岩石学报  2020, Vol. 36 Issue (10): 2913-2945, doi: 10.18654/1000-0569/2020.10.01   PDF    
青藏高原新特提斯蛇绿岩的地质特征及其构造演化
刘飞1,2,3, 杨经绥1,2,3,4, 连东洋3,4, 李观龙1     
1. 地幔研究中心, 自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 南方海洋科学与工程广东省实验室(广州), 广州 511458;
3. 山东省金刚石成矿机理与探测院士工作站, 山东省第七地质矿产勘查院, 临沂 276006;
4. 南京大学地球科学与工程学院, 南京 210023
摘要: 西藏雅鲁藏布江缝合带(YZSZ)和班公湖-怒江缝合带(BNSZ)蛇绿岩代表了新特提斯洋壳和岩石圈地幔残余,是我国铬铁矿和蛇绿岩型金刚石的重要原产地,目前这两条蛇绿岩带的成因和相互关系还存在着争论。本文总结了YZSZ、BNSZ、狮泉河-纳木错蛇绿混杂岩带(SNMZ)和松多缝合带蛇绿岩的时空分布、组成和构造背景,归纳了拉萨地块晚古生以来的岩浆岩分布,获得以下主要认识:(1)Panjal地幔柱活动可能促使怒江洋和雅江西洋在早二叠世空谷期(283~272Ma)打开;(2)雅江东洋由于松多洋的南向俯冲在晚三叠世打开,与雅江西洋以萨嘎-措勤为界,并形成冈底斯东部245~200Ma岩浆热事件;(3)~140Ma班怒洋闭合以及南羌塘与北拉萨地块碰撞,导致雅江洋扩张速率加快而引发了北向拉萨地块的平板俯冲,进而导致班怒洋的再次裂解形成133~104Ma"红海型"小洋盆;(4)YZSZ缝合带西段南带蛇绿岩为北带的逆冲推覆体;(5)BNSZ和SNMZ蛇绿岩隶属于一个洋盆,后者代表了班怒洋成熟洋盆扩张脊的残余。
关键词: 雅鲁藏布江缝合带    班公湖-怒江缝合带    松多缝合带    冈底斯岛弧    蛇绿岩    新特提斯洋    
Geological features of Neothyan ophiolites in Tibetan Plateau and its tectonic evolution
LIU Fei1,2,3, YANG JingSui1,2,3,4, LIAN DongYang3,4, LI GuanLong1     
1. CARMA, Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China;
3. Shandong Academician Workstation of Diamond Mineralization Mechanism and Exploration, Shandong No.7 Exploration Institute of Geology and Mineral Resources, Linyi 276006, China;
4. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Abstract: Ophiolites in the Yarlung Zangbo Suture Zone (YZSZ) and the Bangong-Nujiang Suture Zone (BNSZ) represent remnants of the Neotethyan oceanic crust and upper mantle, they are original producers of chromitite and ophiolite-type diamonds in China. However, the origin and relationship of the YZSZ and BNSZ remain controversial. In this paper, we summarize temporal and spatial occurances, ophiolitic rock assemblages and tectonic settings of ophiolites and ophiolitic mélanges within the YZSZ, BNSZ, Shiquan River-Numdo ophiolitic mélange zone (SNMZ) and Sumdo suture zone, overview magmatic rocks distribution since Late Paleozoic in the Lhasa block. We propose that: (1) Panjal mantle plume likely have prompted the contemporaneous opening of the Bangong-Nujiang ocean and Yarlung Zangbo West Ocean (YZWO) during the Early Permian Kungurian Period (283~272Ma). (2) Yarlung Zangbo East Ocean bounded by the Saga-Cuoqin with the YZWO, opened in Late Triassic due to the southward subduction of the Songdo Paleo-Tethys Ocean, and created the 245~200Ma magmatic events along the southeastern Gongdese island arc. (3) Closure of Bangong-Nujiang ocean and collision between Southern Qiangtang and Northern Lhasa blocks at ~140Ma led to accelerate the spreading rate of the Yarlung Zangbo ocean and triggered flat subduction southword the Lhasa block, which further led to the drifting and spreading of the Bangong-Nujiang ocean and the formation of a short-lived (133~104Ma) small ocean basin. (4) Ophiolites in the southern belt of the western YZSZ are thrust nappes from the northern belt. (5) Ophiolites along the BNSZ and SNMZ belong to the same oceanic basin, the latter represents remnants of the main mature oceanic basin of the Bangong-Nujiang ocean in the late Jurassic.
Key words: Yarlung Zangbo suture zone    Bangong-Nujiang suture zone    Sumdo suture zone    Gangdese island arc    Ophiolite    Neotethys    

“特提斯(Tethys)”一词最早由奥地利地质学家爱德华·休斯(Eduard Suess)1893年使用,用于指代分布于中美洲经阿尔卑斯、地中海到喜马拉雅至东南亚一带的古生代、中生代和第三纪的古海洋(Bernoulli and Jenkyns, 2009; Suess, 1893; 吴福元等, 2020)。新特提斯洋是指位于由土耳其、伊朗、羌塘、Sibumasu等陆块组成的基墨里大陆(Cimmerian continent)以南的古洋盆(Metcalfe, 2011; Muttoni et al., 2009; Xu et al., 2015c; 周祥等, 1984)。青藏高原雅鲁藏布江缝合带(YZSZ)、班公湖-怒江缝合带(BNSZ)以及狮泉河-纳木错混杂岩带(SNMZ)的蛇绿岩被认为是新特提斯洋壳和岩石圈地幔残余(Domeier and Torsvik, 2014; Şengör, 1979;宋扬等, 2014; 周祥等, 1984)。然而,这些蛇绿岩带的成因和相互关系还存在着争论,如:(1)普遍认为以YZSZ为代表的雅鲁藏布江洋(简称雅江洋)是班公湖-怒江洋(简称班怒洋)晚三叠世(Metcalfe, 2011; Zhu et al., 2013)或早侏罗世(Yang et al., 2018)向拉萨地块俯冲形成的弧后盆地,或是高喜马拉雅地体以南的新特提斯洋自晚三叠世向北俯冲形成的弧后盆地(Liu et al., 2012b; 刘小汉等, 2009; 肖文交等, 2017);(2)YZSZ西段(萨嘎以西)南、北亚带具有相同洋盆的不同残余和两个独立演化洋盆的争论(Xu et al., 2015d; 黄圭成等, 2006; 刘飞等, 2015a);(3)SNMZ和BNSZ关系存在如下主要争论:SNMZ蛇绿岩是班怒洋向南逆冲推覆的残片(Kapp et al., 2003),或代表班怒洋向南俯冲的弧后盆地(Xu et al., 2014a),或为独立的新生洋盆(Zeng et al., 2018; 张诗启, 2018),或为班怒洋演化至成熟洋盆的洋中脊残余(Tang et al., 2020a)。另外前人在BNSZ和YZSZ之间厘定出古特提斯洋残余的松多榴辉岩和蛇绿岩及其两侧印支期岩浆事件(Yang et al., 2009; 陈松永, 2010; 李化启, 2009; 解超明等, 2020; 杨经绥等, 2006),使得青藏高原新特提斯洋的演化更加复杂。除此以外,国内外学者在YZSZ的罗布莎、泽当、夏鲁、当穷-休古嘎布、普兰、东波(Xiong et al., 2016a, 2019; Xu et al., 2009, 2015b; 郭国林等, 2015; 徐向珍等, 2015, 2018),BNSZ的东巧和丁青(Bai et al., 1993; 方青松和白文吉, 1981; 颜秉刚等, 1986; Xiong et al., 2018),以及两带纬向延伸的土耳其、阿尔巴尼亚、密支那、Nidar蛇绿岩中发现了金刚石(Chen et al., 2018; Das et al., 2017; Lian et al., 2017a; Wu et al., 2017)(图 1),开启了国际上重新思考蛇绿岩成因的热潮,但同时也引发了蛇绿岩型铬铁矿的物源和构造环境、含金刚石地幔橄榄岩和铬铁矿从地球深部向上运移机制等方面的巨大争论(Arai, 2013; Arai and Miura, 2016; Griffin et al., 2016; Howell et al., 2015; Xiong et al., 2015b; Yang et al., 2014; Zhou et al., 2014),而这些新的争论均与蛇绿岩的构造环境和成因多解性相关。

图 1 特提斯造山带中已发现蛇绿岩型金刚石的位置分布图 区域构造引自Dilek, 2006; Li et al., 2018a; Liu et al., 2017c; Rodriguez et al., 2020; Seltmann et al., 2014; Şengör and Natal'In, 1996;许志琴等, 2018. 15个含金刚石蛇绿岩包括:C-错不扎; D-东巧; DB-东波; DQ-丁青; DX-当穷-休古嘎布; EM-东Mirdita(阿尔巴尼亚); K-吉灵庙(Kalamyo,缅甸,作者待发表); L-罗布莎; M-密支那(Myitkyina,缅甸); N-Nidar(克什米尔地区); P-普兰; PK-Pozanti Karsanti(土耳其); WM-西Mirdita(阿尔巴尼亚); X-日喀则夏鲁; Z-泽当.BNSZ-班公湖-怒江缝合带; IYSZ-印度-雅鲁藏布江缝合带 Fig. 1 Distribution map of ophiolite-type diamonds discovered from chromitite and peridotite along Tethyan orogenic belt Internal structures are modified after Dilek, 2006; Li et al., 2018a; Liu et al., 2017c; Rodriguez et al., 2020; Seltmann et al., 2014; Şengör and Natal'In, 1996; Xu et al., 2018. Fifteen ophiolites including: C-Cuobuzha; D-Dongqiao; DB-Dongbo; DQ-Dingqing; DX-Dangxiong-Xiugugabu; EM-Eastern Mirdita (Albania); K-Kalamyo (Myanmar); L-Luobusa; M-Myitkyina (Myanmar); N-Nidar (Kashmir); P-Purang; PK-Pozanti Karsanti (Turkey); WM-Western Mirdita (Albania); X-Xialu, Xigaze; Z-Zedang. BNSZ-Bangong-Nujiang suture zone; IYSZ-Indus-Yarlung Zangbo suture zone

为了更好的理清青藏高原新特提斯洋的构造演化,本文总结了YZSZ、BNSZ、SNMZ以及松多缝合带(SS)蛇绿岩的时空分布、组成和构造背景,归纳了拉萨地块的晚古生代和中生代岩浆岩分布,重点分析了新特提斯洋的构造演化过程,试图为进一步探讨含金刚石蛇绿岩的地球动力学过程提供依据。

1 YZSZ蛇绿岩的时空分布

YZSZ普遍被认为是拉萨地块与印度板块碰撞后新特提斯洋的上地幔残余(Xu et al., 2015d; Yang et al., 2015),它不仅是我国规模最大、最新鲜的蛇绿岩带,发育我国目前最大的铬铁矿床(罗布莎)(Zhou et al., 1996; 王希斌等, 2010; 杨经绥等, 2010),还出露完整“彭罗斯型”层序的日喀则蛇绿岩(Bao et al., 2013),是探讨洋陆构造演化和壳幔物质循环过程的理想场所之一(图 2)。按照蛇绿岩的产出特征,YZSZ在我国境内空间上分为东段(曲水-墨脱)、中段(仁布-桑桑)和西段(萨嘎至中印边境)三部分。YZSZ西段自萨嘎以西分为南带(达巴-休古嘎布)和北带(达机翁-萨嘎),中间被仲巴地体分隔(徐德明等, 2008),两带向西分别与科希斯坦-喀拉昆仑-什约克(Kohistan-Karakoram-Shyok)和印度河缝合带相连。仲巴地体东西长约900km,宽100~30km不等,在萨嘎附近尖灭,为一套缺少前寒武系结晶基底,以震旦系至白垩系海相碎屑岩、泥页岩和碳酸盐岩沉积为主的地质体(图 2)(Liu et al., 2018; 李祥辉等, 2014)。仲巴地体的地层整体可与特提斯喜马拉雅地体对比,其中石炭系至二叠系地层略有不同,三叠系地层的岩性和沉积环境存在较大差异(刘飞等, 2015a)。石炭系、二叠系和白垩系变质石英砂岩、变质长石石英砂岩和绢云母片岩中的碎屑锆石具有999~989Ma的明显年龄峰,以及595~571Ma、1850~1750Ma、2600~2457Ma三组特征峰和3128Ma小峰,尤其具有一个4136Ma的单颗锆石年龄,这些特征与印度板块的年龄谱相吻合,指示仲巴地体具有印度板块的亲缘性(Xie et al., 2017)。

图 2 雅鲁藏布江缝合带、班公湖-怒江缝合带和狮泉河-纳木错混杂岩带中蛇绿岩分布简图 拉萨地块的前寒武纪基底引自Chen et al., 2019; Dong et al., 2020; 胡培远等, 2019; 羌塘高压变质带引自Li et al., 2006. ATF-阿尔金断裂;JSSZ-金沙江缝合带;KF-喀喇昆仑断裂;LMF-洛巴堆-米拉山断裂;LSSZ-龙木错-双湖-澜沧江缝合带;SNMZ-狮泉河-纳木错混杂岩带;SS-松多缝合带 Fig. 2 Tectonic outline of the Tibetan Plateau showing the distribution of ophiolites in Yarlung Zangbo Suture Zone (YZSZ), Bangong-Nujiang Suture Zone (BNSZ) and Shiquan River-Namtso Mélange Zone (SNMZ) Precambrain basement of Lhasa block from Chen et al., 2019; Dong et al., 2020; Hu et al., 2019; Qiangtang high pressure metamorphic belt from Li et al., 2006. ATF-Altyn Tagh fault; JSSZ-Jinshajiang Suture Zone; KF-Karakoram fault; LMF-Luobadui-Milashan fault; LSSZ-Longmu Co-Shuanghu-Lancangjiang Suture Zone; SS-Sumdo suture zone

自19世纪中叶至20世纪初以来,国内外学者对YZSZ蛇绿岩开展了大量研究,基本确立了该缝合带的地质特征和蛇绿岩的壳幔组成。蛇绿岩带北部为日喀则弧前盆地和冈底斯岛弧,南侧为蛇绿混杂岩、沉积混杂岩、复理石沉积岩和特提斯喜马拉雅地体(Dupuis et al., 2005; Hébert et al., 2012; Liu et al., 2018)。冈底斯岩浆岛弧全长约2500km,经历了多期次的强烈岩浆作用,记录了新特提斯洋-陆俯冲增生、弧-陆和陆-陆碰撞造山以及碰撞后伸展垮塌等过程(Xu et al., 2017; 许志琴等, 2019; 张泽明等, 2019),其开始于中三叠世,如大竹曲245Ma安山岩和240Ma辉长岩(Ma et al., 2020),昌果237~211Ma玄武岩(Wang et al., 2016b),持续到中新世,主要由晚白垩世至古近纪大面积花岗岩和广泛分布的林子宗火山岩组成(张泽明等, 2019)。日喀则弧前盆地东西长约600km,分布于仲巴和仁布之间,宽几千米至二十几千米不等,基底为YZSZ早白垩世蛇绿岩,包括上部的错江顶群和下部的日喀则群,前者包括帕达那组、曲贝亚组、曲下组和加拉孜组,年代为80~58Ma,其中曲贝亚组、曲下组、加拉孜组仅见于仲巴-萨嘎地区;日喀则群包括桑祖岗组、冲堆组和昂仁组,地层年代大致为120~83Ma(Wang et al., 2012a; 葛玉魁等, 2019)。冲堆组凝灰质硅质岩和硅质泥岩直接覆盖在日喀则蛇绿岩之上,其上部被火山碎屑岩复理石整合接触,其中底部凝灰岩夹层的锆石年龄为119~113Ma,上部凝灰岩年龄为113~110Ma,碎屑锆石物源具有拉萨地块的亲缘性(Wang et al., 2017a)。

特提斯喜马拉雅地体东西绵延达1500km,由寒武系至始新统碎屑岩和碳酸盐岩组成,其中三叠系朗杰学群和涅如组等复理石地层的成因具有印度大陆被动陆缘沉积(Li, 2019; Ma et al., 2020, 及其文献)、澳大利亚陆缘沉积(Cai et al., 2016)和弧前增生杂岩(肖文交等, 2017)等三种主要观点,前两者的关键证据主要来自碎屑锆石物源和古水流分析,即朗杰学群普遍具有225~275Ma、500~600Ma、900~1000Ma、2450~2550Ma的年龄峰,以及2750~3500Ma的年龄值,而明显缺少拉萨地块的300~325Ma,指示物源来自澳大利亚西北缘(Cai et al., 2016; Zhang et al., 2019a)或大印度北缘(Cao et al., 2018; Meng et al., 2019)。Liu et al. (2020d)总结了朗杰学群的4148个碎屑锆石年龄和Hf同位素,发现200~300Ma锆石的εHf(t)值(-5~10)明显高于西巴布亚和新几内亚(-13.9~-8.1),也不同于新英格兰的同期值(+4~+6),认为它们主要来自具有I型和S型的南拉萨地块的大陆边缘弧,形成于海相裂解环境。弧前增生杂岩的主要证据来自特提斯喜马拉雅具有“基质+块体”的结构和向南的古水流物源(肖文交等, 2017)。

蛇绿岩方面,东段蛇绿岩分布于南侧晚三叠系朗杰学群复理石地层和北侧冈底斯岛弧、J3-K1火山岩和第三系砾岩之间,包括泽当(宽 < 1km,面积约45km2)、罗布莎(宽 < 4km,面积约70km2)和朗县等蛇绿岩(梁凤华等, 2011)。其中罗布莎蛇绿岩发育深成杂岩(异剥橄榄岩、辉石岩和100~300m厚的纯橄岩)和球粒状熔岩,缺失席状岩墙群和典型的枕状熔岩(Bao et al., 2014; Zhou et al., 2005)。罗布莎铬铁矿包括罗布莎、香卡山和康金拉三个矿区,普遍发育浸染状、豆荚状和块状铬铁矿,前两者一般与纯橄岩共生,而块状铬铁矿的围岩为方辉橄榄岩(Xiong et al., 2015)。

中段蛇绿岩包括日喀则东(仁布、大竹卡、德吉、群让和白马让)、日喀则西(吉定、柳曲和昂仁)和桑桑等蛇绿岩,其中日喀则地区的德几、吉定和大竹卡等蛇绿岩发育完整的“彭罗斯型”层序(地幔橄榄岩、堆晶杂岩、席状岩墙群、枕状熔岩和海相沉积物)(Bao et al., 2013; 周云生等, 1982),洋壳厚度约3~4km,薄于5~6km厚壳的塞浦路斯和阿曼蛇绿岩(Bao et al., 2013; Pearce and Deng, 1988)。日喀则蛇绿岩发育两套堆晶层序,分别为600~900m纯橄岩-橄长岩-橄榄辉长岩和~500m的纯橄岩-辉石岩-辉长岩-异剥钙榴岩(Bao et al., 2013)。长度>250km的中段蛇绿岩铬铁矿出露极少,Xiong et al. (2017a)在东日喀则蛇绿岩的夏鲁岩体中发现了块状铬铁矿点,李源等(待发表)在仁布岩体发现了块状铬铁矿点。

西段北亚带蛇绿岩呈不规则条带状断续分布,蛇绿岩层序肢解破碎强烈,以蛇绿混杂岩形式产出,主要包括达机翁、卡站、巴尔、错布扎、扎来、公珠错和萨嘎蛇绿岩体(Liu et al., 2018; 刘飞等, 2018)(图 3b),由地幔橄榄岩、基性岩脉和少量堆晶辉长岩组成。地幔橄榄岩整体弱蛇纹石化,宽几十米至几百米不等,岩性以方辉橄榄岩为主,含少量单斜辉石方辉橄榄岩和纯橄岩透镜体,二辉橄榄岩不发育(Lian et al., 2016, 2017b; 刘飞等, 2015a)。地幔橄榄岩上部被厚几米至十几米的石英菱镁岩覆盖,地幔橄榄岩内部普遍发育纯橄岩和辉长岩、辉绿岩和异剥钙榴岩透镜状岩脉,走向北西,宽0.5~3m不等,最宽如错布扎达10m。基性岩的锆石U-Pb年龄为128~122Ma (Liu et al., 2018; Zheng et al., 2017)(图 4)。其中公主错和达机翁出露0.3~1km宽的堆晶辉长岩,达机翁、巴尔和错不扎地幔橄榄岩中出露块状和浸染状铬铁矿,单个铬铁矿体宽2~4m,长5~10m不等,直接围岩为纯橄岩薄壳(Lian et al., 2016; 连东洋等, 2014; 刘飞等, 2015a)(图 2)。目前我们在错不扎方辉橄榄岩中发现约80粒金刚石、近50粒碳硅石、铁镍合金、单质Cr和Si元素超高压超还原性矿物,以及金红石、锆石、石英等壳源矿物(牛晓露等, 待发表)。

图 3 西藏南部雅鲁藏布江缝合带、班公湖-怒江缝合带、狮泉河-纳木错蛇绿混杂岩带和松多缝合带分布简图(a)及雅鲁藏布江缝合带西段区域地质图(b) Fig. 3 Ophiolites distribution along the YZSZ, BNSZ, SNMZ and SS (a) and simplified geological map of the western part of the YZSZ (b) in South Tibet

图 4 雅鲁藏布江缝合带主要蛇绿岩的岩性柱状图 Fig. 4 Synthetic stratigraphic-lithological columnar sections of ophiolites in the YZSZ

西段南亚带北西长约400km,出露东波(400km2)、普兰(650km2)、休古嘎布(440km2)和当穷(260km2)、扎嘎和仲巴等数个大型浑圆状的地幔橄榄岩体(图 2图 3b),地幔橄榄岩内部被NW和少量NE走向的基性岩脉侵入,时代为119~130Ma,不发育拉斑质块状/枕状熔岩、席状岩墙群(Liu et al., 2015; Xia et al., 2011)。东波蛇绿岩西北侧可见几十米至百余米厚的均质辉长岩与蛇纹石化强烈的方辉橄榄岩断层接触(Liu et al., 2018; 刘飞等, 2018)。地幔橄榄岩周边上部被大量137~138Ma的OIB型玄武岩、泥页岩、硅质岩和硅质灰岩等残余海山覆盖,硅质岩的放射虫时代为晚侏罗世至早白垩世(Liu et al., 2015; 刘飞等, 2013a)。普兰西方辉橄榄岩被139Ma的OIB型辉绿岩侵入(Zheng et al., 2019),该时代与侵入于泥硅质岩中144Ma的OIB型辉长岩脉相吻合(Xiong et al., 2020)。普兰、东波和休古嘎布蛇绿岩中出露多个块状和浸染状铬铁矿点,矿体一般长2~5m,厚0.5~3m不等,呈透镜状分布于方辉橄榄岩中,局部发育纯橄岩薄壳,矿体延伸方向与蛇绿岩北西构造线方向一致(Xiong et al., 2017b; 刘飞等, 2015a; 熊发挥等, 2015)。目前已在东波、普兰和当穷-休古嘎布地幔橄榄岩中发现了金刚石等异常矿物(表 1)。总之,西段南亚带蛇绿岩呈“厚幔极薄壳”特征,发育极薄均质/堆晶辉长岩(百余米宽),北亚带呈蛇绿混杂岩产出,堆晶辉长岩最宽可达1km以上,两带均不发育席状岩墙群和亚碱性枕状玄武岩(Dai et al., 2011; He et al., 2016; Liu et al., 2010, 2012a; Liu et al., 2018; 刘飞等, 2015a)(图 4)。西段南、北带出露多个块状和浸染状铬铁矿点,成矿潜力较大(熊发挥等, 2015)。

表 1 西藏雅鲁藏布江缝合带和班公湖-怒江缝合带中含金刚石蛇绿岩的地质特征、形成时代、金刚石数量统计简表 Table 1 Geological features, ages and diamond quantities of diamond-bearing ophiolites in the YZSZ and BNSZ in Tibet

总的来说,中、东段蛇绿岩在地形上呈NEE走向的单一缝合带与西段北带相连(图 2图 3a),仲巴至罗布莎之间发育沟-弧-盆体系(增生杂岩-冈底斯岛弧-日喀则弧前盆地),仲巴以西即西段北带,日喀则弧前盆地尖灭,以沟-弧体系为特征,出露大量增生杂岩,包括蛇绿混杂岩、残余海山、陆缘岛弧火山岩和磨拉石建造(郭铁鹰等, 1991; 刘飞等, 2015a; 王希斌等, 1987; 吴福元等, 2014; 闫臻等, 2006)。西段南带蛇绿岩两侧不发育岩浆岛弧(图 3b),出露大量海相火山沉积岩,包括块状和枕状玄武岩、玄武质碎屑岩、凝灰岩夹泥页岩、泥页岩夹杂砂岩、放射虫硅质岩、硅质灰岩和鲕粒灰岩(Gong et al., 2016; Liu et al., 2015)。

YZSZ蛇绿岩的洋壳年龄主要集中于130~120Ma之间(Bao et al., 2013; Chan et al., 2015; Cheng et al., 2018; Dai et al., 2013; Malpas et al., 2003; Xia et al., 2011; Xiong et al., 2016b, 2020; Zhang et al., 2016a; Zheng et al., 2017, 2019; 陈艳虹等, 2015; 李建峰等, 2008; 刘飞等, 2015b; 刘钊等, 2011; 王冉等, 2006; 熊发挥等, 2011)(图 5)。稍老的侏罗纪洋壳出露较少,主要分布在早白垩世蛇绿岩的南北两侧,如东段罗布莎163Ma辉绿岩(钟立峰等, 2006),中段的西日喀则吉定174Ma辉长岩,东日喀则的联乡169Ma辉长岩、苦龙137Ma辉绿岩(Wang et al., 2018b)、白朗石榴辉石岩149Ma(赵佳楠等, 2015)和朗县191Ma N-MORB型辉绿岩(张万平等, 2011),以及印度河缝合带Spontang 177Ma辉绿岩(Pedersen et al., 2001)等,这些早中侏罗世洋壳年龄与泽当混杂岩出露的三叠至侏罗纪放射虫时代一致(Matsuoka et al., 2002; Wang et al., 2002)(图 5)。

