岩石学报  2020, Vol. 36 Issue (6): 1931-1944, doi: 10.18654/1000-0569/2020.06.18   PDF    
东南极拉斯曼丘陵夕线石榴二长片麻岩的格林威尔期变质作用和构造意义
宗师1,2, 任留东1, 武梅千3     
1. 中国地质科学院地质研究所, 北京 100037;
2. 中国地质大学, 北京 100083;
3. 南京大学, 南京 210093
摘要: 东南极拉斯曼丘陵出露的中-高级变质岩是普里兹湾基底岩系的主要组成部分,是研究普里兹湾高级区组成与演化的理想对象。本文对拉斯曼丘陵米洛半岛地区的夕线石榴二长片麻岩进行了岩石学、相平衡模拟和地质年代学研究。研究结果表明拉斯曼丘陵夕线石榴二长片麻岩矿物组合为石榴子石+堇青石+斜长石+钛铁矿+夕线石+石英±黑云母±钾长石,经历了格林威尔期(~980Ma)高温变质,其峰期阶段(M1)的矿物组合为石榴子石+斜长石+钾长石+钛铁矿+夕线石+石英,变质温压条件为:~820℃、~9.6kbar。夕线石榴二长片麻岩的岩浆锆石比变质锆石具有更低的LREE和更高的HREE含量,其原岩的沉积年龄不早于~1073Ma,物源主要为中元古代岩浆岩(S-型花岗岩)。拉斯曼丘陵在格林威尔期经历了陆-陆碰撞,进而快速折返、剥蚀作用的过程。
关键词: 东南极    夕线石榴二长片麻岩    相平衡模拟    锆石定年    格林威尔事件    
Grenvillian metamorphism of sillimanite-garnet feldspar paragneiss in the Larsemann Hills, East Antarctica and tectonic implications
ZONG Shi1,2, REN LiuDong1, WU MeiQian3     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. China University of Geosciences, Beijing 100083, China;
3. Nanjing University, Nanjing 210093, China
Abstract: The medium- to high-grade metamorphic rocks exposed in the Larsemann Hills of East Antarctica are the main components of the Prydz Bay basement rock series. They are ideal for studying the composition and evolution of the Prydz Belt. In this paper,detailed petrological analyses,phase equilibrium modeling,and zircon analyses were performed on the sillimanite-garnet feldspar paragneiss from the Mirror Peninsula in the Larsemann Hills. The study results show that the paragneiss consists of the mineral assemblage garnet+cordierite+plagioclase+ilmenite+sillimanite+quartz±biotite±K-feldspar and underwent HT metamorphism in the Grenvillian Period (~980Ma). The peak metamorphic assemblages (M1) are represented by the matrix minerals garnet+plagioclase+K-feldspar+ilmenite+quartz,the phase equilibrium modeling shows that the metamorphic conditions of the paragneiss are ~820℃,~9.6kbar. The maximum deposition age of the paragneiss is constrained between ~1073Ma and 980Ma. It was formed by denudation and deposition of the Mesoproterozoic magmatic rocks,and the source rock belongs to S-type granite. The magmatic zircons in the paragneiss have lower LREE and higher HREE content than those of the metamorphic zircons in the same rock. During the Grenvillian Oeriod,the Larsemann Hills had a near-isothermal depressurization clockwise metamorphic P-T trajectory,experienced the process of continent-continent collision and then rapid exhumation and sedimentation,the S-type granite was associated with this process.
Key words: East Antarctica    sillimanite-garnet-feldspar paragneiss    Pseudosection modeling    Zircon dating    Grenvillian event    

格林威尔造山运动(Grenville Orogeny)是形成罗迪尼亚超大陆(Rodinia)的主要地质过程,而环东南极格林威尔期活动带是该造山带的重要组成部分。罗迪尼亚超大陆在约720Ma发生解体(Unrug, 1996)。随后裂解成的几个陆块在新元古代末至古生代初期的泛非期汇聚成冈瓦纳超大陆。普里兹湾拉斯曼丘陵位于东冈瓦纳的核心部位,它不仅经历了中-新元古代之交的格林威尔期(~1000Ma)构造热事件,还经历了早古生代泛非期(~530Ma)构造热事件(Dirks and Hand, 1995; Grew et al., 2012; Liu et al., 2009a; Tong et al., 2019; Wang et al., 2008;刘晓春, 2018;刘晓春和赵越, 2018a;周信等, 2014),不过,对东南极地区这两期构造带的分布及其地质意义仍存在较大争议,对普里兹湾构造带演化过程,不同的学者对普里兹湾构造演化过程存在不同的观点:鉴于普里兹构造带以泛非构造热事件为主,且为顺时针近等温减压(ITD)的变质作用P-T轨迹,部分学者认为普里兹构造带主要发生了泛非期碰撞造山带,并引起地壳增厚(Carson et al., 1997; Fitzsimons, 1996; Liu et al., 2006;胡健民等, 2008;刘晓春等, 2007a;俞良军等, 2002),并且是东冈瓦纳大陆最终汇聚的一条缝合带(Fitzsimons, 2000; Harley, 2003; Hensen and Zhou, 1997; Liu et al., 2007; Zhao et al., 2003;胡健民等, 2008;刘小汉等, 2002a, b ; 刘晓春等, 2007a, b ; 刘晓春, 2018;赵越等, 1993)。另一部分学者则认为,普里兹湾存在~1000Ma和~500Ma两期独立的构造-热事件,分别代表了罗迪尼亚大陆的聚合和冈瓦纳大陆的聚合活动(Dirks and Hand, 1995; Kelsey et al., 2007; Tong et al., 1998, 2002; Wang et al., 2007, 2008)。根据所在区的副片麻岩经历了格林威尔期(~1000Ma)和泛非期(~530Ma)两期变质事件的特征(Tong et al., 1997, 1998, 2002; Zhang et al., 1996;仝来喜等, 1995),部分学者进一步认为普里兹构造带在泛非期为一条陆内造山带(Phillips et al., 2007; Tong et al., 2014, 2019; Wang et al., 2008; Ren et al., 1992, 2018)。因此,厘清普里兹带拉斯曼丘陵的构造性质对于重建罗迪尼和冈瓦纳超大陆及确定东南极大陆的最终固结时间具有重要意义。深入研究该地区的高级变质岩,对其建立完整的格林威尔期和泛非期变质P-T轨迹是理清普里兹湾的变质热演化和构造特征的有效手段。本研究对拉斯曼丘陵夕线石榴二长片麻岩进行岩石学、相平衡模拟和锆石成因研究,并反演出格林威尔峰期的变质P-T轨迹,借此揭示普里兹湾在格林威尔期经历的变质作用过程,为深入探讨普里兹湾泛非事件和格林威尔事件之间的关系提供依据。

