) 数据来源:俯冲流体/熔体交代及碳酸岩熔体交代区(La Flèche et al., 1998); DM(McCulloch and Bennett, 1994); HIMU(Chauvel et al., 1992) Fig. 13 (Ta/La)N vs. (Hf/Sm)N diagram of the Early Cretaceous volcanic rocks in the northern part of Yishu fault (after Qiu et al., 2013) Data resources: The fields for subduction metasomatism and carbonatite metasomatism (La Flèche et al., 1998); DM (McCulloch and Bennett, 1994); HIMU (Chauvel et al., 1992) |
|
图 14 沂沭断裂带北段早白垩世火山岩(87Sr/86Sr)i-(143Nd/144Nd)i二元混合模拟 数据来源:古生代岩石圈地幔(蒙阴金伯利岩和地幔橄榄岩,Sr=95×10-6, Nd=21×10-6, 87Sr/86Sr=0.7085, 143Nd/144Nd=0.51225, Zhang et al., 2002);扬子下地壳(Sr=300×10-6, Nd=20×10-6, 87Sr/86Sr=0.711, 143Nd/144Nd=0.5110, Jahn et al., 1999);华北上地壳(Zhou et al., 2002);山东EMⅡ型基性岩(Zhang et al., 2002; Xu et al., 2004a; Ying et al., 2006; 杨进辉等, 2007; Guo et al., 2013);EMⅠ(Zindler and Hart, 1986) Fig. 14 (87Sr/86Sr)i vs. (143Nd/144Nd)i model diagram of the Early Cretacous volcanic rocks in the northern part of Yishu fault Data sources: Old lithospheric mantle (kimberlites and their mantle peridotite, Sr=95×10-6, Nd=21×10-6, 87Sr/86Sr=0.7085, 143Nd/144Nd=0.51225, Zhang et al., 2002); Yangtz Lower crust (Sr=300×10-6, Nd=20×10-6, 87Sr/86Sr=0.711, 143Nd/144Nd=0.5110, Jahn et al., 1999); upper crust of the North China Craton (Zhou et al., 2002); EMⅡ-type basic rocks of Shandong (Zhang et al., 2002; Xu et al., 2004a; Ying et al., 2006; Yang et al., 2007; Guo et al., 2013); EMⅠ (Zindler and Hart, 1986) |
研究区高钾钙碱性火山岩微量元素和稀土元素分析结果列于表 2。稀土元素含量变化具有一致性,其∑REE主要在140.5×10-6~433.1×10-6范围内,富集轻稀土(LREE)而亏损重稀土(HREE),∑LREE/∑HREE值为9.8~31.0,(La/Yb)N值为14.0~58.1(平均为40.3)。稀土元素配分模式图上,具有明显一致的右倾型特征(图 8a),指示这些岩石的原始岩浆来源于性质相似的源区。δEu值在0.81~1.02内变化,缺乏显著的负Eu异常,暗示无明显的斜长石分离结晶作用。火山岩这些元素地球化学特征与鲁西晚中生代基性岩浆岩类似(Zhang et al., 2002; Guo et al., 2013; Li et al., 2018),但与OIB或MORB完全不同。
原始地幔标准化微量元素蛛网图上(图 8b),火山岩明显富集Rb、Ba、K、Pb等大离子亲石元素(LILE),相对亏损Nb、Ta和Ti等高场强元素(HFSE)。岩石表现出显著的Pb正异常、P负异常,Th、Zr、Hf元素含量相对较低,微量元素分布模式与鲁西地区早白垩世EMⅡ型基性岩浆岩(Zhang et al., 2002; Ying et al., 2006; Liu et al., 2015)相似。Cr、Ni元素含量整体上随着SiO2含量的增加而减少,Sr、Sm元素随着SiO2含量的增加无明显变化(图 7)。
3.4 Sr-Nd-Pb同位素特征高钾钙碱性火山岩Sr-Nd-Pb同位素分析结果列于表 3。火山岩具有富集的Sr-Nd同位素组成,(87Sr/86Sr)i值在0.708054~0.711692范围内变化,εNd(t)值为-15.3~-7.4之间,同位素值变化区间较大。样品的Sr-Nd同位素组成与鲁西EMⅡ型幔源岩石——方城玄武岩((87Sr/86Sr)i=0.7094~0.7101, εNd(t)=-14.2~-11.1, Zhang et al., 2002; Guo et al., 2013)类似(图 9),也与沂沭断裂带内铁镁质侵入岩相似,如潍坊辉绿岩((87Sr/86Sr)i=0.7098~0.7100,εNd(t)=-14.5~-13.8,Liu et al., 2015)、沂南辉长岩((87Sr/86Sr)i=0.7105~0.7112,εNd(t)=-15.6~-12.7,Xu et al., 2004a)等。不同于鲁西EMⅠ型岩石圈地幔来源基性岩(Guo et al., 2003)。Pb同位素变化范围为(206Pb/204Pb)i=17.213~17.962,(207Pb/204Pb)i=15.425~15.590,(208Pb/204Pb)i=37.597~38.365,与沂沭断裂带内及邻区的鲁西EMⅡ型岩石相似(图 10),如沂南辉长岩((206Pb/204Pb)i=17.263~17.454,(207Pb/204Pb)i=15.475~15.552,(208Pb/204Pb)i=37.458~38.019,Xu et al., 2004a)。
|
|
表 3 沂沭断裂带北段早白垩世火山岩Sr-Nd-Pb同位素组成 Table 3 Sr-Nd-Pb isotopic compositions of the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
风化和次生变化过程可不同程度地活化某些主量元素(Si、Na、K、Ca)和大离子亲石元素(Rb、Ba、Sr),但基本不会改变高场强元素和稀土元素的活动性(Riley et al., 2001),具体表现为低温水合和长英质脱玻化作用易导致K、Si元素的增加而Na元素减少;热液活动通常会使K、Rb、Ba和Si元素富集而Na、Ca和Sr亏损;区域变质作用也会提高K、Sr、Rb和Ba等元素的活动性(Thorpe et al., 1993),因此对弱蚀变火山岩成因的分析应该主要集中于HFSE(Zr、Hf、Nb、Ta、Ti、P)和REE。
4.1 地壳混染沂沭断裂带北段早白垩世火山岩均表现为富集大离子亲石元素(LILE)、亏损高场强元素(HFSE)的特征,且具有富集的Sr-Nd-Pb同位素组成,这些特征说明地壳物质起到了重要作用。然而,地壳物质是对地幔源区交代改造还是参与了岩浆上升过程中的混染,或是两者作用的叠加,需要进一步讨论。沂沭断裂带处于大陆板块内部,岩浆上升过程中需要跨越较厚的大陆地壳,一定程度上可能要遭受地壳混染。
火山岩具有明显较高含量的SiO2和低含量的MgO、全铁Fe2O3T以及CaO,指示其火山岩可能经历了强烈的结晶分异或地壳混染作用。任何地幔岩石的部分熔融都会产生低SiO2含量的岩浆,尽管在地幔高度富集流体时可以产生中等SiO2(56%~60%)含量的岩浆(Zhang et al., 2008)。地壳混染会致使主量、微量元素随SiO2含量的改变发生明显地变化,还会导致岩石的(87Sr/86Sr)i和εNd(t)值随着SiO2的增大而分别增加和减少。沂沭断裂带北段中性火山岩的Sr-Nd同位素组成具有一定变化,个别样品的初始87Sr/86Sr比值、εNd(t)值与SiO2含量之间呈现上升或者下降趋势(图 11a, b),指示这些样品可能受到地壳混染。另外,地壳混染作用会导致K2O/TiO2和K2O/P2O5比值的增加(Fan et al., 2001),区内中性火山岩的K2O/TiO2=3.17~14.30,K2O/P2O5=4.66~19.32,比值具有一定变化,符合这一特征。安丘地区QXGC-01火山岩中存在捕获锆石,锆石年龄(2.43~2.69Ga)与华北克拉通太古界基底的年龄相一致(2.4~2.5Ga; Gao et al., 2004; Geng et al., 2012),也说明了在岩浆演化的过程中有华北古老地壳物质的参与。
