岩石学报  2020, Vol. 36 Issue (10): 2995-3017, doi: 10.18654/1000-0569/2020.10.05   PDF    
柴北缘东段奥陶纪埃达克岩-富Nb玄武岩:对大陆深俯冲之前大洋俯冲及地壳增生的启示
路增龙1, 张建新1, 毛小红1, 周桂生1, 滕霞1,2, 武亚威1     
1. 中国地质科学院地质研究所, 北京 100037;
2. 北京大学地球与空间科学学院, 北京 100871
摘要: 在柴北缘东段识别出早古生代埃达克岩-富Nb玄武岩的火山岩组合。埃达克岩富Na2O、贫K2O,K2O/Na2O比值介于0.14~0.43之间;高Sr(614×10-6~1043×10-6),但亏损Y(3.26×10-6~14.1×10-6)和Yb(0.33×10-6~1.46×10-6),具有高的Sr/Y比值(44~282);富集Sr、Ba等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素及Cr、Ni、Co、V等相容元素。富Nb玄武岩富Na2O、贫K2O、高TiO2,其Nb含量较高,介于16.9×10-6~17.9×10-6之间,具有高的Nb/Ta、Nb/U、(Nb/La)N比值,同时富集高场强元素。埃达克岩锆石U-Pb定年得到453±4Ma和457±4Ma的结晶年龄。锆石εHft)范围较大,介于3.40~13.23之间,对应的二阶段模式年龄tDM2介于1059~566Ma之间,显示以新生物质为主的特征。综合研究表明柴北缘东段埃达克岩可能为岛弧环境下俯冲的南祁连大洋板片部分熔融的产物。板片来源的埃达克质熔体交代或与上覆地幔楔橄榄岩反应,导致被交代的地幔橄榄岩部分熔融而形成富Nb玄武质岩浆。柴北缘东段埃达克岩-富Nb玄武岩火山岩组合的厘定表明南祁连洋可能直到~455Ma之前并未完全闭合,同时表明俯冲大洋板片的部分熔融可能是柴北缘早古生代地壳增生的一种重要方式。
关键词: 埃达克岩    富Nb玄武岩    奥陶纪    柴北缘东段    大洋俯冲    板片熔融    
Ordovician adakite-Nb-enriched basalt suite in the eastern North Qaidam Mountains: Implications for oceanic subduction and crustal accretion prior to deep continental subduction
LU ZengLong1, ZHANG JianXin1, MAO XiaoHong1, ZHOU GuiSheng1, TENG Xia1,2, WU YaWei1     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract: Early-Paleozoic adakite-Nb-enriched basalt volcanic suite is recognized in the eastern North Qaidam Mountains. The adakitic rocks are characterized by high Na2O and low K2O contents, with a K2O/Na2O ratio of 0.14~0.43. They are rich in Sr (614×10-6~1043×10-6), but poor in Y (3.26×10-6~14.1×10-6) and Yb (0.33×10-6~1.46×10-6) with high Sr/Y ratios (44~282). They are also enriched in LILE (large ion lithophile elements) (e.g. Ba and Sr) and deficient in HFSE (high field strength elements) (e.g. Nb, Ta and Ti), with low contents of compatible elements (Cr, Ni, Co and V). Nb-enriched basalts are rich in Na2O and TiO2, and poor in K2O. They have high contents of Nb (16.9×10-6~17.9×10-6) and HFSE, with high Nb/Ta, Nb/U and (Nb/La)N ratios. The magmatic crystallization ages of the adakites are 453±4Ma and 457±4Ma obtained by zircon U-Pb dating. The values of εHf(t) of the zircons in adakites are within the range of 3.40~13.23, with corresponding Hf isotope tDM2 (two-stage model age) of 1059~566Ma, indicating an origin mainly from juvenile materials. Comprehensive studies show that the adakites were most probably the products of partial melting of a subducted South Qilian oceanic slab. Additionally, the slab-derived adakitic melts metasomatized or interacted with the upper mantle wedge peridotites, from which the partial melting of metasomatized mantle peridotites gave rise to a Nb-enriched basaltic magma. Thus, the adakite-Nb-enriched basalt association indicates that the South Qilian Ocean has not been completely closed until ~455Ma, and partial melting of subducted oceanic slab may be an important way of Early Paleozoic crustal growth in the North Qaidam Mountains.
Key words: Adakite    Nb-enriched basalt    Ordovician    Eastern North Qaidam Mountains    Oceanic subduction    Slab melting    

大多数弧岩浆岩的形成被认为俯冲板片脱水有关,脱水作用所释放的含水富挥发分流体引发上覆地幔楔部分熔融形成玄武质岩浆,并可进一步分异形成中-酸性岩浆岩,构成特征的玄武岩-安山岩-英安岩-流纹岩组合(Gill et al., 1981)。然而,在与大洋俯冲有关的弧背景下,也形成一些特殊的岩石,如Defant and Drummond(1990)提出岛弧环境下存在一类具有高Al2O3、高Sr、低Y和Yb等地球化学特征特殊的火成岩,主要为英安岩及与其成分相当的英云闪长岩、奥长花岗岩等,因最先由Kay(1978)在美国阿留申群岛中的埃达克(Adak)岛发现,而称其为埃达克岩(adakites),并认为其为年轻的(<25Ma),因而是热的洋壳在榴辉岩相条件下部分熔融形成的火成岩。埃达克岩提出之后引起了国内外学者的广泛关注。研究中发现埃达克岩一般不与岛弧玄武岩或玄武安山岩共生,但可以与富Nb或高Nb玄武岩共生(Sajona et al., 1996Martin,1999Defant and Kepezhinskas, 2001王强等, 2001, 2008Wang et al., 2003, 2008aCastillo,2012),很多情况下还可以与高镁安山岩共生,组成埃达克岩-高镁安山岩-富Nb玄武岩的岩石组合,这一典型的岩石组合在世界各地新生代至早前寒武纪的地体中均有分布(Kelemen,1995Drummond et al., 1996Martin,1999Manikyamba et al., 2009Polat and Kerrich, 2001Shchipansky et al., 2004王强等,2006Peng et al., 2012a, bGuo et al., 2013Liu et al., 2014Shen et al., 2014),不同于由俯冲流体交代地幔楔熔融产生的玄武岩-安山岩-英安岩-流纹岩构成的弧岩浆岩组合,并通常被认为是岛弧环境下俯冲板片熔融的证据(Drummond et al., 1996Kepezhinskas et al., 1996Sajona et al., 1996Aguillón-Robles et al., 2001Defant and Kepezhinskas, 2001Wang et al., 2003, 2007, 2008aCastillo, 2006, 2012王强等,2006),其中富Nb玄武岩是由俯冲板片熔融产生的埃达克质熔体交代的地幔楔橄榄岩熔融的产物(Kepezhinskas et al., 1996Sajona et al., 1996Defant and Kepezhinskas, 2001Wang et al., 2008a)。

柴北缘以发育榴辉岩、石榴橄榄岩、高压麻粒岩及相关片麻岩组成的超高压(UHP)变质带为特征,其主体被普遍认为是早古生代大陆深俯冲的产物,并已得到广泛研究(Yang et al., 1998, 2006Zhang et al., 2000, 2004, 2008a, 2009a, b2010Song et al., 2003, 2005, 2006, 2007张建新等, 2005, 2008Mattinson et al., 2006a, 2007Yang and Powell, 2008Yu et al., 2013, 2014于胜尧等,2014)。然而,关于柴北缘是否保存大洋俯冲的物质组成以及大洋俯冲的时代等问题却存在很大争议。在柴北缘地区,与UHP变质带在空间上伴生着一套浅变质的早古生代滩间山群火山-沉积岩系,其中的火山岩组合以变质基性-中性火山岩为主,可见少量酸性火山岩(邬介人等,1987赖绍聪等,1996史仁灯等, 2003, 2004王惠初等,2003Shi et al., 2006)。一些学者认为其为一套裂谷型建造(邬介人等,1987),而多数学者认为滩间山群形成于大洋俯冲有关的弧或弧后构造环境,但其具体性质还有不同认识。不同的学者根据其岩石组合及火山岩的地球化学特征等,在滩间山群中厘定有蛇绿混杂岩(赖绍聪等,1996孙延贵等,2000王惠初等,2003)、弧后盆地型蛇绿岩(王惠初等,2005朱小辉等,2014)、埃达克岩(史仁灯等,2003Shi et al., 2006)、岛弧火山岩(王惠初等,2003史仁灯等,2004高晓峰等,2011)等。此外,目前对于滩间山群形成的年代学数据也有所欠缺,因此,滩间山群的形成背景及形成时代值得进一步研究。最近,我们在柴北缘东段都兰查查香卡农场一带的滩间山群中新厘定出了一套埃达克岩-富Nb玄武岩组合。在野外工作基础上,我们对其进行了地球化学、锆石U-Pb定年及Hf同位素分析等工作,来确定其形成时代及形成的构造环境,从而探讨柴北缘大陆深俯冲作用之前大洋俯冲的构造热环境、时限及地壳增生机制。

1 地质背景及样品野外关系 1.1 地质背景

柴北缘构造带位于青藏高原的东北部,呈北西-南东向展布,南以柴北缘断裂与柴达木盆地(地块)相接,北以宗务隆构造带与祁连造山带(地块)相隔,向西被阿尔金断裂所切,向东被温泉断裂切割。柴北缘构造带主要由柴北缘高压-超高压变质带、欧龙布鲁克地块以及空间上与超高压变质带伴生的滩间山群浅变质火山-沉积岩系组成(图 1)。

图 1 柴北缘构造带地质简图 Fig. 1 Schematic geological map of North Qaidam tectonic belt

柴北缘超高压(UHP)变质带分布在欧龙布鲁克地块和柴达木地块之间,西起鱼卡地区,东至都兰沙柳河地区,呈北西-南东向展布(图 1)。变质带可进一步划分出四个次级变质单元,自西向东依次为:鱼卡-落凤坡榴辉岩-片麻岩单元(YLU);绿梁山石榴橄榄岩-高压麻粒岩单元(LLU);锡铁山榴辉岩-片麻岩单元(XTU)和都兰榴辉岩-片麻岩单元(DLU)(张建新等,2005Zhang et al., 2008b, 2009b)(图 1)。带内的鱼卡榴辉岩、锡铁山榴辉岩、都兰榴辉岩和副片麻岩中均已发现柯石英包裹体;绿梁山石榴橄榄岩锆石中保存有金刚石(Yang et al., 2001Song et al., 2003, 2005Zhang et al., 2009a, b2010Liu et al., 2012)。这些超高压变质作用证据表明柴北缘大陆地壳曾俯冲到80~120km的地幔深度。

欧龙布鲁克地块(又称全吉地块)位于柴北缘UHP变质带北部,二者以断层为界,北以宗务隆构造带与祁连造山带(地块)相隔(图 1)。它被认为是与塔里木克拉通具有亲缘性的大陆克拉通碎片(Chen et al., 2012, 2013bGong et al., 2012)。欧龙布鲁克地块具有典型的二元结构,即由经历中-高级变质作用的古元古代变质基底与覆盖于其上的沉积盖层组成(陆松年,2002陆松年等, 2002a, b2006陈能松等,2007)。它的变质基底主要包括古元古代早期的德令哈杂岩及古元古代中晚期的达肯大坂群及中元古代的万洞沟群,沉积盖层主要为全吉群及滩间山群(陆松年,2002陆松年等,2002aChen et al., 2012, 2013a)。德令哈杂岩主要形成于2.39~2.34Ga(陆松年,2002陆松年等,2002a郝国杰等,2004Gong et al., 2012巴金等,2012Wang et al., 2015Yu et al., 2017路增龙等,2017He et al., 2018Lu et al., 2018);达肯大坂岩群的形成稍晚于德令哈杂岩(2.32~1.96Ga),二者共同经历了1.96~1.8Ma的多期区域变质岩浆事件(张建新等,2001Wang et al., 2008bChen et al., 2009b, 2012, 2013aGong et al., 2012Liao et al., 2014路增龙等,2017Yu et al., 2017)。地块还存在1.80~1.76Ga的环斑花岗岩侵入体(Xiao et al., 2004陆松年等,2006Chen et al., 2013b)及1.71Ga的富Nb辉长岩(Liao et al., 2018)。