图 5 雅鲁藏布江缝合带、班公湖-怒江缝合带、狮泉河-纳木错蛇绿混杂岩带和松多缝合带蛇绿岩年龄分布简图 BNSZ和SNMZ年龄为红色,主要引自Huang et al., 2017a; Qian et al., 2020; Tang et al., 2018a, 2020a; Yan and Zhang, 2020; Zhang et al., 2014; 范建军等, 2018; 王彭, 2019; 武勇等, 2018; 徐梦婧, 2014; 张诗启, 2018; 及其文献;SS年龄为浅蓝色,主要引自Cheng et al., 2015; Liu et al., 2020c; 解超明等, 2020; 及其文献;YZSZ年龄为粉红色,主要引自Bao et al., 2013; Liu et al., 2018; Wang et al., 2018b; Xiong et al., 2020; Zhao et al., 2019; Zheng et al., 2017; 刘飞, 2013; 赵佳楠, 2016; 及其文献.拉萨地块前寒武年龄为灰色,主要引自Dong et al., 2020; Hu et al., 2005, 2018a, b, c; 胡培远等, 2016, 2019; 张修政等, 2013; 及其文献. Ar-40Ar-39Ar年龄; E-榴辉岩原岩年龄; G-麻粒岩原岩年龄;Gat-石榴石辉石岩锆石U-Pb年龄;Re-Os-Re-Os全岩等时线年龄;R-硅质岩中放射虫的时代;OIB-洋岛玄武岩型辉长岩、辉绿岩、玄武岩的锆石U-Pb年龄.标注年龄均采取四舍五入方法换算 Fig. 5 Geological sketches of the YZSZ, BNSZ, SNMZ and SS showing ages of the ophiolitic massifs All marked ages were converted by rounding-off method
2 班公湖-怒江蛇绿岩的时空分布

BNSZ在西藏境内长约2000km,西起印控克什米尔、向东经我国班公湖、改则、尼玛、东巧、安多、丁青,向南转入八宿和左贡(图 2),再向南与云南昌宁-孟连缝合带相连(潘桂棠等, 2004),或与缅甸密支那-抹谷蛇绿岩带相连(Liu et al., 2016a; 冯彩霞, 2011)。该带宽度变化较大在10~130km之间,由蛇绿岩残片、洋岛(或海山)、浊积岩和混杂岩组成,夹杂安多(或聂荣)、嘉玉桥(或八宿)变质微陆块(何显川, 2014; 潘桂棠等, 2004; 王根厚等, 2008),其中复理石沉积和俯冲杂岩称为木嘎刚日(岩)群(曹圣华等, 2008; 文世宣, 1979),主要包括深水复理石地层、浅水陆架沉积和非海相砾岩等组成,反映了从海相至陆相沉积的转变(Zhang and Zeng, 2018),其时代为晚三叠世至早中侏罗世(Zeng et al., 2016)。BNSZ被认为是拉萨地块和羌塘地体碰撞后新特提斯洋北支洋盆(或中特提斯洋,Meso-Tethys)上地幔残余(Bai et al., 1993; Metcalfe, 2011; Wang et al., 2020)。按蛇绿岩/蛇绿混杂岩的空间分布被分为西段(班公湖至阿索)、中段(尼玛至索县)和东段(巴达至碧土)三段(图 2)。

2.1 班公湖-怒江缝合带西段蛇绿岩

西段蛇绿岩包括班公湖、日土、热帮、改则、洞错和中仓等岩体,宽十几至二十几千米不等,东西走向延伸400余千米,露头连续性较好(曲晓明等, 2010)。西段蛇绿岩普遍被构造肢解,呈蛇绿混杂岩产出,主要由构造地幔橄榄岩、堆晶杂岩、席状岩群、枕状、块状和角砾状玄武岩和硅质岩等海相沉积物组成,席状岩墙群在班公湖南亚带和多龙可见。洋壳年龄从260Ma一直延续至104Ma(Liu et al., 2014),其中260~123Ma洞错蛇绿(混杂)岩的时间跨度最广(图 5)。

班公湖蛇绿岩带,整体呈NWW向沿日土县的门曲囊至班公湖东岸的查拉木拉分布,长约100km,宽20~30km(曲晓明等, 2010; 史仁灯, 2005),大致以班公湖分为南北两个亚带,北亚带位于班公湖北岸龙泉山至扎普(巴尔穷)一线,南亚带为班公湖蛇绿混杂带的主体部分,展布于斯潘古尔、班公山、罗多克、茶罗、热帮错一线(徐平等, 2010),与南侧木嘎刚日群断层接触(陈奇等, 2007)。班公湖蛇绿岩主要由地幔橄榄岩、堆晶岩、枕状玄武岩、块状和角砾状玄武岩熔岩和放射虫硅质岩等海相沉积物组成(Shi et al., 2004)(图 6),其中硅质岩的放射虫时代为中晚侏罗世(姜春发和杨经绥, 1984)。地幔橄榄岩包括方辉橄榄岩、角砾状方辉橄榄岩和少量纯橄岩(史仁灯等, 2005)。角砾状方辉橄榄岩中铬尖晶石的Cr#值较低(0.2~0.25),HREE球粒陨石标准化曲线与深海地幔橄榄岩一致,而块状方辉橄榄岩的部分熔融程度更高,Cr#值较高(0.69~0.74),常被辉长辉绿岩脉侵入(史仁灯等, 2005),HREE球粒陨石标准化曲线与弧前地幔橄榄岩一致(Parkinson and Pearce, 1998),结合玻安岩的出露(Parkinson and Pearce, 1998),指示班公湖蛇绿混杂岩具有深海地幔橄榄岩和弧前地幔橄榄岩的特征,可能记录了大西洋型慢速扩张和太平洋型快速俯冲两阶段大洋演化过程(史仁灯等, 2005)。蛇绿混杂岩的年龄范围较大(254~108Ma),侵入于高铬块状方辉橄榄岩的辉长岩脉的锆石U-Pb年龄为167Ma(史仁灯, 2007),而角砾状低铬方辉橄榄岩的Re-Os等时线年龄为254±28Ma(黄启帅等, 2012),与秦雅东等(2017)报道的班公湖232Ma辉长岩的年龄相吻合。该辉长岩相比N-MORB富集大离子亲石元素(LILE)和Th,高场强元素(HFSE)与N/E-MORB一致,具有MORB和IAT的特点,与弧后玄武岩类似(Gale et al., 2013)。此外,多不杂辉绿岩脉为184Ma,扎布村角闪辉长岩脉的年龄为182Ma(曲晓明等, 2010),佳玛日辉长岩为171Ma(Huang et al., 2017a)。它们的地球化学成分明显富集LILE和Th,亏损HFSE,为俯冲带岩浆事件,指示俯冲时间至少发生在184~167Ma。最近Huang et al. (2017a)获得日土玛佳日玄武岩的Ar-Ar年龄108Ma,解释为蛇绿岩的侵位年龄。

图 6 班公湖-怒江缝合带、狮泉河-纳木错混杂带和松多缝合带中主要蛇绿岩的岩性柱状图 Fig. 6 Synthetic stratigraphic-lithological columnar sections of main ophiolites in the BN, SN and SS

热帮蛇绿混杂岩呈NW-SE走向,长约16km,宽约5km,各单元肢解破碎,总体包括地幔橄榄岩、均质辉长岩、辉绿岩脉、枕状玄武岩和硅质岩。地幔橄榄岩由蛇纹石化方辉橄榄岩和二辉橄榄岩组成。辉长岩的锆石U-Pb年龄为162Ma,地球化学具有弧后玄武岩的特点(Liu et al., 2014)。巨鹿蛇绿岩呈近东西走向,长约17km,宽约4km,约31km2,岩石组合为地幔橄榄岩、辉长岩、辉绿岩脉、枕状熔岩和硅质岩。其中辉长岩的锆石U-Pb年龄为104Ma,地球化学具有弧后玄武岩的特点(Liu et al., 2014)。

中仓蛇绿岩位于中仓镇北约30km处,与木嘎刚日群构造接触并被K1陆缘弧性质的曲申拉组覆盖,中仓蛇绿岩包括地幔橄榄岩、堆晶辉长岩、均质辉长岩、枕状玄武岩和少量斜长花岗岩脉和红色硅质岩等,大部分呈蛇绿混杂岩产出。地幔橄榄岩主要为蛇纹石化方辉橄榄岩,被异剥钙榴岩脉侵入。均质辉长岩锆石U-Pb年龄为163Ma,地球化学异常亏损HFSE和REE,具有俯冲带(SSZ)玻安质岩石特征(Tang et al., 2018b)。

洞错蛇绿混杂岩是BNSZ最大的蛇绿岩之一,包括洞错和康穷蛇绿岩两部分(Tang et al., 2018b; 范建军等, 2018)。洞错蛇绿岩呈NWW走向,长约50km,最宽达5~6km,从底部到顶部包括方辉橄榄岩、堆晶杂岩、辉绿岩脉、枕状熔岩、斜长花岗岩和放射虫硅质岩,洋壳厚度>5km,后期构造肢解普遍,其中地幔橄榄岩包括方辉橄榄岩和少量纯橄岩和二辉橄榄岩,堆晶杂岩包括纯橄岩、橄长岩、层状橄榄辉长岩、均质辉长岩,未见席状岩墙群作为独立单元产出(鲍佩声等, 2007; 邱瑞照等, 2004)(图 6)。其中层状橄长岩的锆石U-Pb年龄为132Ma,OIB型玄武岩的全岩40Ar-39Ar年龄为137~141Ma(鲍佩声等, 2007),与均质辉长岩的K-Ar年龄(140~152Ma)一致(邱瑞照等, 2004)。武勇等(2018)报道了堆晶辉长岩年龄为222Ma,与舍拉玛沟堆晶层状辉长岩的Sm-Nd等时线年龄(191±22Ma)(邱瑞照等, 2004),以及舍拉玛沟高压麻粒岩原岩年龄(254Ma)(王保弟等, 2015)、洞错MORB型和OIB型榴辉岩原岩年龄(分别为260Ma和242Ma)(Zhang et al., 2016b)相吻合。均质辉长岩的地球化学兼有IAT和MORB的特征,被解释为形成于不成熟的SSZ弧后环境(武勇等, 2018)。康琼蛇绿岩位于改则县东约80~100km,出露面积约30km2,包括地幔橄榄岩(大部分已蛇纹岩化)、橄长岩、堆晶辉长岩、辉长岩脉、枕状玄武岩、玻安岩、斜长花岗岩和硅质岩(Li et al., 2019; Xu et al., 2015a; 许伟等, 2015),其中玻安岩具有165Ma和115Ma两期年龄,辉长岩具有252Ma、165Ma和117Ma三期年龄(Fan et al., 2015)。洞错蛇绿混杂岩北侧为仲岗洋岛(出露在尼布至查挪嘎布之间,长约100km,宽约3~10km不等,面积约400km2),分布于木嘎刚日群中,包括岩浆岩基底(辉石岩、辉长岩、玄武岩等)和垮塌砾岩、灰岩、硅质岩等组成的海相沉积盖层(范建军, 2016)。

多龙蛇绿混杂岩近东西向展布,呈构造岩片逆冲推覆于下侏罗统曲色组半深海陆棚-盆地斜坡相沉积建造上,长约35km,宽3~7km,出露面积约180km2,包括蛇纹石化地幔橄榄岩、席状岩墙群、枕状玄武岩和放射虫硅质岩等(韦少港等, 2019; 许伟等, 2016),席状岩群的锆石U-Pb年龄为252Ma,地球化学具有IAT和N-MORB的共同特征,指示班怒洋在252Ma发生了洋内俯冲(韦少港等, 2019)。

2.2 班公湖-怒江缝合带中段蛇绿岩

中段蛇绿岩广泛分布于藏北湖区,是BNSZ最宽部分,也是蛇绿岩出露最多的区域,由北向南分为:安多亚带、东巧-伦坡拉亚带、北拉-拉弄(江错湖区,或班戈-那曲)亚带(赖绍聪和刘池阳, 2003; 王希斌等, 1987),其中安多亚带和北拉-拉弄亚带是安多微地块的南北界限(图 2)。中段蛇绿岩(如安多、东巧、北拉等)普遍具有彭罗斯型层序,岩性包括构造地幔橄榄岩、堆晶岩、席状岩墙群、枕状和块状玄武岩和放射虫等深海沉积岩组成(图 6),北拉-拉弄亚带的蓬错和阿多等地幔橄榄岩普遍发育二辉橄榄岩,其它带以方辉橄榄岩为主,含少量纯橄岩和二辉橄榄岩,一些方辉橄榄岩富含纯橄岩透镜体并含有豆荚状铬铁矿,最厚有几十米。洋壳年龄以259~114Ma那曲蛇绿混杂岩的时间跨度最广,安多和东巧亚带的最晚年龄为174Ma,而北拉-拉弄亚带的年龄可以延至120Ma(图 4)。总的来说,藏北湖区蛇绿岩整体为侏罗纪向北倾的俯冲带,构造推覆在T3-J2木嘎刚日群之上,接触面为低温构造角砾岩、硅化地幔橄榄岩和片理化蛇纹岩,上部被J3-K1浅水至陆相沉积物的兹格塘组、K1东巧组和K2竟柱山组等角度不整合覆盖,指示蛇绿岩的侵位至少经历两次,分别为侏罗纪陆弧碰撞和晚白垩世的陆陆碰撞,其中不整合覆盖在蛇绿岩之上的K2竟柱山组红层和火山岩被认为是最终碰撞后产物(Pearce and Deng, 1988)。

安多亚带西起多普尔,经安多县,东延至捷日窝玛(或玉多贡马),断续出露长约70km,宽一般在几十米至一百多米(赖绍聪和刘池阳, 2003; 王希斌等, 1987)。安多蛇绿岩包括蛇纹石化地幔橄榄岩、层状辉长岩、席状岩墙群、斜长花岗岩、枕状熔岩和硅质岩等海相沉积物(图 6),地幔橄榄岩主要为方辉橄榄岩和纯橄岩(赖绍聪和刘池阳, 2003),安多斜长花岗岩的年龄为175Ma,枕状玄武岩年龄为220Ma,具有IAT和N-MORB共同特征,显示弧后环境,确哈啦玄武岩的年龄为229Ma,具有IAT地球化学特征(Chen et al., 2015, 及其文献)。多普尔岩体中侵入于堆晶辉长岩的斜长花岗岩脉年龄为188Ma(赖绍聪和刘池阳, 2003)。

东巧-伦坡拉亚带,西起杜加里、姜索日、查曲山、罗布中、东巧至东风,北西西向断续长约200km,最大宽度大于2km(赖绍聪和刘池阳, 2003; 王希斌等, 1987)。东巧蛇绿岩被兹格塘错-强玛镇分为东、西两个岩体,面积分别为20km2和45km2(董玉飞等, 2019)。东巧东岩体主要由地幔橄榄岩、辉绿岩和玄武岩组成,其中辉绿岩块和玄武岩(出露面积约4km2)均赋存在木嘎刚日群中,地球化学前者具有IAT和N-MORB的混合特征,而后者具有E-MORB特征,被认为形成于弧后环境(陈晓坚等, 2019)。而东巧西蛇绿岩层序出露较全,包括构造地幔橄榄岩、堆晶岩、席状岩墙群、枕状和块状玄武岩和深海沉积岩(Liu et al., 2016b; 董玉飞等, 2019)(图 6),地幔橄榄岩主要为方辉橄榄岩和少量纯橄岩和豆荚状铬铁矿,堆晶岩有异剥橄榄岩-纯橄岩-辉石岩-辉长岩和纯橄岩-橄长岩-层状辉长岩两种组合(赖绍聪和刘池阳, 2003; 王希斌等, 1987)。东巧西堆晶辉长岩和均质辉长岩的锆石U-Pb年龄为188Ma(Liu et al., 2016b; 夏斌等, 2008),角闪辉长岩为181Ma(Liu et al., 2016b)。罗布中硅质岩的放射虫时代为侏罗纪,东巧西岩体蜂腰上部的海陆交互相地层可见早白垩世瓣鳃、层孔虫和珊瑚等化石,指示蛇绿岩形成于早侏罗世,侵位在早白垩世之前(王希斌等, 1987)。东巧蛇绿岩被陆源沉积相的早白垩统东巧组和晚白垩统竟柱山组磨拉石不整合覆盖,也说明东巧蛇绿岩侵位在早白垩世之前(Wang et al., 2016a)。

北拉-拉弄蛇绿岩带与南侧的晚白垩世竟柱山组和北侧的晚三叠世-中侏罗世木嘎刚日群断层接触,全长约150km,包括达如错、北拉、阿多、蓬错、江错、切里胡、拉弄、觉翁和依拉山等(王希斌等, 1987; 徐力峰等, 2010)。达如错东出露黑白相间的堆晶岩厚达1km以上,包括异剥橄榄岩、纯橄岩、辉石岩、橄榄辉长岩、辉长岩(Wang et al., 2016a)。北拉蛇绿岩长约40km,宽约10km,由蛇纹石化地幔橄榄岩、均质辉长岩、席状岩墙、枕状熔岩和红色硅质岩岩组成(图 6)。地幔橄榄岩包括方辉橄榄岩和少量二辉橄榄岩和纯橄岩,异剥钙榴岩呈透镜状分布于蛇纹石化地幔橄榄岩中,异剥钙榴岩的锆石U-Pb年龄为172~164Ma(Wang et al., 2016a)。方辉橄榄岩被厚约50m条带状的异剥钙榴岩和单斜辉石岩,以及厚约30m的层状纯橄岩、单斜辉石岩和异剥橄榄岩等堆晶杂岩覆盖。橄长岩、层状和均质辉长岩组合也有零星出露,厚度 < 50m,被几十米厚的富斜长石辉长岩覆盖。大约50m厚的席状辉绿岩墙覆盖在几十米厚的石榴石角闪石岩之上(Pearce and Deng, 1988)(图 6)。

阿多地幔橄榄岩包括二辉橄榄岩、方辉橄榄岩和少量纯橄岩,堆晶杂岩中可见橄长岩-辉长岩体(Pearce and Deng, 1988)。蓬错蛇绿岩东西长约10km,南北宽约1.5km,主要由地幔橄榄岩和堆晶杂岩组成,未见基性熔岩,地幔橄榄岩包括方辉橄榄岩、二辉橄榄岩(宽约300m)和少量纯橄岩,堆晶杂岩面积约20km2,包括异剥橄榄岩、纯橄岩、辉长岩和辉石岩和浸染状铬铁矿(卢雨潇等, 2019)。切里胡蛇绿岩位于东巧南40km,南北长7~8km,东西宽3~4km,主要包括方辉橄榄岩、堆晶杂岩(纯橄岩、层状辉长岩、辉石岩和均质辉长岩)、玄武岩和硅质岩(赖绍聪和刘池阳, 2003; 王希斌等, 1987)。拉弄(Nalung)地幔橄榄岩主要为方辉橄榄岩和少量纯橄岩,可见厚约100m的熔岩,一般枕状覆盖于块状玄武岩之上,并被均质辉绿岩脉高角度切穿(Pearce and Deng, 1988; 赖绍聪和刘池阳, 2003; 王希斌等, 1987)。依拉山位于那曲西北20余千米,地幔橄榄岩主要为方辉橄榄岩和少量纯橄岩,被堆晶杂岩(纯橄岩、含长异剥橄榄岩、层状辉长岩、橄长岩)覆盖(赖绍聪和刘池阳, 2003; 王希斌等, 1987)。

2.3 班公湖-怒江缝合带东段蛇绿岩

东段蛇绿岩包括丁青、八宿、左贡和碧土等岩体。丁青蛇绿岩北西走向,共约550km2,以丁青县分界为东、西两个岩体,西岩体长约30km,宽2.5~8km,面积约150km2,东岩体长达88.5km,宽2.5~8km,面积约400km2,岩体南北两侧相向倾斜,南缓北陡(薄容众等, 2019; 李观龙等, 2019; 王希斌等, 1987)。结合出露在东、西岩体之间的宗白和东岩体的扎西觉剖面,丁青蛇绿岩包括地幔橄榄岩、堆晶杂岩、席状岩墙群、玄武岩和海相沉积物,地幔橄榄岩由方辉橄榄岩和纯橄岩组成,内部发育大量基性岩脉和斜长花岗岩脉(薄容众等, 2019; 李观龙等, 2019; 张旗, 1983)(图 6)。地幔橄榄岩按照结构构造分为块状、斑杂状、辉石定向的和球粒状方辉橄榄岩,纯橄岩包括三种类型,包括出露于铬铁矿外围的薄壳状、方辉橄榄岩中的透镜状和脉状,以及不规则较大块状(李观龙等, 2019)。堆晶岩从下到上包括纯橄岩、斜方辉石岩、二辉石岩和堆晶辉长岩,常见纯橄岩和辉石岩互层产出。丁青蛇绿混杂岩中辉长质糜棱岩中辉石的40Ar-39Ar年龄为197Ma,代表蛇绿岩仰冲抬升的时代(游再平, 1997),该时代与宗白弧前混杂岩中OIB型玄武质凝灰岩岩块的时代(199Ma)一致(薄容众等, 2019),亦与丁青东岩体的纳永拉218Ma堆晶辉长岩(薄容众等, 2019; 强巴扎西等, 2009),以及沙贡深海硅质岩的晚三叠世放射虫时代(王玉净等, 2002)相吻合。此外,侵入地幔橄榄岩的淡色辉长岩的时代为164Ma(Wang et al., 2016a; 王玉净等, 2002),与侵入宗白泥页岩夹砂岩地层的辉长岩脉的时代(164Ma, 薄容众等, 2019)一致。

3 拉萨地块

拉萨地块南北宽约100~300km,东西长约2500km,面积约49万平方千米,纬向上与两侧的科西斯坦-拉达克岛弧和高黎贡岛弧相连(Yin and Harrison, 2000; 莫宣学等, 2005; 潘桂棠等, 2006)。拉萨地块由松多缝合带被分为南拉萨和北拉萨地块(Xu et al., 2015c; Yang et al., 2009),或由洛巴堆-米拉山断裂和狮泉河-纳木错混杂岩带分为南拉萨、中拉萨和北拉萨(Zhu et al., 2011; 莫宣学等, 2005)。洛巴堆-米拉山断裂与松多缝合带近于重合(图 2),本文暂以南、中、北拉萨地块开展讨论。松多缝合带最早由杨经绥等(2006)发现榴辉岩厘定,它出露蛇绿混杂岩(唐加-松多)、超高压-高压变质岩、洋岛和深海沉积岩、岛弧岩浆岩等组合,普遍被认为是古特提斯洋最南端的分支,该带东西长约150km,推测延伸约500km,宽度几百米至2~3km不等(Liu et al., 2020c)。最近在温木朗识别出相对完整的蛇绿岩组合,主要岩性包括变质橄榄岩、蛇纹岩和堆晶辉长岩、变质辉长岩、变质玄武岩,局部可见斜长花岗岩脉侵入变质橄榄岩和变质玄武岩中(王斌等, 2017)(图 6)。在唐加乡和拉龙松多识别出了堆晶辉长岩、堆晶辉石岩和变质辉长岩组合(解超明等, 2020),其中堆晶辉长岩和变质辉长岩的锆石U-Pb年龄分别为261Ma和269Ma,斜长花岗岩的年龄为265Ma(Wang et al., 2019a; 解超明等, 2020)。以上各岩石单元主要以断层接触,发生了绿片岩相-角闪岩相变质作用(解超明等, 2020)。松多带出露两类榴辉岩,第一类与松多洋岩石圈板片深俯冲-折返有关,出露于吉朗、松多和新达多,经历了262~274Ma超高压-高压变质作用和235~239Ma的退变质作用,原岩年龄为305Ma;第二类出露于白朗,具有OIB型地球化学特征,经历了227~238Ma高压变质作用和200Ma的退变质作用,伴随227~180Ma同碰撞和后碰撞花岗岩(Cheng et al., 2015; Liu et al., 2020c)。

拉萨地块的前寒武结晶基底主要包括安多片麻岩、念青唐古拉岩群和林芝岩群,前两者出露于北拉萨的安多微陆块和嘉玉桥微地块以及中拉萨地块内,林芝岩群一般属于南拉萨(Dong et al., 2020; Guo et al., 2017; Hu et al., 2018a; 何显川, 2014; 胡培远等, 2019; 李璞, 1955)。念青唐古拉岩群呈NE走向分布,主要出露于日土-念青唐古拉山-纳木错-工布江达一带,时代为925~541Ma (Dong et al., 2020; Hu et al., 2005, 2018a, b, c; 胡培远等, 2016, 2019; 张修政等, 2013),大致包括:(1)925~850Ma罗迪尼亚超大陆裂解导致莫桑比克洋扩张形成的MORB型岩浆岩;(2)822~650Ma岛弧相关的火山岩和变质岩;(3)572~541Ma原特提斯洋向冈瓦纳大陆俯冲形成的安第斯型岛弧岩浆事件。前寒武基底普遍被奥陶纪至新生代沉积岩覆盖。中北拉萨地块和安多微陆块的前寒武纪和早古生代的岩浆和变质记录与南羌塘和扬子地块区别明显,与东非造山带或Piniarra-Kuunaga造山带的活动时限较为一致,因而北中拉萨地块和安多微陆块可能与东非造山带有亲缘性(Hu et al., 2018a; 胡培远等, 2019)。然而有学者认为中拉萨碎屑锆石具有明显的1170Ma年龄峰,与澳大利亚板块北缘有亲缘性(Zhu et al., 2011, 2012)。林芝岩群具有1.2~1.0Ga、1.45~1.30Ga、1.65~1.50Ga和1.80~1.70Ga的年龄峰,最小的沉积年龄为499Ma,与高喜马拉雅南迦巴瓦杂岩的年龄谱一致,指示其源自印度板块(Guo et al., 2017)。总的来说,拉萨地块的东非造山带、印度或澳大利亚板块的起源还存在着争论,本文暂且以中北拉萨起源于印度板块、南拉萨起源于澳大利亚板块展开讨论。

