岩石学报  2020, Vol. 36 Issue (7): 2047-2066, doi: 10.18654/1000-0569/2020.07.08   PDF    
长白山新生代玄武岩中橄榄岩包体所揭示的岩石圈地幔特征
徐青鹄1, 刘嘉麒2, 莫宣学1, 贺怀宇2, 张云辉3, 赵文斌2     
1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
2. 中国科学院地质与地球物理研究所新生代地质与环境研究室, 北京 100029;
3. 西南交通大学地球科学与环境工程学院, 成都 611756
摘要: 长白山地区位于华北克拉通东北部,广泛出露富含地幔橄榄岩包体的新生代玄武岩,为研究岩石圈地幔的性质和演化提供了优越条件。本文对长白山地区天池和龙岗新生代火山岩群中尖晶石相橄榄岩包体进行了岩石学、全岩主微量元素、矿物主量元素、单斜辉石微量元素和Sr-Nd-Hf同位素分析。研究结果表明,尖晶石相橄榄岩包体由二辉橄榄岩和少量的方辉橄榄岩组成,Mg#值为87.4~91.2,表现出新生饱满的特征,平衡温度为900~1100℃。橄榄石的Mg#值(% Fo)为85.6~91.3。单斜辉石包括四种类型:(1)轻稀土元素严重亏损型;(2)轻稀土元素亏损型;(3)向右微倾型和(4)"勺型"。单斜辉石表现出Sr同位素(87Sr/86Sr=0.702749~0.707276)整体亏损,部分样品富集的特征,单斜辉石的Nd-Hf同位素呈现出亏损特征(143Nd/144Nd=0.512886~0.51333、εHf=+17.7~+49.8)。长白山地区二辉和方辉橄榄岩分别经历了小于10%和略大于10%的部分熔融作用,并受到富水硅酸盐熔体的地幔交代作用。太平洋板块向西俯冲作用使得软流圈上涌并携带大量壳源物质进入地幔深部,与岩石圈地幔发生橄榄岩-熔体反应,形成了长白山地区不均一的岩石圈地幔,以新增生饱满地幔为主,夹有少量古老难熔岩石圈地幔碎片。
关键词: 橄榄岩包体    部分熔融    地幔交代    长白山    华北克拉通    
Characteristics of the lithospheric mantle revealed by peridotite xenoliths from Changbaishan volcanic rocks
XU QingHu1, LIU JiaQi2, MO XuanXue1, HE HuaiYu2, ZHANG YunHui3, ZHAO WenBin2     
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
Abstract: The Changbaishan area is located in the northeastern North China Craton, in which the Cenozoic basalts bearing abundant mantle peridotite xenolith are widely exposed, providing an excellent geological condition for studying the nature and evolution of lithospheric mantle. In this paper, petrology, whole-rock major and trace elements, mineral major elements, in situ clinopyroxene trace element and Sr-Nd-Hf isotope analysis of peridotite xenolith from Tianchi and Longgang Cenozoic basalts were carried out. The results indicate that the peridotite xenoliths are composed of lherzolite and minor harzburgite. They possess Mg# values of 87.4~91.2 and show the new and fertile characteristics, with estimated equilibrium temperature of 900~1100℃. The Mg# values (%Fo) of olivine are 85.6~91.3. Four types of clinopyroxenes are identified: (1) seriously depleted LREE; (2) depleted LREE; (3) gently right-dipping and (4) spoon type. Clinopyroxene shows Sr isotopic features (0.702749~0.707276) mainly depleted and partly enriched. Also clinopyroxene shows depleted Nd-Hf isotopic features with 143Nd/144Nd=0.512886~0.51333, εHf=+17.7~+49.8. The peridotites in Changbaishan area experienced partial melting lower and slightly lager than 10% different degrees of metasomatism. The westward subduction of the Pacific plate caused the asthenosphere to upwelling and carry a large amount of crustal material into the deep mantle, and the lithospheric mantle to undergo peridotite-melt reaction. As a result, new and fertile oceanic lithospheric mantle, with minor ancient refractory lithospheric mantle remnants was formed beneath the Changbaishan area in northeastern North China Craton.
Key words: Peridotite xenolith    Partial melting    Mantle metasomatism    Changbaishan    North China Craton    

华北克拉通作为世界上最古老的克拉通之一(>3.8Ga),在地质历史时期里经历了巨大的变迁(翟明国, 2019)。在古生代时期,华北克拉通为古老难熔的克拉通型岩石圈地幔;而在晚中生代-新生代时期,受到强烈的构造-热事件影响,华北克拉通被部分改造和破坏,岩石圈地幔厚度减薄并呈现出新生饱满的特征;近年来,华北克拉通岩石圈性质重大转变的研究一直是地球科学研究的焦点问题(郑建平, 1999; 冯亚洲等, 2020; 徐锡伟等, 2019; 朱日祥和徐义刚, 2019)。

已有研究表明,华北克拉通内部出露有大面积的古生代-新生代幔源火山岩,火山岩中含有丰富的橄榄岩、辉石岩等地幔包体(郑建平和戴宏坤, 2018)。地幔包体作为岩石圈地幔最直接的天然样品,可以揭示深部岩石圈地幔的部分熔融与地幔交代作用,是研究岩石圈地幔的性质、演化和岩石圈地幔减薄以及活化的重要媒介(Griffin et al., 2009)。许多学者对华北克拉通内部宽甸、汉诺坝和昌乐等幔源包体进行了详细的岩石学、地球化学及同位素研究,结合地球物理解译,发现华北克拉通岩石圈地幔属性和深部过程在空间上存在明显的不均一性,其东部岩石圈地幔的改造作用较为强烈,表现为新生饱满的特征;而中-西部则仍然整体保持着古老难熔的克拉通属性,仅局部岩石圈受到了改造作用(Yang et al., 2018; Dai and Zheng, 2019; Hao et al., 2019; Wang et al., 2019; Zou et al., 2020)。此外,制约华北克拉通不同部位改造作用的构造动力学机制也不尽相同:华北克拉通东部的岩石圈地幔可能受到了太平洋俯冲的影响(Li et al., 2016),北部的岩石圈地幔可能受到了中亚造山带的影响(Dai et al., 2019),而其东南部则可能受到了华南克拉通与华北克拉通碰撞的影响(Ying et al., 2006)。

华北克拉通东北部出露了以长白山地区为代表的大范围新生代火山岩,主要包括天池和龙岗火山岩群。在天池和龙岗火山岩群均已发现丰富的地幔橄榄岩包体,为研究长白山地区岩石圈地幔的性质与演化提供了优越条件。前人对天池和龙岗火山岩群开展了大量的研究,在火山岩形成时代、成因机制和深部结构方面取得了丰硕的成果(樊祺诚, 2008; 郭文峰等, 2015; 陈棋福等, 2019);但是,针对火山岩中橄榄岩包体的研究仍较为匮乏,成为制约学者们揭示长白山地区乃至华北克拉通东北部下覆岩石圈地幔特征的瓶颈。前人对天池和龙岗火山岩群中地幔橄榄岩包体进行了一定研究(Tang et al., 2012; Wang et al., 2013, 2017; Xu et al., 2019);然而,由于样品数量有限和测试方法不足,长白山地区岩石圈地幔属性和深部过程(部分熔融和地幔交代)仍然未能得到准确限定,因此很有必要对长白山地区天池和龙岗火山岩群的橄榄岩包体开展详细、系统的地球化学研究。同时,华北克拉通东北部岩石圈地幔的转化过程及其构造动力学机制亦存在不同认识,诸如,转化过程包括:热力学-化学破坏作用(Xu, 2001)、古老地壳的拆沉作用(Gao et al., 2008)和古大洋俯冲引起的熔体-橄榄岩相互作用(Lin et al., 2019);构造动力学机制可能为古亚洲洋的向南俯冲(Cope et al., 2005)或太平洋板块的向西俯冲(朱日祥和徐义刚, 2019)。地幔橄榄岩包体的地球化学证据将可以在解决这一争议中发挥重要作用。

因此,本文在前人研究基础上,广泛采集了长白山地区的天池和龙岗火山岩群中地幔橄榄岩包体样品,对橄榄岩包体的岩石学、全岩主微量元素、单矿物主微量元素、单斜辉石Sr-Nd-Hf同位素进行了详细、系统地分析,在此基础上查明长白山地区下覆岩石圈地幔属性,探讨岩石圈地幔深部的部分熔融和地幔交代作用,揭示制约华北克拉通东北部岩石圈地幔改造作用的构造动力学机制。