近年来,一些学者在欧龙布鲁克地块北部(乌兰北部)原定为达肯大坂群中识别出一些~1.5Ga的正片麻岩(Wang et al., 2016)、1.2~1.1Ga的眼球状花岗岩、少量新元古代早期花岗片麻岩(Wang et al., 2016Yu et al., 2019a)以及广泛分布的中新元古代(?)变沉积岩,并普遍遭受早古生代(510~450Ma)变质事件(低压/高温变质作用)叠加,并伴随同时代(早古生代)的基性-酸性深成岩浆活动(康珍等,2015李秀财等, 2015a, b吴才来等,2016Lu et al., 2018马建军等, 2018, 2019Wang et al., 2018aLi et al., 2019Wu et al., 2019)。因此,我们把乌兰北部的“达肯大坂群”及相关岩石从欧龙布鲁克地块解体出来,并认为是形成在弧-弧后背景下的深部变质-岩浆杂岩(图 1),为大陆深俯冲之前大洋岩石圈向欧龙布鲁克地块之下俯冲的产物(Li et al., 2018, 2019Lu et al., 2018Wang et al., 2018a)。

滩间山群火山沉积岩系在柴北缘构造带广泛分布,呈北西-南东向展布,西起赛什腾山的吉绿素,向东经绿梁山(双口山)、锡铁山至都兰地区,绵延约600km,与超高压变质带在空间上伴生,但分布范围更大,且与后者多呈断层接触(高晓峰等,2011)。其岩性以浅变质的中-基性火山岩及少量细碎屑岩和碳酸盐岩为主,夹有少量基性-超基性岩侵入体,局部地区可见酸性火山岩,变质程度为绿片岩相-绿帘角闪岩相。滩间山群形成的构造环境长期存在争议。早期有学者认为锡铁山及托莫尔日特地区滩间山群可能为一套大陆裂谷型建造(邬介人等,1987孙延贵等,2000);赖绍聪等(1996)认为滩间山群及相伴生的蛇纹岩和辉长岩具有蛇绿岩性质;近10余年来,多数学者认为滩间山群主体形成于与大洋俯冲有关的弧构造背景,地球化学研究显示在吉绿素、绿梁山及双口山地区出露的滩间山群火山岩具有弧火山岩性质(王惠初等,2003史仁灯等,2004Shi et al., 2006高晓峰等,2011),在吉绿素滩间山群火山岩中还厘定出了埃达克质英安岩(史仁灯等,2003);王惠初等(2005)朱小辉等(2014)认为在绿梁山北部地区的滩间山群变基性火山岩形成于弧后盆地,并与相关的辉长岩和蛇纹岩构成弧后盆地型蛇绿岩;此外滩间山群还可能包含一些具有混杂岩特征的弧前增生杂岩(朱小辉等,2014)。

滩间山群的形成时代同样存在争议。最初因在滩间山群灰岩中采到了奥陶纪化石,将其时代定为奥陶-志留纪(青海省地质矿产局,1991);近10余年来相继获得滩间山群火山岩及相关侵入体的同位素年龄,如史仁灯等(2004)测得了柴北缘西段吉绿素安山岩514±9Ma的锆石U-Pb年龄;赵风清等(2003)在锡铁山中酸性火山岩中得到了486±13Ma的TIMS锆石U-Pb下交点年龄,而Sun et al. (2019)获得锡铁山中基性火山岩的锆石U-Pb年龄为460~440Ma;王惠初等(2005)在绿梁山地区得到了变质玄武岩的464Ma的TIMS锆石U-Pb年龄;袁桂邦等(2002)朱小辉等(2010)分别获得柴北缘西段绿梁山与滩间山群基性火山岩相关的辉长岩496±6Ma和521±7Ma的年龄;朱小辉等(2012)获得柴北缘东段旺尕秀与滩间山群相关辉长岩的年龄为468±2Ma。这些数据显示滩间山群的形成年龄可能为早寒武世到晚奥陶世(520~440Ma),时间跨度约80Myr。

1.2 样品及其位置

柴北缘构造带东段以都兰UHP变质单元岩石为特征,其北部为欧龙布鲁克地块的一部分,以花岗岩、辉长岩、滩间山群火山岩及泥盆纪牦牛山群与UHP变质单元分隔。进一步向北为从欧龙布鲁克地块解体出的乌兰北早古生代弧变质-岩浆杂岩带(图 1)。其中的UHP变质单元主要分布在的野马滩-沙柳河一带,被~400Ma的未变形的野马滩花岗岩侵入(吴才来等,2004)。都兰UHP变质单元主要由中元古代晚期-新元古代早期正、副片麻岩及夹在其中的榴辉岩和少量超基性岩所组成。滩间山群在区内分布较广泛,与超高压单元岩石之间为断层接触,并与泥盆纪以来的地层呈不整合或断层接触。

本文样品采自都兰查查香卡农场南部,夏日哈山北坡的滩间山群火山岩中(图 2a)。剖面露头显示此岩石组合南侧逆冲在泥盆系浅紫红色砂岩、含砾砂岩之上,北侧与含高压麻粒岩的片麻岩(属于都兰UHP变质单元)呈断层接触(图 2b)。此岩石系列以酸性的英安岩和基性玄武岩为主(图 3ab),夹有少量安山质岩石,各类岩石层状分布,之间无明显构造界限。英安岩的斑晶以自形斜长石为主(图 3c),个别样品可见少量角闪石斑晶,且多数石英颗粒外围呈现港湾状或锯齿状,基质主要为石英,少量暗色矿物蚀变严重,大部分已绿泥石和帘石化。玄武岩斑晶以斜长石为主,局部含有辉石,基质由于强烈蚀变不易识别矿物(图 3d)。我们在对此剖面进行详细观察和系统采样的基础上,选择其中12件典型样品(玄武质基性火山岩2件,英安质酸性火山岩9件,安山质中性火山岩1件)进行了全岩地球化学测试,并对2件代表性样品进行了锆石U-Pb同位素定年及Hf同位素测试工作,具体采样位置见图 2b

图 2 都兰查查香卡地区地质简图 Fig. 2 Schematic geological map of Chachaxiangka, Dulan County

图 3 柴北缘东段火山岩野外(a、b)及显微照片(c、d) (a)浅灰绿色英安岩;(b)玄武岩呈灰绿色,具有类似枕状构造;(c)英安岩具斑状结构,斑晶以自形斜长石为主,基质为细粒的石英、斜长石及少量暗色矿物;(d)具有斜长石(Pl)斑晶的玄武岩 Fig. 3 Felid macroscopic (a, b) and thin section (c, d) views of volcanic rocks from eastern North Qaidam Mountains (a) lightly grayish green Dacite; (b) greyish green basalt shows a pillow-like structure; (c) dacite with a porphyritic structure. the porphyroblasts are dominated by euhedral plagioclase, and the matrix consist of fine-grained quartz, plagioclase and small amount of dark minerals; (d) basalt with Plagioclase porphyroblasts (Pl)
2 分析方法

测年样品锆石的分选由河北省区域地质矿产调查研究所完成,用传统的重液和磁选法将锆石从碎石中分离出来。在双目显微镜下进行选择后,灌注在环氧树脂靶中,然后抛光至暴露出颗粒的中心。

全岩化学分析由中国地质科学院国家地质测试分析中心测试,其中全岩主量元素用X荧光光谱仪(XRF)分析,所用仪器为日本理学3080E,误差<0.5%,FeO采用容量滴定法,K2O采用原子吸收法;微量元素和稀土元素采用等离子质谱仪分析,误差<5%。

样品AQ16-24-3.1锆石U-Pb定年在北京离子探针中心SHRIMP II上完成。详细分析方法见Williams(1998)。一次流O2-强度为3~5nA,束斑直径为25~30μm。标样M257(U=840×10-6Nasdala et al., 2008)和TEM(年龄为417Ma,Black et al., 2003)分别用于锆石U含量和年龄校正。每分析3~4个未知样品数据分析1次标准锆石TEM,每个分析点采用5组扫描。数据处理采用SQUID和ISOPLOT程序(Ludwig, 2003)。样品AQ16-24-2.2的U-Pb定年在北京燕都中实测试技术有限公司实验室利用LA-ICPMS分析完成。激光剥蚀系统为New Wave UP213,ICP-MS为德国耶拿M90。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合。每个时间分辨分析数据包括大约20~30s的空白信号和50s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal(侯可军等,2009Liu et al., 2010)完成。详细的仪器操作条件和数据处理方法同Liu et al.(2008, 2010)。

锆石Lu-Hf同位素测试在北京科荟测试技术有限公司的LA-MC-ICPMS上进行,激光进样系统为NWR213nm固体激光器,分析系统为多接收等离子体质谱仪(NEPTUNE plus),以高纯He为载气。激光剥蚀的斑束直径为55μm,能量密度为7~8J/cm2,频率为10Hz。根据锆石CL图像,选择的测试点靠近U-Pb测定点,且为同一CL结构位置。采用179Hf/177Hf=0.7325对同位素比值进行指数归一化质量歧视校正,采用173Yb/172Yb=1.35274对Yb同位素比值进行指数归一化质量歧视校正。εHf(t)计算采用衰变常数λ=1.865×10-11y-1(Scherer et al., 2001),(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)CHUR, 0=0.282772(Blichert-Toft and Albarède,1997)。单阶段模式年龄(tDM1)计算时采用(176Lu/177Hf)DM=0.0384,((176Hf/177Hf)DM=0.28325),二阶段模式年龄(tDM2)计算时采用的平均地壳176Lu/177Hf值为0.0093(Amelin et al., 1999)。

3 分析结果 3.1 全岩地球化学

12个岩石样品全岩地球化学分析测试数据见表 1

表 1 柴北缘东段火山岩全岩地球化学数据表(主量元素:wt%;稀土和微量元素:×10-6) Table 1 Whole-rock major (wt%) and trace (×10-6) elements of volcanic rocks from the eastern North Qaidam Mountains

9个英安岩SiO2含量在64.79%~67.73%之间,Al2O3含量较高(16.02%~18.20%),MgO含量介于1.07%~1.68%之间,平均为1.33%,Mg#值相对偏高,在49~56之间,平均为53,岩石显示明显的富Na2O贫K2O特征,K2O/Na2O比值较低(0.14~0.43之间),K2O含量在0.83%~1.95%之间,基本都处于中钾亚碱性系列(图 4)。岩石均富集轻稀土(LREE),亏损重稀土(HREE),(La/Yb)N比值介于7.56~22.61之间,平均为14.5,具有弱-中等的正Eu异常(Eu/Eu*在1.13~1.45之间,平均值1.27),配分曲线呈现中等的右倾特征,且重稀土分布较平坦,中稀土有明显的下凹特征(图 5)。微量元素显示高Sr(751×10-6~1043×10-6),低Y(3.26×10-6~5.3×10-6)和Yb(0.33×10-6~0.58×10-6),Sr/Y比值较高(172~282)的特征,岩石还具有较高的Ba含量(675×10-6~1303×10-6,平均值1079×10-6),在微量元素蛛网图中显示较明显的Sr与Ba的正异常。相对富集Rb、Ba、K、Sr等大离子亲石元素,亏损Nb、Zr、Ti等高场强元素,在Sr/Y-Y及(La/Yb)N-YbN图解中均落在埃达克岩区域(图 6)。

图 4 岩石类型判别图解 (a) SiO2-K2O图解(Peccerillo and Taylor, 1976);(b)SiO2-(K2O+Na2O)(TAS)图解(Le Bas et al., 1986) Fig. 4 Rock type discrimination diagrams (a) SiO2 vs. K2O diagram (Peccerillo and Taylor, 1976); (b) total alkali vs. silica diagram (Le Bas et al., 1986)