冈底斯岛弧带有广义和狭义之分,广义的冈底斯带是指夹持于YZSZ和BNSZ之间的240~6Ma巨型构造-岩浆岩带,西藏境内80%的岩浆岩集中于此,且花岗岩和火山岩的出露面积相当(各约11万平方千米),冈底斯带的南、中、北三个亚带可分别对应于南、中、北拉萨地块(莫宣学等, 2005)。狭义的冈底斯带指广义的冈底斯南带,是与雅鲁藏布新特提斯洋向北俯冲、印度-亚欧板块碰撞和碰撞后伸展相关的岩浆事件,主要包括冈底斯岩基、叶巴组、桑日群和林子宗火山岩等(Ji et al., 2009; Ma et al., 2019)。最近Zhu et al. (2019)提出更狭义的分类,特指其为广义的冈底斯南带中140Ma以来(主要是120Ma以来)的岩浆事件。本文暂引用广义分法。

拉萨地块的大部分地区缺失早、中三叠世地层,晚三叠世地层一般直接不整合于古生代地层之上,这种不整合关系被认为是印支造山运动的产物(任纪舜和肖黎薇, 2004)。北拉萨出露的地层以中上三叠统、侏罗系和白垩系为主,岩浆岩一般与班公湖-怒江洋向南俯冲消减至拉萨地块以及羌塘-拉萨陆陆碰撞有关,整体沿昂龙岗日-班戈-盐湖一线分布,侵位时代大致在170~75Ma,主要集中于130~100Ma,峰值在113Ma,113Ma出现双峰式火山岩(李兴奎, 2019)(图 7)。北拉萨的中西段主要显示I型花岗岩的特征,在空间上与同期钙碱性火山岩共生且含有较多的暗色岩石包体,而东段主要为强过铝质S型花岗岩,不发育同期火山岩,基本不含暗色包体(莫宣学等, 2005)。北拉萨地体中西段成矿地质条件优越,目前出露多处斑岩型铜金矿、浅成低温热液型铜金矿、矽卡岩型铁矿和铅锌、钨矿矿等,其中多不杂、波龙、拿若、荣那等铜金矿床已达超大型规模(曲晓明等, 2015; 宋扬等, 2014)。

图 7 拉萨地块及两侧岩浆岩分布简图(据Liu et al., 2017c修改) 拉萨地块岩浆岩数据主要源自Ma et al., 2020; Tang et al., 2020a; Wang et al., 2012b, 2015, 2018a, 2019b, 2020; Zhu et al., 2011; 解超明等, 2013; 谢富伟, 2019; 及其文献;南羌塘数据主引自Li et al., 2018b; Zhu et al., 2011; 及其文献.冈底斯铜矿带:①朱诺(13~12Ma),②吉如(16Ma),③浦桑果(14Ma),④冲江(15~13Ma),⑤达布(15Ma),⑥拉抗俄(14~13Ma),⑦知不拉(17Ma),⑧驱龙(17Ma),⑨甲玛(18~12Ma),⑩雄村(166~158Ma)(Leng et al., 2016; 李壮等, 2019; 及其文献).班公湖怒江铜金矿带(122~87Ma):①多不杂(121~118Ma),②波龙(122~119Ma),③尕尔穷(87Ma),④嘎拉勒(89Ma),⑤拨拉扎(92~88Ma),⑥舍索(116Ma),⑦雄梅(107Ma)(曲晓明等, 2015; 唐菊兴等, 2012; 及其文献) Fig. 7 Schematic geological map showing the distribution of magmatic rocks within and both sides of the Lhasa block (modified after Liu et al., 2017c)

中拉萨地块的中、新生代长英质岩石具有最小的锆石εHf(t)值,并含有大量太古宙和元古宙的继承锆石,指示其底部存在太古宙-元古宙的结晶基底,与前寒武岩石的广泛出露一致(Hu et al., 2005; Zhu et al., 2011)。南拉萨地体记录了雅鲁藏布新特提斯洋向拉萨地块俯冲、印度-亚欧大陆碰撞等地质过程,南中拉萨东段还出露与松多洋俯冲闭合相关的印支期岩浆事件(李化启, 2009)。南拉萨地体主要以新生地壳为主,中、新生代长英质岩石的锆石εHf(t)值较大,指示原岩主为来自幔源物质的地壳(莫宣学等, 2005)。含铜矿斑岩体(如驱龙、甲玛、冲江等)侵入于冈底斯岩浆岩中,受南北向和东西向断裂控制,具有埃达克岩的地球化学特征,形成年龄在18~11Ma之间,这类含矿斑岩矿床形成于大规模的伸展事件,与南北向的裂谷系有成因联系(莫宣学等, 2005)。

4 狮泉河-纳木错混杂带

狮泉河-纳木错混杂岩带又称狮泉河-永珠-纳木错-嘉黎蛇绿(混杂)岩带,呈北西-南东向展布,境内长约1300km,西起国境线附近的新贡拉,向东经且坎、狮泉河北侧、改则县南侧的古昌(拉果错西),向东南延伸至格仁错、永珠、嘉黎、波密等地(图 2)。该带向西与什约克缝合带相连(郑有业等, 2004),主要出露狮泉河、拉果错、阿索、永珠、纳木错、凯蒙等蛇绿岩体(Xu et al., 2014b; 耿全如等, 2011; 张诗启, 2018)。

狮泉河蛇绿岩呈北西-南东向展布,长5~10km,宽1~5km,构造肢解普遍发育,呈蛇绿混杂岩产出,与蛇绿岩块伴生的还有复理石沉积、硅质岩、礁灰岩和火山岩等岩块(何来信, 2003; 郑有业等, 2004)。蛇绿岩层序出露较为齐全,席状辉绿岩群厚达2~3km,堆晶岩包括蛇纹岩、辉石岩和辉长岩等(图 6),侵入于地幔橄榄岩的OIB型辉绿岩脉的年龄为164Ma(李志军等, 2019),与侵入于辉长岩的斜长花岗岩的时代一致(163Ma, 尼玛次仁等, 2015),混杂岩中辉长岩块和堆晶辉长岩的年龄为180~198Ma(康晓波等, 2019),橄榄辉石岩的年龄为193Ma(郑有业等, 2006)。早白垩世晚期狼山组前陆盆地沉积岩不整合覆盖在蛇绿混杂岩之上,指示蛇绿岩的形成时代在K1或之前,与混杂岩中灰岩发育大量K1化石一致(郑有业等, 2004)。

果芒错蛇绿岩组合齐全,包括地幔橄榄岩、铁镁质超铁镁质堆晶杂岩、席状岩墙群、枕状玄武岩和硅质岩。其中堆晶岩包括纯橄岩、方辉橄榄岩、异剥橄榄岩、单斜辉石岩和辉长岩(王振等, 2017)。

永珠-纳木错蛇绿岩带呈北西西走向,西起申扎县永珠,经扁穷、阿日、尼昌、德庆一直延续到纳木错西岸,长达约180km(薄容众等, 2019; 李观龙等, 2019; 王希斌等, 1987)(图 2),主要包括永珠、仁错、纳木错西等蛇绿岩体。永珠蛇绿岩主要包括地幔橄榄岩、均质辉长岩、席状岩群、少量枕状玄武岩和玄武质角砾岩、红褐色放射虫硅质岩,席状岩墙宽5~150cm不等,枕状玄武岩中夹多层厚10~50cm的红色硅质岩(Tang et al., 2020a; Zeng et al., 2018; 王永胜等, 2005)(图 6),夹层状硅质岩的放射虫时代为J2-K1(王永胜等, 2005),与席状岩群的锆石年龄为151Ma(Zeng et al., 2018)相一致。纳木错西蛇绿岩为肢解的蛇绿岩片,包括地幔橄榄岩和堆晶辉长岩,其中辉长岩的锆石年龄为178Ma (Zhong et al., 2015)。仁错具体完整的蛇绿岩层序,总厚约6km,包括地幔橄榄岩、层状橄榄辉长岩和均质辉长岩、席状岩群、枕状和块状玄武岩和放射虫硅质岩等海相沉积物(图 6),其中地幔橄榄岩主要为方辉橄榄岩和少量纯橄岩,层状橄榄辉长岩厚度 < 100m,席状岩墙宽10~50cm不等(Tang et al., 2020a; Zhong et al., 2015)。均质辉长岩的年龄为148~169Ma(Tang et al., 2020a; Zhong et al., 2015),侵入其中的斜长花岗岩的年龄为153~168Ma (Tang et al., 2020b; Zhong et al., 2015)。尼昌蛇绿岩堆晶岩由纯橄岩、异剥橄榄岩、异剥辉石岩和层状辉长岩组成,至少发育6个旋回,一个完整的韵律厚5~10m,总厚度大于200m。

拉果错蛇绿岩,位于改则县南约30km,长25~30km,宽数百米至5km,包括地幔橄榄岩、堆晶辉长岩、辉绿岩脉、枕状熔岩、斜长花岗岩和放射虫硅质岩。放射虫时代为中侏罗世早期至早白垩世(175~145Ma)(Baxter et al., 2009),角闪石岩的角闪石40Ar-39Ar年龄为176~177Ma(Wang et al., 2008),侵入于辉长岩的斜长花岗岩脉年龄为167Ma(Zhang et al., 2007)、侵入于玄武岩的斜长花岗岩的时代为190Ma(樊帅权等, 2010)、互层产出的斜长花岗岩和堆晶辉长岩的年龄分别为184Ma和183Ma,辉长岩具有MORB和IAT的混合特征,被认为形成于洋内俯冲的弧后环境(徐建鑫, 2015)。总的来说,拉果错蛇绿岩的时代为167~190Ma,形成于SSZ洋内俯冲弧后环境。

5 讨论 5.1 YZSZ西段南、北带关系

前人对于YZSZ西段南、北带的关系主要存在两种争论:(1)南、北带分别代表两个不同时代的蛇绿岩,北带形成于晚三叠-早侏罗世,南带形成于晚侏罗-早白垩世(郭铁鹰等, 1991);或者北带蛇绿岩代表早三叠世主洋盆,南带蛇绿岩代表晚三叠世陆缘小洋盆(黄圭成等, 2006; 潘桂棠等, 1997)。(2)南带蛇绿岩是由北带向南逆冲推覆于特提斯喜马拉雅地体之上的残余(Xu et al., 2015d; 刘飞等, 2015a)。南北带争论的焦点在于南带是代表独立洋盆,还是代表北带洋盆的推覆体?厘定两个带关系的关键在于查明南北带蛇绿岩的时空分布和构造背景。

从蛇绿岩的时空分布看,南、北带蛇绿岩的组成和形成时代类似。虽然南带呈(超)大型浑圆状岩块产出,北带蛇绿岩单元呈断续条带和透镜状分布于泥质或蛇纹质基质中,但两带蛇绿岩组成均表现为“厚幔极薄壳”特征,缺失典型的席状岩群和拉斑质枕状/块状玄武岩(图 3b)。南带洋壳仅在东波、普兰和休古嘎布等地幔橄榄岩边部零星出露几十至几百米不等的辉长岩,其中东波均质辉长岩的时代为129Ma(刘飞等, 2018),遍可见侵入于地幔橄榄岩、宽几十厘米至几米不等的基性岩脉,其时代为119~130Ma(Chan et al., 2015; Xia et al., 2011; Xiong et al., 2020; Zheng et al., 2019)。此外,南带蛇绿岩边部混杂岩中出露早中二叠世蛇绿岩块,如休古嘎布辉长岩(15YD34-11)的时代为275.2±6.0Ma(作者待发表)、普兰辉长岩(11L41-3)的时代为260.5±2.1Ma(作者待发表),该时代与休古嘎布蛇绿岩边部硅质岩的中晚三叠世放射虫时代(张计东等, 2016),以及马攸木南混杂岩中辉长岩的时代(243Ma, Liu et al., 2020a)相吻合。北带地幔橄榄岩中出露有类似南带产状的基性岩脉,时代为120~128Ma (Liu et al., 2018; Zheng et al., 2017; Zhong et al., 2019)。北带洋壳出露宽度稍大,尤其在公主错、峨尔翁和达机翁蛇绿混杂岩中出露宽500m至1km以上的层状辉长岩(刘飞等, 2015a),其中达机翁辉长岩块的时代有249.6±3.8Ma、132.5±2.8Ma和124.0±4.4Ma(作者待发表),公主错OIB型玄武质角砾岩的时代为245.1±2.5Ma和241.9±4.1Ma(审稿中)。总之,南北带蛇绿(混杂)岩具有类似的时空分布和岩石组合,指示两带的古洋盆在早中二叠世已经存在。

东波和普兰地幔橄榄岩的(187Os/188Os)i=130Ma比值为0.1127~0.1447(Gong et al., 2016; Miller et al., 2003; Niu et al., 2015; Liu et al., 2012a; Xiong et al., 2017b; Xu et al., 2020),涵盖了亏损大洋岩石圈地幔值(0.123~0.129, Shirey and Walker, 1998; Widom, 2002)和陆下岩石圈地幔值范围(0.105~0.129, Shirey and Walker, 1998)。北带错不扎方辉橄榄岩和含单斜辉石方辉橄榄岩的(187Os/188Os)i=130Ma比值分别为0.1161~0.1167和0.1272~0.1298(Feng et al., 2018),亦显示具有亏损大洋岩石圈地幔和陆下岩石圈地幔的Os同位素特征。Os同位素指示YZSZ西段南、北带蛇绿岩地幔橄榄岩记录了大洋岩石圈地幔和受到俯冲流体/熔体交代的陆下岩石圈地幔信息,该结论与南带地幔橄榄岩普遍具有大陆边缘蛇绿岩特征(Liu et al., 2015),侵入于南带地幔橄榄岩中的基性岩具有洋内俯冲的记录(刘飞等, 2013b),以及北带地幔橄榄岩和侵入其中的基性岩脉为尖晶石二辉橄榄岩非模式批式部分熔融模拟结果相吻合(Liu et al., 2018)。

从区域构造来看,南带东波蛇绿岩边部的灰岩具有不对称褶皱指示其具有向南逆冲的构造特征,北部出露一条近1km宽、倾向南-南西的脆-韧性断裂带截断了地幔橄榄岩中北西走向的面理和南北向拉伸线理,说明南西走向推覆体的侵位和糜棱组构形成在橄榄岩高温变形之后(Xu et al., 2015d)。从区域地层来看,仲巴地体中生代地层与特提斯喜马拉雅地层完全可以对比(李祥辉等, 2014),结合南带两侧不发育俯冲相关的岩浆岛弧(图 3b),普兰深反射地震剖面显示普兰蛇绿岩体和北带蛇绿岩体在上地壳深处呈倾向相反但底部相通的构造(于洋等, 2020),南北带蛇绿岩具有类似的时空分布,均暗示南带应为北带古洋盆的推覆体,南带推覆体的时代稍老于北带蛇绿岩。

5.2 雅鲁藏布江新特提斯洋的打开

雅鲁藏布江新特提斯洋(简称雅江洋)打开时间存在着争论,主要有晚侏罗世-早白垩世(J3-K1)、三叠纪晚期和二叠纪三种主要观点。J3-K1的观点认为雅江洋发育于白垩纪早期,闭合于晚白垩世至古近纪早期,主要证据来自古生物种类相似度和沉积相的对比(肖序常和李廷栋, 2000),即从T3四足兽群落和T-K1的菊石群落对比、BNSZ和YZSZ之间的J-K1地层主要为浅海-滨海相及海陆交互相沉积特征指示中生代时期印度和欧亚大陆之间不存在广阔的新特提斯大洋,只出现过小洋盆、较深裂陷槽、海湾及陆表海,YZSZ所代表洋盆宽度为1300km左右(肖序常和李廷栋, 2000; 肖序常和王军, 1998),喜马拉雅地体和拉萨地块的古地磁数据亦显示雅鲁藏布新特提斯洋的规模约~2000km (Li et al., 2004)。然而该观点无法解释YZSZ发现的中侏罗蛇绿岩,如163Ma罗布莎辉绿岩、日喀则良乡169Ma辉长岩,以及朗县191Ma辉长岩等(Li et al., 2004)。三叠纪晚期的观点认为拉萨地块与澳大利亚大陆北缘中二叠世末期(约263Ma)的碰撞可能触发了班公湖-怒江特提斯洋岩石圈的南向俯冲,T3时期以弧后盆地的形式打开(Yang et al., 2018; Zhu et al., 2013),导致拉萨地块从澳大利亚北缘裂解(Audley-Charles, 1988; Zhu et al., 2013),或者从印度冈瓦纳大陆边缘裂解(Gaetani and Garzanti, 1991; Metcalfe, 2011; Yin and Harrison, 2000; 任纪舜和肖黎薇, 2004),该观点得到拉萨地块自T3以来才发生向北运动的桑日群古地磁支持(Li et al., 2016),然而Huang et al. (2017b)认为桑日群火山碎屑岩可能发生磁化再造影响了古地磁数据。Liu et al. (2012b)肖文交等(2017)认为新特提斯洋的主缝合带可能位于喜马拉雅南坡的低喜马拉雅和西瓦里克,自晚三叠世开始,新特提斯洋向北俯冲导致高喜马拉雅陆弧被向南拉出,雅江洋以弧后盆地的形式张开,三叠系朗杰学群为弧前增生杂岩。然而,该模型不能解释在YZSZ西段发现的275~243Ma的洋壳残片。二叠纪观点的主要证据来自晚古生代地层对比(Metcalfe, 2011),以及特提斯喜马拉雅地体内发育大量晚二叠纪与冈瓦纳大陆北缘裂解有关的岩浆事件(Allégre et al., 1984; Garzanti et al., 1999; 曾令森等, 2012; 潘裕生和方爱民, 2010)。该事件在阿拉伯陆块的扎格罗斯和阿曼、喜马拉雅造山带的高喜马拉雅(289Ma Panjal Traps和C3-P1的Abor火山岩(Ali et al., 2012; Bhat, 1984))、特提斯喜马拉雅(吉隆290~272Ma Bhote Kosi玄武岩(Garzanti et al., 1999)、Nar Tsum早二叠世细碧岩、色龙二叠纪玄武岩(朱同兴等, 2002)、雅拉香波273Ma辉绿岩脉)(Chauvet et al., 2008; Garzanti et al., 1999; 曾令森等, 2012; 朱同兴等, 2002)、拉萨地块、南羌塘和Sibumasu地体中广泛分布(Chen et al., 2017),被认为与289Ma Panjal大火成岩省的地幔柱活动有关(Shellnutt et al., 2011),是新特提斯洋开启的标志。该观点与最近在YZSZ西段发现245~242Ma的残余海山(Liu et al., 2017b, 作者待发表)、243Ma辉长岩(Liu et al., 2020a),以及275.2±6.0Ma休古嘎布辉长岩(15YD34-11)和260.5±2.1Ma普兰辉长岩(11L41-3)(作者待发表)等相吻合。结合古生物对比显示雅江洋至少在瓜德鲁普世(272~260Ma)已打开(琚琦等, 2019; 张以春等, 2019),由此我们认为西段雅江洋(本文命名为雅江西洋)至少在二叠纪晚期已经打开,Panjal地幔柱活动对雅江洋的开启起到关键作用。

5.3 班公湖-怒江新特提斯洋的打开

近年来国内外学者对班怒洋打开和闭合时间、初始俯冲时间、俯冲极性和俯冲增生过程开展了大量研究,取得了较多的成果,基本确立了班怒洋初始打开大的时间。目前普遍认为羌塘地块从印度陆块裂解,而拉萨地块源自澳大利亚陆块(Zhu et al., 2013),因此班怒洋初始打开时间可以用羌塘地块从印度冈瓦纳大陆初始裂解时间限定。南羌塘中侵入于石英砂岩和变泥质岩的279~285Ma基性岩群(Zhai et al., 2013)和北拉萨地块中侵入那曲下拉组的278Ma N-MORB型基性岩脉(Chen et al., 2017),代表了班怒洋壳形成前亏损软流圈地幔上涌的岩浆事件,类似于伊比利亚-纽芬兰洋陆过渡带中大西洋开启前的Galicia Bank辉长岩(Cornen et al., 1999)。该推论与那曲出露T2放射虫(Cornen et al., 1999)、原岩年龄为254Ma的洞错舍拉玛沟高压麻粒岩(王保弟等, 2015)、原岩年龄为260Ma的改则榴辉岩(Zhang et al., 2016b)、模式年龄为269Ma洞错中岗辉长岩(Fan et al., 2015)、洞错222Ma均质辉长岩(武勇等, 2018)、多龙蛇绿混杂岩中252Ma辉绿岩(韦少港等, 2019)等相吻合,说明南羌塘地块可能也受289Ma Panjal地幔柱影响于278Ma发生陆缘裂解,班怒洋的打开时间可能发生在260Ma之前(Li et al., 2019; 韦少港等, 2019)。该推论得到拉萨地块和两侧地体中古生物证据的支持,整个拉萨地块在瓜德鲁普世(272~260Ma)普遍发育暖水动物群组,而在下拉组底部空谷阶(284~272Ma)以冷水动物群和混生动物群为特征。相比之下,南羌塘地体在空谷期时(284~272Ma)已经以暖水动物群为主导,而西澳大利亚地块的海水温度低(张以春等, 2019),说明班怒洋此时已经打开。藏南喜马拉雅地体在整个乌拉尔世(299~272Ma)含有典型的冈瓦纳冷水型动物群,指示拉萨地块至少从瓜德鲁普世(272~260Ma)便与印度冈瓦纳大陆之间产生明显的古生物地理差异,雅江洋已经打开一定的宽度(琚琦等, 2019)。结合上节在YZSZ西段蛇绿混杂岩中发现243~275Ma的基性岩块,可以推断,班怒洋和雅江西洋可能在空谷期(284~272Ma)均已打开。

5.4 班公湖-怒江新特提斯洋的俯冲极性和初始碰撞

大洋俯冲产生的弧后盆地-弧-弧前盆地-增生楔和海沟等弧-沟-盆系统是判别俯冲极性的最基本方法(Ducea et al., 2015)。班怒洋俯冲极性存在向北俯冲至羌塘地体(Pearce and Deng, 1988; Yin and Harrison, 2000)和向北、向南分别俯冲至羌塘和拉萨地块的双向俯冲(Kapp and DeCelles, 2019; Zhu et al., 2011)两种观点。目前向北俯冲模式已被普遍认可,证据有:(1)普遍可见向北俯冲的沟-弧-盆体系,木嘎刚日群俯冲杂岩及其沉积物源来自羌塘地块,具有弧前盆地特征色瓦(Sewa)组侵位在南羌塘,外围前陆盆地乌噶组侵位在下伏的北拉萨地块上;(2)在南羌塘地体南缘发育大量俯冲相关的晚侏罗世钙碱性岩浆岩(164~154Ma和123~113Ma, Li et al., 2014, 2016);(3)以及出露大量190~148Ma SSZ型蛇绿岩等。

向北初始俯冲的时间一般认为在中晚三叠世,因为木嘎刚日群俯冲杂岩的~220Ma沉积年龄峰可能提供最大向北增生年龄(Zeng et al., 2016)。南羌塘俯冲相关的岛弧最老年龄早侏罗世,而色瓦弧前盆地和碰撞后沙木罗残留海盆地记录了最早岛弧岩浆岩为185~170Ma。SSZ蛇绿岩的时代主要集中在184~167Ma,而初始俯冲一般早于形成SSZ型蛇绿岩约10Myr,那么班怒洋向北初始俯冲可能发生于~195Ma,其动力学机制可能与南北拉萨沿着松多缝合带碰撞、南拉萨地块从冈瓦纳大陆裂解、南北羌塘碰撞、羌塘-昆仑-柴达木地块的焊合等有关(Li et al., 2019, 及其文献)。

向南俯冲的证据主要来自变质岩和岩浆岩,而沉积记录上很少体现(Li et al., 2019)。Zhu et al. (2011)认为向南初始俯冲的时间从263Ma拉萨和北澳大利亚碰撞已经开始。然而目前较普遍的观点认为班怒洋向南俯冲的时代为早侏罗世。那曲早侏罗统以泥页岩为基质的嘎甲(Gajia)混杂岩可能记录了班怒洋向南俯冲的沉积记录(Lai et al., 2017)。班怒洋向南俯冲的岩浆岩证据有164Ma达如错高镁安山岩及伴生的中侏罗世西湖群俯冲杂岩(Lai et al., 2017),北、中拉萨的则弄群火山岩和白弄-盐湖早白垩世岩浆弧,可能为班怒洋向南俯冲的产物,165Ma康琼蛇绿岩被解释为班怒洋向南洋内俯冲的残余,以上证据暗示班怒洋向南俯冲最早时间可能为~170Ma(Kapp and DeCelles, 2019)。但必须强调的是,北拉萨地体缺少同碰撞和后碰撞陆缘高压变质岩,向南俯冲的俯冲杂岩和弧前盆地在北拉萨也未有报道(Li et al., 2019)。