中上地壳通常表现为具有显著的Eu负异常,以及强烈富集Rb、Th、U等元素而相对亏损Sr元素的特征(Taylor and McLennan, 1985; Jahn et al., 1999)。断裂带北段中性火山岩不存在明显Eu负异常特征,其Rb/Ba值介于0.04~0.10之间,总体偏低,表明了在岩浆上升过程中不存在显著的中上地壳的混染。下地壳主要是由麻粒岩相岩石组成的,其组成具有不均一性且Sr-Nd同位素组成变化大,强烈亏损U、Th,相对富集Ba、Sr,亏损Nb、Ta且Nb/Ta比值较高。微量元素蛛网图上显示断裂带北段早白垩世高钾钙碱性火山岩绝大多数都富集Ba而亏损Th、Sr(图 8),且其Nb/Ta比值范围为18.8~24.2(平均值为20.2),整体上略高于华北克拉通基性麻粒岩的平均值(17.42, 刘勇胜等, 1999)。高钾钙碱性火山岩Th/U比值在4.3~11.8范围内变化,其平均值为7.2,比华北克拉通下地壳的平均值(6.0, Gao et al., 1998)要高。这些证据均表明断裂带北段早白垩世岩浆上升过程中受到了来自华北下地壳物质的混染。然而,鄌郚地区玄武安山岩、粗面岩MgO含量和εNd(t)值较高,随SiO2含量增加变化范围较小,只有潍坊地区样品的(87Sr/86Sr)i比值、εNd(t)值出现明显变化,表现出了地壳混染趋势(图 11)。因此,沂沭断裂带北段潍坊地区和安丘地区英安岩遭受了明显的地壳混染,其余地区样品的Sr-Nd同位素组成与原始岩浆差异不大,可以用来讨论源区特征和岩浆演化。
4.2 部分熔融与分离结晶La-La/Sm图解常被用于判别部分熔融和分离结晶过程。由于La和Sm在熔体相和晶体相的配分系数不同,在部分熔融过程中,La/Sm随着La的增加而增加,而分离结晶过程中,La/Sm值随着La的增加保持恒定。沂沭断裂带鄌郚地区玄武安山岩随着La的增加,La/Sm比值呈良好的线性增加趋势,代表部分熔融作用影响较大。粗面岩、粗安岩和英安岩随着La的增加,La/Sm比值基本保持恒定,说明分离结晶作用对粗面岩、粗安岩和英安岩地球化学特征影响较大(图 12)。
粗面岩、粗安岩和英安岩斑晶发育(图 3f-h)。MgO、CaO、Fe2O3T等氧化物以及Cr、Ni等微量元素均同SiO2表现出良好的线性关系(图 7),暗示这些岩石经历不同程度的分离结晶。英安岩的MgO、Cr、Ni含量(表 2)均明显低于原始岩浆的参考值(即其MgO=10%~12%,Cr=250×10-6,Ni=90×10-6~670×10-6,Mg#值为68~75,Wendlandt et al., 1995; Righter, 2000),表明了它们是原始岩浆结晶分异形成的。英安岩的MgO、CaO、Fe2O3T的含量均随着SiO2含量的增大而减少,暗示其岩浆可能都经历了一定的角闪石的分离结晶,同时Dy与Er之间的正相关性也证明了这一点(图略)。微量元素蛛网图中显示P和Ti元素存在显著负异常(图 8),而其TiO2、P2O5的含量也都随着SiO2含量的增大而减少,这些特征均指示磷灰石和Fe-Ti等氧化物(如钛铁矿)发生了分离结晶。稀土元素配分图上英安岩无明显的Eu异常(图 8),表明不存在斜长石的强烈分离结晶作用。综上所述,该区玄武安山岩元素变化主要受部分熔融控制,而粗面岩、粗安岩和英安岩元素变化则受部分熔融和分离结晶的共同控制。
4.3 源区特征沂沭断裂带北段部分钙碱性火山岩母岩浆在上升过程中经历了华北地壳物质的同化混染作用。因此,关于它源区特征的讨论主要集中在区内混染程度较低或未受混染影响的样品(鄌郚地区玄武安山岩)。这些火山岩具有高含量的Al2O3、Sr和(La/Yb)N以及低Yb特征,类似于埃达克岩(Drummond and Defant, 1990; Castillo, 2012)。实验研究表明,在1~4GPa压力下,基性下地壳(玄武岩/变玄武岩)发生部分熔融形成的埃达克质熔体具有低的MgO、Cr、Ni含量和Mg#(Rapp and Watson, 1995; Rapp et al., 1999)。然而,该区玄武安山岩具有较高的Cr(286.4×10-6~313.3×10-6)、Ni(103.4×10-6~119.5×10-6)值,MgO、Mg#值变化范围也较大,初始87Sr/86Sr和εNd(t)值也完全与华北下地壳或是扬子下地壳的同位素组成不同(图 9)。玄武安山岩的Nb/Ta值(18.79~24.24)高于大陆地壳(12~13, Barth et al., 2000),La/Nb比值(≥4)高于中国大陆东部地壳平均值(1.7, Gao et al., 1998),指示它们不可能仅由下地壳源区的部分熔融形成,岩浆源区中必然存在幔源物质。软流圈与地壳岩浆混合,在理论上可以产生类似区内火山岩的εNd(t)值,但也会造成火成岩的Nb/U、Ce/Pb比值分别达到20和13以上(谢文雅等, 2009),该区玄武安山岩的Nb/U约为4.7,Ce/Pb约为5.3,均远小于上述值。因此,沂沭断裂带北段玄武安山岩无法用壳源和软流圈岩浆的混合来解释。
未受混染影响的玄武安山岩表现出富集的Sr-Nd-Pb同位素组成,强烈富集LREE和LILE,而亏损HREE、HFSE,样品的Ba/Nb、Rb/Nb比值较高,远高于原始地幔(PM)、亏损地幔(DM)的值(Weaver, 1991; Jahn et al., 1999),这些特征都说明该区玄武安山岩可能来源于富集地幔,其地幔源区遭受了大陆地壳物质的改造。另外,玄武安山岩稀土、微量元素特征与方城玄武岩、潍坊辉绿岩等山东晚中生代富集地幔源区基性岩的十分接近(图 8)。Sr-Nd同位素组成与来自富集岩石圈地幔的鲁西EMⅡ型基性岩和沂沭断裂带内铁镁质侵入岩类似。在(207Pb/204Pb)i-(206Pb/204Pb)i和(208Pb/204Pb)i-(206Pb/204Pb)i关系图上(图 10),玄武安山岩Pb同位素与沂南辉长岩相近,略高于典型富集地幔源区方城玄武岩(Zhang et al., 2002),这些特征进一步验证了玄武安山岩与该区基性岩具有相同的源区,均为富集岩石圈地幔源区。粗面岩、粗安岩、英安岩与玄武安山岩具有相似的同位素组成,暗示其来自于相同源区,经历了不同的岩浆演化过程。
华北中生代富集岩石圈地幔的形成有多种方式:(1)与华北克拉通岩石圈大规模拆沉作用有关,来自太古代的古老地壳物质因拆沉而循环进入到地幔中,最终导致了其岩石圈地幔成分发生改变(Gao et al., 2004; Liu et al., 2008b; Ling et al., 2009);(2)与三叠纪时期扬子陆块与华北板块之间发生的深俯冲、碰撞作用有关,由扬子大陆地壳对华北古老岩石圈地幔交代改造作用形成(Zhang et al., 2002; Tang et al., 2009; Lan et al., 2011; Yang et al., 2010, 2012a, 2016);(3)与碳酸盐交代作用有关(Guo et al., 2001; Ying et al., 2006),交代过程促使地幔中金云母、单斜辉石之间的模式比例发生了改变,导致地幔富集。
高钾钙碱性火山岩富集LILE而亏损HFSE、富集Sr-Nd-Pb同位素组成,与活动大陆边缘火山岩类似,具有弧火山岩的地球化学特征。元素异常是源区富集流体/熔体的标志。在火山岩形成之前,流体/熔体将古老的、冷的、难熔的大陆岩石圈地幔交代改造形成富集地幔。(Ta/La)N-(Hf/Sm)N关系图显示,研究区火山岩富集地幔源区的形成可能与俯冲流体交代作用有关,而与碳酸盐交代无关(图 13)。由俯冲大洋板块形成的熔体/流体交代地幔楔形成的岩石通常相对具有亏损Sr、Nd同位素组成(Hofman and Jochum, 1996),本文中性火山岩具有富集Sr-Nd同位素组成,Sr、Nd同位素投点远离MORB,而偏向富集的大陆地壳一侧(图 9),说明源区的流体交代作用并不是洋壳俯冲的结果,而是陆壳物质加入的结果,进而排除了源区是由古太平洋板块早中生代向欧亚大陆俯冲导致的地幔富集。