图 5 柴北缘东段火山岩球粒陨石标准化稀土元素配分曲线及原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989) Fig. 5 Chondrite-normalized REE patterns and primitive mantle-normalized trace element spider diagrams volcanic rocks from the eastern North Qaidam Mountains (normalization values after Sun and McDonough, 1989)

图 6 埃达克岩Y-Sr/Y及YbN-(La/Yb)N判别图解(底图据Defant and Drummond et al., 1990Martin et al., 2005) Fig. 6 Y vs. Sr/Y and YbN vs. (La/Yb)N discrimination diagrams for adakites (base map after Defant and Drummond et al., 1990; Martin et al., 2005)

1个安山岩样品SiO2含量57.68%,Al2O3含量16.18%,MgO含量4.04%,Mg#值为52,K2O含量0.91%, Na2O含量3.44%,K2O/Na2O比值0.26,属于中钾亚碱性系列(图 4),类似于高镁安山岩地球化学特征,只是其MgO含量略低(高镁安山岩一般>5%)。高Sr(614×10-6),低Y和Yb(Y=14.1×10-6,Yb=1.46×10-6),Sr/Y比值44,在Sr/Y-Y及(La/Yb)N-YbN图解中均落在埃达克岩与经典岛弧岩浆岩过渡的区域(图 6)。稀土元素含量较高,稀土配分图中显示明显的轻稀土(LREE)富集与重稀土(HREE)亏损,(La/Yb)N比值11.94,无Eu异常。相对富集大离子亲石元素(LILE),亏损高场强元素(HFSE)(图 5),相容元素Cr、Ni、Co等含量高于典型的埃达克岩。

2个玄武岩的样品中SiO2含量在50%左右,Al2O3含量14.61%~14.95%,MgO含量5.89%~6.07%,Mg#在47.5~49.0之间,K2O含量大约0.68%,Na2O含量为3.45%~3.70%,K2O/Na2O比值在0.2左右,具有中钾亚碱性与碱性过渡的地球化学特征(图 4)。与典型岛弧玄武岩相比,具有更高的TiO2含量(~2%)及P2O5含量(~0.25%),且具明显高的Nb含量(16.9×10-6~17.9×10-6)。同时具有高的Nb/Ta比值(介于21.1~22.4之间)及Nb/U比值(介于27.5~29.6之间),且(Nb/La)N>0.5(平均为0.92左右),符合Sajona et al.(1993, 1996)所提出的富Nb玄武岩特征,并且在MgO-Nb/La及Nb-Nb/U图解中位于富Nb玄武岩区域(图 7)。稀土配分图中显示弱的轻稀土(LREE)富集与重稀土(HREE)亏损,(La/Yb)N比值3.6左右。相对富集大离子亲石元素(LILE)及高场强元素(HFSE),在微量元素蛛网图中总体分布较平坦(图 5)。

图 7 玄武岩MgO-Nb/La (a)和Nb-Nb/U (b)图解 岛弧玄武岩及富Nb玄武岩区域据Kepezhinskas et al.(1996) Fig. 7 MgO vs. Nb/La (a) and Nb vs. Nb/U (b) diagrams for basalts The fields of island arc basalt and Nb-enriched basalt are from Kepezhinskas et al. (1996)
3.2 锆石U-Pb年代学

我们分别选取1个英安质和1个安山质埃达克岩进行了锆石U-Pb定年,具体数据见表 2表 3

表 2 英安质埃达克岩(样品AQ16-24-2.2)锆石LA-ICPMS U-Pb测年结果 Table 2 LA-ICPMS U-Pb analysis results of zircons from dacitic adakite (Sample AQ16-24-2.2)

表 3 安山质埃达克岩(样品AQ16-24-3.1)锆石SHRIMP U-Pb测年结果 Table 3 SHRIMP U-Pb analysis results of zircons from andesitic adakite (Sample AQ16-24-3.1)

英安质埃达克岩AQ16-24-2.2中锆石粒径在100~200μm之间,长宽比1.2~4,在CL图像中为较规则的短-中等长度的棱柱状,具明显的密集振荡环带,Th/U比值为0.16~0.71,显示典型的岩浆锆石特征(图 8),个别锆石具有继承性锆石核。我们对其锆石进行了LA-ICPMS U-Pb同位素测试,得到了26个有效数据点,其206Pb/238U年龄介于617~445Ma之间,去除4个继承/捕获锆石年龄,剩余22个数据点均位于谐和线上及附近,得到了457±4Ma的加权平均年龄(图 9),解释为英安质埃达克岩的结晶年龄。

图 8 柴北缘东段埃达克岩锆石CL图像及代表性年龄 Fig. 8 Zircon CL images and their representative ages of adakites from the eastern North Qaidam Mountains

图 9 柴北缘东段埃达克岩锆石U-Pb谐和图 Fig. 9 Zircon U-Pb concordia plots of adakites from the eastern North Qaidam Mountains

安山质埃达克岩AQ16-24-3.1中锆石粒径在120~250μm,大部分在200μm左右。多为半自形粒状,晶面较平直,很多颗粒形态呈现碎片状,具有补丁或不明显振荡环带特征(图 8),其总体形态结构与典型中基性岩中的锆石特征相似,结合其Th/U比值(介于0.47~0.80之间),推断其为岩浆锆石。选取其中20颗锆石进行了SHRIMP U-Pb同位素测试,得到的206Pb/238U年龄数据介于478~436Ma之间。5个锆石数据误差或相对误差较大,且其年龄稍老或年轻,排除这5个数据,剩余15个谐和的数据得到453±4Ma的加权平均年龄(图 9),解释为锆石的岩浆结晶年龄。

3.3 锆石Lu-Hf同位素

我们对2个测年样品中有年龄结果的锆石进行了相应的Lu-Hf同位素测试,详细分析结果见表 4。由于锆石的Lu/Hf值(fLu/Hf=-0.97)显著小于大陆地壳,因此二阶段模式年龄更能真实的反映其源区物质从亏损地幔抽取的时间(第五春荣等,2007)。

表 4 样品AQ16-24-2.2及AQ16-24-3.1锆石Lu-Hf同位素测试结果 Table 4 Lu-Hf isotope analysis results of zircons from samples AQ16-24-2.2 and AQ16-24-3.1

英安质埃达克岩AQ16-24-2.2共得到18个有效数据,锆石的176Hf/177Hf比值处于0.282619与0.282870之间,εHf(t)均为正值,但变化较大,介于4.64~13.23范围内,平均值为8.18,二阶段模式年龄(tDM2)介于1017~566Ma之间,平均值为827Ma(图 10)。安山质埃达克岩AQ16-24-3.1共得到20个有效数据点,样品中锆石的176Hf/177Hf比值介于0.282595与0.282716之间,εHf(t)亦均为正值,数值变化相对AQ16-24-2.2略小,介于3.40~8.03范围内,平均值5.92,相应的二阶段模式年龄(tDM2)在1059~836Ma之间,平均值939Ma(图 10)。

图 10 柴北缘东段埃达克岩的锆石年龄-εHf(t)图 Fig. 10 εHf(t) vs. Age diagram for zircons of adakites from the eastern North Qaidam Mountains
4 讨论 4.1 岩石成因及可能的形成环境 4.1.1 埃达克岩

柴北缘东段中酸性岩具有高SiO2(64.49%~67.73%,除了安山质埃达克岩为57.78%),高Al2O3(16.02%~18.20%),MgO含量主要在1.07%~1.68%之间(安山质埃达克岩的MgO为4.04%),富Na、贫K特征,K2O/Na2O比值较低(介于0.14~0.43之间),高Sr(614×10-6~1043×10-6),低Y (3.26×10-6~14.1×10-6)和低Yb (0.33×10-6~1.46×10-6),高的Sr/Y比值(44~282),具有典型的埃达克岩地球化学特征。

埃达克岩最初被定义为年轻的(<25Ma)而热的洋壳在榴辉岩相条件下部分熔融形成的火山岩或深成岩(Defant and Drummond, 1990)。后来有学者提出埃达克岩根据其地球化学特征可分为O型埃达克岩和C型埃达克岩,并认为O型埃达克岩为经典埃达克岩,与板片部分熔融作用有关;而C型埃达克岩富K(大部分仍为Na质),与板片熔融无关,可能由加厚陆壳(>50km)底部或拆沉(delamination)的下地壳基性岩部分熔融形成(Atherton and Petford, 1993张旗等, 2001a, bChung et al., 2003Xiong et al., 2003Hou et al., 2004Wang et al., 2005张旗,2011Long et al., 2015张旗和焦守涛,2020)。还有一些学者认为埃达克岩可能是由岛弧环境下复杂成因的幔源基性岩浆高压下分离结晶的产物(Castillo, 2002Macpherson et al., 2006Petrone and Ferrari, 2008)。因此,归纳起来,埃达克岩的主要形成方式可总结为三种:(1)俯冲大洋板片的部分熔融;(2)下地壳基性岩的部分熔融;(3)岛弧环境下初始弧岩浆高压下的分离结晶。

在Harker图解中,柴北缘东段埃达克岩多数落在俯冲板片熔融区域与加厚下地壳部分熔融共同区域内及附近,部分落在俯冲洋壳部分熔融区域(图 11)。但其相对富Na、贫K,K2O/Na2O比值较低(K2O/Na2O介于0.14~0.43之间,K2O含量在0.83%~1.95%之间),MgO含量较低,且具有低的Th含量(1.90×10-6~5.02×10-6)和Th/Ce比值,明显区别于下地壳基性岩部分熔融形成的C型埃达克岩,Cr-Ni相关图解中也显示具有板片熔融特征(图 12)。其εHf(t)均为正值,且分布范围较大,部分数据甚至接近地幔演化线,显示以新生地壳物质为主(图 10),亦不符合下地壳熔体特征,并且加厚下地壳熔融的熔体无法经过地幔楔,因此不能与之进行相互作用,无法形成埃达克岩-富Nb玄武岩的岩石组合。柴北缘东段埃达克岩的以上特征均表现出鲜明的板片熔融特征,而与下地壳的熔体特征差别较大(Zhou et al., 2006Wang et al., 2007, 2008a),因此排除了加厚下地壳部分熔融的可能性。同时柴北缘东段埃达克岩在一定范围内非常一致的稀土元素及微量元素配分模式及强烈的轻重稀土分馏(图 5)均表明其AFC过程并不明显(Liu et al., 2014),与岛弧钙碱性系列明显不同。Sm-La/Sm及La-(La/Yb)N图解同样显示柴北缘东段埃达克岩具有显著的部分熔融趋势,并无显著的分离结晶过程(图 13)。基于以上认识,我们认为柴北缘东段埃达克岩为典型的O型埃达克岩,为岛弧环境下俯冲大洋板片部分熔融的产物。

图 11 柴北缘东段埃达克岩Harker图解(底图据王强等,2006及其文献) Fig. 11 Harker diagrams for adakites from the eastern North Qaidam Mountains (base map after Wang et al., 2006 and references therein)

图 12 柴北缘东段火山岩Cr-Ni图解(据Tsuchiya et al., 2005) Fig. 12 Cr vs. Ni diagrams for volcanic rocks from the eastern North Qaidam Mountains (after Tsuchiya et al., 2005)

图 13 柴北缘东段埃达克岩Sm-La/Sm (a)及La-(La/Yb)N (b)图解(据Long et al., 2015) Fig. 13 Sm vs. La/Sm (a) and La vs. (La/Yb)N (b) diagrams for adakites from the eastern North Qaidam Mountains (after Long et al., 2015)