1 区域地质背景和橄榄岩包体特征

长白山地区位于我国东北部的吉林省,区域构造上属华北克拉通东北缘,构造格架主要由NEE向与NNE向的断裂带构成,其次为EW向、NS向及NW向的断裂(图 1)。长白山地区地处胶辽断块的隆起部位。胶辽断块的基底岩石从第四纪早期时开始缓慢隆起上升,此后从中更新世至今呈现出非持续性的上升,导致该区地貌出现严重变形,为玄武岩喷发创造了条件,最终在长白山地区形成了以天池和龙岗火山群为代表的大范围火山岩群(樊祺诚, 2008)。长白山地区火山岩类型以造盾期的玄武岩、造锥期粗面岩和晚期碱流岩为主,近代喷发伴有火山碎屑流的堆积(刘嘉麒等, 2015)。火山群中常见有富含地幔包体的新生代碱性玄武岩。

图 1 华北克拉通东北缘区域地质图(a)和研究区玄武质岩石分布和采样点(b) F1-塔源-喜贵图断裂;F2-贺根山-嫩江断裂;F3-西拉木伦断裂;F4-开原-赤峰断裂;F5-伊兰-伊通断裂;F6-牡丹江断裂;F7-敦化-密山断裂 Fig. 1 Regional map of the northeastern North China Craton (a) and basaltic rock distribution and sampling locations in study area (b) F1-Tayuan-Xiguitu fault; F2-Hegenshan-Nenjiang fault; F3-Xilamulun fault; F4-Kaiyuan-Chifeng fault; F5-Yilan-Yitong fault; F6-Mudanjiang fault; F7-Dunhua-Mishan fault

天池火山群地处中国和朝鲜交界线附近,是中国现有的休眠活火山之一。天池火山喷发从新生代开始至今一直间断性发生,其喷发历史被划分为4个阶段:(1)渐新世到中新世,形成了大面积的碱性玄武岩;(2)上新世到更新世,形成了大型粗面玄武岩的熔岩盾;(3)约1Ma时期,主要为粗面质火山岩的喷发;(4)全新世,大规模火山强烈爆发活动形成了浮岩质火山碎屑堆积物和天池的破火山口(刘嘉麒等, 2015)。龙岗火山群坐落在吉林辉南和靖宇县辖区的龙岗山脉之中,其火山活动开始于新近纪早期,第四纪达到高峰,龙岗火山活动可分为3个阶段:(1)小浪山期;(2)中-晚更新世龙岗期,为产生火山渣和低平火山口的主要时期;(3)约一千五百年前至一千六百年前的金龙顶子期,产生火山碎屑(白志达等, 2006)。

长白山地区地幔橄榄岩包体采集于天池和龙岗火山群玄武岩中,共计23件。包体多呈棱角状至椭圆状,表面未见蛇纹石化特征,样品新鲜且呈翠绿-墨绿色,包体直径大小为0.5~20cm(大多约12cm)。包体岩性主要为尖晶石二辉橄榄岩,少量为方辉橄榄岩,具有原生粒状结构或等粒变晶结构(图 2),未发现金云母和石榴石。二辉橄榄岩主要矿物组合和含量为:橄榄石(55%~77%)+斜方辉石(9%~29%)+单斜辉石(3%~22%)+尖晶石(0.1%~3%);方辉橄榄岩具有较高的橄榄石和较低的斜方辉石、单斜辉石含量,其矿物含量为:橄榄石(86%~89%)+斜方辉石(8%~12%)+单斜辉石(1%~2%)+尖晶石(~1%)(表 1)。前人研究中曾在长白山地区橄榄岩包体中发现有角闪石(史兰斌等, 1999),但是在本次研究未观察到。镜下二辉橄榄岩和方辉橄榄岩中的橄榄石和斜方辉石大小约0.5~3mm,为自形-半自形晶形。橄榄石发育有明显的裂纹;单斜辉石一般呈翠绿色,大小约0.1~1.5mm,为他形晶形;尖晶石多为褐色,经常出现在颗粒之间。此外,镜下观察样品发育有较多的熔体囊,可见比较明显的熔体交代特征。

图 2 长白山地区橄榄岩包体手标本(a)、方辉橄榄岩(b)及二辉橄榄岩正交偏光镜下照片正交偏光镜下照片(c、d) Cpx-单斜辉石;Ol-橄榄石;Opx-斜方辉石;Sp-尖晶石 Fig. 2 Hand specimen (a) and photomicrographs of peridotite xenoliths under cross polarized light (b) from Changbaishan area Abbreviations: Cpx-clinopyroxene; Ol-olivine; Opx-orthopyroxene; Sp-spinel

表 1 橄榄岩包体矿物组分和平衡温度表 Table 1 Mineral compositions and equilibrium temperatures of peridotite xenoliths
2 测试方法 2.1 全岩主量和微量元素分析

橄榄岩样品的全岩主量和微量元素测试分析实验在中国科学院广州地球化学研究所完成。全岩主量元素测试工作在Rigaku ZSX-100e X荧光光谱仪上完成,分析精度优于±3%。全岩微量元素采用PE Elan 6000型电感耦合等离子体质谱议(ICPMS)完成,分析精度和准确度优于5%。

2.2 单矿物主量元素和微量元素分析

单矿物主量元素和微量元素分析在武汉上谱测试公司完成。主量元素测试所采用的仪器为JEOL-JXA-8100电子探针分析仪。分析矿物主要包括单斜辉石、斜方辉石、橄榄石和尖晶石,相同矿物在每个橄榄岩包体样品中选取5个分别进行测试,取其平均值作为分析数据。单斜辉石、斜方辉石和尖晶石的分析条件为加速电压15kV,探针电流20nA。橄榄石分析条件为加速电压为20kV,探针电流20nA,同时延长峰值时间,其中Mn、Ni、Cr、Ca和Al测试时间为100s。主量元素的分析精度优于±0.5%。

单矿物原位微区微量元素含量在武汉上谱分析科技有限责任公司利用LA-ICP-MS完成。GeolasPro激光剥蚀系统由COMPexPro 102ArF 193nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置(Hu et al., 2015)。单矿物微量元素含量处理中采用玻璃标准物质BHVO-2G,BCR-2G和BIR-1G进行多外标无内标校正。每个时间分辨分析数据包括大约20~30s空白信号和50s样品信号。详细的仪器参数和分析流程见(Zong et al., 2017)。对分析数据的离线处理采用软件ICPMSDataCal(Liu et al., 2008)完成。每个橄榄岩包体样品的单斜辉石选取5个点进行测试,取其平均值开展分析。

2.3 单斜辉石Sr-Nd-Hf同位素分析

单斜辉石Sr-Nd-Hf同位素的测定是在桂林理工大学地球科学学院MC-ICP-MS同位素实验室完成的。从橄榄岩样品中挑选出足量单斜辉石颗粒,研磨至粉末以备分析。采用Neptune Plus多接受电感耦合等离子质谱仪(MC-ICP-MS)测试Sr-Nd-Hf同位素。Sr同位素和Nd同位素的测量监控采用不同的标准,分别为国际标样NBS987、实验室标准Sr-GIG和国际标准Jndi-1、实验室标准Nd-GIG,数据的标准化值分别采用:87Sr/86Sr=0.1194、143Nd/144Nd=0.7219。标样NBS987的87Sr/86Sr比值和Jndi-1的143Nd/144Nd比值分别为0.710288±28(σ)和0.512109±12(2σ)。Sr-Nd同位素分析精度好于0.002%。利用Neptune型MC-ICP-MS仪器分别对Lu、Hf进行质谱测试,Yb用于校正出Lu的分馏,179Hf/177Hf=0.7325和Alfa Hf标准的176Hf/177Hf=0.282185可以对Hf的分馏校正。详细流程见文献(韦刚健等, 2002; 梁细荣等, 2003)。

3 测试结果 3.1 全岩主量元素和微量元素特征

长白山地区橄榄岩包体的全岩主量和微量元素测试结果列于表 2。长白山大部分样品由于Fe2O3T含量高,使得烧失量(LOI)的结果为负值。与方辉橄榄岩相比,二辉橄榄岩含有更高的Al2O3(2.32%~3.72%)和更低的MgO(38.2%~41.9%)。橄榄岩包体的主量元素含量低于原始上地幔,二辉橄榄岩具有较低的MgO含量,表现出新生饱满的特征,少数的方辉橄榄岩表现出新生饱满向古老难熔过渡的特征(图 3)。