古老下地壳拆沉作用可以导致岩石圈地幔富集(Gao et al., 2004; Liu et al., 2008b)。山东地区西北部的济南、邹平基性岩源区具有EMⅠ地幔特征,其源区可能是由于华北下地壳拆沉作用导致的地幔被碳酸盐交代形成(Ying et al., 2006)。岩石圈拆沉过程中加厚的下地壳部分熔融可以形成埃达克质岩石,虽然山东地区也发现了许多埃达克质岩石,但是这些岩石时代大多也为早白垩世,与区域早白垩世基性岩浆活动同时形成(Gao et al., 2004; Liu et al., 2008b; Ling et al., 2009; Li et al., 2018),这说明华北克拉通埃达克质岩石与区域中基性岩形成于同一构造体系(Yang et al., 2016)。区域上缺少中生代之前形成的埃达克质岩石,排除了大规模的拆沉作用导致的地幔富集。华北克拉通东南部中生代基性岩的元素和Sr-Nd-Pb同位素自西向东、自北向南具有明显的变化规律,源区交代作用由东南向西北逐渐减弱(Xu et al., 2004a; Yang et al., 2012a, b, 2016),暗示其源区的富集与三叠纪时期南部扬子板块向北俯冲有关。Yang et al.(2012a)研究认为,扬子深俯冲折返对上覆岩石圈地幔的空间影响效应可能延伸至距大别-苏鲁造山带200~300km处。沂沭断裂带及附近早白垩世基性岩源区中存在大量扬子物质(Yang et al., 2010, 2016),进一步说明了沂沭断裂带地区古老岩石圈地幔遭受过扬子板块俯冲的改造。本文选择扬子下地壳和华北古老岩石圈地幔(蒙阴金伯利岩和地幔橄榄岩)作为二元混合端元,进行混合模拟,相关参数参考文献(Ying et al., 2006)。图 14可以看出,高钾钙碱性火山岩Sr、Nd同位素组成分布在古老岩石圈地幔与扬子克拉通下地壳的混合线上,其中鄌郚玄武安山岩中扬子下地壳物质贡献10%~20%,部分潍坊和安丘英安岩偏向华北克拉通下地壳,是岩浆上升过程受到地壳混染所致。
4.4 构造意义华北克拉通以中亚造山带南缘为北界,秦岭-大别为南界,苏鲁造山带位于其东南部边界上(图 1),中生代构造演化十分复杂。华北克拉通早白垩世大规模岩浆活动之前,岩石圈地幔已经遭受了不同程度改造,但空间差异较大。华北克拉通内部仍保留着难熔的古老岩石圈地幔或者受到了碳酸盐交代改造(Guo et al., 2003; Ying et al., 2006)。克拉通北缘岩石圈在古生代受到了古亚洲洋俯冲交代改造(Fan et al., 2007)。东南缘岩石圈则在三叠纪时期受到了扬子板块俯冲改造(Yang et al., 2012a, b, 2016)。地质-地球物理资料证明,晚三叠世,扬子板块沿苏鲁-大别向北及西北方向俯冲(Gilder et al., 1999; Xu et al., 2009)。基于以上认识,我们认为:三叠纪,扬子地块和华北克拉通发生碰撞,在克拉通东南缘,扬子板块沿沂沭断裂带向西北方向俯冲,深俯冲距离超过200km(Yang et al., 2012a),俯冲过程导致了地壳增厚,随之俯冲板片断离(Zhang et al., 2002; Xu et al., 2009; Lan et al., 2011),断离的扬子地壳析出的流体/熔体将华北古老岩石圈地幔改造(图 15a),形成了富集Sr-Nd-Pb同位素以及LREE、LILE的岩石圈地幔。之后,区域一直处于碰撞后调整阶段,岩石圈相对较冷,缺乏热对流,没有发生大规模岩浆活动。早白垩世,由于古太平洋板块向欧亚大陆的俯冲、后撤,区域伸展拉张或者拆沉(Yang et al., 2016),富集岩石圈地幔和拆沉下地壳发生部分熔融,形成了华北克拉通东部中基性岩浆。与此同时,受太平洋板块俯冲影响,沂沭断裂带发生了大规模的平移,伸展活动持续加强(牛漫兰等, 2002; Zhu et al., 2005; 朱光等, 2018),断裂带内部及附近岩石圈地幔发生部分熔融,形成了早白垩世沂沭断裂带岩浆岩(图 15b)(Qiu et al., 2002; Xu et al., 2004b; 邱检生等, 2013; Yang et al., 2018)。与鲁东和鲁西不同在于,沂沭断裂带深切作用较强,岩浆在上升过程中发生了更为强烈的分离结晶,在沂沭断裂带及附近部分地区,基性岩浆进一步分离结晶。受断裂作用影响,华北克拉通下地壳物质更易加入岩浆演化过程,导致岩浆混染作用发生,最终形成了广泛分布的中性火山岩(图 15c)。由于不同地区,断裂规模和活动程度存在差别(邱检生等, 2013; 曹光跃, 2018),导致岩浆遭受分离结晶和混染程度不同,从而形成了粗面岩、粗安岩和英安岩等多种类型喷出岩。早白垩世末期,沂沭断裂带经历一次左行走滑运动,随后断裂带的伸展活动减弱,岩浆活动基本结束(Guo et al., 2014; 朱光等, 2018)。
|
图 15 沂沭断裂带北段早白垩世火山岩成因模式图 Fig. 15 Petrogenesis model of the Early Cretaceous volcanic rocks in the northern part of Yishu fault |
(1) 沂沭断裂带北段潍坊-安丘-鄌郚地区早白垩世火山岩主要为玄武安山岩、粗面岩、粗安岩、英安岩。锆石U-Pb定年结果表明火山岩年龄主要集中在131~124Ma,即形成于早白垩世。
(2) 沂沭断裂带北段早白垩世火山岩属高钾钙碱性系列,富集Rb、Ba等大离子亲石元素而相对亏损Nb、Ta、Ti等高场强元素,富集Sr-Nd-Pb同位素组成,源区为富集岩石圈地幔。
(3) 晚三叠纪世,扬子地块向华北地块深俯冲,扬子陆壳部分熔融产生的流体/熔体对上覆华北古老岩石圈地幔进行交代改造形成富集岩石圈地幔。早白垩世,古太平洋板块向欧亚大陆俯冲、后撤,华北东部岩石圈伸展减薄。富集岩石圈地幔部分熔融形成基性岩源区,基性岩浆上升过程发生分离结晶作用形成玄武安山质岩浆。在沂沭断裂带部分地区,岩浆遭受了华北下地壳不同程度混染,形成了粗安岩、粗面岩、英安岩等高钾钙碱性岩浆。
致谢 感谢审稿专家和俞良军副主编提出的宝贵意见。
Barth MG, McDonough WF and Rudnick RL. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165(3-4): 197-213 DOI:10.1016/S0009-2541(99)00173-4 |
Cao GY. 2018. Geochronology and geochemistry of the Mesozoic Qingshan Group volcanic rocks in Shandong Province. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
|
Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135: 304-316 DOI:10.1016/j.lithos.2011.09.013 |
Chauvel C, Hofmann AW and Vidal PH. 1992. HIMU-EM:The French Polynesian connection. Earth and Planetary Science Letters, 110: 99-110 DOI:10.1016/0012-821X(92)90042-T |
Chen YJ, Zhai MG and Jiang SY. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695-2726 (in Chinese with English abstract) |
Drummond MS and Defant MJ. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting:Archean to modern comparisons. Journal of Geophysical Research:Solid Earth, 95(B13): 21503-21521 DOI:10.1029/JB095iB13p21503 |
Fan WM, Guo F, Wang YJ, Lin G and Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 733-746 DOI:10.1016/S1464-1895(01)00123-5 |
Fan WM, Guo F, Wang YJ and Zhang HF. 2007. Late Mesozoic mafic magmatism from the North China Block:Constraints on chemical and isotopic heterogeneity of the subcontinental lithospheric mantle. Geological Society London Special Publications, 280(1): 77-100 DOI:10.1144/SP280.4 |