拉萨和羌塘地块初始碰撞时间。碰撞模式一般分为软碰撞、海相沉积物的消退、硬碰撞三种模式(Hu et al., 2017; Li et al., 2019)。软碰撞指洋壳晚期消失时两侧大陆开始接触的时间,即拉萨地块开始接触南羌塘地块;大陆之间海水消退的时间,以碰撞带中海相沉积物消失为标志;两侧陆块发生强烈相互作用,碰撞陆壳发生明显变形、缩短和加厚。显然软碰撞模式限定的初始碰撞时间较后两种早,该时间由物源变化和沉积盆地性质改变来限定(Hu et al., 2017)。地层和沉积显示,具有残留海盆地性质的沙木罗组、东巧组和滨浅海沉积的德吉国组与蛇绿岩和木嘎刚日群俯冲杂岩之间的不整合,指示班怒洋消亡时间为J3-K1(Wang et al., 2016a; 王建平等, 2002),海相和非海相沉积的过渡时间约125~118Ma(Kapp et al., 2007),说明初始碰撞在125Ma之前。南羌塘南缘169~106Ma俯冲相关的岛弧岩浆岩存在142~128Ma年龄空白期,与前陆盆地性质的乌嘎组碎屑锆石缺少142~128Ma年龄段相吻合(Li et al., 2019),结合拉萨地块停止向北运动的稳定古地磁时间为~132Ma,拉萨和羌塘碰撞(~19°N)的时间可能在142~151Ma (Bian et al., 2017; Li et al., 2019; Ma et al., 2019)。总的来说,拉萨地块和羌塘地块碰撞时间发生在150~140Ma。

值得注意的是,BNSZ中普遍存在130~104Ma的OIB型玄武岩、辉长岩和辉绿岩(Fan et al., 2014; Zhang et al., 2014)(图 5),尤其在BNSZ蛇绿岩北侧出露东西长>80km,南北宽达10km的仲岗杂岩,由岩浆岩基底(辉石岩、辉长岩、玄武岩)和远洋沉积物盖层(塌积砾岩、灰岩、硅质岩等)组成,被解释为洋岛残余(Fan et al., 2014; 范建军等, 2018),或者为俯冲大洋板片断离导致软流圈上涌的产物(Li et al., 2019; Zhu et al., 2016)。根据南羌塘地块南缘出露169~101Ma具有岛弧地球化学特征的岩浆岩(Li et al., 2018b)(图 7),以及巨鹿蛇绿岩的角闪辉长岩年龄为104Ma(Liu et al., 2014),说明班怒洋在晚白垩世可能依旧存在。我们认为130~104Ma的蛇绿岩和洋岛代表了“红海型”小洋盆,即在140Ma拉萨和南羌塘碰撞后再次发生裂解产生的陆缘洋盆。

5.5 BNSZ和SNMZ的关系

SNMZ的成因是理解青藏高原新特提斯洋演化的重要内容,目前对SNMZ的构造属性尚存在争议:(1)班怒洋向南仰冲至拉萨地块的推覆体(Kapp et al., 2003);(2)班怒洋向南俯冲形成的弧后盆地(Zhong et al., 2015; 徐梦婧, 2014);(3)与班怒洋相通的南部分支,两者具有相同的构造演化过程(张诗启, 2018)。

从蛇绿岩时空分布看,虽然BNSZ中东段的安多、北拉和丁青蛇绿岩以及SNMZ中西段的狮泉河、永珠和仁错等均具有彭罗斯型完整的蛇绿岩层序(图 6),但BNSZ蛇绿岩的形成时代明显早于SNMZ蛇绿岩,比如前者从西到东在班公湖、洞错、东巧、安多、蓬错、那曲和丁青等普遍出露晚二叠世至三叠纪(ca.260~200Ma)的蛇绿岩,而SNMZ目前最老的蛇绿岩年龄出露在嘉黎(218Ma)(和钟铧等, 2006)。需要注意的是,嘉黎橄长岩的锆石CL图像具有明显的核边结构和细密韵律环带,该特征与蛇绿岩基性岩的锆石具有宽缓和面状结构不同,因此嘉黎晚三叠世蛇绿岩的时代还需要进一步验证。除此以外,SNMZ最老的蛇绿岩为早侏罗世,如193~180Ma狮泉河辉长岩、拉果错190~183Ma辉长岩和纳木错西181Ma辉长岩,明显晚于BNSZ蛇绿岩,说明两者并非同时开启,且具有不同的构造演化过程。

从藏北湖区蛇绿岩的分布看,BNSZ安多亚带、东巧-伦坡拉-依拉山亚带、北拉-拉弄亚带蛇绿岩均具有早中三叠世(259~242Ma)的大洋记录,指示三个亚带古洋盆具有近于相同的开启时间。然而自侏罗纪以来,北拉-拉弄蛇绿岩以中晚侏罗世(173~148Ma)为主,明显晚于前两个以早侏罗世为主的蛇绿岩亚带(188~174Ma),而与SNMZ永珠-纳木错亚带蛇绿岩的时代(主要为169~148Ma)类似(图 5)。此外北拉-拉弄蛇绿岩洋壳岩石明显具有岛弧和N-MORB的双重地球化学特征(Tang et al., 2018a; 徐力峰等, 2010),而相比之下,永珠和仁错蛇绿岩具有典型的N-MORB型地球化学特征(Tang et al., 2018a; 徐力峰等, 2010),是与大洋板片俯冲无关的中晚侏罗世洋盆,指示BNSZ和SNMZ的中晚侏罗世蛇绿岩具有完全不同的构造背景,该特征不支持SNMZ蛇绿岩是班怒洋向南仰冲至拉萨地块推覆体的观点,也不支持班怒洋向南俯冲形成的弧后盆地模型,那么可能的合理模型是永珠-纳木错蛇绿岩代表了班怒洋演化后期真正的成熟大洋的洋中脊残余(Tang et al., 2020a),或者班怒洋中190~173Ma大洋高原(Zhang et al., 2014)代表的地幔柱作用导致拉萨北缘拉张,形成具有SNMZ中MORB型的初始洋盆。然而根据北拉-拉弄蛇绿岩带和永珠-纳木错蛇绿岩带之间仅出露J3-K1复理石地层和白垩纪岛弧岩浆岩,我们认为SNMZ和BNSZ代表了班怒洋不同的演化阶段,SNMZ蛇绿岩代表了班怒洋扩张为成熟洋盆岩石圈残余。

5.6 YZSZ和BNSZ蛇绿岩型金刚石的成因模型

蛇绿岩型金刚石在YZSZ和BNSZ以及纬向延伸的土耳其、阿尔巴尼亚和缅甸地幔橄榄岩和铬铁矿中被发现(图 1表 1),这些发现不仅指示金刚石在蛇绿岩中普遍存在,暗示蛇绿岩及铬铁矿经历了深部和浅部(P=10kbar,深度 < 30km)等多阶段的成因构造演化过程,还促使人们重新思考洋/陆岩石圈属性(Lian and Yang, 2019; Yang et al., 2015),开启了国际上研究蛇绿岩成因和探索壳幔物质循环动力学过程一个全新的领域(Coleman, 2015; Liou et al., 2014; Rollinson, 2016)。然而蛇绿岩型金刚石的成因还存在较大争论,这些争议主要基于YZSZ蛇绿岩,目前存在四种主要观点:(1)拉萨地块陆下岩石圈地幔携其内部的低压铬铁矿俯冲到深部地幔再快速折返至地表模式:拉萨地块陆下岩石圈地幔及其内部的低压形成豆荚状铬铁矿受大洋俯冲岩石圈的影响发生拆离,并沿俯冲带进入上地幔和地幔过渡带,形成高压铬铁矿并被含碳流体交代形成金刚石等超高压、超还原性矿物,随后俯冲板片后撤导致浅部拉张,进而使较轻的方辉橄榄岩和伴生的铬铁矿“上浮”至洋中脊、弧前或弧后等扩张脊(Griffin et al., 2016; McGowan et al., 2015)。(2)在洋中脊和SSZ两种浅部环境下结晶的铬铁矿在俯冲过程中形成金刚石和高压铬铁矿再折返至地表模式(Arai, 2013; Arai and Miura, 2016):低压铬铁矿在洋中脊或俯冲带中形成后沿俯冲带进入深部地幔形成高压铬铁矿,同时铬铁矿中的含碳流体在高压强还原环境下形成金刚石,随后含金刚石的高压铬铁矿通过地幔对流重新回到浅部,部分与新形成的低压火成铬铁矿共存。该模型强调浅部铬铁矿形成于洋中脊和SSZ环境,而非形成于被改造的陆下岩石圈地幔以外,与第一个观点基本类似。(3)洋内俯冲板片回转、撕裂和断离导致软流圈上涌促使铬尖晶石和部分金刚石等超高压矿物形成:大洋板片的持续俯冲发生榴辉岩相变质作用形成金刚石,俯冲板片在角闪岩相和榴辉岩相之间的部位发生撕裂和断离,导致下部的含金刚石的软流圈上涌和含铬单斜辉石熔融,产生富铬的镁铁质岩浆,这些向上迁移的岩浆穿过俯冲带并同化混染了俯冲板片,形成更加硅质、富氧、含水的混合岩浆,同时触发铬尖晶石结晶。微小的铬尖晶石颗粒悬浮在向上迁移的混合岩浆中,通过上覆地幔楔,最终在靠近MOHO上地幔附近流动方向由垂直变为近水平方向,速度大大降低,进而堆晶形成铬铁矿。该模型强调包裹在豆荚状铬铁矿和寄主地幔橄榄岩的金刚石一部分被软流圈由地幔深部携带上来,也有一部分是在约150km以下的俯冲板片中富含碳的流体而来(Zhou et al., 2014)。(4)地幔过渡带形成后通过地幔对流或地幔柱被携带至地表模式:早期的岩石圈多次俯冲至地幔过渡带或下地幔后,俯冲物质与来自地幔过渡带和下地幔的金刚石、单质矿物等超高压超还原性矿物在地幔过渡带和上地幔中逐渐聚集,同时地幔柱的熔体/流体上升至地幔过渡带,铬尖晶石在地幔过渡带顶部结晶过程中包裹壳源矿物和金刚石等超高压矿物,随后这些含金刚石的铬铁矿通过地幔柱在洋中脊、弧前或弧后等扩张脊位置被运移至地表,在此过程中铬铁矿出溶具有斯石英假象的柯石英(Yang et al., 2014)。大部分高压地幔橄榄岩和铬铁矿将通过俯冲带再次循环进入地球深部,残留的部分受到俯冲流体或熔体交代发生部分熔融,进而记录了俯冲相关的岩浆热事件和岩石-熔体反应(Lian and Yang, 2019; Xiong et al., 2015; Yang et al., 2014)。该模型强调在地幔过渡带铬尖晶石逐渐结晶形成铬铁矿并不断包裹壳源物质和超高压、超还原矿物,在地幔柱的作用下促使铬铁矿快速上升至地表,该模型较好的解释了在地幔橄榄岩和铬铁矿中广泛存在的超高压和高还原矿物以及向上运移的动力机制。

总之,以上四种模型对蛇绿岩型块状铬铁矿和地幔橄榄岩的深部成因达成共识,然而对铬的来源、铬尖晶石的结晶条件和结晶位置、含金刚石等地幔橄榄岩和铬铁矿向上运移机制、金刚石的物质来源和形成深度、壳源和幔源物质进入地幔橄榄岩和铬铁矿的机制等问题还存在争论或未解决。总的来说,我国地质学家确立了蛇绿岩型金刚石为新的金刚石产出类型,证实了蛇绿岩地幔橄榄岩和铬铁矿是地球深部矿物重要的储存库,这些认识开启和引领了国际上研究含金刚石蛇绿岩和壳幔物质循环的热潮。

5.7 青藏高原新特提斯洋构造演化

基于以上数据和认识,我们提出青藏高原新特提斯洋经历了以下主要演化过程:

(1) 在晚泥盆世(~360Ma),北拉萨地块和安多微陆块与南羌塘地体位于印度板块的北缘,而南拉萨地块位于澳大利亚陆块北缘,受古特提斯洋向南俯冲的影响,冈瓦纳大陆北缘发育367Ma加查花岗岩、385~361Ma朗县花岗岩类、363Ma冈玛错花岗岩和364Ma纳久OIB型辉长岩等伸展型岩浆岩(Zhu et al., 2011, 2012),促使北拉萨地块东缘与南拉萨-澳大利亚陆块逐渐裂解并导致松多古特提斯洋的初步打开(图 8a)。

图 8 青藏高原新特提斯洋构造演化模式图 图中拉萨地块被松多缝合带分为南、北拉萨.A-安多地块;NL-北拉萨地块;NL-A-北拉萨-安多地块;OB-其它地块;SL-南拉萨地块;SQ-南羌塘地体 Fig. 8 Tectonic reconstruction of the Neotethyan ocean evolution in Tibetan Plateau Lhasa block was subdivided by the SS into South Lhasa (SL) and North Lhasa block (NL) in the model. A-Amdo block; NL-A-North Lhasa-Amdo block; OB-other blocks; SQ-South Qiangtang terrane

(2) 早二叠世(~289Ma),与Panjal地幔柱有关的岩浆岩广泛分布于阿拉伯陆块的扎格罗斯、阿曼、高喜马拉雅、特提斯喜马拉雅、拉萨地块、南羌塘和Sibumasu地体中(Ali et al., 2012; Bhat, 1984; Chauvet et al., 2008; Chen et al., 2017; Garzanti et al., 1999; 曾令森等, 2012; 朱同兴等, 2002)。Panjal地幔柱导致北拉萨西段和南羌塘地体逐渐从冈瓦纳大陆北缘裂解,同时松多洋继续扩张(图 8b)。古生物对比显示,班怒洋和雅江洋(此时是以YZSZ西段为代表的雅江西洋)在早二叠世空谷期(284~272Ma)均已打开(琚琦等, 2019; 张以春等, 2019)。同期侵入于南羌塘石英砂岩和变泥质岩的279~285Ma基性岩群(Zhai et al., 2013)和侵入于北拉萨地块那曲下拉组的278Ma N-MORB型基性岩脉(Chen et al., 2017)代表了班怒洋打开时亏损软流圈地幔上涌的岩浆事件。而特提斯喜马拉雅地体中雅拉香波273Ma辉绿岩脉(曾令森等, 2012)可能代表了雅江西洋打开时软流圈地幔上涌岩浆与被动陆缘物质相互作用的产物。随着班怒洋和雅江西洋的持续扩张,松多洋逐渐萎缩,促使晚石炭世(~305Ma)松多、吉朗、新达多洋壳在272~262Ma发生深俯冲形成榴辉岩,并于~240Ma折返增生至地表(Liu et al., 2020c; 陈松永, 2010),在此过程中可能导致269~261Ma温木朗蛇绿岩侵位(解超明等, 2020)。

(3) 早中三叠世(252~240Ma),雅江西洋继续扩张,班怒洋和松多洋发生了洋内俯冲,雅江西洋与班怒洋和松多洋相通,三者分别被走滑(转换)断层相隔。BNSZ中原岩年龄为254Ma的洞错舍拉玛沟高压麻粒岩(王保弟等, 2015)、原岩年龄为260Ma的改则榴辉岩(Zhang et al., 2016b)、模式年龄为269Ma洞错中岗辉长岩(Fan et al., 2015)、多龙蛇绿混杂岩中252Ma辉绿岩(韦少港等, 2019)等为班怒洋初始洋盆的残余。休古嘎布275Ma辉长岩、普兰261辉长岩、达机翁混杂岩中~250Ma的辉长岩、245Ma的残余海山、243Ma马攸木辉长岩和休古嘎布蛇绿岩边部中晚三叠世放射虫硅质岩等均代表了雅江西洋初始洋盆的残余。大竹曲东245安山岩和240Ma辉长岩(Ma et al., 2020)可能为松多洋向南俯冲至南拉萨地块的产物(图 8c)。

(4) 晚三叠世早期(~230Ma),松多洋持续向南俯冲消减,形成白朗238~227Ma的高压榴辉岩(Cheng et al., 2015; Liu et al., 2020c)。在此过程中,可能产生冈底斯东部(萨嘎至林芝)晚三叠世(237~200Ma)的岩浆岩(图 7),如昌果237~212Ma玄武质火山岩(Wang et al., 2016b)、曲水220~210Ma角闪辉长岩和富水深成岩(Ma et al., 2018b; Meng et al., 2016),以及形成松多缝合带两侧晚三叠-早侏罗世的俯冲-碰撞相关的岩浆事件(陈松永, 2010; 李化启, 2009),松多洋向南俯冲还可能导致南拉萨地块从澳大利亚陆块裂解,导致雅江东洋在220~210Ma打开(图 8d)。这些印支期I型和S型岛弧岩浆岩以及被动陆缘裂解形成的雅江东洋盆地向南、南西和南东等方向提供物源(Li et al., 2019; Liu et al., 2020d; Ma et al., 2020),在靠近澳大利亚西北角的印度板块东缘沉积形成著名的三叠系朗杰学群(图 8d)。值得注意的是,如果冈底斯东部晚三叠世岩浆岩与松多洋向南俯冲有成因联系的认识正确的话,根据冈底斯岛弧晚三叠世岩浆岩分布,可以推测松多(超)高压变质岩带应延伸至措勤附近。

(5) 早侏罗世(~200Ma),松多洋完全闭合,北拉萨地块与南拉萨-澳大利亚地块碰撞,238~227Ma白朗榴辉岩于~200Ma折返至地表(Liu et al., 2020c)。雅江东洋已经初具规模,与雅江西洋连为一体。期间班怒洋发生洋内俯冲,形成具有弧后特征的222Ma洞错辉长岩、229Ma岛弧玄武岩和220Ma安多枕状玄武岩,以及218Ma丁青辉长岩(图 5图 8e)。雅江东洋在早侏罗世发生洋内俯冲和洋陆俯冲,形成188~175Ma比马组洋内弧和193~174Ma叶巴组大陆弧(Ma et al., 2019; 黄丰等, 2015)。

(6) 晚侏罗-早白垩世(150~130Ma),BNSZ具有残留海盆地性质的沙木罗组、东巧组和滨浅海沉积的德吉国组与蛇绿岩和木嘎刚日群俯冲杂岩之间的不整合(Wang et al., 2016a; 王建平等, 2002),以及拉萨地块停止向北运动的古地磁时间约为~132Ma(Bian et al., 2017; Ma et al., 2018a),指示班怒洋在150~140Ma逐渐闭合。雅江洋发生俯冲消减,形成163~152Ma泽当岛弧(Liu et al., 2020b; McDermid et al., 2002)、早白垩世桑日群(Kang et al., 2014)以及伸展型岩浆事件,如朗县145Ma的OIB型玄武岩(张万平等, 2011)、东波140Ma的OIB型玄武岩和普兰137Ma的E-MORB型玄武岩(Liu et al., 2015),普兰侵入于地幔橄榄岩139Ma OIB型辉绿岩(Liu et al., 2015),侵入岩普兰地幔橄榄岩边部硅泥页岩144Ma OIB型辉长岩(Xiong et al., 2020)等。此次晚侏罗-早白垩世伸展型岩浆事件在特提斯喜马拉雅的聂拉木县的古错(Hu et al., 2010)、吉隆-康马一线以东的洛扎(童劲松等, 2007; 王亚莹等, 2016),以及在特提斯喜马拉雅带的浪卡子、措美、错那、江孜、康马等大规模出露(Zhu et al., 2009; 裘碧波等, 2010; 王亚莹等, 2016),被普遍认为与Kerguelen-Comei-Bunbury地幔柱活动有关,进而导致印度洋的开启(Olierook et al., 2017; Zhu et al., 2009)。

(7) 早白垩世(ca.130~120Ma),由于拉萨和羌塘地块的~140Ma初始碰撞,雅江洋向北俯冲速率加快,导致雅江洋向北发生洋陆平板俯冲和随后的洋内俯冲,前者导致冈底斯岛弧缺失130~120Ma岩浆事件,促使班怒洋再次打开,表现为BNSZ和SNMZ中广泛分布133~104Ma的OIB型岩浆岩和拉斑质洋壳残余(图 5),并于晚白垩世闭合形成竟柱山组磨拉石。俯冲至拉萨地块下部的雅江洋板片回转导致南拉萨陆缘弧前伸展,陆下软流圈上涌形成YZSZ普遍发育的130~120Ma蛇绿岩(Dai et al., 2013; Liu et al., 2018; Maffione et al., 2015; Zhang et al., 2019b),可能由于俯冲速率、俯冲角度和Kerguelen-Comei地幔柱活动影响程度的差异,导致YZSZ东、中、西段早白垩世蛇绿岩发育不同的岩石单元,表现在中段发育彭罗斯层序完整的日喀则型陆缘弧前蛇绿岩,而东和西段发育较薄的堆晶杂岩,缺失席状岩群和枕状熔岩(图 4)。此外,雅江洋西段岩石圈可能沿着扩张脊附近的拆离断层侵位形成YZSZ西段130~128Ma的MORB型和126~119Ma IAT型两类蛇绿岩(刘飞等, 2018)。

(8) 古新世-始新世(60~45Ma),印度板块与欧亚板块初始碰撞和新特提斯洋闭合,表现在:周缘前陆盆地和古地磁限定的最早在YZSZ中部(65~63Ma)向两侧穿时碰撞(丁林等, 2017),深水浊积岩物源区由印度物源向亚洲物源转变的时间为59Ma(Hu et al., 2016),俯冲板片断离的岩浆岩结合汇聚速率、板片断离深度和俯冲角度获得初始碰撞时间为55Ma(Zhu et al., 2015)等。仲巴-萨嘎-吉隆出露晚古新世-早始新世含放射虫深水沉积岩,代表了残留海前陆盆地沉积(Li et al., 2017; Wang et al., 2017b)。

6 结论

本文总结了雅鲁藏布江缝合带、班公湖-怒江缝合带、狮泉河-纳木错蛇绿混杂岩带和松多缝合带蛇绿岩的时空分布和组成,归纳了拉萨地块晚古生代和中生代岩浆岩分布,取得以下主要认识:

(1) 位于BNSZ和YZSZ之间的松多洋对班怒洋和雅江洋的构造演化起到重要的影响,松多洋可能于~360Ma打开,于200Ma完全闭合。

(2) Panjal地幔柱活动可能促使雅江西洋和怒江洋均在早二叠世空谷期(283~272Ma)打开;雅江东洋(与雅江西洋以萨嘎-措勤为界, 约E85°)由于松多洋的向南俯冲可能在晚三叠世打开,期间在南拉萨地块中形成萨嘎-林芝一线大规模中晚三叠世岩浆岛弧,伸展盆地和印支期岛弧岩浆岩提供物源在印度板块东北缘沉积形成朗杰学群。

(3) 150~140Ma班怒洋闭合和南羌塘和北拉萨地块碰撞,促使雅江洋扩张速率加快而产生了向拉萨地块的平板俯冲,进而导致班怒洋的再次裂解,形成“红海型”小洋盆,期间形成大量133~104Ma的OIB型岩浆岩和拉斑质岩石。

(4) SNMZ和BNSZ之间主要出露增生型火山-沉积岩,缺少前寒武结晶基底,SNMZ中纳木错、仁错等蛇绿岩具有大洋扩张脊型的地球化学特征,指示SNMZ蛇绿岩代表了班怒洋演化为成熟洋盆的扩张脊残余。

(5) YZSZ西段北带发现中三叠世残余海山和辉长岩块,南带发现大量早中二叠世岩浆岩和中晚三叠世放射虫,南带蛇绿岩带具有向南逆冲推覆构造,两侧不发育岛弧岩浆和弧前盆地,指示YZSZ西段南带蛇绿岩可能是北带的逆冲推覆体。

(6) 新特提斯洋经历了多期次俯冲作用,并受到二叠纪、三叠纪、侏罗纪和早白垩世等多期次地幔柱活动的影响,这些多期次俯冲作用和地幔柱岩浆活动是壳幔物质循环的原动力。

致谢      感谢何碧竹研究员组织《青藏高原及邻区研究新进展》专辑。撰写过程中,与杨少华博士、熊发挥博士、唐跃博士、赵中宝博士和吴魏伟博士等进行了有益探讨;南京大学李广伟教授、中国地质科学院地质研究所戚学祥研究员和马绪宣副研究员,以及《岩石学报》主编和俞良军主任认真审阅了全文并给予了非常好的修改意见;在此一并表示真挚地感谢。由于篇幅有限,本文标注了很多蛇绿岩和岩浆岩的数据,但未全部引用文献,在此表示歉意。