1 地质背景

拉斯曼丘陵位于东南极的普里兹湾,主要由米洛半岛(Mirror Peninsula)、布洛克尼斯半岛(Broknes Peninsula)、斯托尼斯半岛(Stornes Peninsula)和一系列小的岛屿组成。岩性上看,出露有变质岩浆岩(Sstrene正片麻岩)和Brattstrand副片麻岩(Fitzsimons, 1997; Grew et al., 2012; Hensen and Zhou, 1995),副片麻岩的岩性比较复杂,主要为含尖晶石-堇青石-夕线石的副片麻岩、含假蓝宝石紫苏石英岩(仝来喜等, 1996)、含柱晶石片麻岩(Ren et al., 1992)和一些浅粒岩,中间夹有辉石黑云斜长片麻岩、黑云斜长片麻岩和少量的花岗质片麻岩、(角闪)二辉麻粒岩等。另有伟晶岩、混合岩和含石榴子石花岗岩,间夹正长花岗斑岩、二长花岗岩。区内发生了高角闪岩相-麻粒岩相的变质作用,紧随峰期变质之后发生强烈的深熔作用,形成了大量的浅色脉体和花岗岩脉(体)(Carson et al., 1997; Grew et al., 2012; Tong et al., 2017)(图 1)。有人提出,该区的变质岩浆杂岩和副片麻岩分别代表中元古代基底正片麻岩和新元古代盖层副变质岩序列(Carson et al., 1995b; Dirks et al., 1993; Dirks and Hand, 1995; Fitzsimons and Harley, 1991; Hensen and Zhou, 1995; Sheraton et al., 1984; Stüwe et al., 1989)。

图 1 东南极拉斯曼丘陵地区地质图(据仝来喜等, 2012)及采样点 索引图显示拉斯曼丘陵在普里兹湾的位置,其中:LH-拉斯曼丘陵;RG-茹尓群岛;VH-西福尔丘陵 Fig. 1 Geological map of the Larsemann Hills, East Antarctica (after Tong et al., 2012) and the sample location The inset map shows the location of the Larsemann Hills in Prydz Bay. Abbreviation in the inset map: LH-Larsemann Hills; RG-Rauer Group; VH-Vestfold Hills

多数学者认为,现存的大多数构造特征仅代表泛非期构造热事件,拉斯曼丘陵能够反映格林威尔期事件的构造只少量的存在于残余的岩块中。格林威尔期变质事件的峰期(M1)温度压力条件为6~9kbar、840~900℃(Ren et al., 1992, Tong et al., 1997),而泛非期变质事件的峰期(M2)温压条件为6~7.5kbar、800~860℃(Carson et al., 1997; Grew et al., 2006;周信等, 2014)。在Brattstrand片麻岩中广泛存在尖晶石、堇青石、石榴石和石英的矿物共生组合,不同的学者对这些矿物的形成过程有不同的看法,一些学者将此组合解释为泛非变质事件的峰期(Stüwe and Powell, 1989Ren et al., 1992),而另一些作者则认为这些矿物是在泛非期退变质作用(M3~M4)过程中形成的。其形成的温压条件为~4.5kbar、~750℃(Stüwe and Powell, 1989Ren et al., 1992Carson et al., 1997)。表 1列出了前人对拉斯曼丘陵及其邻区变质温压值估算的结果。

表 1 前人对拉斯曼丘陵及邻区温度压力估算结果(据Spreitzer, 2017) Table 1 Previous estimation results of temperature and pressure in the Larsemann Hills and adjacent areas (after Spreitzer, 2017)

前人的研究表明,该区主要经历了格林威尔和泛非两期构造热事件的影响(Ren et al., 1992; Dirks et al., 1993;刘小汉等, 1995; Dirks and Hand, 1995; Carson et al., 1995a; Tong et al., 1998, 2012; Wang et al., 2008)(表 1),且早期更高P-T条件下的变质残余仍可保留。在格林威尔期主要发育与挤压相关的D1或D2构造,而泛非期先是挤压构造、后显示拉张应力,形成一系列伸展构造D3-D4(Dirks et al., 1993; Carson et al., 1995a;刘小汉等, 1995; Dirks and Hand, 1995;仝来喜等, 2012)

2 分析方法

本文所涉及样品的岩石主量元素和微量元素分析是在河北省区域地质矿产调查研究所实验室完成的。样品用HNO3和HF的混合物溶解,采用X射线荧光法(XRF)测定主量元素氧化物,用Perkin-Elmer Sciex Elan 6000 ICP-MS对微量元素进行了分析(靳新娣和朱和平, 2000)。

锆石的分选和制靶工作是在南京宏创地质勘探技术服务有限公司完成的。选取新鲜的样品清理干净后破碎、手工淘洗、强磁选、电磁选、重液分选和双目镜下手工挑选获得锆石,然后用环氧树脂将它们固定在样品靶上进行切片和抛光。利用TESCAN MIRA3场发射扫描电镜和TESCAN公司阴极发光探头进行锆石阴极发光(CL)成像。接着在北京科荟测试技术有限公司进行了锆石U-Pb定年、锆石微量元素和锆石原位Lu-Hf同位素的测定。利用LA-ICPMS对锆石进行了U-Pb测年及锆石微量元素测试,激光剥蚀系统为ESI NWR 193nm,ICP-MS为Analytikjena Plasma Quant MS Elite ICP-MS,U-Pb同位素定年中采用锆石标准GJ-1作外标进行同位素分馏校正。锆石微量元素含量利用NIST 610作为外标、Si作内标的方法进行定量计算。数据处理采用ICPMSDataCal程序,锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot/Ex_ver3完成。利用LA-MC-ICP-MS对锆石Lu-Hf同位素进行了测试分析,所用仪器为Neptune plus型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统(侯可军等, 2007, 2009),激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。

在南京大学矿床研究国家重点实验室对抛光薄片进行了矿物电子探针显微分析(EPMA)。通过日本电子JEOL公司生产的JXA-8100电子探针显微分析仪(Electron Probe MicroAnaylyzer)对石榴子石、斜长石进行了矿物成分分析,实验条件为加速电压15kV,电子束电流为20nA,束斑直径5μm,ZAF校正。