图 3 橄榄岩包体全岩主量元素与微量元素二元图解 原始上地幔(PUM)引自Hart and Zindler (1986);亏损地幔和大洋橄榄岩趋势线引自Boyd (1989)Griffin et al. (1998b);熔体抽取趋势线引自Frey et al. (1985)Xu et al. (2008) Fig. 3 Binary diagrams of major element and trace element compositions of peridotite xenoliths Primitive upper mantle from Hart and Zindler (1986); depleted mantle and oceanic trend line from the Boyd (1989) and Griffin et al. (1998b); melting extraction trend from Frey et al. (1985) and Xu et al. (2008)

表 2 橄榄岩包体全岩主量元素(wt%)和微量元素(×10-6)分析测试结果 Table 2 Analytical results of whole-rock major (wt%) and trace (×10-6) elements of peridotite xenoliths
3.2 单矿物主量元素特征

本次研究对长白山地区橄榄岩包体中橄榄石、斜方辉石、单斜辉石和尖晶石的主量元素含量开展电子探针分析,测试结果如表 3所示。主微量元素二元图解表明长白山地区方辉橄榄岩具有过渡型岩石圈地幔特征,二辉橄榄岩表现出新生饱满的岩石圈地幔特征(图 4)。长白山地区二辉橄榄岩包体中橄榄石MgO含量为45.32%~49.44%,Fo值(Fo=100×Mg2+/(Mg2++Fe2+))为85.6~91.0,FeO含量为8.84%~13.74%。与此对比,方辉橄榄岩包体中橄榄石具有更高的MgO(49.01%~49.70%)、Fo值(90.8~91.3)和更低的FeO(8.47%~8.90%)。二辉橄榄岩包体中斜方辉石的Al2O3含量为2.95%~4.77%,Mg#值为86.2~91.4;方辉橄榄岩包体中斜方辉石的Al2O3含量为2.94%~3.31%,Mg#值在91.5~91.9之间。方辉橄榄岩包体比二辉橄榄岩具有更高的斜方辉石Cr#(Cr#=100×molar Cr/(Cr+Al))值(10.8>4.1~8.8),和Mg#值呈现较好的正相关关系。二辉橄榄岩包体的单斜辉石Al2O3分别为5.03%~6.37%,Mg#值变化较大为85.9~92.1,Cr#值在5.7~10.9之间。方辉橄榄岩包体的单斜辉石Al2O3、Mg#值和Cr#值含量分别为3.85%~4.00%、92.1~92.4和15.8。二辉橄榄岩包体的尖晶石Cr#值为8.9~18.8,Mg#值为66.9~76.4,TiO2含量为0.01%~0.24%;方辉橄榄岩包体的尖晶石具有更高的Cr#值(33.2~34.8),Mg#值(71.0~71.7),TiO2含量为0.09%~0.16%。

表 3 橄榄岩包体矿物电子探针分析结果(wt%) Table 3 Electron microprobe analyses (wt%) of minerals in peridotite xenoliths

图 4 矿物主量元素关系图 (a)橄榄石Mg#值-CaO含量,(b)斜方辉石Cr#值-Mg#值,(c)单斜辉石Mg#值-Al2O3含量,(d)尖晶石Cr#值-Mg#值.山旺数据来源于Zheng et al. (1998);鹤壁数据来源于Zheng et al. (2001) Fig. 4 Binary diagrams of major element and trace element compositions of minerals in peridotite xenoliths (a) olivine Mg# values vs. CaO contents, (b) orthopyroxene Cr# values vs. Mg# values, (c) clinopyroxene Mg# values vs. Al2O3 contents, (d) spinel Cr# values vs. Mg# values. Data of Shanwang area from Zheng et al. (1998); Data of Hebi area from Zheng et al. (2001)
3.3 单斜辉石微量元素特征

长白山地区橄榄岩包体的单斜辉石微量元素含量如表 4所示。本次研究根据球粒陨石标准化稀土元素配分曲线特征,进一步将单斜辉石划分为以下四个类型(图 5):(1)LREE严重亏损型:单斜辉石的轻重稀土元素分异较为明显,(La/Yb)N值最低,为0.01~0.02,总体呈现LREE严重亏损和HREE平坦的特征,反映了二辉橄榄岩可能在尖晶石稳定区经历了不同程度熔融抽取后的残留,熔融比例在1.5%;(2)LREE亏损型:单斜辉石的轻重稀土元素分异略明显,(La/Yb)N值较低,为0.07~0.33,总体呈现LREE亏损和HREE平坦的特征。(3)向右微倾型:单斜辉石轻稀土元素相对重稀土元素富集的特征,(La/Yb)N值为1.04~1.14,整体表现为平缓向右倾斜的直线;(4)“勺型”:单斜辉石LREE相对于MREE略微富集,(La/Yb)N值为0.95~1.25。橄榄岩包体中单斜辉石的微量元素表现出相近的特征,均富集大离子亲石元素(Rb、Ba、Th、U),亏损高场强元素(Nb、Ta、Zr、Hf、Ti)和Pb。

表 4 橄榄岩包体单斜辉石微量元素含量(×10-6) Table 4 Trace element concentrations (×10-6) of clinopyroxene in peridotite xenoliths

图 5 长白山地区橄榄岩包体中单斜辉石球粒陨石标准化稀土元素配分图和原始地幔标准化微量元素蛛网图解(标准化值引自Sun and McDonough, 1989) Fig. 5 Chondrite-normalized REE patterns and spider diagrams of clinopyroxenes in peridotite xenoliths from the Changbaishan (normalization values after Sun and McDonough, 1989)
3.4 平衡温度

本次研究的橄榄岩包体主要为尖晶石相二辉橄榄岩,不含斜长石和石榴子石矿物。尖晶石相橄榄岩通常稳定存在于0.8~2.5GPa环境中(Nickel, 1986; Webb and Wood, 1986),其形成时的准确压力值难以用压力计计算,本次研究选取前人在华北克拉通东北部岩石圈地幔研究所用的压力值1.5GPa为参考值(Lin et al., 2019)。为了避免使用单个地质温度计造成的系统误差,本次研究采用二辉石温度计(TWells)(Wells, 1977)和斜方辉石Ca温度计(TBK)(Brey and Köhler, 1990)共同估算长白山和龙岗火山岩中橄榄岩包体的平衡温度。当Mg#值比较高(>80)的橄榄岩包体,平衡温度范围在900~1400℃时,选用二辉石温度计能够给出更为准确的温度。因此,在本次研究的计算结果中,优先考虑二辉石温度计的平衡温度,与斜方辉石Ca温度计的结果进行对比,来确保结果的可靠性。两种地质温度计给出的结果见图 6表 1。二辉石温度计和斜方辉石Ca温度计的计算结果较为一致,分别为928~1101℃和947~1139℃,说明长白山地区橄榄岩包体的平衡温度范围大约为900~1100℃。

图 6 橄榄岩包体平衡温度频率直方图 (a)二辉石温度计(TWells);(b)斜方辉石Ca温度计(TBK) Fig. 6 Frequency histograms of equilibrium temperatures (a) TWells, Na-in-orthopyroxene-clinopyroxene; (b) TBK, Ca-in-orthopyroxene geothermometer
3.5 单斜辉石Sr-Nd-Hf同位素特征

长白山地区橄榄岩包体中单斜辉石的Sr、Nd和Hf同位素分析结果如表 5所示。87Sr/86Sr=0.702749~0.707276、143Nd/144Nd=0.512886~0.51333(εNd=+4.8~+13.6)、176Hf/177Hf=0.283273~0.284179(εHf=+17.7~+49.8)。由图 7可知,研究区二辉橄榄岩包体中单斜辉石的87Sr/86Sr和143Nd/144Nd比值变化范围较大。整体上可以看出,长白山地幔橄榄岩样品中单斜辉石表现出整体Sr同位素亏损,部分样品Sr同位素富集的特征,样品Nd-Hf同位素整体亏损的特征,整体基本与中国东部新生岩石圈地幔的Sr-Nd-Hf同位素特征相似。部分橄榄岩样品沿地幔演化线发生了明显的偏离,表现出不同程度的Nd-Hf同位素解耦。