参考文献
Ali JR, Aitchison JC, Chik SYS, Baxter AT and Bryan SE. 2012. Paleomagnetic data support Early Permian age for the Abor Volcanics in the lower Siang Valley, NE India: Significance for Gondwana-related break-up models. Journal of Asian Earth Sciences, 50: 105-115 DOI:10.1016/j.jseaes.2012.01.007
Allégre CJ, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger JJ, Achache J, Schärer U, Marcoux J, Burg JP, Girardeau J, Armijo R, Gariépy C, Göpel C, Li TD, Xiao XC, Chang CF, Li GQ, Lin BY, Teng JW, Wang NW, Chen GM, Han TL, Wang XB, Den WM, Sheng HB, Cao YG, Zhou J, Qiu HR, Bao PS, Wang SC, Wang BX, Zhou YX and Xu RH. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307: 17-22 DOI:10.1038/307017a0
Arai S. 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference. Earth and Planetary Science Letters, 379: 81-87 DOI:10.1016/j.epsl.2013.08.006
Arai S and Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277-295 DOI:10.1016/j.lithos.2016.08.039
Audley-Charles MG. 1988. Evolution of the southern margin of Tethys (North Australian region) from Early Permian to Late Cretaceous. In: Audley-Charles MG and Hallam A (eds.). Gondwana and Tethys. Geological Society, London, Special Publications, 37(1): 79-100
Bai WJ, Zhou MF and Robinson PT. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30(8): 1650-1659 DOI:10.1139/e93-143
Bai WJ, Yang JS, Fang QS, Yan BG and Shi RD. 2003. An unusual mantle mineral group in ophiolites of Tibet. Geology in China, 30(2): 144-150 (in Chinese with English abstract)
Bao PS, Xiao XC, Su L and Wang J. 2007. Petrological, geochemical and chronological constraints for the tectonic setting of the Dongco ophiolite in Tibet. Science in China (Series D), 50(5): 660-671 DOI:10.1007/s11430-007-0045-5
Bao PS, Su L, Wang J and Zhai QG. 2013. Study on the tectonic setting for the ophiolites in Xigaze, Tibet. Acta Geologica Sinica, 87(2): 395-425 DOI:10.1111/1755-6724.12058
Bao PS, Su L, Wang J and Zhai QG. 2014. Origin of the Zedang and Luobusa ophiolites, Tibet. Acta Geologica Sinica, 88(2): 669-698 DOI:10.1111/1755-6724.12222
Baxter AT, Aitchison JC and Zyabrev SV. 2009. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet. Journal of the Geological Society, 166(4): 689-694 DOI:10.1144/0016-76492008-128
Bernoulli D and Jenkyns HC. 2009. Ancient oceans and continental margins of the Alpine-Mediterranean Tethys: Deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology, 56(1): 149-190 DOI:10.1111/j.1365-3091.2008.01017.x
Bhat MI. 1984. Abor volcanics: Further evidence for the birth of the Tethys Ocean in the Himalayan segment. Journal of the Geological Society, 141(4): 763-775 DOI:10.1144/gsjgs.141.4.0763
Bian WW, Yang TS, Ma YM, Jin JJ, Gao F, Zhang SH, Wu HC and Li HY. 2017. New Early Cretaceous palaeomagnetic and geochronological results from the far western Lhasa terrane: Contributions to the Lhasa-Qiangtang collision. Scientific Reports, 7(1): 16216 DOI:10.1038/s41598-017-16482-3
Bo RZ, Yang JS, Li GL, Rui HC, Xiong FH, Zhang CJ, Dong YF, Lu YX and Chen XJ. 2019. Geochronology and tectonic setting of mafic rocks in the Dingqing ophiolite in the eastern segment of the Bangongco-Nujiang suture zone. Acta Geologica Sinica, 93(10): 2617-2638 (in Chinese with English abstract)
Cai FL, Ding L, Laskowski AK, Kapp P, Wang HQ, Xu Q and Zhang LY. 2016. Late Triassic paleogeographic reconstruction along the Neo-Tethyan Ocean margins, southern Tibet. Earth and Planetary Science Letters, 435: 105-114 DOI:10.1016/j.epsl.2015.12.027
Cao HW, Huang Y, Li GM, Zhang LK, Wu JY, Dong L, Dai ZW and Lu L. 2018. Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with Greater India. Geoscience Frontiers, 9(1): 273-291
Cao SH, Xiao XL and Ouyang KG. 2008. Renew-establishment of the Jurassic Mugagangri groups and its geological significance on the western side of the Bangong Co-Nujiang Junction Zone. Acta Sedimentologica Sinica, 26(4): 559-564 (in Chinese with English abstract)
Chan GHN, Aitchison JC, Crowley QG, Horstwood MSA, Searle MP, Parrish RR and Chan JSL. 2015. U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Research, 27(2): 719-732 DOI:10.1016/j.gr.2013.06.016
Chauvet F, Lapierre H, Bosch D, Guillot S, Mascle G, Vannay JC, Cotten J, Brunet P and Keller F. 2008. Geochemistry of the Panjal Traps basalts (NW Himalaya): Records of the Pangea Permian break-up. Bulletin de la Société géologique de France, 179(4): 383-395 DOI:10.2113/gssgfbull.179.4.383
Chen LR, Xu WC, Zhang HF, Zhao PL, Guo JL, Luo BJ, Guo L and Pan FB. 2019. Origin and early evolution of the Lhasa Terrane, South Tibet: Constraints from the Bomi Gneiss Complex. Precambrian Research, 331: 105360 DOI:10.1016/j.precamres.2019.105360
Chen Q, Xie L and Xiao ZJ. 2007. Characteristics and Tectonic evolution of Bangong Lake ophiolitic melange belt in the western Qinghai-Tibet Plateau. Journal of East China Institute of Technology, 30(2): 107-112 (in Chinese with English abstract)
Chen SS, Shi RD, Zou HB, Huang QS, Liu DL, Gong XH, Yi GD and Wu K. 2015. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks. Lithos, 230: 30-45 DOI:10.1016/j.lithos.2015.05.009
Chen SS, Shi RD, Fan WM, Gong XH and Wu K. 2017. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean. Journal of Geophysical Research: Solid Earth, 122(6): 4172-4190 DOI:10.1002/2016JB013693
Chen SY. 2010. The development of Sumdo suture in the Lhasa block, Tibet. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Science, 1
Chen XJ, Yang JS, Dong YF, Xiong FH, Lu YX, Li GL and Bo RZ. 2019. Genesis and tectonic environment of basaltic rocks from the Dongqiao ophiolite in Tibet. Acta Geologica Sinica, 93(10): 2509-2530 (in Chinese with English abstract)
Chen YH, Yang JS, Zhang L, Xiong FH and Lai SM. 2015. Mineralogical study of the hornblende gabbro in Zetang ophiolite, southern Tibet, and its genetic implications. Geology in China, 42(5): 1421-1442 (in Chinese with English abstract)
Chen YH, Yang JS, Xu ZQ, Tian YZ and Lai SM. 2018. Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar. Journal of Asian Earth Sciences, 164: 179-193 DOI:10.1016/j.jseaes.2018.06.018
Cheng C, Zheng H, Kapsiotis A, Liu WL, Lenaz D, Velicogna M, Zhong LF, Huang QT, Yuan YJ and Xia B. 2018. Geochemistry and geochronology of dolerite dykes from the Daba and Dongbo peridotite massifs, SW Tibet: Insights into the style of mantle melting at the onset of Neo-Tethyan subduction. Lithos, 322: 281-295 DOI:10.1016/j.lithos.2018.10.023
Cheng H, Liu YM, Vervoort JD and Lu HH. 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-Tethys Ocean in the Lhasa terrane, Tibet. Gondwana Research, 28(4): 1482-1499 DOI:10.1016/j.gr.2014.09.017
Coleman RG. 2015. The ophiolite concept evolves. Elements, 10(2): 82-84
Cornen G, Girardeau J and Monnier C. 1999. Basalts, underplated gabbros and pyroxenites record the rifting process of the West Iberian margin. Mineralogy and Petrology, 67(3-4): 111-142 DOI:10.1007/BF01161518
Dai JG, Wang CS, Hébert R, Santosh M, Li YL and Xu JY. 2011. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology, 288(3-4): 133-148 DOI:10.1016/j.chemgeo.2011.07.011
Dai JG, Wang CS, Polat A, Santosh M, Li YL and Ge YK. 2013. Rapid forearc spreading between 130 and 120Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172-173: 1-16 DOI:10.1016/j.lithos.2013.03.011
Das S, Basu AR and Mukherjee BK. 2017. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology, 45(8): 755-758
Dilek Y. 2006. Collision tectonics of the Mediterranean region: Causes and consequences. In: Dilek Y and Pavlides S (eds.). Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America, 409: 1-13
Ding L, Maksatbek S, Cai FL, Wang HQ, Song PP, Ji WQ, Xu Q, Zhang LY, Muhammad Q and Upendra B. 2017. Processes of initial collision and suturing between India and Asia. Science China (Earth Sciences), 60(4): 635-651 DOI:10.1007/s11430-016-5244-x
Domeier M and Torsvik TH. 2014. Plate tectonics in the Late Paleozoic. Geoscience Frontiers, 5(3): 303-350
Dong X, Zhang ZM, Niu YL, Tian ZL and Zhang LL. 2020. Reworked Precambrian metamorphic basement of the Lhasa terrane, southern Tibet: Zircon/titanite U-Pb geochronology, Hf isotope and geochemistry. Precambrian Research, 336: 105496 DOI:10.1016/j.precamres.2019.105496
Dong YF, Yang JS, Lian DY, Xiong FH, Zhao H, Chen XJ, Li GL and Wang TZ. 2019. Genesis and tectonic setting of the Dongqiao peridotites in the central segment of the Bangong Co-Nujiang Suture Zone. Geology in China, 46(1): 87-114 (in Chinese with English abstract)
Ducea MN, Saleeby JB and Bergantz G. 2015. The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331 DOI:10.1146/annurev-earth-060614-105049
Dupuis C, Hébert R, Dubois-Côté V, Guilmette C, Wang CS, Li YL and Li ZJ. 2005. The Yarlung Zangbo Suture Zone ophiolitic mélange (southern Tibet): New insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences, 25(6): 937-960 DOI:10.1016/j.jseaes.2004.09.004
Fan JJ, Li C, Xie CM and Wang M. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys. International Geology Review, 56(12): 1504-1520 DOI:10.1080/00206814.2014.947639
Fan JJ, Li C, Xie CM, Wang M and Chen JW. 2015. The evolution of the Bangong-Nujiang Neo-Tethys Ocean: Evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites. Tectonophysics, 655: 27-40 DOI:10.1016/j.tecto.2015.04.019
Fan JJ. 2016. Reconstructing the Late Mesozoic closing process of the middle and western segments of the Bangong-Nujiang Ocean in space and time. Ph. D. Dissertation. Changchun: Jilin University, 1-225 (in Chinese with English summary)
Fan JJ, Li C, Wang M, Xie CM, Peng TP and Liu HY. 2018. Material composition, age and significance of the Dong Co melange in the Bangong Co-Nujiang suture zone. Geological Bulletin of China, 37(8): 1417-1427 (in Chinese with English abstract)
Fan SQ, Shi RD, Ding L, Liu DL, Huang QS and Wang HQ. 2010. Geochemical characteristics and zircon U-Pb age of the plagiogranite in Gaize ophiolite of central Tibet and their tectonic significance. Acta Petrologica et Mineralogica, 29(5): 467-478 (in Chinese with English abstract)
Fang QS and Bai WJ. 1981. The discovery of Alpine-type diamond bearing ultrabasic intrusions in Xizang (Tibet). Geological Review, 27(5): 455-457 (in Chinese with English abstract)
Feng CX. 2011. Geochemical characteristics and sedimentary environment of siliceous rocks of Gerze area in western Bangong Co-Nujiang suture zone, Tibet. Mineral Deposits, 30(5): 773-786 (in Chinese with English abstract)
Feng GY, Yang JS, Dilek Y, Liu F and Xiong FH. 2018. Petrological and Re-Os isotopic constraints on the origin and tectonic setting of the Cuobuzha peridotite, Yarlung Zangbo suture zone, Southwest Tibet, China. Lithosphere, 10(1): 95-108
Gaetani M and Garzanti E. 1991. Multicyclic history of the northern India continental margin (Northwestern Himalaya). American Association of Petroleum Geologists Bulletin, 75(9): 1427-1446
Gale A, Dalton CA, Langmuir CH, Su YJ and Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489-518 DOI:10.1029/2012GC004334
Garzanti E, Le Fort P and Sciunnach D. 1999. First report of Lower Permian basalts in South Tibet: Tholeiitic magmatism during break-up and incipient opening of Neotethys. Journal of Asian Earth Sciences, 17(4): 533-546 DOI:10.1016/S1367-9120(99)00008-5
Ge YK, Liu J, Zhang JY and Li YL. 2019. Burial and exhumation of the Xigaze fore-arc basin from low temperature thermochronological evidence. Seismology and Geology, 41(2): 447-466 (in Chinese with English abstract)
Geng QR, Pan GT, Wang LQ, Peng ZM and Zhang Z. 2011. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet. Geological Bulletin of China, 30(8): 1261-1274 (in Chinese with English abstract)
Gong XH, Shi RD, Griffin WL, Huang QS, Xiong Q, Chen SS, Zhang M and O'Reilly SY. 2016. Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet). Lithos, 262: 11-26 DOI:10.1016/j.lithos.2016.06.025
Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, González-Jiménez JM, Howell D, Huang JX, McGowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, Xiong Q, Yang JS, Zhang M and O'Reilly SY. 2016. Mantle Recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57(4): 655-684 DOI:10.1093/petrology/egw011
Guo GL, Yang JS, Liu XD, Xu XZ, Zhang ZM, Tian YZ, Xiong FH and Wu Y. 2015. Implications of unusual minerals in Zedang mantle peridotite, Tibet. Geology in China, 42(5): 1483-1492 (in Chinese with English abstract)
Guo L, Zhang HF, Harris N, Xu WC and Pan FB. 2017. Detrital zircon U-Pb geochronology, trace-element and Hf isotope geochemistry of the metasedimentary rocks in the Eastern Himalayan syntaxis: Tectonic and paleogeographic implications. Gondwana Research, 41: 207-221 DOI:10.1016/j.gr.2015.07.013
Guo TY, Liang DY, Zhang YZ and Zhao ZH. 1991. Geology of Ngari Tibet (Xizang). Wuhan: China University of Geosciences Press, 1-464 (in Chinese)
He J, Li YL, Wang CS, Dilek Y, Wei YS, Chen X, Hou YL and Zhou A. 2016. Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 121: 34-55 DOI:10.1016/j.jseaes.2016.01.022
He LX. 2003. The Non-Smith analysis on the ophiolitic-melange in Shiquanhe. Acta Geologica Gansu, 12(2): 12-17 (in Chinese with English abstract)
He XC. 2014. Geochemistry characteristics and tectonic setting of diabase from Naduonong, Luolong County (Eastern Tibet). Master Degree Thesis. Chengdu: Chengdu University of Technology, 1-51 (in Chinese with English summary)
He ZH, Yang DM and Wang TW. 2006. Age, geochemistry and its tectonic significance of Kaimeng ophiolites in Jiali fault belt, Tibet. Acta Petrologica Sinica, 22(3): 653-660 (in Chinese with English abstract)
Hébert R, Bezard R, Guilmette C, Dostal J, Wang CS and Liu ZF. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Research, 22(2): 377-397 DOI:10.1016/j.gr.2011.10.013
Howell D, Griffin WL, Yang J, Gain S, Stern RA, Huang JX, Jacob DE, Xu X, Stokes AJ, O'Reilly SY and Pearson NJ. 2015. Diamonds in ophiolites: Contamination or a new diamond growth environment?. Earth and Planetary Science Letters, 430: 284-295 DOI:10.1016/j.epsl.2015.08.023
Hu DG, Wu ZH, Jiang W, Shi YR, Ye PS and Liu QS. 2005. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet. Science in China (Series D), 48(9): 1377-1386 DOI:10.1360/04yd0183
Hu PY, Zhai QG, Tang Y, Wang J and Wang HT. 2016. Early Neoproterozoic meta-gabbro (~925Ma) from the Lhasa terrane, Tibetan Plateau and its geological significance. Chinese Science Bulletin, 61(19): 2176-2186 (in Chinese) DOI:10.1360/N972016-00143
Hu PY, Zhai QG, Wang J, Tang Y, Wang HT and Hou KJ. 2018a. Ediacaran magmatism in the North Lhasa terrane, Tibet and its tectonic implications. Precambrian Research, 307: 137-154 DOI:10.1016/j.precamres.2018.01.012
Hu PY, Zhai QG, Wang J, Tang Y, Wang HT and Hou KJ. 2018b. Precambrian origin of the North Lhasa terrane, Tibetan Plateau: Constraint from Early Cryogenian back-arc magmatism. Precambrian Research, 313: 51-67 DOI:10.1016/j.precamres.2018.05.014
Hu PY, Zhai QG, Wang J, Tang Y, Wang HT, Zhu ZC and Wu H. 2018c. Middle Neoproterozoic (ca. 760Ma) arc and back-arc system in the North Lhasa terrane, Tibet, inferred from coeval N-MORB-and arc-type gabbros. Precambrian Research, 316: 275-290 DOI:10.1016/j.precamres.2018.08.022
Hu PY, Zhai QG, Zhao GC, Tang Y, Wang HT, Zhu ZC, Wang W and Wu H. 2019. Middle Neoproterozoic magmatic event in the western Nam Tso area, Tibetan Plateau: Constraint on the origin of the North Lhasa terrane. Acta Petrologica Sinica, 35(10): 3115-3129 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.10.10
Hu XM, Jansa L, Chen L, Griffin WL, O'Reilly SY and Wang JG. 2010. Provenance of Lower Cretaceous Wölong volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of eastern Gondwana. Sedimentary Geology, 223(3-4): 193-205 DOI:10.1016/j.sedgeo.2009.11.008
Hu XM, Garzanti E, Wang JG, Huang WT, An W and Webb A. 2016. The timing of India-Asia collision onset-Facts, theories, controversies. Earth-Science Reviews, 160: 264-299 DOI:10.1016/j.earscirev.2016.07.014
Hu XM, Wang JG, An W, Garzanti E and Li J. 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Science China (Earth Sciences), 60(4): 603-625 DOI:10.1007/s11430-016-9003-6
Huang F, Xu JF, Chen JL, Kang ZQ and Dong YH. 2015. Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group: Products of continental marginal arc and intra-oceanic arc during the subduction of Neo-Tethys Ocean?. Acta Petrologica Sinica, 31(7): 2089-2100 (in Chinese with English abstract)
Huang GC, Mo XX, Xu DM, Lei YJ and Li LJ. 2006. Origination and evolution of Daba-Xiugugabu ophiolite belt in the southwestern Tibet. Geology and Mineral Resources of South China, (3): 1-9 (in Chinese with English abstract)
Huang QS, Shi RD, Ding BH, Liu DL, Zhang XR, Fan SQ and Zhi XC. 2012. Re-Os isotopic evidence of MOR-type ophiolite from the Bangong Co for the opening of Bangong-Nujiang Tethys Ocean. Acta Petrologica et Mineralogica, 31(4): 465-478 (in Chinese with English abstract)
Huang QT, Liu WL, Xia B, Cai ZR, Chen WY, Li JF and Yin ZX. 2017a. Petrogenesis of the Majiari ophiolite (western Tibet, China): Implications for intra-oceanic subduction in the Bangong-Nujiang Tethys. Journal of Asian Earth Sciences, 146: 337-351 DOI:10.1016/j.jseaes.2017.06.008
Huang WT, Lippert PC, Zhang Y, Jackson MJ, Dekkers MJ, Li J, Hu XM, Zhang B, Guo ZJ and Van Hinsbergen DJJ. 2017b. Remagnetization of carbonate rocks in southern Tibet: Perspectives from rock magnetic and petrographic investigations. Journal of Geophysical Research: Solid Earth, 122(4): 2434-2456 DOI:10.1002/2017JB013987
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245 DOI:10.1016/j.chemgeo.2009.01.020
Jiang CF and Yang JS. 1984. A brief introduction of ophiolitic mélanges in Bangong Lake. Geology in China, (6): 26-27 (in Chinese)
Ju Q, Zhang YC, Qiao F and Xu HP. 2019. Middle Permian fusuline faunas from the Zhabuye area, central Lhasa Block, Tibet and their Palaeobiogeographic implications. Acta Palaeontologica Sinica, 58(3): 324-341 (in Chinese with English abstract)
Kang XB, Feng SB, Liu SC and Chi P. 2019. Zircon U-Pb age and its tectonic significance of Shiquanhe ophiolitic mélange in Rito County, Tibet. Shichuan Nonferrous Metals, (4): 22-26 (in Chinese)
Kang ZQ, Xu JF, Wilde SA, Feng ZH, Chen JL, Wang BD, Fu WC and Pan HB. 2014. Geochronology and geochemistry of the Sangri Group volcanic rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc. Lithos, 200-201: 157-168 DOI:10.1016/j.lithos.2014.04.019
Kapp P, Murphy MA, Yin A, Harrison TM, Ding L and Guo JH. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029
Kapp P, DeCelles PG, Gehrels GE, Heizler M and Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917-933 DOI:10.1130/B26033.1
Kapp P and DeCelles PG. 2019. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319(3): 159-254
Lai SC and Liu CY. 2003. Geochemistry and genesis of the island-arc ophiolite in Anduo area, Tibetan Plateau. Acta Petrologica Sinica, 19(4): 675-682 (in Chinese with English abstract)
Lai SM, Yang JS, Xiong FH, Liu Z, Tian YZ, Xu XZ, Zhang L and Gao J. 2015. The characteristics and significance of Zedong peridotite in eastern Yarlung-Zangbo suture in Tibet. Acta Petrologica Sinica, 31(12): 3629-3649 (in Chinese with English abstract)
Lai W, Hu XM, Zhu DC, An W and Ma AL. 2017. Discovery of the Early Jurassic Gajia mélange in the Bangong-Nujiang suture zone: Southward subduction of the Bangong-Nujiang Ocean?. International Journal of Earth Sciences, 106(4): 1277-1288 DOI:10.1007/s00531-016-1405-1
Leng QF, Tang JX, Zheng WB, Lin B, Tang P, Wang H and Li HF. 2016. Zircon U-Pb and molybdenite Re-Os ages of the lakange porphyry Cu-Mo deposit, Gangdese Porphyry Copper Belt, Southern Tibet, China. Resource Geology, 66(2): 163-182 DOI:10.1111/rge.12091
Li C, Zhai QG, Dong YS and Huang XP. 2006. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chinese Science Bulletin, 51(9): 1095-1100 DOI:10.1007/s11434-006-1095-3