Foland KA and Allen JC. 1991. Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA. Contributions to Mineralogy and Petrology, 109(2): 195-211 DOI:10.1007/BF00306479 |
Foley S and Peccerillo A. 1992. Potassic and ultrapotassic magmas and their origin. Lithos, 28(3-6): 181-185 DOI:10.1016/0024-4937(92)90005-J |
Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD and Hu YK. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975 DOI:10.1016/S0016-7037(98)00121-5 |
Gao S, Rudnick RL, Yuan HL, Liu LM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892-897 DOI:10.1038/nature03162 |
Geng YS, Du LL and Ren LD. 2012. Growth and reworking of the early Precambrian continental crust in the North China Craton:Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529 DOI:10.1016/j.gr.2011.07.006 |
Gilder SA, Leloup PH, Courtillot V, Chen Y, Coe RS, Zhao XX, Xiao WJ, Halim N, Cogné JP and Zhu RX. 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research:Solid Earth, 104(B7): 15365-15390 DOI:10.1029/1999JB900123 |
Guo F, Fan WM, Wang YJ and Lin G. 2001. Late Mesozoic mafic intrusive complexes in North China Block:Constraints on the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 759-771 DOI:10.1016/S1464-1895(01)00125-9 |
Guo F, Fan WM, Wang YJ and Lin G. 2003. Geochemistry of late Mesozoic mafic magmatism in west Shandong Province, eastern China:Characterizing the lost lithospheric mantle beneath the North China Block. Geochemical Journal, 37(1): 63-77 DOI:10.2343/geochemj.37.63 |
Guo F, Fan WM, Li CW, Wang CY, Li HX, Zhao L and Li JY. 2014. Hf-Nd-O isotopic evidence for melting of recycled sediments beneath the Sulu Orogen, North China. Chemical Geology, 381: 243-258 DOI:10.1016/j.chemgeo.2014.04.028 |
Guo JT, Guo F, Wang CY and Li CW. 2013. Crustal recycling processes in generating the Early Cretaceous Fangcheng basalts, North China Craton:New constraints from mineral chemistry, oxygen isotopes of olivine and whole-rock geochemistry. Lithos, 170-171: 1-16 DOI:10.1016/j.lithos.2013.02.015 |
Hofmann AW and Jochum KP. 1996. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling project. Journal of Geophysical Research:Solid Earth, 101(B5): 11831-11839 DOI:10.1029/95JB03701 |
Hofmann AW. 2007. Sampling mantle heterogeneity through oceanic basalts:Isotopes and trace elements. Treatise on Geochemistry, 2: 1-44 |
Huang XL, Zhong JW and Xu YG. 2012. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton:Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochimica et Cosmochimica Acta, 96: 193-214 DOI:10.1016/j.gca.2012.08.014 |
Huang XL, He PL, Wang X, Zhong JW and Xu YG. 2016. Lateral variation in oxygen fugacity and halogen contents in early Cretaceous magmas in Jiaodong area, East China:Implication for triggers of the destruction of the North China Craton. Lithos, 248-251: 478-492 DOI:10.1016/j.lithos.2016.02.008 |
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69 DOI:10.1016/j.chemgeo.2004.06.017 |
Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2): 119-146 |
Kuang YS, Pang CJ, Luo ZY, Hong LB, Zhong YT, Qiu HN and Xu YG. 2012. 40Ar-39Ar geochronology and geochemistry of mafic rocks from Qingshan Group, Jiaodong area:Implications for the destruction of the North China Craton. Acta Petrologica Sinica, 28(4): 1073-1091 (in Chinese with English abstract) |
La Flèche MR, Camiré G and Jenner GA. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136 DOI:10.1016/S0009-2541(98)00002-3 |
Lan TG, Fan HR, Santosh M, Hu FF, Yang KF, Yang YH and Liu YS. 2011. Geochemistry and Sr-Nd-Pb-Hf isotopes of the Mesozoic Dadian alkaline intrusive complex in the Sulu orogenic belt, eastern China:Implications for crust-mantle interaction. Chemical Geology, 285(1-4): 97-114 DOI:10.1016/j.chemgeo.2011.03.013 |
Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750 DOI:10.1093/petrology/27.3.745 |
Li QZ, Xie Z, Chen JF, Gao TS, Yu G and Qian H. 2007. Pb-Sr-Nd isotopic characteristics of the gabbros from Jinan and Zouping and the contribution of the lower crust to the magma source. Geological Journal of China Universities, 13(2): 297-310 (in Chinese with English abstract) |
Li XY, Li SZ, Suo YH, Somerville ID, Huang F, Liu X, Wang PC, Han ZX and Jin LJ. 2018. Early Cretaceous diabases, lamprophyres and andesites-dacites in western Shandong, North China Craton:Implications for local delamination and Paleo-Pacific slab rollback. Journal of Asian Earth Sciences, 160: 426-444 DOI:10.1016/j.jseaes.2017.08.005 |
Li YL. 2013. Petrogenesis of Late Mesozoic potassic and sodic volcanic rocks in the southern parts of Yishu deep fault zone and its implications for lithospheric thinning beneath the North China Craton. Master Degree Thesis. Nanjing: Nanjing University (in Chinese with English summary)
|
Li ZX. 1994. Collision between the North and South China blocks:A crustal-detachment model for suturing in the region east of the Tanlu Fault. Geology, 22(8): 739-742 DOI:10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2 |
Ling WL, Duan RC, Xie XJ, Zhang YQ, Zhang JB, Cheng JP, Liu XM and Yang HM. 2009. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China craton. Lithos, 113(3-4): 640-658 DOI:10.1016/j.lithos.2009.07.001 |
Liu JA, Cai RH, Pearson DG and Scott JM. 2019. Thinning and destruction of the lithospheric mantle root beneath the North China Craton:A review. Earth-Science Reviews, 196: 102873 DOI:10.1016/j.earscirev.2019.05.017 |
Liu S, Hu RZ, Zhao JH and Feng CX. 2004. Genesis and source characteristics of the mafic-ultramafic dikes in west Shandong Province:Evidence from petrology and geochemistry. Geological Review, 50(6): 577-586 (in Chinese with English abstract) |
Liu S, Zou HB, Hu RZ, Zhao JH and Feng CX. 2006. Mesozoic mafic dikes from the Shandong Peninsula, North China Craton:Petrogenesis and tectonic implications. Geochemical Journal, 40(2): 181-195 DOI:10.2343/geochemj.40.181 |
Liu S, Hu RZ, Gao S, Feng CX, Qi L, Zhong H, Xiao TF, Qi YQ, Wang T and Coulson IM. 2008a. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China:Constrains on their petrogenesis and geodynamic significance. Chemical Geology, 255(3-4): 329-345 DOI:10.1016/j.chemgeo.2008.07.006 |
Liu S, Hu RZ, Gao S, Feng CX, Qi YQ, Wang T, Feng GY and Coulson IM. 2008b. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, eastern China. Lithos, 106(3-4): 365-379 DOI:10.1016/j.lithos.2008.09.004 |
Liu S, Feng CX, Hu RZ, Zhai MG, Gao S, Lai SC, Yan J, Coulson IM and Zou HB. 2015. Zircon U-Pb geochronological, geochemical, and Sr-Nd isotope data for Early Cretaceous mafic dykes in the Tancheng-Lujiang Fault area of the Shandong Province, China:Constraints on the timing of magmatism and magma genesis. Journal of Asian Earth Sciences, 98: 247-260 DOI:10.1016/j.jseaes.2014.11.001 |
Liu YS, Gao S and Luo TC. 1999. Geochemistry of granulites in North China Craton:Implications for the composition of Archean lower crust. Geology-Geochemistry, 27(3): 40-46 (in Chinese with English abstract) |
Ma L, Jiang SY, Hofmann AW, Dai BZ, Hou ML, Zhao KD, Chen LH, Li JW and Jiang YH. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula:A consequence of rapid lithospheric thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 124: 250-271 DOI:10.1016/j.gca.2013.09.035 |
McCulloch MT and Bennett VC. 1994. Progressive growth of the Earth's continental crust and depleted mantle:Geochemical constraints. Geochimica et Cosmochimica Acta, 58(21): 4717-4738 DOI:10.1016/0016-7037(94)90203-8 |