3 岩相学与矿物化学

本文所研究的夕线石榴二长片麻岩(Z1218-1-2)采于米洛半岛双峰山附近(图 1)。岩石颜色较浅,矿物粒径3~5mm,粒状变晶结构,块状构造,局部有暗色矿物条带。造岩矿物为石英50%~60%、钾长石5%~10%、斜长石10%~15%、石榴子石10%~15%、堇青石3%~5%、钛铁矿3%~5%以及黑云母、夕线石,副矿物主要是锆石、磷灰石(图 2),经历了中-高级变质作用。需要指出的是,岩石样品中的黑云母含量非常低,镜下观察可分为两类,一是呈他形细小颗粒包裹在石榴子石中,另一种则在石榴子石中的呈他形细小颗粒;在石榴子石边部和基质中的呈自形板状、条状。堇青石颗粒较大,且多呈自形晶,亦可呈他形晶分布在石榴子石周围。根据其与石榴子石间的结构和溶蚀关系,堇青石系后期退变质作用过程中形成。结构关系表明峰期前矿物组合主要为包裹在石榴子石内部的细小残留矿物,其组合为Sil+Ilm+Pl+Qtz(图 2d);峰期(M1)矿物组合为Grt+Pl+Kfs+Ilm+Sil+Qtz;晚期退变质作用过程形成主要的新生矿物有Crd+Bt(图 2c),发生减压变质反应和矿物转变关系Grt→Crd。

图 2 夕线石榴二长片麻岩野外露头照片(a)及其显微照片(b-d) Qtz-石英;Pl-斜长石;Kfs-钾长石;Bt-黑云母;Grt-石榴石;Crd-堇青石;Sil-夕线石;Ilm-钛铁矿 Fig. 2 Field outcrop (a) and photomicrographs (b-d) of the sillimanite-garnet feldspar paragneiss

石榴子石呈变斑晶产出,粒径0.1~1mm,自形程度相对较高,有时亦呈浑圆状。电子探针结果显示(表 2),夕线石榴二长片麻岩中的石榴子石中FeO的含量很高,MgO次之,CaO含量非常低,几乎不含MnO。石榴子石的组成为Alm65-67Py30-32Gr2-3。从核部到边部,石榴子石的成分并没有明显的变化(图 3a, b表 2)。石榴子石边部的斜长石主要呈他形,而基质中的斜长石自形程度较高。石榴子石边部的不规则斜长石An组分比基质中斜长石的An组分略低(表 3)。石榴子石中包裹的细粒黑云母MgO的含量(12.83%~13.74%)明显低于基质中的黑云母MgO含量(13.82%~17.16%),而包裹黑云母的TiO2含量(5.61%~6.32%)则比基质中的黑云母的TiO2含量(3.68%~5.58%)要高(表 4)。

表 2 样品中代表性的石榴子石电子探针分析结果(wt%) Table 2 Representative microprobe analyses of garnet in the sample (wt%)

图 3 石榴子石背散射图片(a)及成分剖面(b) Fig. 3 BSE image (a) and compositional profile (b) of the garnet

表 3 样品中代表性斜长石电子探针分析结果(wt%) Table 3 Representative microprobe analyses of plagioclase in the sample (wt%)

表 4 样品中代表性黑云母电子探针分析结果(wt%) Table 4 Representative microprobe analyses of biotite in the sample (wt%)
4 变质作用P-T条件

本文通过相平衡模拟限定了拉斯曼丘陵夕线石榴二长片麻岩变质P-T条件。相平衡模拟采用的软件为Perple_X软件(Connolly, 2015, 2018年升级的6.8.4版本),配套的热力学数据库为(Holland and Powell, 1998, 2003年升级版),选择的相关矿物及熔体相的活度模型为:绿泥石-Chl(W)、石榴子石-Grt(W)、白云母-Mic(W)、堇青石-Crd(W)、黑云母-Bt(W)、十字石-St(HP)、melt(W)、长石-Fsp(C1)、尖晶石-Sp(WPC)、钛铁矿-Ilm(WHP),此样品P-T视剖面图选择在NCKFMASHTO(Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O(Fe2O3))体系下进行,采用XRF分析所获得的实测全岩成分,实测全岩成分(wt%):SiO2=73.99,TiO2=0.31,Al2O3=14.23,K2O=0.99,Fe2O3=0.16,FeO=2.7,MnO=0.055,MgO=0.75,CaO=3.05,P2O5=0.054。岩石中MnO含量很低(< 0.1%),故所选化学体系不考虑MnO。P2O5按照磷灰石(CaO)5·(P2O5)1.5·(H2O)0.5扣除相应的组分。通过6kbar时样品的T-X(H2O)(图 4)及实测的矿物成分等值线来限定H2O百分含量(Pownall and JonathanMark, 2015)。在T-X(H2O)上,最终组分在固相线上可以稳定存在(Korhonen et al., 2012; Li and Wei, 2016)的H2O百分含量为0.22。通过同样的方法限定O的质量百分数为0.04。

图 4 夕线石榴二长片麻岩(Z1218-1-2)相平衡计算 样品的相平衡计算紫红色实线代表了限定的H2O含量,深蓝色虚线为斜长石的X(Ca), 黄色虚线为石榴子石的Mg# Fig. 4 Calculated pseudosection for the sillimanite-garnet feldspar paragneiss (Z1218-1-2) The solid magenta line for the phase equilibrium calculation of the sample represents the limited H2O content. The yellow dotted line is the garnet composition isopleth (Mg#=Mg/(Fe+Mg)), the dark blue dotted line is the plagioclase composition isopleth (An=Ca/(Ca+Na+K))

对于样品在计算的2~12kbar和500~1100℃区间内(图 5a),当温度大于~750℃时,体系中富集熔体;黑云母在温度大于~800℃条件下消失;石榴子石、石英和斜长石存在于大部分稳定域。在峰期矿物组合所在的稳定区域内,石榴子石的Mg#随压力的升高其值逐渐减小;斜长石中X(Ca)等值线随温度的升高其值逐渐增大(图 5b)。石榴子石的矿物成分实测Mg#含量的平均值为0.334,峰期斜长石的实测X(Ca)为0.4438和0.4449。在成岩格子中的投影点的稳定温压条件为~820℃、~9.6kbar,且所对应的矿物组合为(Grt+Pl+Kfs+Ilm+Sil+Qtz+melt)。结合镜下观察到的岩石矿物共生组合和基质中斜长石的实测X(Ca),限定出一条近等温减压的退变质P-T轨迹(图 5b)。

图 5 夕线石榴二长片麻岩(Z1218-1-2)P-T视剖面图 图 5b中深蓝色虚线为斜长石的X(Ca),黄色虚线为石榴子石的Mg# Fig. 5 P-T pseudosection for the sillimanite-garnet feldspar paragneiss In Fig. 5b: the dark blue dotted line is the plagioclase composition isopleth (An=Ca/(Ca+Na+K)), the yellow dotted line is the garnet composition isopleth (Mg#=Mg/(Fe+Mg))
5 锆石U-Pb定龄及Hf同位素