Li GL, Yang JS, Bo RZ, Rui HC, Xiong FH, Guo TF and Zhang CJ. 2019. Dingqing ophiolite chromite in the eastern segment of Bangong Co-Nujiang suture zone, Tibet: Occurrence characteristics and classifications. Geology in China, 46(1): 1-20 (in Chinese with English abstract)
Li GW. 2019. The provenance analysis of Late Triassic sedimentary sequences in Tethyan Himalaya: The tectonic attribute of materials at the convergent margin. Science China (Earth Sciences), 62(10): 1659-1661 DOI:10.1007/s11430-019-9367-9
Li HQ. 2009. The geological significance of Indosinian orogenesis occurred in Lhasa terrane. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Science, 1-110 (in Chinese with English summary)
Li JF, Xia B, Liu LW, Xu LF, He GS, Wang H, Zhang YQ and Yang ZQ. 2008. SHRIMP U-Pb zircon dating of diabase in the La'nga Co ophiolite, Burang, Tibet, China, and its geological significance. Geological Bulletin of China, 27(10): 1739-1743 (in Chinese with English abstract)
Li JX, Qin KZ, Li GM, Richards JP, Zhao JX and Cao MJ. 2014. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: Petrogenetic and tectonic implications. Lithos, 198-199: 77-91 DOI:10.1016/j.lithos.2014.03.025
Li P. 1955. Preliminary understanding of geology in eastern Tibet. Chinese Science Bulletin, (7): 62-71, 52 (in Chinese)
Li PW, Rui G, Junwen C and Ye G. 2004. Paleomagnetic analysis of eastern Tibet: Implications for the collisional and amalgamation history of the Three Rivers Region, SW China. Journal of Asian Earth Sciences, 24(3): 291-310 DOI:10.1016/j.jseaes.2003.12.003
Li S, Yin CQ, Guilmette C, Ding L and Zhang J. 2019. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907 DOI:10.1016/j.earscirev.2019.102907
Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY and Suo YH. 2018a. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37-75 DOI:10.1016/j.earscirev.2017.01.011
Li X, Matsuoka A, Li YL and Wang CS. 2017. Phyletic evolution of the Mid-Cretaceous radiolarian genus Turbocapsula from southern Tibet and its applications in zonation. Marine Micropaleontology, 130: 29-42 DOI:10.1016/j.marmicro.2016.11.002
Li XH, Wang CS, Li YL, Wei YS and Chen X. 2014. Definition and composition of the Zhongba microterrane in southwest Tibet. Acta Geologica Sinica, 88(8): 1372-1381 (in Chinese with English abstract)
Li XK, Chen J, Wang RC and Li C. 2018b. Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang, Tibet: Implications for crustal architecture, Meso-Tethyan evolution and regional mineralization. Earth-Science Reviews, 185: 374-396 DOI:10.1016/j.earscirev.2018.04.005
Li XK. 2019. Tectonomagmatic evolution and metallogenesis of Bangongco metallogenic belt (Northern part). Ph. D. Dissertation. Nanjing: Nanjing University, 1-161 (in Chinese with English summary)
Li Z, Lang XH, Zhang QZ and He L. 2019. Petrogenesis and geodynamic settings of the intermediate-acid intrusions related to the Pusangguo copper-dominated polymetallic deposit in Tibet: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes. Acta Petrologica Sinica, 35(3): 737-759 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.03.00
Li ZJ, Li CW, Gao YM and Zeng M. 2019. Geochronology and geochemistry characteristics of the late Mid-Jurassic (ca. 163Ma) OIB-type diabase and high-Mg diorites in Shiquanhe ophiolite: Products of early stage oceanic crust subduction? Acta Petrologica Sinica, 35(3): 816-832 (in Chinese with English abstract)
Li ZY, Ding L, Lippert PC, Song PP, Yue YH and Van Hinsbergen DJJ. 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. Geology, 44(9): 727-730 DOI:10.1130/G38030.1
Lian DY, Yang JS, Xiong FH, Liu F, Wang YP, Zhou WD and Zhao YJ. 2014. Composition characteristics and tectonic setting of the Dajiweng peridotite in the western Yarlung-Zangbo ophiolitic belt. Acta Petrologica Sinica, 30(8): 2164-2184 (in Chinese with English abstract)
Lian DY, Yang JS, Robinson PT, Liu F, Xiong FH, Zhang L, Gao J and Wu WW. 2016. Tectonic evolution of the western Yarlung Zangbo Ophiolitic Belt, Tibet: Implications from the petrology, mineralogy, and geochemistry of the peridotites. The Journal of Geology, 124(3): 353-376 DOI:10.1086/685510
Lian DY, Yang JS, Dilek Y, Wu WW, Zhang ZM, Xiong FH, Liu F and Zhou WD. 2017a. Deep mantle origin and ultra-reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey. American Mineralogist, 102(5): 1101-1113
Lian DY, Yang JS, Liu F, Wu WW, Zhang L, Zhao H and Huang J. 2017b. Geochemistry and tectonic significance of the Gongzhu peridotites in the northern branch of the western Yarlung Zangbo ophiolitic belt, western Tibet. Mineralogy and Petrology, 111(5): 729-746 DOI:10.1007/s00710-017-0491-5
Lian DY and Yang JS. 2019. Ophiolite-hosted diamond: A new window for probing carbon cycling in the deep mantle. Engineering, 5(3): 406-420
Liang FH, Xu ZQ, Ba DZ, Xu XZ, Liu F, Xiong FH and Jia Y. 2011. Tectonic occurrence and Emplacement mechanism of ophiolites from Luobusha-Zedang, Tibet. Acta Petrologica Sinica, 27(11): 3255-3268 (in Chinese with English abstract)
Liou JG, Tsujimori T, Yang JS, Zhang RY and Ernst WG. 2014. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review. Journal of Asian Earth Sciences, 96: 386-420 DOI:10.1016/j.jseaes.2014.09.011
Liu CZ, Wu FY, Wilde SA, Yu LJ and Li JL. 2010. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 114(3-4): 413-422 DOI:10.1016/j.lithos.2009.10.008
Liu CZ, Wu FY, Chu ZY, Ji WQ, Yu LJ and Li JL. 2012a. Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. Journal of Asian Earth Sciences, 53: 38-50 DOI:10.1016/j.jseaes.2011.08.010
Liu CZ, Chung SL, Wu FY, Zhang C, Xu Y, Wang JG, Chen Y and Guo S. 2016a. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 44(4): 311-314
Liu D, Zhao ZD, DePaolo DJ, Zhu DC, Meng FY, Shi QS and Wang Q. 2017a. Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle-crust interaction and mass transfer from Indian plate. Lithos, 268-271: 48-64 DOI:10.1016/j.lithos.2016.10.034
Liu F. 2013. Petrogenesis of Dongbo and Purang ophiolites in the West part of Yarlung Zangbo Suture Zone, Tibet. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Science, 1-141 (in Chinese with English summary)
Liu F, Yang JS, Chen SY, Liang FH, Niu XL, Li ZL and Lian DY. 2013a. Ascertainment and environment of the OIB-type basalts from the Dongbo ophiolite in the western part of Yarlung Zangbo Suture Zone. Acta Petrologica Sinica, 29(6): 1909-1932 (in Chinese with English abstract)
Liu F, Yang JS, Chen SY, Li ZL, Lian DY, Zhou WD and Zhang L. 2013b. Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the western part of Yarlung Zangbo suture zone: Evidence for intra-oceanic supra-subduction within the Neo-Tethys. Geology in China, 40(3): 742-755 (in Chinese with English abstract)
Liu F, Yang JS, Dilek Y, Xu ZQ, Xu XZ, Liang FH, Chen SY and Lian DY. 2015. Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet. Gondwana Research, 27(2): 701-718 DOI:10.1016/j.gr.2014.08.002
Liu F, Yang JS, Lian DY, Zhao H, Zhang L, Zhang L and Huang J. 2015a. Genesis and characteristics of the western part of the Yarlung Zangbo ophiolites, Tibet. Acta Petrologica Sinica, 31(12): 3609-3628 (in Chinese with English abstract)
Liu F, Yang JS, Lian DY, Zhao H, Zhao YJ and Zhang L. 2015b. The genesis and tectonic significance of mafic dikes in the western part of the Yarlung Zangbo Suture Zone, Tibet. Acta Geoscientia Sinica, 36(4): 441-454 (in Chinese with English abstract)
Liu F, Dilek Y, Yang JS, Lian DY and Xie YX. 2017b. A middle Triassic rifted continental margin sequence within the western Yarlung Zangbo suture zone, Tibet: Record of diachronous opening of Neotethys. In: Proceedings of the Geological Society of America Annual Meeting. Washington: Geological Society of America
Liu F, Dilek Y, Xie YX, Yang JS and Lian DY. 2018. Melt evolution of upper mantle peridotites and mafic dikes in the northern ophiolite belt of the western Yarlung Zangbo Suture Zone (Southern Tibet). Lithosphere, 10(1): 109-132 DOI:10.1130/L689.1
Liu F, Lian DY, Niu XL, Zhao H, Feng GY and Yang JS. 2018. Dongbo MORB-type isotropic gabbro emplaced as an oceanic core complex in western Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 952-974 (in Chinese with English abstract)
Liu Q, Liu F, Li HL, Zong KQ and Xiang SY. 2020a. Remnants of a Middle Triassic oceanic lithosphere in the western Yarlung Zangbo Suture Zone, Southern Tibet. Acta Geologica Sinica, 94(Suppl.1): 34
Liu T, Zhai QG, Wang J, Bao PS, Qiangba ZX, Tang SH and Tang Y. 2016b. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan plateau: Evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization. Journal of Asian Earth Sciences, 116: 139-154 DOI:10.1016/j.jseaes.2015.11.014
Liu WL, Xia B, Zhong Y, Cai JX, Li JF, Liu HF, Cai ZR and Sun ZL. 2014. Age and composition of the Rebang Co and Julu ophiolites, central Tibet: Implications for the evolution of the Bangong Meso-Tethys. International Geology Review, 56(4): 430-447 DOI:10.1080/00206814.2013.873356
Liu WL, Zhong Y, Sun ZL, Yakymchuk C, Gu M, Tang GJ, Zhong LF, Cao H, Liu HF and Xia B. 2020b. The Late Jurassic Zedong ophiolite: A remnant of subduction initiation within the Yarlung Zangbo Suture Zone (southern Tibet) and its tectonic implications. Gondwana Research, 78: 172-188 DOI:10.1016/j.gr.2019.09.002
Liu XH, Ju YT, Wei LJ and Li GW. 2010. An alternative tectonic model for the Yarlung Zangbo suture zone. Science in China (Series D), 53(1): 27-41 DOI:10.1007/s11430-009-0177-x
Liu XH, Hsu KJ, Ju YT, Li GW, Liu XB, Wei LJ, Zhou XJ and Zhang XG. 2012b. New interpretation of tectonic model in South Tibet. Journal of Asian Earth Sciences, 56: 147-159 DOI:10.1016/j.jseaes.2012.05.005
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017c. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148 DOI:10.1016/j.gr.2016.03.013
Liu YM, Li SZ, Xie CM, Santosh M, Liu YJ, Dong YC, Wang B, Guo RH and Cao XZ. 2020c. Subduction-collision and exhumation of eclogites in the Lhasa terrane, Tibet Plateau. Gondwana Research DOI:10.1016/j.gr.2020.01.019
Liu YM, Dai JG, Wang CS, Li HA, Wang Q and Zhang LL. 2020d. Provenance and tectonic setting of Upper Triassic turbidites in the eastern Tethyan Himalaya: Implications for early-stage evolution of the Neo-Tethys. Earth-Science Reviews, 200: 103030 DOI:10.1016/j.earscirev.2019.103030
Liu Z, Li Y, Xiong FH, Wu D and Liu F. 2011. Petrology and geochronology of MOR gabbro in the Purang ophiolite of western Tibet, China. Acta Petrologica Sinica, 27(11): 3269-3279 (in Chinese with English abstract)
Lu YX, Yang JS, Dong YF, Xiong FH, Chen XJ, Li GL and Bo RZ. 2019. The MOR-type lherzolites in Peng Co ophiolite in the middle segment of the Bangong-Nujiang suture in Tibet. Acta Geologica Sinica, 93(10): 2575-2597 (in Chinese with English abstract)
Ma XX, Meert JG, Xu ZQ and Yi ZY. 2018b. Late Triassic intra-oceanic arc system within Neotethys: Evidence from cumulate appinite in the Gangdese belt, southern Tibet. Lithosphere, 10(4): 545-565 DOI:10.1130/L682.1
Ma XX, Meert J, Xu ZQ and Zhao ZB. 2019. The Jurassic Yeba Formation in the Gangdese arc of S. Tibet: Implications for upper plate extension in the Lhasa terrane. International Geology Review, 61(4): 481-503
Ma XX, Xu ZQ, Zhao ZB and Yi ZY. 2020. Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Himalaya, southern Tibet. Geosphere, 16(1): 407-434 DOI:10.1130/GES02154.1
Ma YM, Yang TS, Bian WW, Jin JJ, Wang Q, Zhang SH, Wu HC, Li HY and Cao LW. 2018a. A stable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa-Qiangtang collision and the maximum width of the Neo-Tethys. Tectonics, 37(10): 3853-3876 DOI:10.1029/2018TC005143
Maffione M, Van Hinsbergen DJJ, Koornneef LMT, Guilmette C, Hodges K, Borneman N, Huang WT, Ding L and Kapp P. 2015. Forearc hyperextension dismembered the South Tibetan ophiolites. Geology, 43(6): 475-478
Malpas J, Zhou MF, Robinson PT and Reynolds PH. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. Geological Society, London, Special Publications, 218(1): 191-206 DOI:10.1144/GSL.SP.2003.218.01.11
Matsuoka A, Yang Q, Kobayashi K, Takei M, Nagahashi T, Zeng QG and Wang YJ. 2002. Jurassic-Cretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno-Tethys: Records from the Xialu chert in the Yarlung-Zangbo Suture Zone, southern Tibet. Journal of Asian Earth Sciences, 20(3): 277-287
McDermid IRC, Aitchison JC, Davis AM, Harrison TM and Grove M. 2002. The Zedong terrane: A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187(3-4): 267-277 DOI:10.1016/S0009-2541(02)00040-2
McGowan NM, Griffin WL, González-Jiménez JM, Belousova E, Afonso JC, Shi RD, McCammon CA, Pearson NJ and O'Reilly SY. 2015. Tibetan chromitites: Excavating the slab graveyard. Geology, 43(2): 179-182
Meng YK, Xu ZQ, Santosh M, Ma XX, Chen XJ, Guo GL and Liu F. 2016. Late Triassic crustal growth in southern Tibet: Evidence from the Gangdese magmatic belt. Gondwana Research, 37: 449-464 DOI:10.1016/j.gr.2015.10.007
Meng ZY, Wang JG, Ji WQ, Zhang H, Wu FY and Garzanti E. 2019. The Langjiexue Group is an in situ sedimentary sequence rather than an exotic block: Constraints from coeval Upper Triassic strata of the Tethys Himalaya (Qulonggongba Formation). Science China Earth Sciences, 62(5): 783-797 DOI:10.1007/s11430-018-9314-9
Metcalfe I. 2011. Palaeozoic-Mesozoic history of SE Asia. In: Hall R, Cottam MA and Wilson MEJ (eds.). The Southeast Asian Gateway: History and Tectonics of the Australia-Asia Collision. Geological Society, London, Special Publication, 355(1): 7-35
Miller C, Thöni M, Frank W, Schuster R, Melcher F, Meisel T and Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66(3-4): 155-172 DOI:10.1016/S0024-4937(02)00217-7
Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290 (in Chinese with English abstract)
Muttoni G, Gaetani M, Kent DV, Sciunnach D, Angiolini L, Berra F, Garzanti E, Mattei M and Zanchi A. 2009. Opening of the Neo-Tethys ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia, 14(4): 17-48
Nima CR, Wang GC, Dun D, Ye Q, Pu C, Jiao WL, Ciren YZ, Luosang LJ and Li KY. 2015. LA-ICP-MS zircon U-Pb age of Renwen plagiogranite pluton in Shiquan River area, Tibet. Geological Bulletin of China, 34(12): 2246-2253 (in Chinese with English abstract)
Niu XL, Yang JS, Dilek Y, Xu JF, Li J, Chen SY, Feng GY, Liu F, Xiong FH and Liu Z. 2015. Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet. Journal of Asian Earth Sciences, 110: 72-84 DOI:10.1016/j.jseaes.2014.09.036
Olierook HKH, Merle RE and Jourdan F. 2017. Toward a Greater Kerguelen Large Igneous Province: Evolving mantle source contributions in and around the Indian Ocean. Lithos, 282-283: 163-172 DOI:10.1016/j.lithos.2017.03.007
Pan GT, Chen ZL, Li XZ, Yan YJ, Xu XS, Xu Q, Jiang XS, Wu YL, Luo JN, Zhu TX and Peng YM. 1997. The Geological Tectonic Evolution of the Eastern Tethys. Beijing: Geological Publishing House, 1-218 (in Chinese)
Pan GT, Zhu DC, Wang LQ, Liao ZL, Geng QR and Jiang XS. 2004. Bangong Lake-Nu River suture zone as the northern boundary of Gondwanaland: Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371-382 (in Chinese with English abstract)
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract)
Pan YS and Fang AM. 2010. Formation and evolution of the Tethys in the Tibetan Plateau. Chinese Journal of Geology, 45(1): 92-101 (in Chinese with English abstract)
Parkinson IJ and Pearce JA. 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577-1618 DOI:10.1093/petroj/39.9.1577
Pearce JA and Deng WM. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 215-238 DOI:10.1098/rsta.1988.0127
Pedersen RB, Searle MP and Corfield RI. 2001. U-Pb zircon ages from the Spontang ophiolite, Ladakh Himalaya. Journal of the Geological Society, 158(3): 513-520 DOI:10.1144/jgs.158.3.513
Qian Q, Hermann J, Dong FY, Lin L and Sun BL. 2020. Episodic formation of Neotethyan ophiolites (Tibetan Plateau): Snapshots of abrupt global plate reorganizations during major episodes of supercontinent breakup?. Earth-Science Reviews, 203: 103144 DOI:10.1016/j.earscirev.2020.103144
Qiangba ZX, Xie XW, Wu YW, Xie CM, Li QL and Qiu JQ. 2009. Zircon SIMS U-Pb dating and its significance of cumulate gabbro from Dengqen ophiolite, eastern Tibet, China. Geological Bulletin of China, 28(9): 1253-1258 (in Chinese with English abstract)
Qin YD, Li DW, Liu DM and Li HL. 2017. Opening time of Middle Tethys oceanic basin: Constrained from zircon U-Pb dating of MOR-type gabbro in Bangong Lake ophiolite. Geotectonica et Metallogenia, 41(6): 1148-1157 (in Chinese with English abstract)
Qiu BB, Zhu DC, Zhao ZD and Wang LQ. 2010. The westward extension of Comei fragmented large igneous province in southern Tibet and its implications. Acta petrologica Sinica, 26(7): 2207-2216 (in Chinese with English abstract)
Qiu RZ, Zhou S, Deng JF, Li JF, Xiao QH and Cai ZY. 2004. Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangong Co-Nujiang ophiolite belt, Tibet: With a discussion of the age of the Bangong Co-Nujiang ophiolite belt. Geology in China, 31(3): 262-268 (in Chinese with English abstract)
Qu XM, Xin HB, Zhao YY, Wang RJ and Fan XT. 2010. Opening time of Bangong Lake Middle tethys oceanic basin of the Tibet Plateau: Constraints from petro-geochemistry and zircon U-Pb LAICPMS dating of mafic ophiolites. Earth Science Frontiers, 17(3): 53-63 (in Chinese with English abstract)
Qu XM, Fan SF, Ma XD and Song Y. 2015. Post-collisional copper ore deposits along Bangong Co-Nujiang metallogenic belt, Tibetan Plateau. Mineral Deposits, 34(3): 431-448 (in Chinese with English abstract)
Ren JS and Xiao LW. 2004. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1:250000 geological mapping. Geological Bulletin of China, 23(1): 1-11 (in Chinese with English abstract)
Rodriguez M, Huchon P, Chamot-Rooke N, Fournier M, Delescluse M, Smit J, Plunder A, Calvès G, Ninkabou D, Pubellier M, François T, Agard P and Gorini C. 2020. Successive shifts of the India-Africa transform plate boundary during the Late Cretaceous-Paleogene interval: Implications for ophiolite emplacement along transforms. Journal of Asian Earth Sciences, 191: 104225 DOI:10.1016/j.jseaes.2019.104225
Rollinson H. 2016. Surprises from the top of the mantle transition zone. Geology Today, 32(2): 58-64 DOI:10.1111/gto.12130
Seltmann R, Porter TM and Pirajno F. 2014. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. Journal of Asian Earth Sciences, 79: 810-841 DOI:10.1016/j.jseaes.2013.03.030
Şengör AMC. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279(5714): 590-593 DOI:10.1038/279590a0
Şengör AMC and Natal'In BA. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24: 263-337 DOI:10.1146/annurev.earth.24.1.263
Shellnutt JG, Bhat GM, Brookfield ME and Jahn BM. 2011. No link between the Panjal Traps (Kashmir) and the Late Permian mass extinctions. Geophysical Research Letters, 38(19): L19308
Shi RD, Yang JS, Xu ZQ and Qi XX. 2004. Discovery of the boninite series volcanic rocks in the Bangong Lake ophiolite mélange, western Tibet, and its tectonic implications. Chinese Science Bulletin, 49(12): 1272-1278 DOI:10.1360/04wd0006
Shi RD. 2005. Recognition of the Bangong Lake MOR- and SSZ-type ophiolites in the northwestern Tibet Plateau and its tectonic significance. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-108 (in Chinese with English summary)
Shi RD, Yang JS, Xu ZQ and Qi XX. 2005. Recognition of MOR- and SSZ-type ophiolites in the Bangong Lake ophiolite mélange, western Tibet: Evidence from two kinds of mantle peridotites. Acta Petrologica et Mineralogica, 24(5): 397-408 (in Chinese with English abstract)
Shi RD. 2007. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet. Chinese Science Bulletin, 52(7): 936-941 DOI:10.1007/s11434-007-0134-z
Shirey SB and Walker RJ. 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences, 26: 423-500 DOI:10.1146/annurev.earth.26.1.423
Song Y, Tang JX, Qu XM, Wang DH, Xin HB, Yang C, Lin B and Fan SF. 2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition. Advances in Earth Science, 29(7): 795-809 (in Chinese with English abstract)
Suess E. 1893. Are great ocean depths permanent?. Natural Scienc, 2: 180-187