Meng FX, Gao S, Niu YL, Liu YS and Wang XR. 2015. Mesozoic-Cenozoic mantle evolution beneath the North China Craton:A new perspective from Hf-Nd isotopes of basalts. Gondwana Research, 27(4): 1574-1585 DOI:10.1016/j.gr.2014.01.014 |
Meng YK, Santosh M, Li RH, Xu Y and Hou FH. 2018. Petrogenesis and tectonic implications of Early Cretaceous volcanic rocks from Lingshan Island in the Sulu Orogenic Belt. Lithos, 312-313: 244-257 DOI:10.1016/j.lithos.2018.05.009 |
Niu ML, Zhu G and Song CZ. 2001. Mesozoic volcanic activities and deep processes in the Tan-Lu fault zone. Journal of Hefei University of Technology, 24(2): 147-153 (in Chinese with English abstract) |
Niu ML, Zhu G, Liu GS, Wang DX and Song CZ. 2002. Tectonic setting and deep processes of Mesozoic magmatism in middle-south segment of the Tan-Lu fault. Chinese Journal of Geology, 37(4): 393-404 (in Chinese with English abstract) |
Niu ML, Xie CL, Song CZ, Wang DX and Xiang BW. 2007. K-Ar Dating of Early Cretaceous volcanic rocks along the Tan-Lu fault zone and its tectonic significance. Chinese Journal of Geology, 42(2): 382-387 (in Chinese with English abstract) |
Pei FP, Xu WL, Wang QH, Wang DY and Lin JQ. 2004. Mesozoic basalt and mineral chemistry of the mantle-derived Xenocrysts in Feixian, western Shandong, China:Constraints on nature of Mesozoic lithospheric mantle. Geological Journal of China Universities, 10(1): 88-97 (in Chinese with English abstract) |
Qu XM, Hou ZQ and Li YG. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau. Lithos, 74: 131-148 DOI:10.1016/j.lithos.2004.01.003 |
Qiu JS, Wang DZ, Luo QH and Liu H. 2001. 40Ar-39Ar dating for volcanic rocks of Qingshan Formation in Jiaolai basin, eastern Shandong Province:A case study of the Fenlingshan volcanic apparatus in Wulian County. Geological Journal of China Universities, 7(3): 351-355 (in Chinese with English abstract) |
Qiu JS, Xu XS and Lo CH. 2002. Potash-rich volcanic rocks and lamprophyres in western Shandong Province:40Ar-39Ar dating and source tracing. Chinese Science Bulletin, 47(2): 91-99 |
Qiu JS, Liu L, Li YL and Zhao JL. 2013. Petrogenesis of potassic volcanic rocks in the Middle-South parts of the Yishu deep fault zone:Constraints from elemental geochemistry and Sr-Nd-Hf isotopes. Acta Geologica Sinica, 87(9): 1193-1210 (in Chinese with English abstract) |
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931 DOI:10.1093/petrology/36.4.891 |
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3. 8GPa. Chemical Geology, 160(4): 335-356 DOI:10.1016/S0009-2541(99)00106-0 |
Righter K. 2000. A comparison of basaltic volcanism in the Cascades and western Mexico:Compositional diversity in continental arcs. Tectonophysics, 318(1-4): 99-117 DOI:10.1016/S0040-1951(99)00308-X |
Riley TR, Leat PT, Pankhurst RJ and Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology, 42(6): 1043-1065 DOI:10.1093/petrology/42.6.1043 |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
|
Tang HY, Zheng JP and Yu CM. 2009. Age and composition of the Rushan intrusive complex in the northern Sulu orogen, eastern China:Petrogenesis and lithospheric mantle evolution. Geological Magazine, 146(2): 199-215 DOI:10.1017/S0016756808005463 |
Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell, 1-312
|
Thorpe RS, Leat PT, Mann AC, Howells MF, Reedman AJ and Campbell SDG. 1993. Magmatic evolution of the Ordovician Snowdon volcanic centre, North Wales (UK). Journal of Petrology, 34(4): 711-741 DOI:10.1093/petrology/34.4.711 |
Wang H, Xu ZW, Lu XC, Fu B, Lu JJ, Yang XN and Zhao ZX. 2016. Two-types of Early Cretaceous adakitic porphyries from the Luxi terrane, eastern North China Block:Melting of subducted Paleo-Pacific slab and delaminated newly underplated lower crust. Lithos, 240-243: 140-154 DOI:10.1016/j.lithos.2015.11.011 |