实验岩石学证据表明,蚀变的玄武岩部分熔融产生的溶体Mg#值一般 < 50,而地幔橄榄岩的交代作用能使其MgO及Mg#迅速增加(Rapp et al., 1999),柴北缘东段安山质埃达克岩具有较高的Mg#值,较低的SiO2、较高的MgO且相对富集Cr、Co、Ni等相容元素,符合受地幔橄榄岩交代的特征,具有高Mg安山岩的一些性质。但由于仅1个样品,需要进一步详细工作和更多样品研究来确定安山质埃达克岩的成因,本文不做过多讨论。

4.1.2 富Nb玄武岩(NEBs)

不同于经典岛弧玄武岩,柴北缘东段富Nb玄武岩明显高的TiO2、Nb和Zr含量及高的(Nb/La)N,且无明显Nb、Ti、P等的负异常,表明其不太可能形成于流体交代的地幔楔部分熔融。有观点认为富Nb玄武岩可能由富集地幔或洋岛玄武岩(OIB)与亏损地幔混合的产物(Castillo et al., 2002),但多数学者认为其来源于受埃达克质熔体交代的地幔楔部分熔融(Defant and Drummond, 1993Sajona et al., 1993, 1996Kepezhinskas et al., 1996Aguillón-Robles et al., 2001Defant and Kepezhinskas, 2001)。柴北缘东段富Nb玄武岩Nb/U比值远低于洋岛玄武岩(OIB)(47±10),且其Ce/Pb比值(7.6~9.6)也较低,故而排除其来源于OIB、E-MORB及N-MORB型地幔的可能性。其不相容元素显示具有明显熔体交代相关的富集特征(图 14),相容元素Cr-Ni相关图解显示其位于板片熔体-地幔混合的演化线上,具有板片熔体交代的特征(图 12)。因此推断柴北缘东段富Nb玄武岩为受埃达克质岩浆交代的地幔楔部分熔融形成。

图 14 柴北缘东段玄武岩Th/Zr-Nb/Zr (a)和Nb/Y-Rb/Y (b)判别图解(据Kepezhinskas et al., 1997) Fig. 14 Th/Zr vs. Nb/Zr (a) and Nb/Y vs. Rb/Y (b) diagrams for basalts from the eastern North Qaidam Mountains (after Kepezhinskas et al., 1997)

柴北缘东段富Nb玄武岩具有典型富Nb玄武岩的一般特征,但其相容元素含量(如Cr=47.3×10-6~50.8×10-6,Ni=28.4×10-6~36.5×10-6)明显低于显生宙,尤其是新生代以来的典型富Nb玄武岩(Cr=135×10-6~250×10-6、Ni=70×10-6~190×10-6),同时其重稀土元素含量(如Yb=3.39×10-6~3.77×10-6)明显高于显生宙,尤其是新生代富Nb玄武岩(Yb=1.32×10-6~1.88×10-6),而更类似太古宙富Nb玄武岩(Yb=2.01×10-6~5.01×10-6,Cr=1×10-6~217×10-6,Ni=1×10-6~146×10-6)(Wang et al., 2003, 2007及其文献)。太古宙时期相较于显生宙时期具有异常高的地热梯度,板片熔体交代的地幔楔橄榄岩在较浅部的斜长石稳定域便可发生熔融(Martin,1999),并因此导致其具有较高的重稀土元素含量,柴北缘东段富Nb玄武岩可能形成于此种高地温梯度的环境下,从而导致其具有类似太古宙富Nb玄武岩的地球化学特征。

4.1.3 埃达克岩-富Nb玄武岩成因动力学模式

正常的洋壳俯冲状态下,俯冲的大洋板片会在100~200km左右的深度发生脱水作用,产生的流体上升并导致上覆地幔楔部分熔融形成岛弧高钾钙碱性系列岩浆岩(Gill,1981Defant and Drummond, 1990),而埃达克岩的形成需要一个高热的状态,从而使俯冲的大洋板片在达到弧下深度之前就已发生部分熔融,生成埃达克质岩浆(Defant and Drummond, 19901993Peacock et al., 1994Drummond et al., 1996Martin, 1999)。由此不同学者相继提出多种可能的动力学模式,主要观点主要有:1)平坦俯冲的板片被加热而发生熔融(Gutscher et al., 2000);2)俯冲的年轻而热洋壳部分熔融(Defant and Drummond, 1990, Kepezhinskas et al., 1996Sajona et al., 1996Defant and Kepezhinskas, 2001Wang et al., 2007, 2008a);3)板片撕裂或洋脊俯冲导致的板片窗(slab window)加热板片发生熔融(Thorkelson,1996Aguillón-Robles et al., 2001Yogodzinski et al., 2001Benoit et al., 2002Thorkelson and Breitsprecher, 2005Pallares et al., 2007Geng et al., 2009Ling et al., 2009Wallace et al., 2009Sun et al., 2010Li et al., 2012Shen et al., 2014Wang et al., 2018b)。由于在平板俯冲(flat subduction)过程中会产生一个较宽(可能超过200km)的埃达克质的弧(adakitic arc),并且其位置会较正常的火山弧距海沟更远(Gutscher et al., 2000),而反观柴北缘东段埃达克岩其与超高压变质带在空间上伴生,更可能是形成于弧前的位置。因此柴北缘东段埃达克岩-富Nb玄武岩可能的形成模式有两种:1)俯冲年轻洋壳的部分熔融;2)板片撕裂或洋脊俯冲形成的板片窗构造。

目前柴北缘地区报道的早古生代岛弧相关的岩浆活动时代基本介于520~450Ma期间(史仁灯等, 2003, 2004吴才来等, 2004, 2008Shi et al., 2006朱小辉等, 2010, 2012Wu et al., 2019),从早古生代岛弧相关的岩浆活动从520Ma左右开始,至柴北缘东段埃达克岩形成时(~455Ma)已至少经历~65Myr的时间。随着俯冲的进行,有可能会发生扩张洋脊的俯冲,大洋板片会在扩张脊处发生分离,形成板片窗,俯冲的岩石圈地幔或软流圈会沿板片窗上涌,形成一个高热流环境,在板片窗边缘的洋壳发生部分熔融形成埃达克岩,埃达克岩浆上升交代地幔楔并部分熔融形成富Nb玄武岩。另外, 即使在未发生洋脊俯冲的情况下,在洋壳俯冲晚期,由于洋盆的不断萎缩,大洋地壳从其在洋中脊形成到其运动至海沟发生俯冲左右所经历的时间和距离均较短,同样可以具有较高的俯冲板片温度,从而具备形成埃达克岩的温压条件(边千韬等,2007)。

4.2 构造意义

自二十世纪九十年代在该区发现榴辉岩以来(杨建军等,1994Yang et al., 1998),柴北缘的HP-UHP变质岩就引起了地质学家的广泛关注。已有的研究表明柴北缘UHP变质带主要形成于大陆深俯冲作用,对于其构造演化模式,不同学者也进行了详细的探讨(Yin et al., 2000, 2007Yang et al., 2002Song et al., 2006, 2014Mattinson et al., 2007张贵宾等,2012张建新等,2015Lu et al., 2018)。此外,一些大陆深俯冲之前的大洋俯冲作用的证据也逐渐被揭示,除了弧岩浆活动(吴才来等, 2004, 2008Wu et al., 2019)和少量洋壳俯冲形成的榴辉岩证据外(Zhang et al., 2008a),在柴北缘北部的乌兰地区,近年还报道有与大洋俯冲的弧构造背景下的低压/高温(LP/HT)变质带(李秀财等,2015bLu et al., 2018Wang et al., 2018aLi et al., 2019),也表明柴达木地块及其相连的南祁连洋壳向北部的欧龙布鲁克地块之下俯冲。

对于南祁连洋的俯冲和闭合的具体时限还存在一定的争议(Song et al., 2006, 2014, 2019Xiong et al., 2011张贵宾等,2012Zhang et al., 2017周桂生等,2017Lu et al., 2018Wang et al., 2018aLi et al., 2019Wu et al., 2019Yu et al., 2019b)。早期的很多年龄为单颗粒锆石TIMS或Sm-Nd等方法获得,年龄分布范围较大,由于锆石多期次生长的存在,其可信度可能有待商榷。近年来已有大量锆石LA-ICPMS或SHRIMP年代数据的报道,数据显示柴北缘UHP变质带及北部的欧龙布鲁克地块内与弧相关的岩浆作用时代主要介于520~450Ma之间(史仁灯等,2004朱小辉等,201020122014Li et al., 2018Wang et al., 2018aWu et al., 2019Yu et al., 2019b);乌兰北早古生代弧变质-岩浆杂岩带内与弧相关的LP/HT变质作用的时代主要集中于500~460Ma,峰期集中于~475Ma左右(康珍等,2015李秀财等,2015bLu et al., 2018Wang et al., 2018a),可能为弧-弧后环境下的产物。柴北缘UHP变质带内与洋壳俯冲有关的榴辉岩变质时代介于460~445Ma之间(Zhang et al., 2008aXiong et al., 2011),陆壳性质的榴辉岩变质年龄在450~423Ma之间(Song et al., 2005, 2006, 2014Mattinson et al., 2006a, b2009Chen et al., 2009aZhang et al., 2009a, c20102017Xiong et al., 2011, 2012宋述光等,2011Yu et al., 2013Ren et al., 2017周桂生等,2017),显示大陆初始俯冲约在450Ma左右。依前文所述,柴北缘东段埃达克质岩石-富Nb玄武岩的组合为大洋俯冲过程中的岛弧(弧前)环境下的产物,其结晶年龄为457~453Ma。因此综合以上数据我们推断:在~455Ma左右,柴北缘地区正处于大洋俯冲的晚期阶段,此时南祁连洋并未完全闭合。

在柴北缘东部都兰地区,已报道有与大陆碰撞有关的埃达克质岩石形成,时代为435~420Ma,且其与同时代的镁铁质高压麻粒岩密切共生,其形成机制被解释为大陆碰撞过程中加厚的镁铁质下地壳岩石在高压麻粒岩相变质作用下部分熔融的产物(Yu et al., 2012, 2014)。在柴北缘西段, 吉绿素的滩间山群火山岩中还厘定出了埃达克质英安岩(史仁灯等,2003),相关安山岩形成时代为514Ma(史仁灯等,2004),推测可能与柴北缘地区大洋的初始俯冲有关,但缺乏进一步的研究。因此,在柴北缘早古生代从大洋俯冲到大陆碰撞过程的不同演化阶段,可能产生不同成因和时代的埃达克岩(或埃达克质岩石)。另外,正如前面所述,大洋俯冲环境下埃达克岩的形成要求热(暖)的俯冲条件,即洋壳俯冲在高温榴辉岩和石榴麻粒岩(角闪岩)相条件下的部分熔融。然而,到目前为止,柴北缘地区已报道的与洋壳俯冲相关榴辉岩形成的温压条件处在相对冷的俯冲环境(Zhang et al., 2008a, 2009a),没有部分熔融证据。因此,在柴北缘是否存在洋壳热(暖)俯冲背景下的榴辉岩仍需要进一步详细的工作来澄清。

柴北缘东段埃达克岩-富Nb玄武岩的存在均表明柴北缘地区早古生代大洋俯冲过程中,存在板片熔体来源的新生陆壳物质。埃达克岩与地壳生长的关系已得到广泛关注,许多学者认为热的俯冲洋壳的部分熔融可能是地球早期地壳生长的重要方式(Martin,1999)。因此,在柴北缘地区,地壳的增生作用除俯冲带上盘流体交代的地幔楔部分熔融外,大洋板片熔体的贡献同样不能忽视,柴北缘东段埃达克岩-富Nb玄武岩的形成对研究俯冲-碰撞造山带的洋陆转换过程及显生宙陆壳增生机制均具有重要的意义。

5 结论

(1) 柴北缘UHP变质带柴北缘东段中酸性火山岩为典型的埃达克岩,具有O型埃达克岩特征,形成于俯冲大洋板片熔融过程;基性火山岩具有富Nb玄武岩地球化学特征,显示板片熔体交代特征,可能为受埃达克质熔体交代的地幔橄榄岩部分熔融的产物。