图 7 橄榄岩包体中单斜辉石143Nd/144Nd-87Sr/86Sr(a)和176Hf/177Hf-143Nd/144Nd(b)同位素比值图解 OIB-洋岛玄武岩;MORB-洋中脊玄武岩;BSE-整体硅酸岩地球.洋中脊玄武岩数据和地幔演化线引自Zindler and Hart (1986);洋岛玄武岩数据引自Chauvel and Blichert-Toft (2001)Salters and White (1998);整体硅酸岩地球数据引自Bouvier et al. (2008)和 Blichert-Toft et al. (1999);长白山玄武岩数据引自Basu et al. (1991)、Guo et al. (2014)、Kuritani et al. (2009)和 Zhang et al. (2014);三个交代作用的混合端元包括:长白山玄武岩(Nd=35.9×10-6、Hf=5.1×10-6, Kuritani et al., 2009)、大洋岛弧玄武岩(Nd=10.1×10-6、Hf=1.7×10-6Kelemen et al., 2005)、富水的熔/流体(Nd=11.0×10-6、Hf=1.0×10-6, Kessel et al., 2005) Fig. 7 143Nd/144Nd vs. 87Sr/86Sr (a) and 176Hf/177Hf vs. 143Nd/144Nd (b) isotopic ratios diagrams of peridotite xenoliths OIB-oceanic-island basalt; MORB-mid-ocean-ridge basalt; BSE-bulk silicate earth. Data for MORB and mantle array from Zindler and Hart (1986); data for OIB from Chauvel and Blichert-Toft (2001), Salters and White (1998); Data for BSE are from Bouvier et al. (2008) and Blichert-Toft et al. (1999); basaltic rocks from Changbaishan from Basu et al. (1991), Guo et al. (2014), Kuritani et al. (2009), and Zhang et al. (2014); three mixing end members include: Changbaishan basalt (Nd=35.9×10-6、Hf=5.1×10-6, Kuritani et al., 2009), oceanic arc basalts (Nd=10.1×10-6、Hf=1.7×10-6, Kelemen et al., 2005), aqueous fluids (Nd=11.0×10-6、Hf=1.0×10-6, Kessel et al., 2005)

表 5 橄榄岩包体单斜辉石Sr-Nd-Hf同位素特征 Table 5 Sr-Nd-Hf isotopic compositions for clinopyroxenes from peridotite xenoliths
4 讨论 4.1 岩石圈地幔的部分熔融过程

长白山地区橄榄岩包体岩石类型以二辉橄榄岩为主,含少量方辉橄榄岩,表明长白山地区的岩石圈地幔组成主要为富集和中等亏损型地幔。长白山地区包体橄榄岩的MgO含量和其它主微量元素含量表现出明显负相关的线性关系,与世界其它地区地幔橄榄岩类似,说明长白山地区橄榄岩包体是经历不同程度的熔融抽取后的结果(Frey et al., 1985; Xu et al., 2008)。地幔橄榄岩中橄榄石的Fo值、尖晶石的Cr#值和TiO2含量可以有效指示地幔岩石熔体抽取的程度,随着部分熔融程度的增加,橄榄石的Fo值和尖晶石中的Cr#值都会增大(Hellebrand et al., 2001)。长白山地区橄榄岩包体中橄榄石的Fo值(85.6~91.3)和尖晶石的Cr#(8.9~34.8)变化较大,较低的橄榄石Fo值可排除典型的古老难熔克拉通型的地幔的可能性(Fo>92)。由图 8可知,长白山-龙岗二辉橄榄岩经历的部分熔融程度均小于10%。其中,2件方辉橄榄岩包体样品比二辉橄榄岩包体样品具有较高的Cr#值,可能代表了部分熔融程度更高的地幔。此外,尖晶石沿着拟合熔融曲线有不同程度的偏移,说明除了部分熔融作用以外可能还发生了其它的地质过程。方辉橄榄岩包体中的尖晶石在同样Cr#值的情况下更富集TiO2,这个偏离说明方辉橄榄岩在熔融残留的后期可能与更富集Ti的熔体发生了交代作用;橄榄岩包体成分点落入深海橄榄岩区域并指向更为富集的趋势,Cr2O3含量和Cr#值的变化较大也可能是由于后期交代作用所导致的。

图 8 橄榄岩包体中尖晶石Cr#-TiO2图(a, 据Park et al., 2017)和橄榄石Fo值-尖晶石Cr#值图(b) (a)点线为深海橄榄岩中尖晶石成分区域(Dick and Bullen, 1984),灰色箭头代表了橄榄岩与似MORB熔体交代反应的变化趋势,图中虚线是熔融趋势线,引自Choi et al. (2008);(b)地幔演化线和橄榄石-尖晶石熔融趋势引自Arai (1994);超俯冲型橄榄岩和深海橄榄岩数据引自Ishii et al. (1992), Pearce et al. (2000) Fig. 8 Diagrams of Spinel Cr#-TiO2 (a, modified after Park et al., 2017) and spinel Cr#-Fo contents in the coexisting olivine (b) of peridotite xenoliths (a) the dotted curve is a field of abyssal peridotite spinel (Dick and Bullen, 1984). Gray arrow represents an effect of metasomatic reaction with MORB-like melt. Melting trend, shown in dashed curve, is from Choi et al. (2008). (b) Arai (1994) was the source of mantle array and melting trend values for olivine-spinel. Data on supra-subduction zone (SSZ) peridotites and abyssal peridotites sourced from Pearce et al. (2000) and Ishii et al. (1992)

由于单斜辉石中不相容的重稀土元素含量不易被后期地幔交代作用改变,因此可以利用单斜辉石中的微量元素Yb和Y含量模拟岩石圈地幔的部分熔融程度(Norman, 1998)。本次研究采用分离部分熔融模型进行估算,结果表明长白山地区的二辉橄榄岩部分熔融程度介于3%~5%之间,方辉橄榄岩的部分熔融程度较大,为10%~12%(图 9)。Hellebrand et al. (2001)认为当Cr#值在10~60范围时,可利用公式F=10ln(Cr#)+24,计算橄榄岩的部分熔融程度F。计算结果表明,长白山二辉橄榄岩的部分熔融程度(0.8%~7.3%)低于方辉橄榄岩的部分熔融程度(13.0%~13.4%),这也与图 8图 9中的部分熔融估算结果一致。

图 9 橄榄岩分离熔融模拟图(分离熔融模拟曲线据Norman, 1998; 标准化值据McDonough and Sun, 1995) Fig. 9 Fractional partial melting modeling for the Changbaishan and Longgang peridotite (fractional partial melting model after Norman, 1998; normalized to primitive mantle after McDonough and Sun, 1995)
4.2 岩石圈地幔的交代富集作用

岩石圈地幔在受到部分熔融抽取后往往还会受到后期熔体/流体交代作用的改造,交代作用通常分为两种形式:显性交代和隐性交代。当发生显性交代时,会形成新的矿物如角闪石、磷灰石或金云母(Gordon Medaris et al., 2015),隐性交代通常会导致不相容元素的富集而不会形成其它矿物相(Uenver-Thiele et al., 2017)。长白山地区橄榄岩包体中缺乏角闪石、磷灰石或金云母等显性交代的矿物,在全岩和单斜辉石微量元素上具有明显的富集轻稀土元素的特征,并且表现出Nd-Hf同位素解耦现象,说明长白山地区橄榄岩在形成时发生了隐性交代作用。