样品中锆石U-Pb定年和微量元素原位分析结果见表 5

表 5 夕线石榴二长片麻岩(样品Z1218-1-2)锆石LA-ICP-MS U-Pb定年结果 Table 5 LA-ICP-MS U-Pb analyses of zircons from the sillimanite-garnet feldspar paragneiss (Sample Z1218-1-2)

样品中的锆石主要为浑圆状到长柱状,长宽比约为1:1~3:1,锆石大小为30~150μm,部分锆石晶体表面裂纹发育。

根据锆石阴极发光图像(CL)等特征可以看出,大部分锆石具有较为均匀的中等强度发光效应(灰色-灰白色),大部分锆石核部发育典型的韵律环带结构,为典型岩浆锆石的特征(Hoskin and Schaltegger, 2003)(图 6a),边部发育相对较宽的黑色边。部分继承锆石的核-幔结构特征表明,这些锆石的形成过程中伴随着强烈的溶蚀作用(例如:点48、54)。

图 6 夕线石榴二长片麻岩(样品Z1218-1-2)中典型锆石的CL图像(a)、锆石U-Pb年龄谐和图(b)及碎屑锆石U-Pb年龄频数分布直方图(c) Fig. 6 The CL images of representative zircons (a), concordia diagram of zircon U-Pb age (b) and number distribution histogram of detrital zircon U-Pb age (c) from the sillimanite-garnet feldspar paragneiss (Sample Z1218-1-2)

获得较理想的49个锆石U-Pb年龄数据点,显示年龄主要分布范围为1444~602Ma。碎屑锆石核部的Th/U比值较高(平均0.7),其振荡环带表明岩浆成因(Belousova et al., 2002; Hoskin and Ireland, 2000;刘福来等, 2009),锆石的核部年龄比较分散,主要分布在1444~1073Ma,岩浆成因锆石核部的最小结晶年龄集中在1073±49Ma;而锆石边部Th/U比值较低(平均0.09),结合CL图像上锆石的内部结构特征,这些锆石边部为变质成因。未发生Pb丢失的变质边的集中年龄为980±19Ma (图 6b)。内部环带结构不发育的锆石(如点43)的Th/U比值也相对较低(平均0.1),推断可能是岩浆成因的锆石核部遭受晚期构造热事件的叠加影响所致,其850~700Ma的锆石年龄主要是泛非期构造热事件对格林威尔期构造热事件不同程度的重置、使得Pb丢失而造成的(Grew et al., 2012;仝来喜等, 1995, Tong et al., 2019; Wang et al., 2008)(图 6b)。

岩浆锆石和变质锆石具有相似的稀土配分模式,均表现出明显的轻稀土元素亏损、重稀土元素富集以及明显的Eu负异常、Ce正异常特征,但是变质锆石的Ce正异常不如岩浆锆石显著,且具平坦的或者HREE分异程度较轻的型式(图 7)。此外,拉斯曼丘陵夕线石榴二长片麻岩中(碎屑)岩浆锆石的LREE含量比变质锆石的低,而HREE比变质锆石高,这可能是区分岩浆、变质成因锆石的有效标志之一。

锆石原位Hf同位素分析结果见表 6。样品中10颗U-Pb年龄在1346~1028Ma之间的岩浆锆石176Hf/177Hf值为0.282017~0.282186、176Lu/177Hf值为0.000482~0.001932,εHf(t)有正有负(-3.38~+4.08),tDM2为1473~1942Ma。样品中5颗变质锆石176Hf/177Hf值为0.282129~0.282181、176Lu/177Hf值为0.0013~0.0014,εHf(t)均为负值(-5.6~-0.91)(图 8)。

图 7 夕线石榴二长片麻岩(样品Z1218-1-2)中锆石球粒陨石标准化稀土元素配分型式图(标准化值据 Fig. 7 Sun and McDonough, 1989) Fig. 7 Chondrite-normalized REE patterns of the zircons from the sillimanite-garnet feldspar paragneiss (Sample Z1218-1-2)(normalization values after Sun and McDonough, 1989)

表 6 夕线石榴二长片麻岩(样品Z1218-1-2)锆石Hf同位素组成 Table 6 Lu-Hf isotopic compositions of zircon from the sillimanite-garnet feldspar paragneiss (Sample Z1218-1-2)

图 8 夕线石榴二长片麻岩(样品Z1218-1-2)锆石U-Pb年龄-εHf(t)图解 Fig. 8 U-Pb age vs. εHf(t) variations of zircon from the sillimanite-garnet feldspar paragneiss (Sample Z1218-1-2)
6 讨论 6.1 拉斯曼丘陵夕线石榴二长片麻岩的锆石U-Pb年龄含义

前人已对普里兹带的地质演化做了大量的研究工作。获得的基底形成年龄集中于中元古代晚期的~1100Ma(Grew et al., 2012; Liu et al., 2007, 2009b, 2014; Sheraton et al., 1984; Wang et al., 2008; Zhao et al., 1995, 2003;刘晓春等, 2013)。但是关于变沉积盖层的形成年龄却一直还存在争议。部分学者认为变沉积盖层的形成于中元古代末期~1000Ma(Grew et al., 2012; Liu et al., 2007; Wang et al., 2008),Wang et al.(2008)根据变沉积岩中碎屑锆石核部与变质边U-Pb年龄之间的关系,提出拉斯曼丘陵沉积岩主要形成于中元古代(1130~1000Ma)。也有人提出是新元古代1000~600Ma期间(Hensen and Zhou, 1997; Zhao et al., 1995b),Kelsey et al.(2007)基于变沉积岩中最年轻的碎屑锆石核部年龄(600Ma)和新元古代-早古生代过渡期的最古老变质独居石年龄(~575Ma),限定了普里兹湾沿岸暴露的变沉积岩的沉积时代为600~575Ma。

本文所研究的变质沉积盖层样品(Z1218-1-2),其碎屑锆石(岩浆锆石)U-Pb结晶年龄的最小年龄峰为1073±49Ma,而锆石的增生变质边的最大年龄峰为980±19Ma,因此,夕线石榴二长片麻岩的沉积年龄应该不早于1073±49Ma,随后在980±19Ma发生变质作用。我们的数据并不支持Kelsey et al. (2008)的认识。因此,结合前人的研究成果我们认为,普里兹湾盖层副片麻岩中大多数沉积单元的沉积年龄为~1000Ma,尽管可能也存在较年轻的沉积单元,但由于普里兹湾普遍遭受泛非期麻粒岩相变质,所以这些年轻的沉积年龄很难识别。