Weaver BL. 1991. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397 DOI:10.1016/0012-821X(91)90217-6 |
Wendlandt RF, Altherr R, Neumann ER and Baldridge WS. 1995. Chapter 3A Petrology, geochemistry, isotopes. In: Qlsen KH (eds.). Continental Rifts: Evolution, Sructures, Tectonics. Amsterdam: Elsevier
|
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069 |
Xie WY, Niu ML and Cao Y. 2009. Research on Early Cretaceous magmatic activity in the middle-southern segment of the Tan-Lu fault zone and its evolution. Journal of Hefei University of Technology (Natural Science), 32(3): 293-298, 304 (in Chinese with English abstract) |
Xu WL, Gao S, Yang DB, Pei FP and Wang QH. 2009. Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos, 107(3-4): 269-280 DOI:10.1016/j.lithos.2008.11.004 |
Xu YG, Ma JL, Huang XL, Iizuka Y, Chung SL, Wang YB and Wu XY. 2004a. Early Cretaceous gabbroic complex from Yinan, Shandong Province:Petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences, 93(6): 1025-1041 DOI:10.1007/s00531-004-0430-7 |
Xu YG, Huang XL, Ma JL, Wang YB, Iizuka Y, Xu JF, Wang Q and Wu XY. 2004b. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology, 147(6): 750-767 DOI:10.1007/s00410-004-0594-y |
Yan J, Zhang X, Chen JF and Zhao HL. 2001. Sr, Nd isotopic characteristics of the Jinan gabbro intrusion. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 302-305 (in Chinese with English abstract) |
Yan J, Liu HQ, Song CZ, Xu XS, An YJ, Liu J and Dai LQ. 2009. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications. Chinese Science Bulletin, 54(16): 2895-2904 |
Yang CH. 2007. Chronology and geochemistry of Mesozoic High-Mg diorites in western Shandong: Constraints on lithospheric evolution of the North China Craton. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
|
Yang DB, Xu WL, Wang QH and Pei FP. 2010. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China:Constraints on the tectonic evolution of the eastern North China Craton. Lithos, 114(1-2): 200-216 DOI:10.1016/j.lithos.2009.08.009 |
Yang DB, Xu WL, Pei FP, Yang CH and Wang QH. 2012a. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block:Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139: 246-260 DOI:10.1016/j.lithos.2011.06.004 |
Yang DB, Xu WL, Zhao GC, Huo TF, Shi JP and Yang HT. 2016. Tectonic implications of Early Cretaceous low-Mg adakitic rocks generated by partial melting of thickened lower continental crust at the southern margin of the central North China Craton. Gondwana Research, 38: 220-237 DOI:10.1016/j.gr.2015.11.013 |
Yang F, Santosh M and Kim SW. 2018. Mesozoic magmatism in the eastern North China Craton:Insights on tectonic cycles associated with progressive craton destruction. Gondwana Research, 60: 153-178 DOI:10.1016/j.gr.2018.04.003 |
Yang JH, Chung SL, Wilde SA, Wu FY, Chu MF, Lo CH and Fan HR. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China:geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214(1-2): 99-125 DOI:10.1016/j.chemgeo.2004.08.053 |
Yang JH, Wu FY, Xie LW and Liu XM. 2007. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, East North China Craton:Constraints from in-situ zircon U-Pb ages and Hf isotopes. Acta Petrologica Sinica, 23(2): 263-2761 (in Chinese with English abstract) |
Yang QL, Zhao ZF and Zheng YF. 2012b. Modification of subcontinental lithospheric mantle above continental subduction zone:Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164-182 DOI:10.1016/j.lithos.2012.05.005 |
Yin A and Nie SY. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12(4): 801-813 |
Ying JF, Zhou XH and Zhang HF. 2004. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos, 75(3-4): 413-426 DOI:10.1016/j.lithos.2004.04.037 |