(2) 锆石U-Pb定年结果表明柴北缘东段埃达克岩形成年龄为~455Ma,表明当时柴北缘地区大洋俯冲尚未结束。

(3) 柴北缘东段埃达克岩-富Nb玄武岩组合可能源于大洋俯冲晚期俯冲年轻洋壳的部分熔融或洋脊俯冲作用过程;俯冲大洋板片的部分熔融可能是柴北缘早古生代地壳增生的一种重要方式。

致谢      本文在实验测试中得到了北京离子探针中心、北京燕都中实测试技术有限公司、北京科荟测试技术有限公司及国家地质实验测试中心工作人员的帮助;在文章修改过程中得到了何碧竹研究员的帮助;两位评审专家张泽明研究员和孟繁聪研究员提出了建设性的修改意见;在此一并致以诚挚的谢意。

参考文献
Aguillón-Robles A, Calmus T, Benoit M, Bellon H, Maury RC, Cotten J, Bourgois J and Michaud F. 2001. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California?. Geology, 29(6): 531-534 DOI:10.1130/0091-7613(2001)029<0531:LMAANE>2.0.CO;2
Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399(6733): 252-255 DOI:10.1038/20426
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146 DOI:10.1038/362144a0
Ba J, Gong SL, Liao FX and Zhang L. 2012. Re-determining the intrusion age for the protolith of the Mohe gneiss in the Quanji massif. Geological Science and Technology Information, 31(6): 98-101 (in Chinese with English abstract)
Benoit M, Aguillón-Robles A, Calmus T, Maury RC, Bellon H, Cotten J, Bourgois J and Michaud F. 2002. Geochemical diversity of Late Miocene volcanism in southern Baja California, Mexico: Implication of mantle and crustal sources during the opening of an asthenospheric window. The Journal of Geology, 110(6): 627-648 DOI:10.1086/342735
Bian QT, Pospelov Ⅱ, Li HM, Chang CF and Li JL. 2007. Discovery of the end-Early Paleozoic adakite in the Buqingshan area, Qinghai Province, and its tectonic implications. Acta Petrologica Sinica, 23(5): 925-934 (in Chinese with English abstract)
Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170 DOI:10.1016/S0009-2541(03)00165-7
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Bureau of Geology and Mineral Resources of Qinghai Province. 1991. Regional Geology of Qinghai Province. Beijing: Geological Publishing House, 1-662 (in Chinese)
Castillo PR. 2002. The origin of some of the adakite-like and Nb-enriched lavas in southern Philippines. Acta Petrologica Sinica, 18(2): 143-151
Castillo PR. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 258-268
Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135: 304-316 DOI:10.1016/j.lithos.2011.09.013
Chen DL, Liu L, Sun Y and Liou JG. 2009a. Geochemistry and zircon U-Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 259-272 DOI:10.1016/j.jseaes.2008.12.001
Chen NS, Wang QY, Chen Q and Li XY. 2007. Components and metamorphism of the basements of the Qaidam and Oulongbuluke micro-continental blocks, and a tentative interpretation of paleocontinental evolution in NW-Central China. Earth Science Frontiers, 14(1): 43-55 (in Chinese with English abstract)
Chen NS, Gong SL, Sun M, Li XY, Xia XP, Wang QY, Wu FY and Xu P. 2009b. Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U-Pb and Lu-Hf isotope compositions. Journal of Asian Earth Sciences, 35(3-4): 367-376 DOI:10.1016/j.jseaes.2008.10.004
Chen NS, Zhang L, Sun M, Wang QY and Kusky TM. 2012. U-Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history. Journal of Asian Earth Sciences, 54-55: 110-130 DOI:10.1016/j.jseaes.2012.04.006
Chen NS, Liao FX, Wang L, Santosh M, Sun M, Wang QY and Mustafa HA. 2013a. Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: Links with Tarim and North China cratons and implications for assembly of the Columbia supercontinent. Precambrian Research, 228: 102-116 DOI:10.1016/j.precamres.2013.01.013
Chen NS, Gong SL, Xia XP, Geng HY, Wang L, Sun M and Kusky TM. 2013b. Zircon Hf isotope of Yingfeng rapakivi granites from the Quanji massif and ~2.7Ga crustal growth. Journal of Earth Science, 24(1): 29-41 DOI:10.1007/s12583-013-0309-2
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024 DOI:10.1130/G19796.1
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Defant MJ and Drummond MS. 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6): 547-550 DOI:10.1130/0091-7613(1993)021<0547:MSHPEO>2.3.CO;2
Defant MJ and Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas. Eos, Transactions American Geophysical Union, 82(6): 65-69
Diwu CR, Sun Y, Lin CL, Liu XM and Wang HL. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province, China. Acta Petrologica Sinica, 23(2): 253-262 (in Chinese with English abstract)
Drummond MS, Defant MJ and Kepezhinskas PK. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 205-215 DOI:10.1017/S0263593300006611
Gao XF, Xiao PX and Jia QZ. 2011. Redetermination of the Tanjianshan Group: Geochronological and geochemical evidence of basalts from the margin of the Qaidam Basin. Acta Geologica Sinica, 85(9): 1452-1463 (in Chinese with English abstract)
Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K and Wu FY. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?. Chemical Geology, 266(3-4): 364-389 DOI:10.1016/j.chemgeo.2009.07.001
Gill JB. 1981. Orogenic Andesites and Plate Tectonics. Berlin: Springer
Gong SL, Chen NS, Wang QY, Kusky TM, Wang L, Zhang L, Ba J and Liao FX. 2012. Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance: LA-ICPMS U-Pb zircon geochronology and geochemistry. Gondwana Research, 21(1): 152-166 DOI:10.1016/j.gr.2011.07.011
Guo RR, Liu SW, Santosh M, Li QG, Bai X and Wang W. 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Research, 24(2): 664-686 DOI:10.1016/j.gr.2012.12.025
Gutscher MA, Maury R, Eissen JP and Bourdon E. 2000. Can slab melting be Caused by flat subduction?. Geology, 28(6): 535-538 DOI:10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
Hao GJ, Lu SN, Wang HC, Xin HT and Li HK. 2004. The pre-Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo-block. Earth Science Frontiers, 11(3): 115-122 (in Chinese with English abstract)
He C, Gong SL, Wang L, Chen NS, Santosh M and Wang QY. 2018. Protracted post-collisional magmatism during plate subduction shutdown in Early Paleoproterozoic: Insights from post-collisional granitoid suite in NW China. Gondwana Research, 55: 92-111 DOI:10.1016/j.gr.2017.11.009
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155 DOI:10.1016/S0012-821X(04)00007-X
Kang Z, Jiang CY, Ling JL, Zhao YF, Song YF and Zhou W. 2015. Petrogenesis and ore genesis of the ilmenite-rich Kendelong mafic-ultramafic intrusion in Wulan, Qinghai. Acta Petrologica Sinica, 31(8): 2193-2210 (in Chinese with English abstract)
Kay RW. 1978. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132 DOI:10.1016/0377-0273(78)90032-X
Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology, 120(1): 1-19 DOI:10.1007/BF00311004
Kepezhinskas P, Defant MJ and Drummond MS. 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229 DOI:10.1016/0016-7037(96)00001-4
Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC and Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600 DOI:10.1016/S0016-7037(96)00349-3
Lai SC, Deng JF and Zhao HL. 1996. Paleozoic ophiolites and its tectonic significance on north margin of Qaidam basin. Geoscience, 10(1): 18-28 (in Chinese with English abstract)
Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750 DOI:10.1093/petrology/27.3.745
Li H, Ling MX, Li CY, Zhang H, Ding X, Yang XY, Fan WM, Li YL and Sun WD. 2012. A-type granite belts of two chemical subgroups in central eastern China: Indication of ridge subduction. Lithos, 150: 26-36 DOI:10.1016/j.lithos.2011.09.021
Li XC, Niu ML, Yan Z, Wu Q, Xia WJ, Han Y and Da LC. 2015a. SHRIMP zircon dating for migmatitic biotite plagioclase gneiss from Erlangdong Dakendaban Group in Wulan at the northern margin of Qaidam Basin and its geological significance. Chinese Journal of Geology, 50(3): 728-740 (in Chinese with English abstract)
Li XC, Niu ML, Yan Z, Da LC, Han Y and Wang YS. 2015. LP/HT metamorphic rocks in Wulan County, Qinghai Province: An Early Paleozoic paired metamorphic belt on the northern Qaidam Basin?. Chinese Science Bulletin, 60(35): 3501-3513 (in Chinese) DOI:10.1360/N972015-00558
Li XC, Niu ML, Yakymchuk C, Yan Z, Fu CL and Zhao QQ. 2018. Anatexis of former arc magmatic rocks during oceanic subduction: A case study from the North Wulan gneiss complex. Gondwana Research, 61: 128-149 DOI:10.1016/j.gr.2018.04.016
Li XC, Niu ML, Yakymchuk C, Wu Q and Fu CL. 2019. A paired metamorphic belt in a subduction- to collision-orogen: An example from the South Qilian-North Qaidam orogenic belt, NW China. Journal of Metamorphic Geology, 37(4): 479-508 DOI:10.1111/jmg.12468
Liao FX, Zhang L, Chen NS, Sun M, Santosh M, Wang QY and Mustafa HA. 2014. Geochronology and geochemistry of meta-mafic dykes in the Quanji Massif, NW China: Paleoproterozoic evolution of the Tarim Craton and implications for the assembly of the Columbia supercontinent. Precambrian Research, 249: 33-56 DOI:10.1016/j.precamres.2014.04.015
Liao FX, Chen NS, Santosh M, Wang QY, Gong SL, He C and Mustafa HA. 2018. Paleoproterozoic Nb-enriched meta-gabbros in the Quanji Massif, NW China: Implications for assembly of the Columbia supercontinent. Geoscience Frontiers, 9(2): 577-590
Ling MX, Wang FY, Ding X, Hu YH, Zhou JB, Zartman RE, Yang XY and Sun WD. 2009. Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China. Economic Geology, 104(2): 303-321 DOI:10.2113/gsecongeo.104.2.303
Liu CH, Zhao GC, Liu FL and Shi JR. 2014. 2.2Ga magnesian andesites, Nb-enriched basalt-andesites, and adakitic rocks in the Lüliang Complex: Evidence for Early Paleoproterozoic subduction in the North China Craton. Lithos, 208-209: 104-117 DOI:10.1016/j.lithos.2014.08.025
Liu XC, Wu YB, Gao S, Liu Q, Wang H, Qin ZW, Li QL, Li XH and Gong HJ. 2012. First record and timing of UHP metamorphism from zircon in the Xitieshan Terrane: Implications for the evolution of the entire North Qaidam metamorphic belt. American Mineralogist, 97(7): 1083-1093 DOI:10.2138/am.2012.4048
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Long XP, Wilde SA, Wang Q, Yuan C, Wang XC, Li J, Jiang ZQ and Dan W. 2015. Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters, 414: 30-44 DOI:10.1016/j.epsl.2015.01.007