锆石U-Pb体系的封闭温度>900℃(Cherniak and Watson, 2001; Lee et al., 1997),所以在常规的同位素定年中锆石U-Pb定年得到广泛的应用,即使岩石经历多期高级变质作用,锆石U-Pb年龄也能精准的限定出每一期的年龄,但是有些情况由于后期变质作用过程中造成Pb丢失,在锆石U-Pb年龄谐和图上往往会出现一些与早期事件年龄域不相符的分散年龄,年龄可能会比真实年龄年轻几十个百万年(Ashwal et al., 1999; Black and Sheraton, 1990; Yoshida, 2007)。样品(Z1218-1-2)的锆石U-Pb谐和图中出现了一些处于861~724Ma之间的分散年龄,导致一些学者认为这一年龄段是泛非期变质事件对早期格林威尔事件重置导致Pb丢失造成的(Grew et al., 2012;仝来喜等, 1995; Tong et al., 2019; Wang et al., 2008)。但是样品中锆石U-Pb年龄谐和图中并没有泛非期的变质年龄记录。对此,进行如下分析:长英质岩石如果发生了多期高级变质作用,很多情况下变质锆石很难记录两期变质事件。这是因为,如果早期变质作用达到麻粒岩相且形成了大量的变质锆石,而晚期叠加过程中变质温度稍低,那么锆石就很难再生长。这是由于变质锆石生长过程中需要大量的流体或熔体,早期高级变质作用过程中大量流体丢失而形成近乎无水的“干”岩石,即使遭受了后期变质作用的叠加、改造,体系中整体缺乏流体、挥发分,不利于锆石的生长。所以本区样品锆石年龄主要记录格林威尔期构造热事件,但缺失泛非期年龄记录就很好理解了。格林威尔期晚期形成的锆石边发生Pb丢失是这类长英质片麻岩经历过泛非期变质作用的有力证据。不过,对于变基性岩,即使前期发生麻粒岩相变质而缺失流体,后期变质过程中仍能生长出大量的变质锆石生长边,这是因为晚期变质过程中早期分散在硅酸盐矿物中的Zr仍可被释放出来形成变质锆石(魏春景, 2018)。

6.2 变质作用P-T条件

通过对中山站附近夕线石榴二长片麻岩进行岩相学、矿物化学、相平衡模拟计算与锆石U-Pb同位素定年研究,认为变沉积岩原岩主要是在格林威尔期发生脱流体而形成Grt+Pl+Kfs+Ilm+Sil+Qtz+melt矿物组合的无水岩石。通过相平衡模拟,我们进一步获得这套处于干体系下的夕线石榴二长片麻岩在格林威尔期的变质P-T条件为~9.6kbar、~820℃。早期高级变质作用过程中发生脱流体、脱熔体反应而处于一种干体系状态,在此过程中原岩中的含水矿物基本被不含流体的“干”矿物所取代。后期的泛非期变质作用温压条件为~4.5 kbar、~750℃(Stüwe and Powell, 1989, Ren et al., 1992, Carson et al., 1997),其条件略低于格林威尔期(M1),且变质作用过程在较干体系下完成,由于反应动力学的原因,这样的变质条件不足以使早期形成的稳定矿物组合发生实质性的变化,使得早期无水岩石中的矿物共生组合基本被保存下来,且由于缺失流体,所以该类样品中泛非构造热事件的准确年龄并没有被锆石很好的记录,但是850~700Ma的Pb丢失年龄说明夕线石榴二长片麻岩同样遭受了后期事件如泛非构造热事件的影响。

6.3 构造意义

Ren et al. (1992)Carosn et al. (1997)结合变质P-T轨迹认为普里兹湾主要为泛非期碰撞造山带,而Wang et al. (2008)Grew et al. (2012)根据锆石U-Pb年龄确定了普里兹带早期格林威尔期(~1000Ma)变质事件的存在。近些年的研究,大多数学者认为普里兹带是多期变质叠加造山带,早期格林威尔期变质岩被泛非期高级构造热事件强烈地改造,所以普里兹带为泛非期的一条重要构造活动带(Carson et al., 1995a; Dirks et al., 1993; Dirks and Hand, 1995; Fitzsimons, 1997; Hensen and Zhou, 1995, 1997;刘小汉等, 1995; Zhao et al., 1995, 1997, 1992;赵越等, 1993)。但是早期变质作用对晚期变质重结晶具有什么样的影响及多期变质作用事件中矿物组合是如何叠加的并不是很清楚。仝来喜等(2012)Tong et al.(2014, 2017, 2019)根据变质P-T轨迹特征和地球化学特征认为,早期格林威尔事件代表了Rayner陆间碰撞造山事件,之后的泛非期叠加事件则是陆内活化造山过程。因此,探究高级变质事件的变质行为及控制因素具有重要意义(刘晓春, 2018)。

本区夕线石榴二长片麻岩(Z1218-1-2)中碎屑锆石核部的年龄主要分布在1444~1073Ma期间,由此推断夕线石榴二长片麻岩主要来源于中元古代岩浆岩剥蚀沉积。确定变沉积岩源区组成和环境是一个非常复杂的问题。Wang et al. (2012)尝试通过已经确定各种环境的青藏高原东北缘松潘-甘孜构造带典型A型花岗岩类和青藏高原南部典型I和S型花岗岩类中的锆石微量元素成分对比,有效地判别出花岗岩的类型。借鉴他们的方法,我们也对南极拉斯曼丘陵变沉积岩中源于花岗岩剥蚀区的锆石微量元素成分进行了分析,在相应的图解中,这些碎屑锆石全部投入在S-型花岗岩范围内(图 9)。

图 9 三类花岗岩(I, S, A型)锆石微量元素成分差异图解(底图据Wang et al., 2012) Fig. 9 Trace element plot for zircons from I-, S-, and A-type granites (base map after Wang et al., 2012)

在威尔逊旋回的衰退期-终结期的过程中,洋壳俯冲消亡,进而发生陆-陆碰撞造山作用及岩石圈板块汇聚作用,且碰撞造山作用过程中地壳增厚,压力增大,接着在重力均衡的作用下快速折返、等温降压过程。本研究相平衡模拟结果表明,拉斯曼丘陵在格林威尔期经历了近等温降压型顺时针变质P-T轨迹,与前人通过传统温压计获得的近等温减压的P-T轨迹类似。反映了板块汇聚末期,两侧陆块拼贴在一起,形成更大的古陆,并在此过程中常常伴生S-型花岗岩。