已有研究表明,岩石圈地幔的交代介质主要来源有碳酸盐熔体(Rudnick et al., 1993)、富水硅酸盐熔体(Zangana et al., 1999)和富水流体(Xu et al., 2003)。在长白山地区橄榄岩中第一、四组单斜辉石具有亏损Nb的特征,第二、三组的单斜辉石Nb含量相对高一些,暗示在地幔交代中可能有Nb的加入(图 5)。由于富水流体并不能传输Nb(Eggler, 1987),因此排除了交代介质为富水流体的可能。组一和组二的样品中轻重稀土元素分异明显,并且略微富集大离子亲石元素,大多伴有Zr的亏损,说明长白山地区橄榄岩包体的形成受到熔体交代影响(Blusztajn and Shimizu, 1994)。进而,需要进一步辨别交代介质是碳酸盐还是硅酸盐熔体。交代反应中通常用单斜辉石(La/Yb)N和Ti/Eu的关系图来指示熔体的性质(Coltorti et al., 1999)。高的(La/Yb)N和低的Ti/Eu比值多体现碳酸盐熔体的交代作用,一般与稳定大陆的岩浆作用有关;而低的(La/Yb)N和高的Ti/Eu比值多与硅酸盐熔体交代有关(郑建平, 2009)。长白山地区橄榄岩包体中的单斜辉石Ti/Eu比值较高且变化较大,而(La/Yb)N比值相对很低,可以明显反映出硅酸盐熔体的交代作用(图 10)。此外,碳酸盐熔体形成的橄榄岩通常富集轻稀土元素、Sr、Ba和Rb元素,亏损高场强元素,具有较高的(La/Yb)N值(Su et al., 2012),与长白山地区橄榄岩包体的微量元素含量明显不同;橄榄岩包体中还缺乏碳酸盐交代的典型矿物,如方解石、磷灰石等(Yaxley et al., 1998),排除了交代介质来源于碳酸盐熔体的可能性。

图 10 橄榄岩中单斜辉石的(La/Yb)N-Ti/Eu关系图(据Coltorti et al., 1999) 粒陨石标准化值据Sun and McDonough (1989) Fig. 10 Plot of (La/Yb)N vs. Ti/Eu of clinopyroxene from peridotite (after Coltorti et al., 1999) Chondrite-normalized values after Sun and McDonough (1989)

橄榄岩中单斜辉石的Nd-Hf同位素也可以约束交代熔体的性质。在Nd-Hf同位素关系图中(图 7b),研究区的橄榄岩包体落在Nd-Hf同位素拟合的地幔演化线上。这样的Nd-Hf同位素解耦在地幔橄榄岩中经常观察到(Choi and Mukasa, 2012; Liu et al., 2017)。为查明交代介质的性质,我们用亏损地幔(143Nd/144Nd=0.5153、176Hf/177Hf=0.2853、Nd=1×10-6、Hf=0.4×10-6)和三个交代介质分别模拟出混合曲线,包括长白山玄武岩(Nd=35.9×10-6、Hf=5.1×10-6, Kuritani et al., 2009)、岛弧玄武岩(Nd=10.1×10-6、Hf=1.7×10-6, Kelemen et al., 2005)、富水的熔/流体(Nd=11.0×10-6、Hf=1.0×10-6, Kessel et al., 2005)。由图 7b可知,长白山和龙岗二辉橄榄岩样品主要落在亏损地幔与富水流体端元和岛弧玄武岩端元混合的曲线上。综上所述,长白山地区二辉橄榄岩样品经历的交代作用中交代介质为来源于与俯冲作用相关的富水硅酸盐熔体。

4.3 岩石圈地幔的形成时代

长白山地区地幔包体均为不含石榴子石的尖晶石橄榄岩,表明其来自低于80km深度的地幔,全岩和矿物主量元素显示形成尖晶石橄榄岩的地幔具有饱满和高温的特征。Fo值大于91的橄榄石被认为是太古代-元古代岩石圈地幔碎片的标志,Fo值小于90的橄榄岩被认为是显生宙新增生的饱满岩石圈地幔(Griffin et al., 1998a; Zheng et al., 2007)。长白山地区地幔橄榄岩包体中橄榄石的Fo值变化范围较大,显示出新增生的岩石圈地幔和过渡型岩石圈地幔的特征。在图 11中可见,长白山地区二辉橄榄岩包体大多落在显生宙区域,而方辉橄榄岩包体则落在元古宙区域附近,样品整体沿着大洋演化趋势线分布,说明在长白山地区下部存在不同时代的岩石圈地幔。

图 11 橄榄岩中橄榄石含量与橄榄石Fo值关系图解 大洋趋势演化线来自Boyd (1989).太古代、元古代和显生宙区域范围来自Griffin et al. (1998a) Fig. 11 Plot of modal olivine in peridotite versus Fo in olivine Oceanic trend derived from Boyd (1989). Fields for the Archean, Proterozoic, and Phanerozoic from Griffin et al. (1998a)

图 12中,长白山地区橄榄岩包体中橄榄石的Fo值与平衡温度之间不存在相关性,说明长白山地区存在新生饱满和过渡型岩石圈地幔,但是二者在垂向上并未表现出明显的分层效应。Xu et al. (2019)对研究区橄榄岩含水量的研究发现,全岩水含量超过50×10-6(最高达132×10-6)的样品代表新增生的软流圈来源的岩石圈地幔,而全岩水含量小于50×10-6(低至9×10-6)的样品代表着减薄的古老的岩石圈地幔,这也与前人研究的华北克拉通地区新生代玄武岩所携带的地幔橄榄岩水含量相一致(Xia et al., 2010)。

图 12 地幔橄榄岩橄榄石Fo值与平衡温度关系图解 Fig. 12 Equilibration temperature versus Fo in olivine for the peridotite

长白山地区橄榄岩包体的单斜辉石表现出整体Sr同位素亏损,部分样品Sr同位素富集的特征,以及整体Nd-Hf同位素亏损的特征。在图 13中,长白山地区橄榄岩包体的Sm-Nd和Lu-Hf同位素特征表现出一定的正相关关系,在橄榄岩包体中选取不受熔体交代及受熔体交代作用影响弱的样品,进行等时线拟合分析,分别得到Sm-Nd和Lu-Hf同位素模式年龄127~510Ma和260~853Ma,二者的年龄范围具有较大的差异,Nd-Hf同位素发生了一定的解耦现象(图 7),说明橄榄岩包体的Nd-Hf同位素可能受到对流地幔分离后岩石圈晚期交代作用改造(Bizimis et al., 2007)。研究表明Nd比Hf在含水溶液或者熔体中更易迁移(Ferrando et al., 2019)。因此,相比于Lu-Hf同位素体系,熔/流体交代作用更容易重置Sm-Nd同位素体系。同时,Lu-Hf同位素体系具有较高的封闭温度,在岩石圈地幔形成后不容易受到后期扰动,可以得到较为可信的年龄。此外,我们挑选出不受熔体交代作用以及受熔体交代弱的橄榄岩样品。这些不受熔体交代作用或者交代作用不明显的样品的单斜辉石Hf同位素的模式年龄能够提供一个比较可靠的岩石圈地幔年龄,这些样品的单斜辉石Hf同位素计算出模式年龄的结果为260~853Ma,橄榄岩包体的形成时间范围与华北克拉通的演化历史相符(翟明国, 2019)。以上矿物学、地球化学和同位素证据表明,长白山地区下覆岩石圈地幔以新增生的饱满地幔为主,夹有少量古老难熔的岩石圈地幔碎片。

图 13 长白山地区橄榄岩包体单斜辉石147Sm/144Nd-143Nd/144Nd关系图解(a)和176Lu/177Hf-176Hf/177Hf关系图解(b) 亏损地幔(DM)和球粒陨石均一储库(CHUR)数据来自Blichert-Toft and Albarè de (1997), Pearson and Nowell (2004)Bouvier et al. (2008).计算Lu-Hf等时线时衰变常数λ=1.865×10-11y-1(Scherer et al., 2001) Fig. 13 Plot of 147Sm/144Nd vs. 143Nd/144Nd (a) and plot of 176Lu/177Hf vs. 176Hf/177Hf (b) for clinopyroxenes from Changbaishan peridotites Data for depleted mantle (DM) and chondritic uniform reservoir (CHUR) from Blichert-Toft and Albarè de (1997), Pearson and Nowell (2004) and Bouvier et al. (2008). Calculation of the Lu-Hf errorchron was based on the decay constant λ=1.865×10-11y-1 (Scherer et al., 2001)
4.4 岩石圈地幔转化的构造动力学机制

在华北克拉通内,古生代金伯利岩的包体指示厚、古老和难熔的前寒武系岩石圈地幔,新生代玄武岩中橄榄岩包体指示薄、新生和饱满的新生代岩石圈地幔(郑建平, 2009)。本次研究发现,长白山地区以新生饱满岩石圈地幔为主,含少量古老难熔岩石圈地幔,说明在长白山地区所处的华北克拉通东北部发生了明显的岩石圈地幔的转化。华北克拉通岩石圈地幔的转化过程一直是学者研究的焦点,其构造动力学机制仍存在不同认识,包括热化学侵蚀(Xu, 2001)、古老地壳的拆沉作用(Gao et al., 2008)和板片俯冲作用(Lin et al., 2019)。