Tang JX, Dorji, Liu HF, Lang XH, Zhang JS, Zheng WB and Ying LJ. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise Metallogenic Belt. Acta Geoscientica Sinica, 33(4): 393-410 (in Chinese with English abstract)
Tang Y, Zhai QG, Hu PY, Wang J, Xiao XC, Wang HT, Tang SH and Lei M. 2018a. Rodingite from the Beila ophiolite in the Bangong-Nujiang suture zone, northern Tibet: New insights into the formation of ophiolite-related rodingite. Lithos, 316-317: 33-47 DOI:10.1016/j.lithos.2018.07.006
Tang Y, Zhai QG, Hu PY, Xiao XC and Wang HT. 2018b. Petrology, geochemistry and geochronology of the Zhongcang ophiolite, northern Tibet: Implications for the evolution of the Bangong-Nujiang Ocean. Geoscience Frontiers, 9(5): 1369-1381 DOI:10.1016/j.gsf.2018.05.007
Tang Y, Zhai QG, Chung SL, Hu PY, Wang J, Xiao XC, Song B, Wang HT and Lee HY. 2020a. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan plateau. GSA Bulletin, 132(9-10): 2202-2220 DOI:10.1130/B35500.1
Tang Y, Zhai QG, Hu PY, Chung SL, Xiao XC, Wang HT, Zhu ZC, Wang W, Wu H and Lee HY. 2020b. Southward subduction of the Bangong-Nujiang Tethys Ocean: Insights from ca. 161~129Ma arc volcanic rocks in the north of Lhasa terrane, Tibet. International Journal of Earth Sciences, 109(2): 631-647 DOI:10.1007/s00531-020-01823-x
Tong JS, Liu J, Zhong HM, Xia J, Lu RK and Li YH. 2007. Zircon U-Pb dating and geochemistry of mafic dike swarms in the Lhozag area, southern Tibet, China, and their tectonic implications. Geological Bulletin of China, 26(12): 1654-1664 (in Chinese with English abstract)
Wang B, Xie CM, Li C, Liu YM and Yu YP. 2017. The discovery of Wenmulang ophiolite in Songduo area of the Tibetan Plateau and its geological significance. Geological Bulletin of China, 36(11): 2076-2081 (in Chinese with English abstract)
Wang B, Xie CM, Fan JJ, Wang M, Yu YP, Dong YC and Hao YJ. 2019a. Genesis and tectonic setting of Middle Permian OIB-type mafic rocks in the Sumdo area, southern Lhasa terrane. Lithos, 324-325: 429-438 DOI:10.1016/j.lithos.2018.11.015
Wang BD, Wang LQ, Xu JF, Chen L, Zhao WX, Liu H, Peng TP and Li XB. 2015. The discovery of high-pressure granulite at Shelama in Dongco area along the Bangong Co-Nujiang River suture zone and its tectonic significance. Geological Bulletin of China, 34(9): 1605-1616 (in Chinese with English abstract)
Wang BD, Wang LQ, Chung SL, Chen JL, Yin FG, Liu H, Li XB and Chen LK. 2016a. Evolution of the Bangong-Nujiang Tethyan Ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18-33 DOI:10.1016/j.lithos.2015.07.016
Wang C, Ding L, Zhang LY, Kapp P, Pullen A and Yue YH. 2016b. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320-333 DOI:10.1016/j.lithos.2016.07.021
Wang CS, Li XH, Liu ZF, Li YL, Jansa L, Dai JG and Wei YS. 2012a. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Research, 22(2): 415-433 DOI:10.1016/j.gr.2011.09.014
Wang GH, Zhang WJ, Zhou X, Jia JC and Yu HL. 2008. Middle Jurassic high-pressure shearing reveled by phengite in Jiayuqiao metamorphic complex, eastern Tibet. Acta Petrologica Sinica, 24(2): 395-400 (in Chinese with English abstract)
Wang JG, Hu XM, Garzanti E, An W and Liu XC. 2017a. The birth of the Xigaze forearc basin in southern Tibet. Earth and Planetary Science Letters, 465: 38-47 DOI:10.1016/j.epsl.2017.02.036
Wang JP, Liu YM, Li QS, Yue GL and Pei F. 2002. Stratigraphic division and geological significance of the Jurassic cover sediments in the eastern sector of the Bangong Lake-Dêngqên ophiolite belt in Tibet. Geological Bulletin of China, 21(7): 405-410 (in Chinese with English abstract)
Wang P. 2019. Study on timing and tectonic setting of Shiquanhe ophiolitic mélange in Tibet. Master Degree Thesis. Beijing: China University of Geosciences (Beijing), 1-80 (in Chinese with English summary)
Wang R, Xia B, Zhou GQ, Zhang YQ, Yang ZQ, Li WQ, Wei DL, Zhong LF and Xu LF. 2006. SHRIMP zircon U-Pb dating for gabbro from the Tiding ophiolite in Tibet. Chinese Science Bulletin, 51(14): 1776-1779 DOI:10.1007/s11434-006-2027-y
Wang R, Richards JP, Zhou LM, Hou ZQ, Stern RA, Creaser RA and Zhu JJ. 2015. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 150: 68-94 DOI:10.1016/j.earscirev.2015.07.003
Wang R, Weinberg RF, Collins WJ, Richards JP and Zhu DC. 2018a. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 181: 122-143 DOI:10.1016/j.earscirev.2018.02.019
Wang SF, Wang C, Phillips RJ, Murphy MA, Fang XM and Yue YH. 2012b. Displacement along the Karakoram fault, NW Himalaya, estimated from LA-ICP-MS U-Pb dating of offset geologic markers. Earth and Planetary Science Letters, 337-338: 156-163 DOI:10.1016/j.epsl.2012.05.037
Wang TY, Li GB, Li XF and Niu XL. 2017b. Early eocene radiolarian fauna from the Sangdanlin, southern Tibet: Constraints on the timing of Initial India-Asia Collision. Acta Geologica Sinica, 91(6): 1964-1977 DOI:10.1111/1755-6724.13444
Wang W, Wang M, Zhai QG, Xie CM, Hu PY, Li C, Liu JH and Luo AB. 2020. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet. Gondwana Research, 78: 77-91 DOI:10.1016/j.gr.2019.09.008
Wang WL, Aitchison JC, Lo CH and Zeng QG. 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences, 33(1-2): 122-138 DOI:10.1016/j.jseaes.2007.10.022
Wang XB, Bao PS, Deng WM and Wang FG. 1987. Ophiolites in Tibet. Beijing: Geological Publishing House, 1-214 (in Chinese)
Wang XB, Zhou X and Hao ZG. 2010. Some opinions on further exploration for chromite deposits in the Luobusha area, Tibet, China. Geological Bulletin of China, 29(1): 105-114 (in Chinese with English abstract)
Wang XC, Liu WL, Zhong Y, Hu XC, Xia B and Huang W. 2018b. Geochemical and zircon U-Pb age constraints on the origin of the Mesozoic Xigaze ophiolite, Yarlung Zangbo suture zone, SW China. International Geology Review, 60(10): 1267-1289 DOI:10.1080/00206814.2017.1385034
Wang XH, Lang XH, Tang JX, Deng YL and Cui ZW. 2019b. Early-Middle Jurassic (182~170Ma) Ruocuo adakitic porphyries, southern margin of the Lhasa terrane, Tibet: Implications for geodynamic setting and porphyry Cu-Au mineralization. Journal of Asian Earth Sciences, 173: 336-351 DOI:10.1016/j.jseaes.2019.01.042
Wang YJ, Yang Q, Matsuoka A, Kobayashi K, Nagahashi T and Zeng QG. 2002. Triassic radiolarians from the Yarlung Zangbo Suture Zone in the Jinlu Area, Zetang County, southern Tibet. Acta Micropalaeontologica Sinica, 19(3): 215-227
Wang YJ, Wang JP, Liu YM, Li QS and Pei F. 2002. Characteristics and age of the Dingqing ophiolite in Xizang (Tibet) and their geological significance. Acta Micropalaeontologica Sinica, 19(4): 417-420 (in Chinese with English abstract)
Wang YS, Qu YG, Wang ZH, Zheng CZ, Xie YH, Sun ZG and Zhang NK. 2005. Discovery of the Yunzhug sheeted dike swarm in northern Tibet, China: Evidence for seafloor spreading. Geological Bulletin of China, 24(12): 1150-1156 (in Chinese with English abstract)
Wang YY, Gao LE, Zeng LS, Chen FK, Hou KJ, Wang Q, Zhao LH and Gao JH. 2016. Multiple phases of cretaceous mafic magmatism in the Gyangze-Kangma area, Tethyan Himalaya, southern Tibet. Acta Petrologica Sinica, 32(12): 3572-3596 (in Chinese with English abstract)
Wang Z, Ye PS, Zhang XJ, Yang XC, Chen YP, Qi J, Shi JY and Sheng YY. 2017. Geochemical characteristics of cumulates in the Guomangcuo ophiolites, northern Tibet and its geological significance. Geoscience, 31(3): 486-497 (in Chinese with English abstract)
Wei SG, Song Y, Tang JX, Liu ZB, Wang Q, Gao K, Li Z and Li FQ. 2019. Zircon U-Pb age, geochemistry and Sr-Nd isotope characteristics of the Duolong SSZ-type ophiolites in Geize County, Tibet: Evidence for intra-oceanic subduction of the Bangonghu-Nujiang Ocean during the Late Permian. Acta Petrologica Sinica, 35(2): 505-522 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.15
Wen SX. 1979. New stratigraphic data of northern Tibet. Acta Stratigraphia Sinica, 3(2): 150-156 (in Chinese)
Widom E. 2002. Ancient mantle in a modern plume. Nature, 420(6913): 281-282 DOI:10.1038/420281a
Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ and Liu XC. 2014. Yarlung Zangbo ophiolite: A critical updated view. Acta Petrologica Sinica, 30(2): 293-325 (in Chinese with English abstract)
Wu FY, Wan B, Zhao L, Xiao WJ and Zhu RX. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.01
Wu WW, Yang JS, Ma CQ, Milushi I, Lian DY and Tian YZ. 2017. Discovery and significance of diamonds and moissanites in chromitite within the skenderbeu massif of the Mirdita Zone ophiolite, West Albania. Acta Geologica Sinica, 91(3): 882-897 DOI:10.1111/1755-6724.13316
Wu Y, Chen SY, Qin MK, Guo DF, Guo GL, Zhang C and Yang JS. 2018. Zircon U-Pb ages of Dongcuo ophiolite in western Bangonghu-Nujiang suture zone and their geological significance. Earth Science, 43(4): 1070-1084 (in Chinese with English abstract)
Xia B, Xu LF, Wei ZQ, Zhang YQ, Wang R, Li JF and Wang YB. 2008. SHRIMP zircon dating of gabbro from the Donqiao ophiolite in Tibet and its geological implications. Acta Geologica Sinica, 82(4): 528-531 (in Chinese with English abstract)
Xia B, Li JF, Xu LF, Wang R and Yang ZQ. 2011. Sensitive high resolution ion micro-probe U-Pb zircon geochronology and geochemistry of mafic rocks from the Pulan-Xiangquanhe ophiolite, Tibet: Constraints on the evolution of the Neo-tethys. Acta Geologica Sinica, 85(4): 840-853 DOI:10.1111/j.1755-6724.2011.00489.x
Xiao WJ, Ao SJ, Yang L, Han CM, Wan B, Zhang JE, Zhang ZY, Li R, Chen ZY and Song SH. 2017. Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision. Science China (Earth Sciences), 60(6): 1015-1039 DOI:10.1007/s11430-016-9043-3
Xiao XC and Wang J. 1998. A brief review of tectonic evolution and uplift of the Qinghai-Tibet Plateau. Geological Review, 44(4): 372-381 (in Chinese with English abstract)
Xiao XC and Li TD. 2000. Tectonic Evolution and Uplift of the Qinghai-Xizang (Tibet) Plateau. Guangzhou: Guangdong Science and Technology Press, 1-313 (in Chinese)
Xie CM, Li C, Su L, Dong YS, Wu YW and Xie YW. 2013. Geochronology of high-pressure granulite in the Amdo, Qinghai-Tibet Plateau. Acta Petrologica Sinica, 29(3): 912-922 (in Chinese with English abstract)
Xie CM, Li C, Li GM, Zhang LK, Wang B, Dong YC and Hao YJ. 2020. The research progress and problem of the Sumdo Paleo-Tethys Ocean, Tibet. Sedimentary Geology and Tethyan Geology, 40(2): 1-13 (in Chinese with English abstract)
Xie FW. 2019. The Jurassic magmatism and its mineralization potentiality in the southern Lhasa subterrane. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-234 (in Chinese with English summary)
Xie YX, Dilek Y, Liu F and Yang JS. 2017. Internal structure and geochronology of the Zhongba microcontinent of the western Yarlung Zangbo suture zone, and a 4.13Ga old detrital zircon in Tibetan Plateau. In: Proceedings of GSA Annual Meeting in Seattle. Washington: Geological Society of America
Xiong FH, Yang JS, Liang FH, Ba DZ, Zhang J, Xu XZ, Li Y and Liu Z. 2011. Zircon U-Pb ages of the Dongbo ophiolite in the western Yarlung Zangbo suture zone and their geological significance. Acta Petrologica Sinica, 27(11): 3223-3238 (in Chinese with English abstract)
Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Li Y, Li JY and Chen SY. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2): 525-542 DOI:10.1016/j.gr.2014.04.008
Xiong FH, Yang JS, Xu XZ, Lai SM, Zhang L, Guo GL, Chen YH and Zhao H. 2015. The prospects of chromitite in ophiolite of Yarlung Zangbo Suture Zone, Tibet. Geology in China, 42(5): 1535-1558 (in Chinese with English abstract)
Xiong FH, Yang JS, Robinson PT, Xu XZ, Ba DZ, Li Y, Zhang ZM and Rong H. 2016a. Diamonds and other exotic minerals recovered from peridotites of the Dangqiong ophiolite, western Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 90(2): 425-439 DOI:10.1111/1755-6724.12681
Xiong FH, Yang JS, Robinson PT, Gao J, Chen YH and Lai SM. 2017a. Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet: Implications for a suprasubduction zone origin. Journal of Asian Earth Sciences, 146: 56-75 DOI:10.1016/j.jseaes.2017.05.001
Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Zhou WD, Feng GY, Xu JF, Li J and Niu XL. 2017b. High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geology Reviews, 80: 1020-1041 DOI:10.1016/j.oregeorev.2016.09.009
Xiong FH, Yang JS, Dilek Y, Xu XZ and Zhang ZM. 2018. Origin and significance of diamonds and other exotic minerals in the Dingqing ophiolite peridotites, eastern Bangong-Nujiang suture zone, Tibet. Lithosphere, 10(1): 142-155
Xiong FH, Liu Z, Kapsiotis A, Yang JS, Lenaz D and Robinson PT. 2019. Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo suture zone, Tibet: Origin and significance of ultra-high pressure and other 'unusual' minerals in the Neo-Tethyan lithospheric mantle. International Geology Review, 61(17): 2184-2210 DOI:10.1080/00206814.2019.1584771
Xiong FH, Meng YK, Yang JS, Liu Z, Xu XZ, Eslami A and Zhang R. 2020. Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geoscience Frontiers, 11(1): 277-292
Xiong Q, Griffin WL, Zheng JP, O'Reilly SY, Pearson NJ, Xu B and Belousova EA. 2016b. Southward trench migration at ca.130~120Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth and Planetary Science Letters, 438: 57-65 DOI:10.1016/j.epsl.2016.01.014
Xu B, Griffin WL, Xiong Q, Hou ZQ, O'Reilly SY, Guo Z, Pearson NJ, Gréau Y, Yang ZM and Zheng YG. 2017. Ultrapotassic rocks and xenoliths from South Tibet: Contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision. Geology, 45(1): 51-54
Xu DM, Huang GC and Lei YJ. 2008. Geochemistry and tectonic significance of mantle peridotites from the Laangcuo ophiolite massif, southwest Tibet. Acta Petrologica et Mineralogica, 27(1): 1-13 (in Chinese with English abstract)
Xu JX. 2015. Structural properties of the Laguocuo ophiolite in Gaize County, Tibet. Master Degree Thesis. Changchun: Jilin University, 1-51 (in Chinese with English summary)
Xu LF, Xia B, Li JF and Zhong LF. 2010. Geochemical characteristics and genesis of pillow basalts from the Lanong ophiolite in Tibet, China. Geotectonica et Metallogenia, 34(1): 105-113 (in Chinese with English abstract)
Xu MJ. 2014. The evolution of Shiquanhe-Yongzhu-Jiali ophiolitic melange belt, Tibetan Plateau. Ph. D. Dissertation. Changchun: Jilin University, 1-152 (in Chinese with English summary)
Xu MJ, Li C, Wu YW and Xie CM. 2014a. The petrology, geochemistry, and petrogenesis of E-MORB-type mafic rocks from the Guomangco ophiolitic Mélange, Tibet. Acta Geologica Sinica, 88(5): 1437-1453 DOI:10.1111/1755-6724.12310
Xu MJ, Li C, Zhang XZ and Wu YW. 2014b. Nature and evolution of the Neo-Tethys in central Tibet: Synthesis of ophiolitic petrology, geochemistry, and geochronology. International Geology Review, 56(9): 1072-1096 DOI:10.1080/00206814.2014.919616
Xu P, Mei LH, Jiang JJ and Zhang R. 2010. On evolution characteristics of admixture ophiolite belt in Bangong Lake of Tibet. Journal of Geology, 34(2): 117-122 (in Chinese with English abstract)
Xu W, Li C, Xu MJ, Wu YW, Fan JJ and Wu H. 2015a. Petrology, geochemistry, and geochronology of boninitic dikes from the Kangqiong ophiolite: Implications for the Early Cretaceous evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet. International Geology Review, 57(16): 2028-2043 DOI:10.1080/00206814.2015.1050464
Xu W, Li C, Wu YW, Xu MJ, Fan JJ, Jiang QY and Peng H. 2015. Petrological and geochemical characteristics of Kangqiong serpentinites in the central-western part of Bangong-Nujiang suture zone, Tibet. Geological Bulletin of China, 34(8): 1401-1412 (in Chinese with English abstract)
Xu W, Hu PY, Wang M, Chen JW, Zhang TY and Li X. 2016. Yanqiang Ling ophiolitic remnants has been discovered in Duolong ore concentration area, Gêrzê County, Tibet. Geological Bulletin of China, 35(5): 642-647 (in Chinese with English abstract)
Xu XZ, Yang JS, Chen SY, Fang QS, Bai WJ and Ba DZ. 2009. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. Journal of Earth Science, 20(2): 284-302 DOI:10.1007/s12583-009-0026-z
Xu XZ, Yang JS, Robinson PT, Xiong FH, Ba DZ and Guo GL. 2015b. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Research, 27(2): 686-700 DOI:10.1016/j.gr.2014.05.010
Xu XZ, Yang JS, Ba DZ, Zhang ZM, Xiong FH and Li Y. 2015. Diamond discovered from the Dongbo mantle peridotite in the Yarlung Zangbo suture zone, Tibet. Geology in China, 42(5): 1471-1482 (in Chinese with English abstract)
Xu XZ, Yang JS, Xiong FH, Ba DZ, Zhang ZM and Li Y. 2018. Diamond and other exotic minerals discovered from the Xigaze mantle peridotite in the Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 92(7): 1389-1400 (in Chinese with English abstract)
Xu Y, Liu JG, Xiong Q, Su BX, Scott JM, Xu B, Zhu DC and Pearson DG. 2020. The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet. Geochimica et Cosmochimica Acta, 277: 175-191 DOI:10.1016/j.gca.2020.03.024
Xu ZQ, Dilek Y, Cao H, Yang JS, Robinson P, Ma CQ, Li HQ, Jolivet M, Roger F and Chen XJ. 2015c. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105: 320-337 DOI:10.1016/j.jseaes.2015.01.021
Xu ZQ, Dilek Y, Yang JS, Liang FH, Liu F, Ba DZ, Cai ZH, Li GW, Dong HW and Ji SC. 2015d. Crustal structure of the Indus-Tsangpo suture zone and its ophiolites in southern Tibet. Gondwana Research, 27(2): 507-524 DOI:10.1016/j.gr.2014.08.001
Xu ZQ, Wang Q, Sun WD and Li ZH. 2018. The spherical structure of the earth and across-sphere tectonics. Geological Review, 64(2): 261-282 (in Chinese with English abstract)
Xu ZQ, Zhao ZB, Ma XX, Chen XJ and Ma Y. 2019. From Andean orogen to Gangdese orogeny: From ocean continent subduction to continent-continent collision. Acta Geologica Sinica, 93(1): 1-11 (in Chinese with English abstract) DOI:10.1111/1755-6724.13757
Yan BG, Liang RX, Fang QS, Yang FY and Yuan CY. 1986. Characteristics of diamond and diamond-bearing ultramafic rocks in Qiaoxi and Hongqu, Xizang. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, (14): 61-125 (in Chinese with English abstract)
Yan LL and Zhang KJ. 2020. Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: A case study of the Bangong Meso-Tethys, central Tibet, western China. Gondwana Research, 79: 110-124 DOI:10.1016/j.gr.2019.08.008
Yan Z, Fang AM, Pan YS, Li JL, Liu XH and Yu LJ. 2006. Detrital modal, geochemical characteristics and tectonic setting of the Dajin marine clastic rocks, Tibet. Acta Petrologica Sinica, 22(4): 949-960 (in Chinese with English abstract)
Yang JS, Xu ZQ, Geng QR, Li ZL, Xu XZ, Li TF, Ren YF, Li HQ, Cai ZH, Liang FH and Chen SY. 2006. A possible new HP/UHP(?) metamorphic belt in China: Discovery of eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80(12): 1787-1792 (in Chinese with English abstract)
Yang JS, Bai WJ, Fang QS and Rong H. 2008. Ultrahigh-pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A review. Acta Geoscientica Sinica, 29(3): 263-274 (in Chinese with English abstract)
Yang JS, Xu ZQ, Li ZL, Xu XZ, Li TF, Ren YF, Li HQ, Chen SY and Robinson PT. 2009. Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1): 76-89 DOI:10.1016/j.jseaes.2008.04.001
Yang JS, Ba DZ, Xu XZ and Li ZL. 2010. A restudy of podiform chromite deposits and their ore-prospecting vista in China. Geology in China, 37(4): 1141-1150 (in Chinese with English abstract)
Yang JS, Xu XZ, Li Y, Li JY, Ba DZ, Rong H and Zhang ZM. 2011. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence. Acta Petrologica Sinica, 27(11): 3171-3178 (in Chinese with English abstract)
Yang JS, Robinson PT and Dilek Y. 2014. Diamonds in ophiolites. Elements, 10(2): 127-130 DOI:10.2113/gselements.10.2.127
Yang JS, Robinson PT and Dilek Y. 2015. Diamond-bearing ophiolites and their geological occurrence. Episodes, 38(4): 344-364 DOI:10.18814/epiiugs/2015/v38i4/82430
Yang SH, Li ZH, Gerya T, Xu ZQ and Shi YL. 2018. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet. Tectonophysics, 746: 212-228 DOI:10.1016/j.tecto.2017.07.018
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280 DOI:10.1146/annurev.earth.28.1.211
You ZP. 1997. 40Ar/39Ar geochronology of Dêngqêng ophiolite mélange in Xizang. Tibet Geology, (2): 24-30 (in Chinese with English abstract)