Lu SN. 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Beijing: Geological Publishing House, 1-125 (in Chinese)
Lu SN, Wang HC, Li HK, Yuan GB, Xin HT and Zheng JK. 2002a. Redefinition of the "Dakendaban Group" on the northern margin of the Qaidam basin. Geological Bulletin of China, 21(1): 19-23 (in Chinese with English abstract)
Lu SN, Yu HF, Jin W, Li HK and Zheng JK. 2002b. Microcontinents on the eastern margin of Tarim paleocontinent. Acta Petrologica et Mineralogica, 21(4): 317-326 (in Chinese with English abstract)
Lu SN, Yu HF, Li HK, Guo KY, Wang HC, Jin W, Zhang CL and Liu YS. 2006. Research on Precambrian Major Problems in China. Beijing: Geological Publishing House, 1-197 (in Chinese)
Lu ZL, Zhang JX, Mao XH, Zhou GS and Peng YB. 2017. Paleoproterozoic mafic granulite in the eastern Oulongbuluke block of the North Qaidam Mountains: Evidence from petrology, zircon U-Pb dating and Hf isotope. Acta Petrologica Sinica, 33(12): 3815-3828 (in Chinese with English abstract)
Lu ZL, Zhang JX and Mattinson C. 2018. Tectonic erosion related to continental subduction: An example from the eastern North Qaidam Mountains, NW China. Journal of Metamorphic Geology, 36(5): 653-666 DOI:10.1111/jmg.12305
Ludwig KR. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center
Ma JJ, Wang H, He C, Wang L, Wang QY and Chen NS. 2018. Neoproterozoic post-collision magmatism in South Qilian Orogen, China: Evidenced by geochronology and geochemistry. Journal of Earth Sciences and Environment, 40(2): 133-154 (in Chinese with English abstract)
Ma JJ, He C, Wang L, Wang H, Wang QY and Chen NS. 2019. Zircon U-Pb age evidence of Jinning period Kekesha granite in North Wulan terrane, western Qinghai Province. Geological Bulletin of China, 38(5): 824-833 (in Chinese with English abstract)
Macpherson CG, Dreher ST and Thirlwall MF. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593 DOI:10.1016/j.epsl.2005.12.034
Manikyamba C, Kerrich R, Khanna TC, Satyanarayanan M and Krishna AK. 2009. Enriched and depleted arc basalts, with Mg-andesites and adakites: A potential paired arc-back-arc of the 2.6Ga Hutti greenstone terrane, India. Geochimica et Cosmochimica Acta, 73(6): 1711-1736 DOI:10.1016/j.gca.2008.12.020
Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429 DOI:10.1016/S0024-4937(98)00076-0
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24 DOI:10.1016/j.lithos.2004.04.048
Mattinson CG, Wooden JL, Liou JG, Bird DK and Wu CL. 2006a. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China. Mineralogy and Petrology, 88(1-2): 227-241 DOI:10.1007/s00710-006-0149-1
Mattinson CG, Wooden JL, Liou JG, Bird DK and Wu CL. 2006b. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China. American Journal of Science, 306(9): 683-711 DOI:10.2475/09.2006.01
Mattinson CG, Menold CA, Zhang JX and Bird DK. 2007. High-and ultrahigh-pressure metamorphism in the North Qaidam and South Altyn terranes, western China. International Geology Review, 49(11): 969-995 DOI:10.2747/0020-6814.49.11.969
Mattinson CG, Wooden JL, Zhang JX and Bird DK. 2009. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China. Journal of Asian Earth Sciences, 35(3-4): 298-309 DOI:10.1016/j.jseaes.2008.12.007
Nasdala L, Hofmeister W, Norberg N, Martinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265 DOI:10.1111/j.1751-908X.2008.00914.x
Pallares C, Maury RC, Bellon H, Royer JY, Calmus T, Aguillón-Robles A, Cotten J, Benoit M, Michaud F and Bourgois J. 2007. Slab-tearing following ridge-trench collision: Evidence from Miocene volcanism in Baja California, México. Journal of Volcanology and Geothermal Research, 161(1-2): 95-117 DOI:10.1016/j.jvolgeores.2006.11.002
Peacock SM, Rushmer T and Thompson AB. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2): 227-244 DOI:10.1016/0012-821X(94)90042-6
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Peng P, Guo JH, Zhai MG, Windley BF, Li TS and Liu F. 2012a. Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics. Lithos, 148: 27-44 DOI:10.1016/j.lithos.2012.05.021
Peng TP, Fan WM and Peng BX. 2012b. Geochronology and geochemistry of Late Archean adakitic plutons from the Taishan granite-greenstone Terrain: Implications for tectonic evolution of the eastern North China Craton. Precambrian Research, 208-211: 53-71 DOI:10.1016/j.precamres.2012.03.008
Petrone CM and Ferrari L. 2008. Quaternary adakite-Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: Is there any slab melt evidence?. Contributions to Mineralogy and Petrology, 156(1): 73-86 DOI:10.1007/s00410-007-0274-9
Polat A and Kerrich R. 2001. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from Late-Archean 2.7Ga Wawa greenstone belts, Superior Province, Canada: Implications for Late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141(1): 36-52 DOI:10.1007/s004100000223
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356 DOI:10.1016/S0009-2541(99)00106-0
Ren YF, Chen DL, Kelsey DE, Gong XK and Liu L. 2017. Petrology and geochemistry of the lawsonite (pseudomorph)-bearing eclogite in Yuka terrane, North Qaidam UHPM belt: An eclogite facies metamorphosed oceanic slice. Gondwana Research, 42: 220-242 DOI:10.1016/j.gr.2016.10.011
Sajona FG, Maury RC, Bellon H, Cotten J, Defant MJ and Pubellier M. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11): 1007-1010 DOI:10.1130/0091-7613(1993)021<1007:IOSATG>2.3.CO;2
Sajona FG, Maury RC, Bellon H, Cotten J and Defant M. 1996. High field strength element enrichment of pliocene-pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726 DOI:10.1093/petrology/37.3.693
Scherer E, Münker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683-687 DOI:10.1126/science.1061372
Shchipansky AA, Samsonov AV, Bibikova EV, Babarina Ⅱ, Konilov AN, Krylov KA, Slabunov AI and Bogina MM. 2004. 2.8Ga boninite-hosting partial suprasubduction zone ophiolite sequences from the north Karelian greenstone belt, NE baltic shield, Russia. Developments in Precambrian Geology, 13: 425-486 DOI:10.1016/S0166-2635(04)13014-4
Shen XM, Zhang HX, Wang Q, Ma L and Yang YH. 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251 DOI:10.1016/j.lithos.2014.07.024
Shi RD, Yang JS and Wu CL. 2003. The discovery of adakitic dacite in Early Palaeozoic island arc volcanic rocks on the northern margin of Qaidam basin and its geological significance. Acta Petrologica et Mineralogica, 22(3): 229-236 (in Chinese with English abstract)
Shi RD, Yang JS, Wu CL, Iizuka T and Hirata T. 2004. Island arc volcanic rocks in the North Qaidam UHP metamorphic belt. Acta Geologica Sinica, 78(1): 52-64 (in Chinese with English abstract)
Shi RD, Yang JS, Wu CL, Iizuka T and Hirata T. 2006. Island arc volcanic rocks in the north Qaidam UHP belt, northern Tibet Plateau: Evidence for ocean-continent subduction preceding continent-continent subduction. Journal of Asian Earth Sciences, 28(2-3): 151-159 DOI:10.1016/j.jseaes.2005.09.019
Song SG, Yang JS, Xu ZQ, Liou JG and Shi RD. 2003. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631-644 DOI:10.1046/j.1525-1314.2003.00469.x
Song SG, Zhang LF, Niu YL, Li S, Ping J and Liu DY. 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters, 234(1-2): 99-118 DOI:10.1016/j.epsl.2005.02.036
Song SG, Zhang LF, Niu YL, Su L, Song B and Liu DY. 2006. Evolution from oceanic subduction to continental collision: A case study from the Northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology, 47(3): 435-455 DOI:10.1093/petrology/egi080
Song SG, Su L, Niu YL, Zhang LF and Zhang GB. 2007. Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China. Lithos, 96(1-2): 243-265 DOI:10.1016/j.lithos.2006.09.017
Song SG, Zhang C, Li XH and Zhang LF. 2011. HP/UHP metamorphic time of eclogite in the Xitieshan terrane, North Qaidam UHPM belt, NW China. Acta Petrologica Sinica, 27(4): 1191-1197 (in Chinese with English abstract)
Song SG, Niu YL, Su L, Zhang C and Zhang LF. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 129: 59-84 DOI:10.1016/j.earscirev.2013.11.010
Song SG, Niu YL, Zhang GB and Zhang LF. 2019. Two epochs of eclogite metamorphism link 'cold' oceanic subduction and 'hot' continental subduction, the North Qaidam UHP belt, NW China. In: Zhang LF, Zhang ZM, Schertl HP and Wei CJ (eds.). HP-UHP Metamorphism and Tectonic Evolution of Orogenic Belts. Geological Society, London, Special Publications, 474: 275-289
Sun HS, Li H, Algeo TJ, Gabo-Ratio JAS, Yang H, Wu JH and Wu P. 2019. Geochronology and geochemistry of volcanic rocks from the Tanjianshan Group, NW China: Implications for the Early Palaeozoic tectonic evolution of the North Qaidam Orogen. Geological Journal, 54(3): 1769-1796 DOI:10.1002/gj.3268
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sun WD, Ling MX, Yang XY, Fan WM, Ding X and Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Science China (Earth Sciences), 53(4): 475-484 DOI:10.1007/s11430-010-0024-0
Sun YG, Hao WJ, Han YS and Liu YA. 2000. Characteristics of the Tomorit ophiolite-like assemblage in the eastern sector of the northern margin of the Qaidam basin. Regional Geology of China, 19(3): 258-264 (in Chinese with English abstract)
Thorkelson DJ. 1996. Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 255(1-2): 47-63 DOI:10.1016/0040-1951(95)00106-9
Thorkelson DJ and Breitsprecher K. 2005. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas. Lithos, 79(1-2): 25-41 DOI:10.1016/j.lithos.2004.04.049
Tsuchiya N, Suzuki S, Kimura JI and Kagami H. 2005. Evidence for slab melt/mantle reaction: Petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos, 79(1-2): 179-206 DOI:10.1016/j.lithos.2004.04.053
Wallace LM, Ellis S, Miyao K, Miura S, Beavan J and Goto J. 2009. Enigmatic, highly active left-lateral shear zone in Southwest Japan explained by aseismic ridge collision. Geology, 37(2): 143-146