综合以上分析,我们认为,拉斯曼丘陵在格林威尔期经历了陆-陆碰撞,随后快速折返、等温降压,即全面抬升、剥蚀的地质演化过程。

7 结论

根据上面的分析和讨论,获得如下初步认识和结论:

(1) 拉斯曼丘陵夕线石榴二长片麻岩在格林威尔期(~980Ma)的变质温压条件达到820℃/9.6kbar。

(2) 拉斯曼丘陵夕线石榴二长片麻岩中(碎屑)岩浆锆石的LREE比变质锆石低,而HREE比变质锆石高,是区分岩浆、变质成因的锆石的有效标志之一。

(3) 拉斯曼丘陵夕线石榴二长片麻岩的原岩沉积年龄不早于1073Ma,很可能介于1073Ma和980Ma之间;物源为中元古代岩浆岩,基本为S-型花岗岩。

(4) 拉斯曼丘陵在格林威尔期经历了陆-陆碰撞,随后快速折返、剥蚀的地质演化过程。

致谢      感谢多位审稿人对初稿提出的重要修改意见。感谢中国第34次南极科学考察队对现场调查工作给予的后勤保障和大力支持。

参考文献
Ashwal LD, Tucker RD and Zinner EK. 1999. Slow cooling of deep crustal granulites and Pb-loss in zircon: Application of three microprobe techniques. Geochimica et Cosmochimica Acta, 63(18): 2839-2851
Belousova E, Griffin W, O'Reilly SY and Fisher N. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622
Black LP and Sheraton JW. 1990. The influence of Precambrian source components on the U-Pb zircon age of a Palaeozoic granite from northern Victoria Land, Antarctica. Precambrian Research, 46(4): 275-293
Carson CJ, Dirks PHGM, Hand M, Sims JP and Wilson CJL. 1995a. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geological Magazine, 132(2): 151-170
Carson CJ, Hand M and Dirks PHGM. 1995b. Stable coexistence of grandidierite and kornerupine during medium pressure granulite facies metamorphism. Mineralogical Magazine, 59(2): 327-339
Carson CJ, Powell R, Wilson CJL and Dirks PHGM. 1997. Partial melting during tectonic exhumation of a granulite terrane: An example from the Larsemann Hills, East Antarctica. Journal of Metamorphic Geology, 15(1): 105-126
Cherniak DJ and Watson EB. 2001. Pb Diffusion in zircon. Chemical Geology, 172(1-2): 5-24
Dirks PHGM, Carson CJ and Wilson CJL. 1993. The deformational history of the Larsemann Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica. Antarctic Science, 5(2): 179-192
Dirks PHGM and Hand M. 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica. Journal of the Geological Society of Australia, 42(2): 157-172
Fitzsimons ICW and Harley SL. 1991. Geological relationships in high-grade gneiss of the Brattstrand Bluffs coastline, Prydz Bay, East Antarctica. Australian Journal of Earth Sciences, 38(5): 497-519
Fitzsimons ICW. 1996. Metapelitic migmatites from brattstrand bluffs, East Antarctica: Metamorphism, melting and exhumation of the mid crust. Journal of Petrology, 37(2): 395-414
Fitzsimons ICW. 1997. The Brattstrand Paragneiss and the Søstrene Orthogneiss: a review of Pan-African metamorphism and Grenvillian relics in southern Prydz Bay. In: Ricci CA (ed.). The Antarctic Region: Geological Evolution and Processes. Proceedings of the 7th International Symposium on Antarctic Earth Sciences. Siena: Terra Antartica Publication, 121-130
Fitzsimons ICW. 2000. A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. Journal of African Earth Sciences, 31(1): 3-23
Grew ES, Christy AG and Carson CJ. 2006. A boron-enriched province in granulite-facies rocks Larsemann Hills, Prydz Bay, Antarctica. Geochimica et Cosmochimica Acta, 70(S18): A217
Grew ES, Armbruster T, Medenback O, Yates MG and Carson CJ. 2007. Tassieite, (Na, )Ca2(Mg, Fe2+, Fe3+)2(Fe3+, Mg)2(Fe2+, Mg)2(PO4)6·2H2O a hydrothermal wicksitegroup mineral in fluorapatite nodules from granulite-facies paragneiss in the Larsemann Hills, Prydz Bay, East Antarctica. Canadian Mineralogist, 45: 293-305
Grew ES, Carson CJ, Christy AG, Maas R, Yaxley GM, Boger SD and Fanning CM. 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica. Precambrian Research, 206-207: 87-108
Harley SL. 2003. Archaean-Cambrian crustal development of East Antarctica: Metamorphic characteristics and tectonic implications. In: Yoshida M, Windley BF and Dasgupta S (eds.). Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 203-230
Hensen BJ and Zhou B. 1995. Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: Implications for the Sm-Nd closure temperature. Geology, 23(3): 225-228
Hensen BJ and Zhou B. 1997. East Gondwana amalgamation by Pan-African collision? Evidence from Prydz Bay, East Antarctica. In: Ricci CA (ed.). The Antarctic Region: Geological Evolution and Processes. Proceedings of the 7th International Symposium on Antarctic Earth Sciences. Siena: Terra Antarctica Publication, 115-119
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)
Hou KJ, Li YH and Tian YY. 2009. In situ U-Pb zircon dating using laser ablation-multi ion couting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hu JM, Liu XC, Zhao Y, Xu G and Ren LD. 2008. Advances in the study of the orogeny and structural deformation of Prydz tectonic belt in East Antarctica. Acta Geoscientica Sinica, 29(3): 343-354 (in Chinese with English abstract)
Jin XD and Zhu HP. 2000. Determination of 43 trace elements in rock samples by double focusing high resolution inductively coupled plasma-mass spectrometry. Chinese Journal of Analytical Chemistry, 28(5): 563-567 (in Chinese with English abstract)
Kelsey DE, Hand M, Clark C and Wilson CJL. 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850℃) polymetamorphic granulites from Prydz Bay, East Antarctica. Journal of the Geological Society, 164(3): 667-683
Korhonen FJ, Powell R and Stout JH. 2012. Stability of sapphirine+quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: Calculated equilibria in NCKFMASHTO. Journal of Metamorphic Geology, 30(1): 21-36
Lee JKW, Williams IS and Ellis DJ. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390(6656): 159-162