Yu Y, Xu S, Gao R and Guo XY. 2020. Seismic evidence for tectonic affinity of the Yungbwa ophiolitic complex, Western Tibet. Chinese Journal of Geophysics, 63(3): 840-846 (in Chinese with English abstract)
Zeng LS, Gao LE, Hou KJ and Tang SH. 2012. Late Permian mafic magmatism along the Tethyan Himalayan Belt, southern Tibet and tectonic implications. Acta Petrologica Sinica, 28(6): 1731-1740 (in Chinese with English abstract)
Zeng M, Zhang X, Cao H, Ettensohn FR, Cheng WB and Lang XH. 2016. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Research, 28(1): 147-157 DOI:10.1111/bre.12105
Zeng YC, Xu JF, Chen JL, Wang BD, Kang ZQ and Huang F. 2018. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau. Lithos, 300-301: 250-260 DOI:10.1016/j.lithos.2017.11.025
Zhai QG, Jahn BM, Su L, Ernst RE, Wang KL, Zhang RY, Wang J and Tang SH. 2013. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174: 28-43 DOI:10.1016/j.lithos.2012.10.018
Zhang BS, Wei YS, Garzanti E, Wang CS, Chen X, Pan WY and Liu QS. 2019a. Sedimentologic and stratigraphic constraints on the orientation of the Late Triassic northern Indian passive continental margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 533: 109234 DOI:10.1016/j.palaeo.2019.109234
Zhang C, Liu CZ, Wu FY, Zhang LL and Ji WQ. 2016a. Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos, 245: 93-108 DOI:10.1016/j.lithos.2015.06.031
Zhang C, Liu CZ, Xu Y, Ji WB, Wang JM, Wu FY, Liu T, Zhang ZY and Zhang WQ. 2019b. Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth and Planetary Science Letters, 523: 115707 DOI:10.1016/j.epsl.2019.07.009
Zhang JD, Fan YG, Sun X, Peng QF, Guo JC, Li X, Hou LG, Chen HY and Hu N. 2016. Middle-Late Triassic radiolarian fossils from the Zhongba region, Xizang and their geological implications. Sedimentary Geology and Tethyan Geology, 36(4): 1-6 (in Chinese with English abstract)
Zhang KJ, Xia B, Zhang Y, Liu WL, Zeng L, Li JF and Xu LF. 2014. Central Tibetan Meso-Tethyan oceanic plateau. Lithos, 210-211: 278-288 DOI:10.1016/j.lithos.2014.09.004
Zhang Q. 1983. The new information about ophiolite in Dengqen County, Tibet. Scientia Geologica Sinica: 101-102 (in Chinese with English abstract)
Zhang RS and Zeng M. 2018. Mapping lithologic components of ophiolitic Mélanges based on ASTER spectral analysis: A case study from the Bangong-Nujiang Suture Zone (Tibet, China). ISPRS International Journal of Geo-Information, 7(1): 34 DOI:10.3390/ijgi7010034
Zhang SQ. 2018. Yongzhu Mesozoic magmatic-tectonic events in the middle section of Bagnongco-Nujiang suture zone, and its geological significance. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-149 (in Chinese with English summary)
Zhang WP, Mo XX, Zhu DC, Yuan SH and Wang LQ. 2011. Chronology and geochemistry on gabbro and basalt of the ophiolite mélange in Lang County, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 38(5): 538-548 (in Chinese with English abstract)
Zhang XZ, Dong YS, Li C, Xie CM, Yang HT and Wang M. 2013. Delineation of Middle Neoproterozoic ophiolite mélange in the northern Lhasa terrane, South Tibet and its significance. Acta Petrologica Sinica, 29(2): 698-722 (in Chinese with English abstract)
Zhang YC, Zhang YJ, Yuan DX, Xu HP and Qiao F. 2019. Stratigraphic and paleontological constraints on the opening time of the Bangong-Nujiang Ocean. Acta Petrologica Sinica, 35(10): 3083-3096 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.10.08
Zhang YX, Zhang KJ, Li B, Wang Y, Wei QG and Tang XC. 2007. Zircon SHRIMP U-Pb geochronology and petrogenesis of the plagiogranites from the Lagkor Lake ophiolite, Gerze, Tibet, China. Chinese Science Bulletin, 52(5): 651-659 DOI:10.1007/s11434-007-0084-5
Zhang YX, Li ZW, Zhu LD, Zhang KJ, Yang WG and Jin X. 2016b. Newly discovered eclogites from the Bangong Meso-Tethyan suture zone (Gaize, central Tibet, western China): Mineralogy, geochemistry, geochronology, and tectonic implications. International Geology Review, 58(5): 574-587 DOI:10.1080/00206814.2015.1096215
Zhang ZM, Ding HX, Dong X and Tian ZL. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrologica Sinica, 35(2): 275-294 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.01
Zhao H, Yang JS, Liu F, Huang J and Zhang L. 2019. Post-collisional, potassic volcanism in the Saga Area, western Tibet: Implications for the nature of the mantle source and geodynamic setting. Journal of Earth Science, 30(3): 571-584 DOI:10.1007/s12583-019-1228-7
Zhao JN, Xu ZQ and Liang FH. 2015. Geochemistry and geochronology of Bailang garnet pyroxenite within Xigaze area in Tibet, and its tectonic significance. Acta Petrologica Sinica, 31(12): 3687-3700 (in Chinese with English abstract)
Zhao JN. 2016. Study on ophiolite and its emplacement mechanism of the Midwestern Yarlung-Zangbo ophiolite belt in southern Tibet. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-150 (in Chinese with English summary)
Zheng H, Huang QT, Kapsiotis A, Xia B, Yin ZX, Zhong Y, Lu Y and Shi XL. 2017. Early Cretaceous ophiolites of the Yarlung Zangbo Suture Zone: Insights from dolerites and peridotites from the Baer upper mantle suite, SW Tibet (China). International Geology Review, 59(11): 1471-1489 DOI:10.1080/00206814.2016.1276867
Zheng H, Huang QT, Kapsiotis A, Lenaz D, Velicogna M, Xu C, Cheng C, Xia B, Liu WL, Xiao Y and Yang P. 2019. Coexistence of MORB-and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet: A paradigm of plume-influenced MOR-type magmatism prior to subduction initiation in the Neo-Tethyan lithospheric mantle. GSA Bulletin, 131(7-8): 1276-1294 DOI:10.1130/B35005.1
Zheng YY, Xu RK, He LX, Gong QS and Ci Q. 2004. The Shiquan River ophiolitic mélange zone in Xizang: The delineation and significance of a new archipelagic are-basin system. Sedimentary Geology and Tethyan Geology, 24(1): 13-20 (in Chinese with English abstract)
Zheng YY, Xu RK, Ma GT, Gao SB, Zhang GY, Ma XM and Ci Q. 2006. Ages of generation and subduction of Shiquan River ophiolite: Restriction from SHRIMP zircon dating. Acta Petrologica Sinica, 22(4): 895-904 (in Chinese with English abstract)
Zhong LF, Xia B, Zhou GQ, Zhang YQ, Wang R, Wei DL and Yang ZQ. 2006. SHRIMP age determination of the diabase in Luobusa ophiolite, southern Xizang (Tibet). Geological Review, 52(2): 224-229 (in Chinese with English abstract)
Zhong Y, Xia B, Liu WL, Yin ZX, Hu XC and Huang W. 2015. Geochronology, petrogenesis and tectonic implications of the Jurassic Namco-Renco ophiolites, Tibet. International Geology Review, 57(4): 508-528 DOI:10.1080/00206814.2015.1017776
Zhong Y, Liu WL, Tang GJ, Liu NN, Liu HF, Zeng QG and Xia B. 2019. Origin of Mesozoic ophiolitic mélanges in the western Yarlung Zangbo suture zone, SW Tibet. Gondwana Research, 76: 204-223 DOI:10.1016/j.gr.2019.06.008
Zhou MF, Robinson PT, Malpas J and Li ZJ. 1996. Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3-21 DOI:10.1093/petrology/37.1.3
Zhou MF, Robinson PT, Malpas J, Edwards SJ and Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615-639
Zhou MF, Robinson PT, Su BX, Gao JF, Li JW, Yang JS and Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262-283 DOI:10.1016/j.gr.2013.12.011
Zhou X, Cao YG, Zhu MY, Xia DX and Qian DY. 1984. Plate Tectonic: Lithofacies Map of Xizang (Tibet), China. Beijing: Geological Publishing House, 1-47 (in Chinese)
Zhou YS, Wu HR, Zheng XL, Wang DA, Zhang Q, Li DZ and Zhang XM. 1982. Geology of the ophiolite in Xigaze prefecture of the Southern Xizang (Tibet), China. Chinese Journal of Geology, (1): 30-40 (in Chinese with English abstract)
Zhu DC, Chung SL, Mo XX, Zhao ZD, Niu YL, Song B and Yang YH. 2009. The 132Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 37(7): 583-586 DOI:10.1130/G30001A.1
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Wang Q, Ji WH, Dong GC, Sui QL, Liu YS, Yuan HL and Mo XX. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290-308 DOI:10.1016/j.chemgeo.2011.12.024
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002
Zhu DC, Wang Q, Zhao ZD, Chung SL, Cawood PA, Niu YL, Liu SA, Wu FY and Mo XX. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5: 14289 DOI:10.1038/srep14289
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17 DOI:10.1016/j.lithos.2015.06.023
Zhu DC, Wang Q, Chung SL, Cawood PA and Zhao ZD. 2019. Gangdese magmatism in southern Tibet and India-Asia convergence since 120Ma. In: Treloar PJ and Searle MP (eds.). Himalayan Tectonics: A Modern Synthesis. Geological Society, London, Special Publication, 483: 583-604
Zhu TX, Pan GT, Feng XT, Zou GF and Li JZ. 2002. Discovery and tectonic significance of Permian basic volcanic rocks in the Selong area on the northern slope of the Himalayas, southern Tibet. Geological Bulletin of China, 21(11): 717-722 (in Chinese with English abstract)
白文吉, 杨经绥, 方青松, 颜秉刚, 史仁灯. 2003. 西藏蛇绿岩中不寻常的地幔矿物群. 中国地质, 30(2): 144-150.
鲍佩声, 肖序常, 苏犁, 王军. 2007. 西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约. 中国科学(D辑), 37(3): 298-307.
薄容众, 杨经绥, 李观龙, 芮会超, 熊发挥, 张承杰, 董玉飞, 卢雨潇, 陈晓坚. 2019. 班-怒带东段丁青蛇绿岩中镁铁质岩石年代学及构造背景. 地质学报, 93(10): 2617-2638.
曹圣华, 肖晓林, 欧阳克贵. 2008. 班公湖-怒江结合带西段侏罗纪木嘎岗日群的重新厘定及意义. 沉积学报, 26(4): 559-564.
陈奇, 谢琳, 肖志坚. 2007. 青藏高原西部班公湖蛇绿混杂岩带的基本特征与构造演化. 东华理工学院学报, 30(2): 107-112.
陈松永. 2010.西藏拉萨地块中古特提斯缝合带的厘定.博士学位论文.北京: 中国地质科学院, 1-199
陈晓坚, 杨经绥, 董玉飞, 熊发挥, 卢雨潇, 李观龙, 薄容众. 2019. 西藏东巧蛇绿岩中玄武质岩石成因和构造背景探讨. 地质学报, 93(10): 2509-2530.
陈艳虹, 杨经绥, 张岚, 熊发挥, 来盛民. 2015. 西藏泽当蛇绿岩中角闪辉长岩矿物学特征及其成因启示. 中国地质, 42(5): 1421-1442.
丁林, Maksatbek S, 蔡福龙, 王厚起, 宋培平, 纪伟强, 许强, 张利云, Muhammad Q, Upendra B. 2017. 印度与欧亚大陆初始碰撞时限、封闭方式和过程. 中国科学(地球科学), 47(3): 293-309.
董玉飞, 杨经绥, 连东洋, 熊发挥, 赵慧, 陈晓坚, 李观龙, 王天泽. 2019. 西藏班公湖-怒江缝合带中段东巧地幔橄榄岩岩石成因及构造环境分析. 中国地质, 46(1): 87-114.
范建军. 2016.班公湖-怒江洋中西段晚中生代汇聚消亡时空重建.博士学位论文.长春: 吉林大学, 1-225
范建军, 李才, 王明, 解超明, 彭头平, 刘海永. 2018. 班公湖-怒江缝合带洞错混杂岩物质组成、时代及其意义. 地质通报, 37(8): 1417-1427.
樊帅权, 史仁灯, 丁林, 刘德亮, 黄启帅, 王厚起. 2010. 西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义. 岩石矿物学杂志, 29(5): 467-478.
方青松, 白文吉. 1981. 西藏首次发现含金刚石的阿尔卑斯型岩体. 地质论评, 27(5): 455-457.
冯彩霞. 2011. 班公湖-怒江缝合带西段改则硅质岩地球化学特征及沉积环境. 矿床地质, 30(5): 773-786.
葛玉魁, 刘静, 张金玉, 李亚林. 2019. 日喀则弧前盆地的埋藏和剥蚀历史——来自低温热年代学的约束. 地震地质, 41(2): 447-466.
耿全如, 潘桂棠, 王立全, 彭智敏, 张璋. 2011. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景. 地质通报, 30(8): 1261-1274.
郭国林, 杨经绥, 刘晓东, 徐向珍, 张仲明, 田亚洲, 熊发挥, 武勇. 2015. 西藏泽当地幔橄榄岩中的异常矿物及其指示意义. 中国地质, 42(5): 1483-1492.
郭铁鹰, 梁定益, 张宜智, 赵崇贺. 1991. 西藏阿里地质. 武汉: 中国地质大学出版社.
何来信. 2003. 狮泉河蛇绿混杂岩的非史密斯解析. 甘肃地质学报, 12(2): 12-17.
何显川. 2014.藏东洛隆县纳多弄地区辉绿岩特征及构造背景.硕士学位论文.成都: 成都理工大学: 1-51
和钟铧, 杨德明, 王天武. 2006. 西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义. 岩石学报, 22(3): 653-660.
胡培远, 翟庆国, 唐跃, 王军, 王海涛. 2016. 青藏高原拉萨地块新元古代(~925Ma)变质辉长岩的确立及其地质意义. 科学通报, 61(19): 2176-2186.
胡培远, 翟庆国, 赵国春, 唐跃, 王海涛, 朱志才, 王伟, 吴昊. 2019. 青藏高原纳木错西缘新元古代中期岩浆事件:对北拉萨地块起源的约束. 岩石学报, 35(10): 3115-3129.
黄丰, 许继峰, 陈建林, 康志强, 董彦辉. 2015. 早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?. 岩石学报, 31(7): 2089-2100.
黄圭成, 莫宣学, 徐德明, 雷义均, 李丽娟. 2006. 西藏西南部达巴-休古嘎布蛇绿岩带的形成与演化. 华南地质与矿产, (3): 1-9.
黄启帅, 史仁灯, 丁炳华, 刘德亮, 张晓冉, 樊帅权, 支霞臣. 2012. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约. 岩石矿物学杂志, 31(4): 465-478.
姜春发, 杨经绥. 1984. 班公湖蛇绿混杂带特征简介. 中国地质, (6): 26-27.
琚琦, 张以春, 乔枫, 徐海鹏. 2019. 西藏拉萨地块中部扎布耶茶卡一带中二叠世[XC延.tif; %90%90, JZ]类动物群及其古生物地理意义. 古生物学报, 58(3): 324-341.
康晓波, 冯士彬, 刘世朝, 迟鹏. 2019. 西藏日土县狮泉河蛇绿混杂岩锆石U-Pb年龄及构造意义. 四川有色金属, (4): 22-26.
赖绍聪, 刘池阳. 2003. 青藏高原安多岛弧型蛇绿岩地球化学及成因. 岩石学报, 19(4): 675-682.
来盛民, 杨经绥, 熊发挥, 刘钊, 田亚洲, 徐向珍, 张岚, 高健. 2015. 西藏雅鲁藏布江缝合带东段泽当地幔橄榄岩特征及其意义. 岩石学报, 31(12): 3629-3649.
李观龙, 杨经绥, 薄容众, 芮会超, 熊发挥, 郭腾飞, 张承杰. 2019. 西藏班公湖-怒江缝合带东段丁青蛇绿岩中的铬铁矿:产出特征与类型. 中国地质, 46(1): 1-20.
李化启. 2009.拉萨地体中的印支期造山作用及其地质意义.博士学位论文.北京: 中国地质科学院, 1-110
李建峰, 夏斌, 刘立文, 徐力峰, 何观生, 王洪, 张玉泉, 杨之青. 2008. 西藏普兰地区拉昂错蛇绿岩中辉绿岩的锆石SHRIMP U-Pb年龄及其地质意义. 地质通报, 27(10): 1739-1743.
李璞. 1955. 西藏东部地质的初步认识. 科学通报, (7): 62-71, 52.
李祥辉, 王成善, 李亚林, 魏玉帅, 陈曦. 2014. 仲巴微地体之定义及构成. 地质学报, 88(8): 1372-1381.
李兴奎. 2019.班公湖成矿带(北缘)构造岩浆演化与成矿作用.博士学位论文.南京: 南京大学, 1-161
李壮, 郎兴海, 章奇志, 何亮. 2019. 西藏浦桑果铜多金属矿床中酸性岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束. 岩石学报, 35(3): 737-759.
李志军, 李晨伟, 高一鸣, 曾敏. 2019. 西藏狮泉河蛇绿岩中侏罗世晚期(ca.163Ma)OIB型辉绿岩及高镁闪长岩年代学及地球化学特征:早期洋壳俯冲产物?. 岩石学报, 35(3): 816-832.
连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏, 周文达, 赵一珏. 2014. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析. 岩石学报, 30(8): 2164-2184.
梁凤华, 许志琴, 巴登珠, 徐向珍, 刘飞, 熊发挥, 贾毅. 2011. 西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨. 岩石学报, 27(11): 3255-3268.
刘飞. 2013.西藏雅鲁藏布江缝合带西段东波和普兰蛇绿岩的成因.博士学位论文.北京: 中国地质科学院, 1-141
刘飞, 杨经绥, 陈松永, 梁凤华, 牛晓露, 李兆丽, 连东洋. 2013a. 雅鲁藏布江缝合带西段东波蛇绿岩OIB型玄武岩的厘定及其形成环境. 岩石学报, 29(6): 1909-1932.
刘飞, 杨经绥, 陈松永, 李兆丽, 连东洋, 周文达, 张岚. 2013b. 雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征:新特提斯洋内俯冲的证据. 中国地质, 40(3): 742-755.
刘飞, 杨经绥, 连东洋, 赵慧, 张岚, 张利, 黄健. 2015a. 西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨. 岩石学报, 31(12): 3609-3628.
刘飞, 杨经绥, 连东洋, 赵慧, 赵一珏, 张岚. 2015b. 雅鲁藏布江缝合带西段北亚带的基性岩成因和构造意义. 地球学报, 36(4): 441-454.
刘飞, 连东洋, 牛晓露, 赵慧, 冯光英, 杨经绥. 2018. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因. 地球科学, 43(4): 952-974.
刘小汉, 琚宜太, 韦利杰, 李广伟. 2009. 再论雅鲁藏布江缝合带构造模型. 中国科学(D辑), 39(4): 448-463.
刘钊, 李源, 熊发挥, 吴迪, 刘飞. 2011. 西藏西部普兰蛇绿岩中的MOR型辉长岩:岩石学和年代学. 岩石学报, 27(11): 3269-3279.
卢雨潇, 杨经绥, 董玉飞, 熊发挥, 陈晓坚, 李观龙, 薄容众. 2019. 西藏班公湖-怒江缝合带中段蓬湖蛇绿岩中的洋脊型二辉橄榄岩. 地质学报, 93(10): 2575-2597.
莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290.
尼玛次仁, 王国灿, 顿都, 叶强, 普尺, 焦文龙, 次仁央宗, 洛桑朗杰, 李开云. 2015. 西藏狮泉河地区仁温斜长花岗岩LA-ICP-MS锆石U-Pb年龄及其构造意义. 地质通报, 34(12): 2246-2253.
潘桂棠, 陈智梁, 李兴振, 颜仰基, 许效松, 徐强, 江新胜, 吴应林, 罗建宁, 朱同兴, 彭勇民. 1997. 东特提斯地质构造形成演化. 北京: 地质出版社, 1-218.
潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371-382.
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
潘裕生, 方爱民. 2010. 中国青藏高原特提斯的形成与演化. 地质科学, 45(1): 92-101.
强巴扎西, 谢尧武, 吴彦旺, 解超明, 李秋立, 邱军强. 2009. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义. 地质通报, 28(9): 1253-1258.
秦雅东, 李德威, 刘德民, 李华亮. 2017. 班公湖中特提斯洋打开的时限:来自MOR型辉长岩的年代学制约. 大地构造与成矿学, 41(6): 1148-1157.
裘碧波, 朱弟成, 赵志丹, 王立全. 2010. 藏南措美残余大火成岩省的西延及意义. 岩石学报, 26(7): 2207-2216.
邱瑞照, 周肃, 邓晋福, 李金发, 肖庆辉, 蔡志勇. 2004. 西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代. 中国地质, 31(3): 262-268.
曲晓明, 辛洪波, 赵元艺, 王瑞江, 樊兴涛. 2010. 西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U-Pb LAICPMS定年结果. 地学前缘, 17(3): 53-63.
曲晓明, 范淑芳, 马旭东, 宋扬. 2015. 西藏班公湖-怒江成矿带上的碰撞后铜矿床. 矿床地质, 34(3): 431-448.
任纪舜, 肖黎薇. 2004. 1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23(1): 1-11.
史仁灯. 2005.西藏班公湖MOR型和SSZ型两套蛇绿岩的厘定及大地构造意义.博士学位论文.北京: 中国地质科学院, 1-108
史仁灯, 杨经绥, 许志琴, 戚学祥. 2005. 西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据. 岩石矿物学杂志, 24(5): 397-408.
史仁灯. 2007. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约. 科学通报, 52(2): 223-227.
宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 2014. 西藏班公湖-怒江成矿带研究进展及一些新认识. 地球科学进展, 29(7): 795-809.
唐菊兴, 多吉, 刘鸿飞, 郎兴海, 张金树, 郑文宝, 应立娟. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究. 地球学报, 33(4): 393-410.
童劲松, 刘俊, 钟华明, 夏军, 鲁如魁, 李运怀. 2007. 藏南洛扎地区基性岩墙群锆石U-Pb定年、地球化学特征及构造意义. 地质通报, 26(12): 1654-1664.
王保弟, 王立全, 许继峰, 陈莉, 赵文霞, 刘函. 2015. 班公湖-怒江结合带洞错地区舍拉玛高压麻粒岩的发现及其地质意义. 地质通报, 34(9): 1605-1616.
王斌, 解超明, 李才, 刘一鸣, 于云鹏. 2017. 青藏高原松多地区温木朗蛇绿岩的发现及其地质意义. 地质通报, 36(11): 2076-2081.
王根厚, 张维杰, 周详, 贾建称, 于海亮. 2008. 西藏东部嘉玉桥变质杂岩内中侏罗世高压剪切作用:来自多硅白云母的证据. 岩石学报, 24(2): 395-400.
王建平, 刘彦明, 李秋生, 岳国利, 裴放. 2002. 西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分. 地质通报, 21(7): 405-410.
王彭. 2019.西藏狮泉河蛇绿混杂岩形成时代及构造环境研究.硕士学位论文.北京: 中国地质大学(北京), 1-80
王冉, 夏斌, 周国庆, 张玉泉, 杨之青, 李文铅, 韦栋梁. 2006. 西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄. 科学通报, 51(1): 114-117.
王希斌, 鲍佩声, 邓万明, 王方国. 1987. 西藏蛇绿岩. 北京: 地质出版社, 1-214.
王希斌, 周详, 郝梓国. 2010. 西藏罗布莎铬铁矿床的进一步找矿意见和建议. 地质通报, 29(1): 105-114.
王亚莹, 高利娥, 曾令森, 陈福坤, 侯可军, 王倩, 赵令浩, 高家昊. 2016. 藏南特提斯喜马拉雅带内江孜-康马地区白垩纪多期基性岩浆作用. 岩石学报, 32(12): 3572-3596.
王永胜, 曲永贵, 王忠恒, 郑春子, 谢元和, 孙忠刚, 张宁克. 2005. 藏北永珠席状岩墙群的发现——海底扩张的证据. 地质通报, 24(12): 1150-1156.
王玉净, 王建平, 刘彦明, 李秋生, 裴放. 2002. 西藏丁青蛇绿岩特征、时代及其地质意义. 微体古生物学报, 19(4): 417-420.
王振, 叶培盛, 张绪教, 杨星辰, 陈宇鹏, 祁洁, 石剑岳, 盛余应. 2017. 藏北果芒错蛇绿岩中堆晶岩地球化学特征及其地质意义. 现代地质, 31(3): 486-497.
韦少港, 宋扬, 唐菊兴, 刘治博, 王勤, 高轲, 李壮, 李发桥. 2019. 西藏改则县多龙SSZ型蛇绿岩的锆石U-Pb年龄、岩石地球化学及Sr-Nd同位素特征:班公湖-怒江洋晚二叠世洋内俯冲的证据. 岩石学报, 35(2): 505-522.
文世宣. 1979. 西藏北部地层新资料. 地层学杂志, 3(2): 150-156.
吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布蛇绿岩——事实与臆想. 岩石学报, 30(2): 293-325.
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
武勇, 陈松永, 秦明宽, 郭冬发, 郭国林, 张财, 杨经绥. 2018. 西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U-Pb年代学及地质意义. 地球科学, 43(4): 1070-1084.
夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528-531.
肖文交, 敖松坚, 杨磊, 韩春明, 万博, 张继恩, 张志勇, 李睿, 陈振宇, 宋帅华. 2017. 喜马拉雅汇聚带结构-属性解剖及印度-欧亚大陆最终拼贴格局. 中国科学(地球科学), 47(6): 631-656.
肖序常, 王军. 1998. 青藏高原构造演化及隆升的简要评述. 地质论评, 44(4): 372-381.
肖序常, 李廷栋. 2000. 青藏高原的构造演化与隆升机制. 广州: 广东科技出版社, 1-313.
解超明, 李才, 苏犁, 董永胜, 吴彦旺, 谢尧武. 2013. 青藏高原安多高压麻粒岩同位素年代学研究. 岩石学报, 29(3): 912-922.
解超明, 李才, 李光明, 张林奎, 王斌, 董宇超, 郝宇杰. 2020. 西藏松多古特提斯洋研究进展与存在问题. 沉积与特提斯地质, 40(2): 1-13.
谢富伟. 2019.拉萨地块南缘侏罗纪岩浆作用及其含矿性研究.博士学位论文.北京: 中国地质科学院, 1-234
熊发挥, 杨经绥, 梁凤华, 巴登珠, 张健, 徐向珍, 李源, 刘钊. 2011. 西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义. 岩石学报, 27(11): 3223-3238.
熊发挥, 杨经绥, 徐向珍, 来盛民, 张岚, 郭国林, 陈艳虹, 赵慧. 2015. 雅鲁藏布江缝合带蛇绿岩中铬铁矿的前景讨论. 中国地质, 42(5): 1535-1558.
徐德明, 黄圭成, 雷义均. 2008. 西藏西南部拉昂错地幔橄榄岩的地球化学特征及其构造意义. 岩石矿物学杂志, 27(1): 1-13.
徐建鑫. 2015.西藏改则县拉果错蛇绿岩的构造属性.硕士学位论文.长春: 吉林大学, 1-51
徐力峰, 夏斌, 李建峰, 钟立峰. 2010. 藏北湖区拉弄蛇绿岩枕状玄武岩地球化学特征及其成因. 大地构造与成矿学, 34(1): 105-113.
徐梦婧. 2014.青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化.博士学位论文.长春: 吉林大学, 1-152
徐平, 梅丽辉, 江俊杰, 张然. 2010. 西藏班公湖蛇绿混杂岩带演化特征. 地质学刊, 34(2): 117-122.
许伟, 李才, 吴彦旺, 徐梦婧, 范建军, 江庆源, 彭虎. 2015. 西藏班公湖-怒江缝合带中西段康穷蛇纹岩的岩石学、地球化学特征及其构造意义. 地质通报, 34(8): 1401-1412.
许伟, 胡培远, 王明, 陈景文, 张天羽, 李馨. 2016. 西藏改则县多龙矿集区发现岩墙岭蛇绿岩残片. 地质通报, 35(5): 642-647.
徐向珍, 杨经绥, 巴登珠, 张仲明, 熊发挥, 李源. 2015. 西藏雅鲁藏布江缝合带东波地幔橄榄岩中金刚石的发现及地质意义. 中国地质, 42(5): 1471-1482.
徐向珍, 杨经绥, 熊发挥, 巴登珠, 张仲明, 李源. 2018. 西藏雅鲁藏布江缝合带中段日喀则地幔橄榄岩中发现金刚石等异常矿物. 地质学报, 92(7): 1389-1400.
许志琴, 王勤, 孙卫东, 李忠海. 2018. 地球的层圈结构与穿越层圈构造. 地质论评, 64(2): 261-282.
许志琴, 赵中宝, 马绪宣, 陈希节, 马元. 2019. 从安第斯到冈底斯:从洋-陆俯冲到陆-陆碰撞. 地质学报, 93(1): 1-11.
颜秉刚, 梁日暄, 方青松, 杨风英, 苑传永. 1986. 西藏巧西、红区金刚石和含金刚石超镁铁岩的基本特征. 中国地质科学院地质研究所所刊, (14): 61-125.
闫臻, 方爱民, 潘裕生, 李继亮, 刘小汉, 俞良军. 2006. 西藏达金海相碎屑岩的组成、地球化学特征及其构造背景. 岩石学报, 22(4): 949-960.
杨经绥, 许志琴, 耿全如, 李兆丽, 徐向珍, 李天福, 任玉峰, 李化启, 蔡志慧, 梁凤华, 陈松永. 2006. 中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带. 地质学报, 80(12): 1787-1792.
杨经绥, 白文吉, 方青松, 戎合. 2008. 西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述). 地球学报, 29(3): 263-274.
杨经绥, 巴登珠, 徐向珍, 李兆丽. 2010. 中国铬铁矿床的再研究及找矿前景. 中国地质, 37(4): 1141-1150.
杨经绥, 徐向珍, 李源, 李金阳, 巴登珠, 戎合, 张仲明. 2011. 西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出. 岩石学报, 27(11): 3171-3178.
游再平. 1997. 西藏丁青蛇绿混杂岩40Ar/39Ar年代学. 西藏地质, (2): 24-30.
于洋, 徐啸, 高锐, 郭晓玉. 2020. 喜马拉雅造山带西部拉昂错蛇绿岩带区域地壳深部结构及其可能构造归属研究. 地球物理学报, 63(3): 840-846.
曾令森, 高利娥, 侯可军, 唐索寒. 2012. 藏南特提斯喜马拉雅带晚二叠纪基性岩浆作用及其构造地质意义. 岩石学报, 28(6): 1731-1740.
张计东, 范永贵, 孙肖, 彭芊芃, 郭金城, 李先, 侯立光, 陈海燕, 胡讷. 2016. 西藏仲巴中-晚三叠世放射虫化石特征及其地质意义. 沉积与特提斯地质, 36(4): 1-6.
张旗. 1983. 丁青蛇绿岩新知. 地质科学, (1): 101-102.
张诗启. 2018.班公湖-怒江缝合带中段永珠地区中生代岩浆构造事件及其地质意义.博士学位论文.北京: 中国地质科学院, 1-149
张万平, 莫宣学, 朱弟成, 袁四化, 王立全. 2011. 西藏朗县蛇绿混杂岩中变辉绿岩和变玄武岩的年代学和地球化学. 成都理工大学学报(自然科学版), 38(5): 538-548.
张修政, 董永胜, 李才, 解超明, 杨韩涛, 王明. 2013. 青藏高原拉萨地块北部新元古代中期蛇绿混杂岩带的厘定及其意义. 岩石学报, 29(2): 698-722.
张以春, 张予杰, 袁东勋, 徐海鹏, 乔枫. 2019. 班公湖-怒江洋打开时间的地层古生物约束. 岩石学报, 35(10): 3083-3096.
张泽明, 丁慧霞, 董昕, 田作林. 2019. 冈底斯岩浆弧的形成与演化. 岩石学报, 35(2): 275-294.
赵佳楠, 许志琴, 梁凤华. 2015. 西藏日喀则地区白朗蛇绿岩中石榴辉石岩的岩石地球化学、年代学及其构造意义. 岩石学报, 31(12): 3687-3700.
赵佳楠. 2016.藏南雅鲁藏布江蛇绿岩带中西段蛇绿岩及其就位机制研究.博士学位论文.北京: 中国地质大学(北京), 1-150
郑有业, 许荣科, 何来信, 龚全胜, 茨邛. 2004. 西藏狮泉河蛇绿混杂岩带——一个新的多岛弧盆系统的厘定及意义. 沉积与特提斯地质, 24(1): 13-20.
郑有业, 许荣科, 马国桃, 高顺宝, 张刚阳, 马新民, 茨邛. 2006. 锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束. 岩石学报, 22(4): 895-904.
钟立峰, 夏斌, 周国庆, 张玉泉, 王冉, 韦栋梁, 杨之青. 2006. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年. 地质论评, 52(2): 224-229.
周祥, 曹佑功, 朱明玉, 夏代祥, 钱定宇. 1984. 西藏板块构造-建造图 1:1500000. 北京: 地质出版社, 1-47.
周云生, 吴浩若, 郑锡澜, 王东安, 张旗, 李达周, 张新民. 1982. 西藏南部日喀则地区蛇绿岩地质. 地质科学, (1): 30-40.
朱同兴, 潘桂棠, 冯心涛, 邹光富, 李建忠. 2002. 藏南喜马拉雅北坡色龙地区二叠系基性火山岩的发现及其构造意义. 地质通报, 21(11): 717-722.
青藏高原新特提斯蛇绿岩的地质特征及其构造演化
刘飞, 杨经绥, 连东洋, 李观龙