Wang C, Li RS, Li M, Meert JG and Peng Y. 2015. Palaeoproterozoic magmatic-metamorphic history of the Quanji Massif, Northwest China: Implications for a single North China-Quanji-Tarim craton within the Columbia supercontinent?. International Geology Review, 57(13): 1772-1790 DOI:10.1080/00206814.2015.1026849
Wang HC, Lu SN, Yuan GB, Xin HT, Zhang BH, Wang QH and Tian Q. 2003. Tectonic setting and age of the "Tanjianshan Group" on the northern margin of the Qaidam basin. Geological Bulletin of China, 22(7): 487-493 (in Chinese with English abstract)
Wang HC, Lu SN, Mo XX, Li HK and Xin HT. 2005. An Early Paleozoic collisional orogen on the northern margin of the Qaidam basin, northwestern China. Geological Bulletin of China, 24(7): 603-612 (in Chinese with English abstract)
Wang L, Wang H, He C, Chen NS, Santosh M, Sun M, Wang QY, Jin LL and Liao FX. 2016. Mesoproterozoic continental breakup in NW China: Evidence from gray gneisses from the North Wulan Terrane. Precambrian Research, 281: 521-536 DOI:10.1016/j.precamres.2016.06.016
Wang Q, Xu JF and Zhao ZH. 2001. The Summary and comment on research on a new kind of igneous rock: Adakite. Advance in Earth Sciences, 16(2): 201-208 (in Chinese with English abstract)
Wang Q, Zhao ZH, Bai ZH, Xiong XL, Mei HJ, Xu JF, Bao ZW and Wang YX. 2003. Carboniferous adakites and Nb-enriched arc basaltic rocks association in the Alataw Mountains, North Xinjiang: Interactions between slab melt and mantle peridotite and implications for crustal growth. Chinese Science Bulletin, 48(19): 2108-2115 DOI:10.1007/BF03037015
Wang Q, McDermott F, Xu JF, Bellon H and Zhu YT. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology, 33(6): 465-468 DOI:10.1130/G21522.1
Wang Q, Zhao ZH, Xu JF, Wyman DA, Xiong XL, Zi F and Bai ZH. 2006. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the northern Tianshan area: Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11-30 (in Chinese with English abstract)
Wang Q, Wyman DA, Zhao ZH, Xu JF, Bai ZH, Xiong XL, Dai TM, Li CF and Chu ZY. 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the central Asia orogenic belt. Chemical Geology, 236(1-2): 42-64 DOI:10.1016/j.chemgeo.2006.08.013
Wang Q, Wyman DA, Xu JF, Wan YS, Li CF, Zi F, Jiang ZQ, Qiu HN, Chu ZY, Zhao ZH and Dong YH. 2008a. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490 DOI:10.1007/s00410-007-0253-1
Wang Q, Xu JF, Zhao ZH, Zi F, Tang GJ, Jia XH and Jiang ZQ. 2008. Tectonic setting and associated rock suites of adakitic rocks. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 344-350 (in Chinese with English abstract)
Wang QY, Chen NS, Li XY, Hao S and Chen HH. 2008b. LA-ICPMS zircon U-Pb geochronological constraints on the tectonothermal evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Chinese Science Bulletin, 53(18): 2849-2858
Wang QY, Dong YJ, Pan YM, Liao FX and Guo XW. 2018a. Early paleozoic granulite-facies metamorphism and magmatism in the northern Wulan terrane of the Quanji massif: Implications for the evolution of the Proto-Tethys ocean in northwestern China. Journal of Earth Science, 29(5): 1081-1101 DOI:10.1007/s12583-018-0881-6
Wang YJ, Gan CS, Tan QL, Zhang YZ, He HY, Xin Q and Zhang YH. 2018b. Early neoproterozoic (~840Ma) slab window in South China: Key magmatic records in the Chencai Complex. Precambrian Research, 314: 434-451 DOI:10.1016/j.precamres.2018.06.002
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In McKibben MA, Shanks Ⅲ WC and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Littleton: Society of Economic Geologists: 1-35
Wu CL, Yang JS, Xu ZQ, Wooden JL, Ireland T, Li HB, Shi RD, Meng FC, Chen SY, Persing H and Meibom A. 2004. Granitic magmatism on the Early Paleozoic UHP belt of Northern Qaidam, NW China. Acta Geologica Sinica, 78(5): 658-674 (in Chinese with English abstract)
Wu CL, Gao YH, Wu SP, Chen QL, Wooden JL, Mazadab FK and Mattinson C. 2008. Zircon SHRIMP dating of granites and lithogeochemical on the west section of northern margin of the Qaidam basin. Science China (Series D), 38(8): 930-949 (in Chinese)
Wu CL, Lei M, Wu D and Li TX. 2016. Zircon SHRIMP dating and genesis of granites in Wulan area of Northern Qaidam. Acta Geoscientica Sinica, 37(4): 493-516 (in Chinese with English abstract)
Wu CL, Wu D, Mattinson C, Lei M and Chen HJ. 2019. Petrogenesis of granitoids in the Wulan area: Magmatic activity and tectonic evolution in the North Qaidam, NW China. Gondwana Research, 67: 147-171 DOI:10.1016/j.gr.2018.09.010
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu JR, Ren BC, Zhang M, Gao DC, Zhao T, Zhang HW, Song ZG and Zhang QL. 1987. The genetic type and geological characteristics of the Xitieshan massive sulphide deposit, Qinghai. In: Xi'an Institute of Geology and Mineral Resources (ed.). Bulletin of Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences. Beijing: Shaanxi Science and Technology Press, 1-88 (in Chinese)
Xiao QH, Lu XX, Wang F, Sun YG, Wei XD and Xing ZY. 2004. Age of Yingfeng rapakivi granite pluton on the north flank of Qaidam and its geological significance. Science in China (Series D), 47(4): 357-365 DOI:10.1360/02YD0472
Xiong Q, Zheng JP, Griffin WL, O'Reilly SY and Zhao JH. 2011. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam Terrane (western China): Meso-Neoproterozoic crust-mantle coupling and Early Paleozoic convergent plate-margin processes. Precambrian Research, 187(1-2): 33-57 DOI:10.1016/j.precamres.2011.02.003
Xiong Q, Zheng JP, Griffin WL, O'Reilly SY and Pearson NJ. 2012. Decoupling of U-Pb and Lu-Hf isotopes and trace elements in zircon from the UHP North Qaidam orogen, NE Tibet (China): Tracing the deep subduction of continental blocks. Lithos, 155: 125-145 DOI:10.1016/j.lithos.2012.08.022
Xiong XL, Li XH, Xu JF, Li WX, Zhao ZH, Wang Q and Chen XM. 2003. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochemical Journal, 37(2): 233-252 DOI:10.2343/geochemj.37.233
Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?. Geology, 30(12): 1111-1114 DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Yang JJ, Zhu H, Deng JF, Zhou TZ and Lai SC. 1994. The discovery of garnet peridotite in Northern Chaidam Mountains and its significance. Acta Petrologica et Mineralogica, 13(2): 97-105 (in Chinese with English abstract)
Yang JJ and Powell R. 2008. Ultrahigh-pressure garnet peridotites from the devolatilization of sea-floor hydrated ultramafic rocks. Journal of Metamorphic Geology, 26(6): 695-716 DOI:10.1111/j.1525-1314.2008.00780.x
Yang JS, Xu ZQ, Li HB, Wu CL, Cui JW, Zhang JX and Chen W. 1998. Discovery of eclogite at northern margin of Qaidam basin, NW China. Chinese Science Bulletin, 43(20): 1755-1760 (in Chinese) DOI:10.1007/BF02883981
Yang JS, Xu ZQ, Song SG, Zhang JX, Wu CL, Shi RD, Li HB and Brunel M. 2001. Discovery of coesite in the North Qaidam Early Palaeozoic ultrahigh pressure (UHP) metamorphic belt, NW China. Comptes Rendus de l'Académie des Sciences-Series ⅡA-Earth and Planetary Science, 333(11): 719-724
Yang JS, Xu ZQ, Zhang JX, Song SG, Wu CL, Shi RD, Li HB and Brunel M. 2002. Early Palaeozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan Plateau and a paired subduction model. Terra Nova, 14(5): 397-404 DOI:10.1046/j.1365-3121.2002.00438.x
Yang JS, Wu CL, Zhang JX, Shi RD, Meng FC, Wooden J and Yang HY. 2006. Protolith of eclogites in the north Qaidam and Altun UHP terrane, NW China: Earlier oceanic crust?. Journal of Asian Earth Sciences, 28(2-3): 185-204 DOI:10.1016/j.jseaes.2005.09.020
Yin A and Harrison TM. 2000. Geologic evolution of the himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280 DOI:10.1146/annurev.earth.28.1.211
Yin A, Manning CE, Lovera O, Menold CA, Chen XH and Gehrels GE. 2007. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681-716 DOI:10.2747/0020-6814.49.8.681
Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Wöerner G and Volynets ON. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500-504 DOI:10.1038/35054039
Yu SY, Zhang JX and Del Real PG. 2012. Geochemistry and zircon U-Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP Terrane, north Tibet: Constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny. Gondwana Research, 21(1): 167-179 DOI:10.1016/j.gr.2011.07.024
Yu SY, Zhang JX, Li HK, Hou KJ, Mattinson CG and Gong JH. 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP Terrane: New evidence for deep continental subduction. Gondwana Research, 23(3): 901-919 DOI:10.1016/j.gr.2012.07.018
Yu SY, Zhang JX, Mattinson CG, García del Real P, Li YS and Gong JH. 2014. Paleozoic HP granulite-facies metamorphism and anatexis in the Dulan area of the North Qaidam UHP terrane, western China: Constraints from petrology, zircon U-Pb and amphibole Ar-Ar geochronology. Lithos, 198-199: 58-76 DOI:10.1016/j.lithos.2014.03.016
Yu SY, Zhang JX, Sun DY, Li YS and Gong JH. 2014. Partial melting of subducted continental plate during exhumation from the North Qaidam UHP terrane, western China. Acta Petrologica Sinica, 30(8): 2287-2296 (in Chinese with English abstract)
Yu SY, Zhang JX, Li SZ, Sun DY, Li YS, Liu X, Guo LL, Suo YH, Peng YB and Zhao XL. 2017. Paleoproterozoic granulite-facies metamorphism and anatexis in the Oulongbuluke Block, NW China: Respond to assembly of the Columbia supercontinent. Precambrian Research, 291: 42-62 DOI:10.1016/j.precamres.2017.01.016
Yu SY, Li SZ, Zhang JX, Liu YJ, Peng YB, Sun DY and Li YS. 2019a. Grenvillian orogeny in the Oulongbuluke Block, NW China: Constraints from an ~1.1Ga andean-type arc magmatism and metamorphism. Precambrian Research, 320: 424-437 DOI:10.1016/j.precamres.2018.11.001
Yu SY, Li SZ, Zhang JX, Peng YB, Somerville I, Liu YJ, Wang ZY, Li ZF, Yao Y and Li Y. 2019b. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190-211 DOI:10.1016/j.earscirev.2019.02.016