研究表明,华北克拉通东部岩石圈地幔具有“东薄西厚”的特征,是太平洋板块向西俯冲的结果(Zheng et al., 2009)。长白山地区位于华北克拉通东北部,地球物理(Zhao and Ohtani, 2009)和Os同位素(Zhang et al., 2017)证据表明在太平样板片形成的“地幔楔”越过长白山地区,向东俯冲至华北克拉通东部的郯庐断裂带下部。构造地貌学和构造应力场研究发现,在华北克拉通东部的盆地、断裂和变质核杂岩都表现出NE-NNE的线性展布规律(Zhu et al., 2012),也与太平洋板块向西俯冲的构造动力学机制一致。此外,华北克拉通东部侏罗-白垩纪岩浆活动也证明是太平洋板块向西的俯冲挤压和伸展拉伸阶段的产物(Liang et al., 2020)。综上所述,太平洋板块的俯冲作用对华北克拉通东北部岩石圈地幔造成的影响有:华北克拉通东北部岩石圈的拉张和伸展的时空变化与俯冲的太平洋板块的方向和角度相一致;俯冲太平洋板块为中-新生代岩浆提供了拉张伸展的环境且提供了源区物质。

地球物理的证据表明东北地区地幔过渡带深度存在着滞留的太平洋板块(Zhao and Ohtani, 2009)研究表明地幔过渡带是地幔内部一个较大的含水储库(Pearson et al., 2014)。地幔过渡带中水的长期循环流动过程中会导致局部的瑞利-泰勒不稳定,进而产生上涌的水柱(Richard and Bercovici, 2009)。层析图像的结果也表明在长白山地区从上地幔至410km(地幔过渡带的最上端)存在着一个显著的低速异常(Huang and Zhao, 2006; Zhao et al., 2009)。长白山地区上地幔深度存在的低速异常很可能是由于来源于地幔过渡带的水柱所致(Zhao et al., 2009)。这些水柱在上升过程中,将先前存在地幔过渡带的太平洋板块的物质(洋壳或和沉积物)运送到上地幔。这些再循环的太平洋板块的物质在上地幔的某一深度发生部分熔融产生熔体,这些熔体在上升过程中与长白山地区古老难熔的岩石圈地幔发生相互作用,导致岩石圈地幔由古老难熔向新生饱满发生转变。在转变过程中,少量古老难熔的成分会残留到岩石圈地幔,最终在长白山地区形成以新生饱满为主,含少量古老难熔的岩石圈地幔。因此,太平洋板片俯冲不仅为新生代长白山地区提供了构造动力学背景,还为其岩石圈形成与破坏提供所需的物质。

5 结论

本文基于长白山地区地幔橄榄岩包体的岩相学、全岩主微量元素、单矿物原位主微量元素、单斜辉石Sr-Nd-Hf同位素特征研究,得到以下结论:

(1) 长白山地区的橄榄岩包体主要是尖晶石相二辉橄榄岩和少量的方辉橄榄岩,平衡温度为900~1100℃,经历了的不同程度的部分熔融(二辉橄榄岩 < 10%;方辉橄榄岩>10%),后期受到地幔交代作用影响,交代介质为富水硅酸盐熔体。

(2) 长白山地区晚新生代岩石圈地幔表现出不均一的特征,以新生饱满地幔为主,夹有少量古老难熔的岩石圈地幔碎片。

(3) 太平洋板块向西俯冲的过程使得长白山地区所处的华北克拉通东北部下覆软流圈上涌,携带大量壳源物质进入地幔深部,富水硅酸盐熔体上升过程中与岩石圈地幔发生橄榄岩-熔体反应,导致岩石圈地幔由古老难熔向新生饱满发生转变。

致谢      感谢中国科学院地质与地球物理所雷鸣博士、成智慧及张茂亮博士后等在野外工作和数据分析中的大力支持和帮助。感谢匿名审稿人和期刊主编对论文提出的宝贵意见。