Li XW and Wei CJ. 2016. Phase equilibria modelling and zircon age dating of pelitic granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6): 595-615
Liu FL, Wang F and Liu PH. 2009. Genetic relationship between pegmatite formation and anatexis of ultrahigh-pressure (UHP) metamorphic rocks in the Weihai area, North Sulu UHP Terrane. Acta Geologica Sinica, 83(11): 1687-1702 (in Chinese with English abstract)
Liu XC, Jahn BM, Zhao Y, Li M, Li HM and Liu XH. 2006. Late Pan-African granitoids from the Grove Mountains, East Antarctica: Age, origin and tectonic implications. Precambrian Research, 145(1-2): 131-154
Liu XC, Zhao Y, Zhao GC, Jian P and Xu G. 2007. Petrology and geochronology of granulites from the McKaskle Hills, eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz Belt. Journal of Petrology, 48(8): 1443-1470
Liu XC, Zhao Y, Liu XH, Hu JM and Xu G. 2007a. Evolution of high-grade metamorphism in the Prydz Belt, East Antarctica. Earth Science Frontiers, 14(1): 56-63 (in Chinese with English abstract)
Liu XC, Zhao Y, Liu XH and Hu JM. 2007b. Late Neoproterozoic-Early Paleozoic tectonothermal events in East Antarctica: Implications for amalgamation of the gondwana supercontinent. Geological Journal of China Universities, 13(3): 546-560 (in Chinese with English abstract)
Liu XC, Hu JM, Zhao Y, Lou YX, Wei CJ and Liu XH. 2009a. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, East Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana. Precambrian Research, 174(1-2): 181-199
Liu XC, Zhao Y, Song B, Liu J and Cui JJ. 2009b. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly. Gondwana Research, 16(2): 342-361
Liu XC, Zhao Y, Hu JM, Liu XH and Qu W. 2013. The Grove Mountains: A typical Pan-African metamorphic terrane in the Prydz belt, East Antarctica. Chinese Journal of Polar Research, 25(1): 7-24 (in Chinese with English abstract)
Liu XC, Wang W, Zhao Y, Liu J and Song B. 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, East Antarctica. Journal of Metamorphic Geology, 32(9): 1041-1062
Liu XC. 2018. Deciphering multiple metamorphic events in high-grade metamorphic terranes: A case from the Amery area of East Antarctica. Acta Petrologica Sinica, 34(4): 925-939 (in Chinese with English abstract)
Liu XC and Zhao Y. 2018. Geological surveys in East Antarctica by Chinese expeditions over the last 20 years: Progress and prospects. Chinese Journal of Polar Research, 30(3): 268-286 (in Chinese with English abstract)
Liu XH, Tong LX, Li JL, Zhao Y, Ren LD and Wang YB. 1995. Tectonic evolution of East Antarctica shield during Mesoproterozoic and Early Palaeozoic. In: Program and Extended Abstracts. Conference on Geology across Taiwan Strait. Taipei: China Geological Association Press, Taipei, 165-169 (in Chinese)
Liu XH, Zhao Y, Tong LX, Ren LD, Liu XC and Yu LJ. 2002b. The East Antarctic block in the tectonic evolution of the Rodinia-Gondwana super continents. World Sci-Tech Research & Develop, 24(4): 35-40 (in Chinese with English abstract)
Liu XH, Zhao Y, Liu XC and Yu LJ. 2003. Geology of the Grove Mountains in East Antarctica: New evidence for the final suture of Gondwana Land. Science in China (Series D), 46(4): 305-319
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
Phillips G, Wilson CJL, Phillips D and Szczepanski SK. 2007. Thermochronological (40Ar/39Ar) evidence of Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica: Implications for East Gondwana. Journal of the Geological Society, 164(4): 771-784
Ren L, Zhao Y, Liu XH and Chen T. 1992. Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds.). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing, 145-153
Ren LD and Liu XH. 1994. Occurrence of the assemblage grandidierite, kornerupine, and tourmaline in Antarctica. Antarctic Research, 6(1): 1-7 (in Chinese with English abstract)
Ren LD, Zong S, Wang YB and Li C. 2018. Distribution domains of the Pan-African event in East Antarctica and adjacent areas. Advances in Polar Science, 29(2): 87-107
Sheraton JW, Black LP and McCulloch MT. 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz bay area: The extent of proterozoic reworking of Qrchaean continental crust in East Antarctica. Precambrian Research, 26(2): 169-198
Stüwe K, Braun HM and Peer H. 1989. Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Australian Journal of Earth Sciences, 36(2): 219-241
Spreitzer SK. 2017. In situ dating of multiple events in granulite-facies rocks of the Larsemann Hills, Prydz Bay, East Antarctica Using electron microprobe analysis of monazite. Master Degree Thesis. Maine: University of Maine, 1-351
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tong LX, Liu XH, Chen FK, Wang YB and Ren LD. 1995. The U-Pb dating of zircon in the mafic granulite from the Larsemann Hills, East Antarctica and its geological implications. Antarctic Research, 7(4): 65-70 (in Chinese with English abstract)
Tong LX, Liu XH, Xu P, Han XL, Zhao Y, Ren LD and Wang YB. 1997. Discovery of sapphifine-bearing hyperthene quartzite in the Larsemann Hills, East Antarctica, and its geological significance. Chinese Science Bulletin, 42(4): 324-328
Tong LX, Liu XH, Zhang LS, Chen HH, Chen FK, Wang YB and Ren LD. 1998. The 40Ar-39Ar ages of hornblendes in Grt-Pl-bearing amphibolite from the Larsemann Hils, East Antarctica and their geological implication. Advances in Polar Science, 9(2): 79-91