Yuan GB, Wang HC, Li HM, Hao GJ, Xin HT, Zhang BH, Wang QH and Tian Q. 2002. Zircon U-Pb age of the gabbros in Luliangshan area on the northern margin of Qaidam Basin and its geological implication. Progress in Precambrian Research, 25(1): 36-40 (in Chinese with English abstract)
Zhang C, Bader T, Zhang LF and van Roermund H. 2017. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China: From Grenville-age orogeny to Early-Paleozoic ultrahigh-pressure metamorphism. Gondwana Research, 41: 290-300 DOI:10.1016/j.gr.2015.04.011
Zhang GB, Song SG, Zhang LF and Niu YL. 2008a. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology. Lithos, 104(1-4): 99-118 DOI:10.1016/j.lithos.2007.12.001
Zhang GB, Zhang LF, Song SG and Niu YL. 2009a. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 310-322 DOI:10.1016/j.jseaes.2008.11.013
Zhang GB, Zhang LF and Song SG. 2012. An overview of the tectonic evolution of North Qaidam UHPM Belt: From oceanic subduction to continental collision. Geological Journal of China Universities, 18(1): 28-40 (in Chinese with English abstract)
Zhang JX, Yang JS, Xu ZQ, Zhang ZM, Li HB and Chen W. 2000. U-Pb and Ar-Ar ages of eclogites from the northern margin of the Qaidam basin, northwestern China. Journal of the Geological Society of China, 43(1): 161-169
Zhang JX, Wan YS, Xu ZQ, Yang JS and Meng FC. 2001. Discovery of basic granulite and its formation age in Delingha area, North Qaidam monutains. Acta Petrologica Sinica, 17(3): 453-458 (in Chinese with English abstract)
Zhang JX, Meng FC and Yang JS. 2004. Eclogitic metapelites in the western segment of the north Qaidam Mountains: Evidence on "in situ" relationship between eclogite and its country rock. Science in China (Series D), 47(12): 1102-1112 DOI:10.1360/02yd0311
Zhang JX, Meng FC and Yang JS. 2005. P-T evolution of the Yuqia eclogite in northern Qaidam Mountains. Acta Petrologica et Mineralogica, 24(4): 245-254 (in Chinese with English abstract)
Zhang JX, Yu SY and Meng FC. 2008. Metamorphic and deformational evolution of the Iqe-Luofengpo eclogite-gneiss unit in the North Qaidam Mountains, China. Geological Bulletin of China, 27(9): 1468-1474 (in Chinese with English abstract)
Zhang JX, Mattinson CG, Meng FC, Wan YS and Tung K. 2008b. Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, western China: Evidence from zircon U-Pb geochronology. GSA Bulletin, 120(5-6): 732-749 DOI:10.1130/B26093.1
Zhang JX, Meng FC, Li JP and Mattinson CG. 2009b. Coesite in eclogite from the North Qaidam Mountains and its implications. Chinese Science Bulletin, 54(6): 1105-1110
Zhang JX, Mattinson CG, Meng FC, Yang HJ and Wan YS. 2009c. U-Pb geochronology of paragneisses and metabasite in the Xitieshan area, north Qaidam Mountains, western China: Constraints on the exhumation of HP/UHP metamorphic rocks. Journal of Asian Earth Sciences, 35(3-4): 245-258 DOI:10.1016/j.jseaes.2008.08.008
Zhang JX, Mattinson CG, Yu SY, Li JP and Meng FC. 2010. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: Spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology, 28(9): 955-978 DOI:10.1111/j.1525-1314.2010.00901.x
Zhang JX, Yu SY, Li YS, Yu XX, Lin YH and Mao XH. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531-3554 (in Chinese with English abstract)
Zhang Q, Wang Y, Qian Q, Yang JH, Wang YL, Zhao TP and Guo GJ. 2001a. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan Period from eastern China. Acta Petrologica Sinica, 17(2): 236-244 (in Chinese with English abstract)
Zhang Q, Qian Q, Wang EQ, Wang Y, Zhao TP, Hao J and Guo GJ. 2001b. An East China Plateau in mid-Late Yanshanian Period: Implication from adakites. Chinese Journal of Geology, 36(2): 248-255 (in Chinese with English abstract)
Zhang Q. 2011. Reappraisal of the origin of C-type adakitic rocks from East China. Acta Petrologica et Mineralogica, 30(4): 739-747 (in Chinese with English abstract)
Zhang Q and Jiao ST. 2020. Adakite comes from a high-pressure background: A scientific, reliable, predictable scientific discovery. Acta Petrologica Sinica, 36(6): 1675-1683 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.02
Zhao FQ, Guo JJ and Li HK. 2003. Geological characteristics and isotopic age of Tanjianshan Group along northern margin of Qaidam basin. Geological Bulletin of China, 22(1): 28-31 (in Chinese with English abstract)
Zhou GS, Zhang JX, Li YS, Yu SY, Yu XX, Mao XH and Lu ZL. 2017. Redefinition of the polyphase tectonothermal events of the North Qaidaim HP/UHP metamorphic terrane: Evidence from zircon and monazite U-Pb geochronology of the Yuka HP metapelites. Acta Petrologica Sinica, 33(12): 3801-3814 (in Chinese with English abstract)
Zhou MF, Yan DP, Wang CL, Qi L and Kennedy A. 2006. Subduction-related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth and Planetary Science Letters, 248(1-2): 286-300 DOI:10.1016/j.epsl.2006.05.032
Zhu XH, Chen DL, Liu L and Li D. 2010. Zicon LA-ICP-MS U-Pb dating of the Wanggaxiu gabbro complex in the Dulan area, northern margin of Qaidam Basin, China and its geological significance. Geological Bulletin of China, 29(2-3): 227-236 (in Chinese with English abstract)
Zhu XH, Chen DL, Liu L, Wang C, Yang WQ, Cao YT and Kang L. 2012. Chronology and geochemistry of the mafic rocks in Xitieshan area, North Qaidam. Geological Bulletin of China, 31(12): 2079-2089 (in Chinese with English abstract)
Zhu XH, Chen DL, Liu L, Zhao J and Zhang L. 2014. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam. Acta Petrologica Sinica, 30(3): 822-834 (in Chinese with English abstract)
巴金, 龚松林, 廖梵汐, 张璐. 2012. 全吉地块莫河片麻岩原岩侵位年龄的再研究. 地质科技情报, 31(6): 98-101.
边千韬, Pospelov Ⅱ, 李惠民, 常承法, 李继亮. 2007. 青海省布青山早古生代末期埃达克岩的发现及其构造意义. 岩石学报, 23(5): 925-934.
陈能松, 王勤燕, 陈强, 李晓彦. 2007. 柴达木和欧龙布鲁克陆块基底的组成和变质作用及中国中西部古大陆演化关系初探. 地学前缘, 14(1): 43-55.
第五春荣, 孙勇, 林慈銮, 柳小明, 王洪亮. 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, 23(2): 253-262.
高晓峰, 校培喜, 贾群子. 2011. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据. 地质学报, 85(9): 1452-1463.
郝国杰, 陆松年, 王惠初, 辛后田, 李怀坤. 2004. 柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化. 地学前缘, 11(3): 115-122.
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492.
康珍, 姜常义, 凌锦兰, 赵彦锋, 宋艳芳, 周伟. 2015. 青海省乌兰地区肯得隆富钛铁矿镁铁-超镁铁质岩体的岩石与矿石成因. 岩石学报, 31(8): 2193-2210.
赖绍聪, 邓晋福, 赵海玲. 1996. 柴达木北缘古生代蛇绿岩及其构造意义. 现代地质, 10(1): 18-28.
李秀财, 牛漫兰, 闫臻, 吴齐, 夏文静, 韩雨, 笪梁超. 2015a. 柴北缘乌兰县二郎洞达肯大坂岩群中混合岩化黑云斜长片麻岩锆石SHRIMP测年及其意义. 地质科学, 50(3): 728-740.
李秀财, 牛漫兰, 闫臻, 笪梁超, 韩雨, 王玉松. 2015. 青海省乌兰县早古生代低压高温变质岩:柴北缘存在双变质带?. 科学通报, 60(35): 3501-3513.
陆松年. 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社, 1-125.
陆松年, 王惠初, 李怀坤, 袁桂邦, 辛后田, 郑健康. 2002a. 柴达木盆地北缘"达肯大坂群"的再厘定. 地质通报, 21(1): 19-23.
陆松年, 于海峰, 金巍, 李怀坤, 郑健康. 2002b. 塔里木古大陆东缘的微大陆块体群. 岩石矿物学杂志, 21(4): 317-326.
陆松年, 于海峰, 李怀坤, 郭坤一, 王惠初, 金巍, 张传林, 刘永顺. 2006. 中国前寒武纪重大地质问题研究. 北京: 地质出版社, 1-197.
路增龙, 张建新, 毛小红, 周桂生, 彭银彪. 2017. 柴北缘欧龙布鲁克地块东段古元古代基性麻粒岩:岩石学、锆石U-Pb年代学和Lu-Hf同位素证据. 岩石学报, 33(12): 3815-3828.
马建军, 王珩, 何川, 王璐, 王勤燕, 陈能松. 2018. 南祁连造山带新元古代后碰撞岩浆作用:年代学和地球化学证据. 地球科学与环境学报, 40(2): 133-154.
马建军, 何川, 王璐, 王珩, 王勤燕, 陈能松. 2019. 青海海西州乌北地体晋宁期柯柯沙花岗片麻岩锆石U-Pb年龄证据. 地质通报, 38(5): 824-833.
青海省地质矿产局. 1991. 青海省区域地质志. 北京: 地质出版社, 1-662.
史仁灯, 杨经绥, 吴才来. 2003. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义. 岩石矿物学杂志, 22(3): 229-236.
史仁灯, 杨经绥, 吴才来, Iizuka T, Hirata T. 2004. 柴达木北缘超高压变质带中的岛弧火山岩. 地质学报, 78(1): 52-64.
宋述光, 张聪, 李献华, 张立飞. 2011. 柴北缘超高压带中锡铁山榴辉岩的变质时代. 岩石学报, 27(4): 1191-1197.
孙延贵, 郝维杰, 韩英善, 刘永安. 2000. 柴达木盆地北缘东段托莫尔日特似蛇绿岩岩石组合特征. 中国区域地质, 19(3): 258-264.
王惠初, 陆松年, 袁桂邦, 辛后田, 张宝华, 王青海, 田琪. 2003. 柴达木盆地北缘滩间山群的构造属性及形成时代. 地质通报, 22(7): 487-493.
王惠初, 陆松年, 莫宣学, 李怀坤, 辛后田. 2005. 柴达木盆地北缘早古生代碰撞造山系统. 地质通报, 24(7): 603-612.
王强, 许继锋, 赵振华. 2001. 一种新的火成岩——埃达克岩的研究综述. 地球科学进展, 16(2): 201-208.
王强, 赵振华, 许继峰, Wyman DA, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11-30.
王强, 许继峰, 赵振华, 资锋, 唐功建, 贾小辉, 姜子琦. 2008. 埃达克质岩的构造背景与岩石组合. 矿物岩石地球化学通报, 27(4): 344-350.
吴才来, 杨经绥, 许志琴, Wooden JL, Ireland T, 李海兵, 史仁灯, 孟繁聪, 陈松永, Persing H, Meibom A. 2004. 柴达木盆地北缘古生代超高压带中花岗质岩浆作用. 地质学报, 78(5): 658-674.
吴才来, 郜源红, 吴锁平, 陈其龙, Wooden JL, Mazadab FK, Mattinson C. 2008. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征. 中国科学(D辑), 38(8): 930-949.
吴才来, 雷敏, 吴迪, 李天啸. 2016. 柴北缘乌兰地区花岗岩锆石SHRIMP定年及其成因. 地球学报, 37(4): 493-516.
邬介人, 任秉琛, 张苺, 高栋丞, 赵统, 张汉文, 宋志高, 张群力. 1987.青海锡铁山块状硫化物矿床的类型及地质特征.见: 西安地质矿产研究所编.中国地质科学院西安地质矿产研究所所刊20号.北京: 陕西科学技术出版社, 1-88
杨建军, 朱红, 邓晋福, 周天祯, 赖绍聪. 1994. 柴达木北缘石榴石橄榄岩的发现及其意义. 岩石矿物学杂志, 13(2): 97-105.
于胜尧, 张建新, 孙德有, 李云帅, 宫江华. 2014. 柴北缘大陆深俯冲板片折返过程中的深熔作用研究. 岩石学报, 30(8): 2287-2296.
袁桂邦, 王惠初, 李惠民, 郝国杰, 辛后田, 张宝华, 王青海, 田琪. 2002. 柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义. 前寒武纪研究进展, 25(1): 36-40.
张贵宾, 张立飞, 宋述光. 2012. 柴北缘超高压变质带:从大洋到大陆的深俯冲过程. 高校地质学报, 18(1): 28-40.
张建新, 万渝生, 许志琴, 杨经绥, 孟繁聪. 2001. 柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代. 岩石学报, 17(3): 453-458.
张建新, 孟繁聪, 杨经绥. 2005. 柴北缘鱼卡榴辉岩的P-T演化历史. 岩石矿物学杂志, 24(4): 245-254.
张建新, 于胜尧, 孟繁聪. 2008. 柴达木北缘鱼卡-落凤坡榴辉岩-片麻岩单元的变质变形演化. 地质通报, 27(9): 1468-1474.
张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554.
张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001a. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244.
张旗, 钱青, 王二七, 王焰, 赵太平, 郝杰, 郭光军. 2001b. 燕山中晚期的中国东部高原:埃达克岩的启示. 地质科学, 36(2): 248-255.
张旗. 2011. 关于C型埃达克岩成因的再探讨. 岩石矿物学杂志, 30(4): 739-747.
张旗, 焦守涛. 2020. 埃达克岩来自高压背景——一个科学的、可靠的、有预见性的科学发现. 岩石学报, 36(6): 1675-1683.
赵风清, 郭进京, 李怀坤. 2003. 青海锡铁山地区滩间山群的地质特征及同位素年代学. 地质通报, 22(1): 28-31.
周桂生, 张建新, 李云帅, 于胜尧, 喻星星, 毛小红, 路增龙. 2017. 柴北缘HP-UHP变质带多期构造热事件的再厘定:鱼卡地区高压变泥质岩锆石和独居石U-Pb定年. 岩石学报, 33(12): 3801-3814.
朱小辉, 陈丹玲, 刘良, 李涤. 2010. 柴达木盆地北缘都兰地区旺尕秀辉长杂岩的锆石LA-ICP-MS U-Pb年龄及地质意义. 地质通报, 29(2-3): 227-236.
朱小辉, 陈丹玲, 刘良, 王超, 杨文强, 曹玉亭, 康磊. 2012. 柴北缘锡铁山地区镁铁质岩石的时代及地球化学特征. 地质通报, 31(12): 2079-2089.
朱小辉, 陈丹玲, 刘良, 赵姣, 张乐. 2014. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义. 岩石学报, 30(3): 822-834.