参考文献
Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships:Review and interpretation. Chemical Geology, 113(3-4): 191-204 DOI:10.1016/0009-2541(94)90066-3
Bai ZD, Xu DB, Zhang BL, Zhang T and Bu J. 2006. Study on type and phase of Quaternary explosive volcanism in Longgang volcanic cluster. Acta Petrologica Sinica, 22(6): 1473-1480 (in Chinese with English abstract)
Bizimis M, Griselin M, Lassiter JC, Salters VJM and Sen G. 2007. Ancient recycled mantle lithosphere in the Hawaiian plume:Osmium-hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters, 257(1-2): 259-273 DOI:10.1016/j.epsl.2007.02.036
Blichert-Toft J and Albarèd e F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Blusztajn J and Shimizu N. 1994. The trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland. Chemical Geology, 111(1-4): 227-243 DOI:10.1016/0009-2541(94)90091-4
Bouvier A, Vervoort JD and Patchett PJ. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2): 48-57 DOI:10.1016/j.epsl.2008.06.010
Boyd FR. 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96(1-2): 15-26 DOI:10.1016/0012-821X(89)90120-9
Brey GP and Köhler T. 1990. Geothermobarometry in four-phase lherzolites Ⅱ.New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31(6): 1353-1378
Chauvel C and Blichert-Toft J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190: 137-151 DOI:10.1016/S0012-821X(01)00379-X
Chen QF, Ai YS and Chen Y. 2019. Overview of deep structures under the Changbaishan volcanic area in Northeast China. Science China (Earth Sciences), 62(6): 935-952 DOI:10.1007/s11430-018-9300-1
Choi SH, Mukasa SB, Zhou XH, Xian XH and Andronikov AV. 2008. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chemical Geology, 248(1-2): 40-61 DOI:10.1016/j.chemgeo.2007.10.008
Choi SH and Mukasa SB. 2012. Lu-Hf and Sm-Nd isotope systematics of Korean spinel peridotites:A case for metasomatically induced Nd-Hf decoupling. Lithos, 154(4): 263-276
Coltorti M, Bonadiman C, Hinton RW, Siena F and Upton BGJ. 1999. Carbonatite metasomatism of the oceanic upper mantle:Evidence from Clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40(1): 133-165 DOI:10.1093/petroj/40.1.133
Cope T, Ritts BD, Darby BJ, Fildani A and Graham SA. 2005. Late Paleozoic sedimentation on the northern margin of the North China block:Implications for regional tectonics and climate change. International Geology Review, 47(3): 270-296 DOI:10.2747/0020-6814.47.3.270
Dai HK and Zheng JP. 2019. Mantle xenoliths and host basalts record the Paleo-Asian oceanic materials in the mantle wedge beneath Northwest North China Craton. Solid Earth Sciences, 4(4): 150-158
Dai HK, Zheng JP, Xiong Q, Su YP, Pan SK, Ping XQ and Zhou X. 2019. Fertile lithospheric mantle underlying ancient continental crust beneath the northwestern North China Craton:Significant effect from the southward subduction of the Paleo-Asian Ocean. GSA Bulletin, 131(1-2): 3-20 DOI:10.1130/B31871.1
Dick HJB and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76 DOI:10.1007/BF00373711
Eggler DH. 1987. Solubility of major and trace elements in mantle metasomatic fluids:Experimental constraints. In:Menzies MA and Hawkesworth CJ (eds.). Mantle Metasomatism. London: Academic Press
Fan QC. 2008. History and evolution of Changbaishan volcano. Resources Survey & Environment, 29(3): 196-203 (in Chinese with English abstract)
Feng YZ, Yang JH, Sun JF and Zhang JH. 2020. Terial records for Mesozoic destruction of the North China Craton by subduction of the Paleo-Pacific slab. Science China (Earth Sciences), 50(5): 690-700
Ferrando S, Petrelli M and Frezzotti ML. 2019. Gradual and selective trace-element enrichment in slab-released fluids at sub-arc depths. Scientific Reports, 9(1): 16393 DOI:10.1038/s41598-019-52755-9
Frey FA, Suen CJ and Stockman HW. 1985. The Ronda high temperature peridotite:Geochemistry and petrogenesis. Geochimica et Cosmochimica Acta, 49(11): 2469-2491 DOI:10.1016/0016-7037(85)90247-9
Gao S, Rudnick RL, Xu WL, Yuan HL, Liu YS, Walker RJ, Puchtel IS, Liu XM, Huang H, Wang XR and Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1-2): 41-53 DOI:10.1016/j.epsl.2008.03.008
Gordon Medaris Jr L, Ackerman L, Jelínek E, Michels ZD, Erban V and Kotková J. 2015. Depletion, cryptic metasomatism, and modal metasomatism (refertilization) of Variscan lithospheric mantle:Evidence from major elements, trace elements, and Sr-Nd-Os isotopes in a Saxothuringian garnet peridotite. Lithos, 226: 81-97
Griffin WL, O'Reilly SY, Ryan CG, Gaul O and Ionov DA. 1998a. Secular variation in the composition of subcontinental lithospheric mantle:Geophysical and geodynamic implications. In:Braun J, Dooley J, Goleby B, Van Der Hilst R and Klootwijk C (eds.). Structure and Evolution of the Australian Continent. Washington: American Geophysical Union, 1-26
Griffin WL, O'Reilly SY, Afonso JC and Begg GC. 2009. The composition and evolution of lithospheric mantle:A Re-evaluation and its tectonic implications. Journal of Petrology, 50(7): 1185-1204 DOI:10.1093/petrology/egn033
Guo WF, Liu JQ, Xu WG, Li W and Lei M. 2015. Reassessment of the magma system beneath Tianchi volcano, Changbaishan:Phase equilibria constraints. Science Bulletin, 60(35): 3489-3500 (in Chinese)
Hao YT, Bonadiman C, Coltorti M and Xia QK. 2019. Fragments of asthenosphere incorporated in the lithospheric mantle underneath the Subei Basin, eastern China:Constraints from geothermobarometric results and water contents of peridotite xenoliths in Cenozoic basalts. Journal of Asian Earth Sciences:X, 1: 100006 DOI:10.1016/j.jaesx.2019.100006
Hellebrand E, Snow JE, Dick HJB and Hofmann AW. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410(6829): 677-681 DOI:10.1038/35070546
Huang JL and Zhao DP. 2006. High-resolution mantle tomography of china and surrounding regions. Journal of Geophysical Research, 111(B9): B09305
Huang XG, Xu YS and Karato SI. 2005. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, (434): 746-749
Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH and Hu SH. 2015. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis:Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152-1157
Ishii T, Robinson PT, Maekawa H and Fiske R. 1992. Petrological studies of peridotites from diapiric serpentinites seamounts in the Izu-Ogasawara-Mariana Forearc, Leg 125. In:Proceedings of the Ocean Drilling Program, Scientific Results: 445-486
Kelemen PB, Hanghøj K and Greene AR. 2005. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust.In:Rudnick RL (ed.).. The Crust:Treatise on Geochemistry, 3: 593-659
Kessel R, Schmidt MW, Ulmer P and Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120~180km depth. Nature, 437: 724 DOI:10.1038/nature03971
Kuritani T, Kimura JI, Miyamoto T, Wei H, Shimano T, Maeno F, Jin X and Taniguchi H. 2009. Intraplate magmatism related to deceleration of upwelling asthenospheric mantle:Implications from the Changbaishan shield basalts, northeast China. Lithos, 112(3): 247-258
Li HY, Xu YG, Ryan JG, Huang XL, Ren ZY, Guo H and Ning ZG. 2016. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton:Discrimination of contributions from the subducted Pacific slab. Geochimica et Cosmochimica Acta, 178: 1-19 DOI:10.1016/j.gca.2015.12.032
Liang XR, Wei GJ, Li XH and Liu Y. 2003. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica, 32(1): 91-96 (in Chinese with English abstract)
Liang YY, Liu XF, Wang QF, Zhao R and Ma Y. 2020. Late Mesozoic magmatism in the Jiaodong Peninsula, East China:Implications for crust-mantle interactions and lithospheric thinning of the eastern North China Craton. Geoscience Frontiers, 11(3): 895-914
Lin AB, Zheng JP, Xiong Q, Aulbach S, Lu JG, Pan SK, Dai HK and Zhang H. 2019. A refined model for lithosphere evolution beneath the decratonized northeastern North China Craton. Contributions to Mineralogy and Petrology, 174(2): 15 DOI:10.1007/s00410-019-1551-0
Liu CZ, Zhang C, Liu ZC, Sun J, Chu ZY, Qiu ZL and Wu FY. 2017. Formation age and metasomatism of the sub-continental lithospheric mantle beneath Southeast China:Sr-Nd-Hf-Os isotopes of Mingxi mantle xenoliths. Journal of Asian Earth Sciences, 145(Part B): 591-604
Liu JQ, Chen SS, Guo WF, Sun CQ, Zhang ML and Guo ZF. 2015. Research advances in the Mt.Changbai Volcano. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 710-723 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
Nickel KG. 1986. Phase equilibria in the system SiO2-MgO-Al2O3-CaO-Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrbuch fur Mineralogie, Abhandlungen, 155(3): 259-287
Norman MD. 1998. Melting and metasomatism in the continental lithosphere:Laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contributions to Mineralogy and Petrology, 130(3-4): 240-255 DOI:10.1007/s004100050363
Park K, Choi SH, Cho M and Lee DC. 2017. Evolution of the lithospheric mantle beneath Mt.Baekdu (Changbaishan):Constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt. Lithos, 286-287: 330-344
Pearce JA, Barker PF, Edwards SJ, Parkinson IJ and Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36-53 DOI:10.1007/s004100050572
Pearson DG and Nowell GM. 2004. Re-Os and Lu-Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera Peridotite Massif:Implications for mixed peridotite-pyroxenite mantle sources. Journal of Petrology, 45(2): 439-455
Pearson DG, Brenker FE, Nestola F, Mcneill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B and Vincze L. 2004. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507(7491): 221-224