Tong LX, Wilson CJL and Liu XH. 2002. A high-grade event of ~1100Ma preserved within the ~500Ma mobile belt of the Larsemann Hills, East Antarctica: Further evidence from 40Ar-39Ar dating. Terra Antartica, 9(2): 73-86
Tong LX, Liu XH, Wang YB and Wilson CJL. 2012. Metamorphism evolution of pelitic granulites from the Larsemann Hills, East Antarctica. Acta Geologica Sinica, 86(8): 1273-1290 (in Chinese with English abstract)
Tong LX, Liu XH, Wang YB and Liang XR. 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica. Lithos, 192-195: 102-115
Tong LX, Jahn BM, Liu XH, Liang XR, Xu YG and Ionov D. 2017. Ultramafic to mafic granulites from the Larsemann Hills, East Antarctica: Geochemistry and tectonic implications. Journal of Asian Earth Sciences, 145: 679-690
Tong LX, Liu Z, Li ZX, Liu XH and Zhou X. 2019. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: P-T path, U-Pb ages and tectonic implications. Precambrian Research, 326: 385-398
Unrug R. 1996. The assembly of Gondwanaland. Episodes, 19(1-2): 11-20
Wang Q, Zhu DC, Zhao ZD, Guan Q, Zhang XQ, Sui QL, Hu ZC and Mo XX. 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53: 59-66
Wang YB, Tong LX and Liu DY. 2007. Zircon U-Pb ages from an ultra-high temperature metapelite, Rauer Group, East Antarctica: Implications for overprints by Grenvillian and Pan-African events. Reston, VA: U.S. Geological Survey, 4
Wang YB, Liu DY, Chung SL, Tong LX and Ren LD. 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a Late Mesoproterozoic to Early Neoproterozoic tectono-thermal event in East Antarctica. American Journal of Science, 308(4): 573-617
Wei CJ. 2018. Neoarchean granulite facies metamorphism and its tectonic implications from the East Hebei terrane. Acta Petrologica Sinica, 34(4): 895-912 (in Chinese with English abstract)
Yoshida M. 2007. Geochronological data evaluation: Implications for the Proterozoic tectonics of East Gondwana. Gondwana Research, 12(3): 228-241
Yu LJ, Liu XH, Zhao Y, Ju YT and Liu XC. 2002. Metamorphism of mafic granulites in the Grove Mountains, East Antarctica. Acta Petrologica Sinica, 18(4): 501-506 (in Chinese with English abstract)
Zhang L, Tong LX, Liu XH and Scharer U. 1996. Conventional U-Pb ages of the high-grade metamorphic rocks in the Larsemann Hills, East Antarctica. In: Pang Z, Zhang J and Sun J (eds.). Advances in Solid Earth Sciences. Beijing: Science Press, 27-35
Zhao Y, Song B, Wang Y, Ren L, Li J and Chen T. 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds.). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing, 155-161
Zhao Y, Liu XH, Song B, Zhang ZQ, Li JL, Yao YP and Wang YB. 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: Possible implications for Neoproterozoic tectonics. Precambrian Research, 75(3-4): 175-188
Zhao Y, Song B, Zhang ZQ, Fu YL, Chen TY, Wang YB, Ren LD, Yao YP, Li JL and Liu XH. 1995. Early Paleozoic (Pan African) thermal event of the Larsemann Hills and its neighbours, Prydz Bay, East Antarctica. Science in China (Series B), 38(1): 74-84
Zhao Y, Liu XH, Liu XC and Song B. 2003. Pan-African events in Prydz Bay, East Antarctica, and their implications for East Gondwana tectonics. In: Yoshida M, Windley BF and Dasgupta S (eds.). Pmtemomic East Giondana: Supercontinent Assambly and Brenkup. Geological Society, London, Special Publications, 206(1): 231-245
Zhao YJ, Liu XH, Wang SC and Song B. 1997. Syn- and post-tectonic cooling and exhumation in the Larsemann Hills, East Antarctica. Episodes, 20(2): 122-127
Zhou X, Tong LX, Liu XH, Wang YB and Chen YB. 2014. Metamorphism evolution of mafic granulite from the Larsemann Hills, East Antarctica. Acta Petrologica Sinica, 30(6): 1731-1747 (in Chinese with English abstract)
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604.
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492.
胡健民, 刘晓春, 赵越, 徐刚, 任留东. 2008. 南极普里兹造山带性质及构造变形过程. 地球学报, 29(3): 343-354.
靳新娣, 朱和平. 2000. 岩石样品中43种元素的高分辨等离子质谱测定. 分析化学, 28(5): 563-567.
刘福来, 王舫, 刘平华. 2009. 北苏鲁威海地区伟晶岩的形成过程及其与超高压岩石深熔作用的成因关系. 地质学报, 83(11): 1687-1702.
刘晓春, 赵越, 刘小汉, 胡健民, 徐刚. 2007a. 东南极普里兹带高级变质作用演化. 地学前缘, 14(1): 56-63.
刘晓春, 赵越, 刘小汉, 胡健民. 2007b. 东南极晚新元古-早古生代构造热事件及其在冈瓦纳超大陆重建中的意义. 高校地质学报, 13(3): 546-560.
刘晓春, 赵越, 胡健民, 刘小汉, 曲玮. 2013. 东南极格罗夫山:普里兹造山带中一个典型的泛非期变质地体. 极地研究, 25(1): 7-24.
刘晓春. 2018. 高级变质地体中多期变质事件的甄别:以东南极埃默里地区为例. 岩石学报, 34(4): 925-939.
刘晓春, 赵越. 2018. 中国东南极地质考察20年进展与展望. 极地研究, 30(3): 268-286.
刘小汉, 仝来喜, 李继亮, 赵越, 任留东, 王彦斌. 1995.东南极地盾中元古-早古生代构造演化.见: 海峡两岸地球科学研讨会论文集(详细摘要).台北: 台北中国地质协会出版社, (2): 165-169
刘小汉, 赵越, 刘晓春, 俞良军. 2002a. 东南极格罗夫山地质特征——冈瓦纳最终缝合带的新证据. 中国科学(D辑), 32(6): 457-468.
刘小汉, 赵越, 仝来喜, 任留东, 刘晓春, 俞良军. 2002b. 罗迪尼亚-冈瓦纳古陆演化中的东南极陆块. 世界科技研究与发展, 24(4): 35-40.
仝来喜, 刘小汉, 陈福坤, 王彦斌, 任留东. 1995. 东南极拉斯曼丘陵暗色麻粒岩锆石的U-Pb年龄及其地质意义. 南极研究, 7(4): 65-70.
仝来喜, 刘小汉, 徐平, 韩秀伶, 赵越, 任留东, 王彦斌. 1996. 东南极拉斯曼丘陵含假蓝宝石紫苏辉石石英岩的发现及其地质意义. 科学通报, 41(13): 1205-1208.
仝来喜, 刘小汉, 王彦斌, Wilson CJL. 2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化. 地质学报, 86(8): 1273-1290.
魏春景. 2018. 冀东地区新太古代麻粒岩相变质作用及其大地构造意义. 岩石学报, 34(4): 895-912.
俞良军, 刘小汉, 赵越, 琚宜太, 刘晓春. 2002. 东南极格罗夫山镁铁质麻粒岩的变质作用. 岩石学报, 18(4): 501-516.
赵越, 宋彪, 张宗清, 富云莲, 陈廷愚, 王彦斌, 任留东, 姚玉鹏, 李继亮, 刘小汉. 1993. 东南极拉斯曼丘陵及其邻区的泛非热事件. 中国科学(B辑), 23(9): 1001-1008.
周信, 仝来喜, 刘小汉, 王彦斌, 陈义兵. 2014. 东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化. 岩石学报, 30(6): 1731-1747.