Ying JF, Zhou XH and Zhang HF. 2006. The geochemical variations of Mid-Cretaceous lavas across western Shandong Province, China and their tectonic implications. International Journal of Earth Sciences, 95(1): 68-79 |
Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG and Yin JF. 2002. Mesozoic lithosphere destruction beneath the North China Craton:Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254 DOI:10.1007/s00410-002-0395-0 |
Zhang J, Zhang HF, Ying JF, Tang YJ and Niu LF. 2008. Contribution of subducted Pacific slab to Late Cretaceous mafic magmatism in Qingdao region, China:A petrological record. Island Arc, 17(2): 231-241 DOI:10.1111/j.1440-1738.2008.00612.x |
Zhang YQ, Ling WL, Zhang JB, Duan RC, Ren BF and Yang HM. 2017. Geochemistry and petrogenesis of the Mesozoic volcanic rocks from Qingshan Group in the Yishu fault zone. Earth Science Frontiers, 24(6): 110-118 (in Chinese with English abstract) |
Zhao GC, Sun M, Wilde SA and Zhong LS. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002 |
Zhou XH, Sun M, Zhang GH and Chen SH. 2002. Continental crust and lithospheric mantle interaction beneath North China:Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62(3-4): 111-124 DOI:10.1016/S0024-4937(02)00110-X |
Zhu G, Liu GS, Niu ML, Song CZ and Wang DX. 2003. Transcurrent movement and genesis of the Tan-Lu fault zone. Geological Bulletin of China, 22(3): 200-207 (in Chinese with English abstract) |
Zhu G, Wang YS, Liu GS, Niu ML, Xie CL and Li CC. 2005. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. Journal of Structural Geology, 27(8): 1379-1398 DOI:10.1016/j.jsg.2005.04.007 |
Zhu G, Liu C, Gu CC, Zhang S, Li YJ, Su N and Xiao SY. 2018. Oceanic plate subduction history in the western Pacific Ocean:Constraint from Late Mesozoic evolution of the Tan-Lu Fault Zone. Science China (Earth Sciences), 61(4): 386-405 DOI:10.1007/s11430-017-9136-4 |
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571 DOI:10.1146/annurev.ea.14.050186.002425 |
曹光跃. 2018.山东中生代青山群火山岩的年代学及地球化学研究.博士学位论文.北京: 中国地质科学院
|
陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695-2726. |
匡永生, 庞崇进, 罗震宇, 洪路兵, 钟玉婷, 邱华宁, 徐义刚. 2012. 胶东青山群基性火山岩的40Ar-39Ar年代学和地球化学特征:对华北克拉通破坏过程的启示. 岩石学报, 28(4): 1073-1091. |
李全忠, 谢智, 陈江峰, 高天山, 喻钢, 钱卉. 2007. 济南和邹平辉长岩的Pb-Sr-Nd同位素特征和岩浆源区中下地壳物质贡献. 高校地质学报, 13(2): 297-310. |
李友连. 2013.沂沭断裂带南段晚中生代钾质与钠质火山岩成因及其对华北克拉通岩石圏减薄的启示.硕士学位论文.南京: 南京大学
|
刘燊, 胡瑞忠, 赵军红, 冯彩霞. 2004. 鲁西晚中生代基性脉岩的成因和源区性质:岩石学和地球化学. 地质论评, 50(6): 577-586. |
刘勇胜, 高山, 骆庭川. 1999. 华北克拉通麻粒岩的地球化学特征及其对太古宙下地壳组成的指示意义. 地质地球化学, 27(3): 40-46. |
牛漫兰, 朱光, 宋传中. 2001. 郯庐断裂带中生代火山活动与深部过程. 合肥工业大学学报(自然科学版), 24(2): 147-153. |
牛漫兰, 朱光, 刘国生, 王道轩, 宋传中. 2002. 郯庐断裂带中-南段中生代岩浆活动的构造背景与深部过程. 地质科学, 37(4): 393-404. |
牛漫兰, 谢成龙, 宋传中, 王道轩, 向必伟. 2007. 郯庐断裂带早白垩世火山岩的K-Ar年龄及其构造意义. 地质科学, 42(2): 382-387. |
裴福萍, 许文良, 王清海, 王冬艳, 林景仟. 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97. |
邱检生, 王德滋, 罗清华, 刘洪. 2001. 鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年——以五莲分岭山火山机构为例. 高校地质学报, 7(3): 351-355. |
邱检生, 刘亮, 李友连, 赵姣龙. 2013. 沂沭断裂带中南段钾质火山岩的元素地球化学与Sr-Nd-Hf同位素组成及其对岩石成因的制约. 地质学报, 87(9): 1193-1210. |
谢文雅, 牛漫兰, 曹洋. 2009. 郯庐断裂带早白垩世岩浆活动与断裂带的活动关系. 合肥工业大学学报(自然科学版), 32(3): 293-298, 304. |
闫峻, 张巽, 陈江峰, 赵海玲. 2001. 济南辉长岩体的锶、钕同位素特征. 矿物岩石地球化学通报, 20(4): 302-305. |
杨承海. 2007.鲁西中生代高镁闪长岩的年代学与地球化学: 对华北克拉通岩石圈演化的制约.博士学位论文.长春: 吉林大学
|
杨进辉, 吴福元, 谢烈文, 柳小明. 2007. 辽东矿洞沟正长岩成因及其构造意义:锆石原位微区U-Pb年龄和Hf同位素制约. 岩石学报, 23(2): 263-276. |
张永清, 凌文黎, 张军波, 段瑞春, 任邦方, 杨红梅. 2017. 沂沭断裂带中生代青山群火山岩地球化学特征及其岩石成因. 地学前缘, 24(6): 110-118. |
朱光, 刘国生, 牛漫兰, 宋传中, 王道轩. 2003. 郯庐断裂带的平移运动与成因. 地质通报, 22(3): 200-207. |
朱光, 刘程, 顾承串, 张帅, 李云剑, 苏楠, 肖世椰. 2018. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示. 中国科学(地球科学), 48(4): 415-435. |
2020, Vol. 36