Polat A and Münker C. 2004. Hf-Nd isotope evidence for contemporaneous subduction processes in the source of Late Archean arc lavas from the Superior Province, Canada. Chemical Geology, 213(4): 403-429 DOI:10.1016/j.chemgeo.2004.08.016
Richard GC and Bercovici D. 2009. Water-induced convection in the earth's mantle transition zone. Journal of Geophysical Research Solid Earth, 114: B1
Rudnick RL, McDonough WF and Chappell BW. 1993. Carbonatite metasomatism in the northern Tanzanian mantle:Petrographic and geochemical characteristics. Earth and Planetary Science Letters, 114(4): 463-475
Salters VJM and White WM. 1998. Hf isotope constraints on mantle evolution. Chemical Geology, 145: 447-460 DOI:10.1016/S0009-2541(97)00154-X
Scherer E, Münker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683-687 DOI:10.1126/science.1061372
Shi LB, Lin CY, Han XL and Chen XD. 1999. Principal features of mantle xenoliths in Jinlongdingzi volcanics, Longgang volcano cluster, Jilin Province and their geological implications. Geological Review, 45(Suppl.1): 308-318 (in Chinese with English abstract)
Su BX, Zhang HF, Ying JF, Tang YJ, Hu Y and Santosh M. 2012. Metasomatized lithospheric mantle beneath the western Qinling, Central China:Insight into carbonatite melts in the mantle. The Journal of Geology, 120(6): 671-681 DOI:10.1086/667956
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins.. Geological Society, London, Special Publications, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Tang YJ, Zhang HF, Deloule E, Su BX, Ying JF, Xiao Y and Hu Y. 2012. Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos, 149: 79-90 DOI:10.1016/j.lithos.2011.12.001
Uenver-Thiele L, Woodland AB, Boffa Ballaran T, Miyajima N and Frost DJ. 2017. Phase relations of MgFe2O4 at conditions of the deep upper mantle and transition zone. American Mineralogist, 102(3): 632-642
Wang CY, Liu YS, Foley SF, Zong KQ and Hu ZC. 2019. Lithospheric transformation of the northern North China Craton by changing subduction style of the Paleo-Asian oceanic plate:Constraints from peridotite and pyroxenite xenoliths in the Yangyuan basalts. Lithos, 328-329: 58-68 DOI:10.1016/j.lithos.2019.01.018
Wang J, Hattori K and Xie ZP. 2013. Oxidation state of lithospheric mantle along the northeastern margin of the North China Craton:Implications for geodynamic processes. International Geology Review, 55(11): 1418-1444 DOI:10.1080/00206814.2013.780722
Webb SAC and Wood BJ. 1986. Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology, 92(4): 471-480 DOI:10.1007/BF00374429
Wei GJ, Liang XR, Li XH and Liu Y. 2002. Precise measurement of Sr isotopic composition of liquid and solid base using (LP)MC-ICPMS. Geochimica, 31(3): 295-299 (in Chinese with English abstract)
Wells PRA. 1977. Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62(2): 129-139 DOI:10.1007/BF00372872
Xia QK, Hao YT, Li P, Deloule E, Coltorti M, Dallai L, Yang XZ and Feng M. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. Journal of Geophysical Research:Solid Earth, 115(B7): B07207
Xu QH, Liu JQ, He HY and Zhang YH. 2019. Nature and evolution of the lithospheric mantle revealed by water contents and He-Ar isotopes of peridotite xenoliths from Changbaishan and Longgang basalts in northeast China. Science Bulletin, 64(18): 1325-1335 DOI:10.1016/j.scib.2019.07.006
Xu XS, O'Reilly SY, Griffin WL and Zhou XM. 2003. Enrichment of upper mantle peridotite:Petrological, trace element and isotopic evidence in xenoliths from SE China. Chemical Geology, 198(3-4): 163-188 DOI:10.1016/S0009-2541(03)00004-4
Xu XS, Griffin WL, O'Reilly SY, Pearson NJ, Geng HY and Zheng JP. 2008. Re-Os isotopes of sulfides in mantle xenoliths from eastern China:Progressive modification of lithospheric mantle. Lithos, 102(1-2): 43-64 DOI:10.1016/j.lithos.2007.06.010
Xu XW, Bai LX, Wei LM, Chen GH and Yu GH. 2019. Discussion on initiation time of the latest tectonic movement in break-up region of the North China Craton. Earth Science, 44(5): 1647-1660 (in Chinese with English abstract)
Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 747-757 DOI:10.1016/S1464-1895(01)00124-7
Yang JH, Zhang M and Wu FY. 2018. Mesozoic decratonization of the North China Craton by lithospheric delamination:Evidence from Sr-Nd-Hf-Os isotopes of mantle xenoliths of Cenozoic alkaline basalts in Yangyuan, Hebei Province, China. Journal of Asian Earth Sciences, 160: 396-407 DOI:10.1016/j.jseaes.2017.09.002
Yaxley GM, Green DH and Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39(11-12): 1917-1930 DOI:10.1093/petroj/39.11-12.1917
Ying JF, Zhang HF, Kita N, Morishita Y and Shimoda G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton:Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth and Planetary Science Letters, 244(3-4): 622-638 DOI:10.1016/j.epsl.2006.02.023
Zangana NA, Downes H, Thirlwall MF, Marriner GF and Bea F. 1999. Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic (French Massif Central):Implications for the composition of the shallow lithospheric mantle. Chemical Geology, 153(1-4): 11-35 DOI:10.1016/S0009-2541(98)00150-8
Zhai MG. 2019. Tectonic evolution of the North China Craton. Journal of Geomechanics, 25(5): 722-745 (in Chinese with English abstract)
Zhang HD, Liu JC, Santosh M, Tao N, Zhou QJ and Hu B. 2017. Ultra-depleted peridotite xenoliths in the Northern Taihang Mountains:Implications for the nature of the lithospheric mantle beneath the North China Craton. Gondwana Research, 48: 72-85 DOI:10.1016/j.gr.2017.04.009
Zhao DP and Ohtani E. 2009. Deep slab subduction and dehydration and their geodynamic consequences:Evidence from seismology and mineral physics. Gondwana Research, 16(3-4): 401-413 DOI:10.1016/j.gr.2009.01.005
Zhao DP, Tian Y, Lei JS, Liu L and Zheng SH. 2009. Seismic image and origin of the changbai intraplate volcano in East Asia:role of big mantle wedge above the stagnant pacific slab. Physics of the Earth & Planetary Interiors, 173(3-4): 197-206
Zheng JP, O'Reilly SY, Griffin WL, Lu FX and Zhang M. 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean Craton, eastern China. International Geology Review, 40(6): 471-499 DOI:10.1080/00206819809465220
Zheng JP. 1999. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning Beneath the Eastern China. Wuhan: China University of Geosciences Press (in Chinese)
Zheng JP, O'Reilly SY, Griffin WL, Lu FX, Zhang M and Pearson NJ. 2001. Relict refractory mantle beneath the eastern North China block:Significance for lithosphere evolution. Lithos, 57(1): 43-66
Zheng JP, Griffin WL, O'Reilly SY, Yu CM, Zhang HF, Pearson N and Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225 DOI:10.1016/j.gca.2007.07.028
Zheng JP. 2009. Comparison of mantle-derived materials from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton. Chinese Science Bulletin, 54(19): 3397-3416
Zheng JP and Dai HK. 2018. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Science China (Earth Sciences), 61(4): 406-424 DOI:10.1007/s11430-017-9166-8
Zheng TY, Zhao L and Zhu RX. 2009. New evidence from seismic imaging for subduction during assembly of the North China craton. Geology, 37(5): 395-398 DOI:10.1130/G25600A.1
Zhu G, Jiang DZ, Zhang BL and Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting:Evidence from crustal deformation kinematics. Gondwana Research, 22(1): 86-103 DOI:10.1016/j.gr.2011.08.005
Zhu RX and Xu YG. 2019. The subduction of the west Pacific plate and the destruction of the North China Craton. Science China (Earth Sciences), 62(9): 1340-1350 DOI:10.1007/s11430-018-9356-y
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571 DOI:10.1146/annurev.ea.14.050186.002425
Zong KQ, Klemd R, Yuan Y, He ZY, Guo JL, Shi XL, Liu YS, Hu ZC and Zhang ZM. 2017. The assembly of Rodinia:The correlation of Early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48
Zou DY, Zhang HF, Zhang XQ, Zhang HT and Su BX. 2020. Refertilization of lithospheric mantle beneath the North China Craton in Mesozoic:Evidence from in situ Sr isotopes of Fuxin peridotite. Lithos, 364-365: 105478 DOI:10.1016/j.lithos.2020.105478
白志达, 徐德斌, 张秉良, 张焘, 卜景. 2006. 龙岗火山群第四纪爆破式火山作用类型与期次研究. 岩石学报, 22(6): 1473-1480.
陈棋福, 艾印双, 陈赟. 2019. 长白山火山区深部结构探测的研究进展与展望. 中国科学(地球科学), 49(5): 778-795.
樊祺诚. 2008. 长白山火山的历史与演化. 资源调查与环境, 29(3): 196-203. DOI:10.3969/j.issn.1671-4814.2008.03.006
冯亚洲, 杨进辉, 孙金凤, 张吉衡. 2020. 中生代古太平洋板块俯冲诱发华北克拉通破坏的物质记录. 中国科学(地球科学), 50(5): 651-662.
郭文峰, 刘嘉麒, 徐文刚, 李稳, 雷敏. 2015. 长白山天池火山岩浆系统再认识:岩石热力学模拟. 科学通报, 60(35): 3489-3500.
梁细荣, 韦刚健, 李献华, 刘颖. 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91-96. DOI:10.3321/j.issn:0379-1726.2003.01.013
刘嘉麒, 陈双双, 郭文峰, 孙春青, 张茂亮, 郭正府. 2015. 长白山火山研究进展. 矿物岩石地球化学通报, 34(4): 710-723. DOI:10.3969/j.issn.1007-2802.2015.04.005
史兰斌, 林传勇, 韩秀伶, 陈孝德. 1999. 吉林龙冈火山群金龙顶子火山喷发物中幔源包体的基本特征及其地质意义. 地质论评, 45(增1): 308-318.
韦刚健, 梁细荣, 李献华, 刘颖. 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31(3): 295-299. DOI:10.3321/j.issn:0379-1726.2002.03.011
徐锡伟, 白鸾曦, 魏雷鸣, 陈桂华, 于贵华. 2019. 华北克拉通破坏区最新构造运动起始时间讨论. 地球科学, 44(5): 1647-1660.
翟明国. 2019. 华北克拉通构造演化. 地质力学学报, 25(5): 722-745.
郑建平. 1999. 中国东部地幔置换作用与中新生代岩石圈减薄. 武汉: 中国地质大学出版社.
郑建平. 2009. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程. 科学通报, 54(14): 1990-2007.
郑建平, 戴宏坤. 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合. 中国科学:地球科学, 48(4): 436-456.
朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学(地球科学), 49(9): 1346-1356.