2. 自然资源部矿产勘查技术指导中心, 北京 100083
2. Mineral Exploration Technical Guidance Center of Ministry of Natural Resources, Beijing 100083, China
位于东欧板块、西伯利亚板块、华北板块和塔里木板块之间的中亚造山带是古亚洲洋长期俯冲消减的结果(图 1a)(Jahn et al., 2000; Song et al., 2013; Han and Zhao, 2018; Xiao et al., 2018),为探讨大陆增生-改造过程与成矿作用提供了天然实验室(肖文交等, 2008)。
![]() |
图 1 中亚造山带构造位置图(a, 据He et al., 2018)、北山造山带构造简图(b, 据Zhang et al., 2015)及柳园东北部地区地质简图(c) Fig. 1 Simplified tectonic map of Central Asian Orogenic Belt (a), simplified tectonic map of Beishan Orogenic Belt (b) and sketch geological map of the northeastern Liuyuan area (c) |
甘肃北山地区位于中亚造山带中段南缘,其西侧以星星峡断裂为界与东天山毗邻,东侧以阿尔金断裂为界与阿拉善相邻,其特殊的构造位置、复杂的物质组成和强烈的构造、岩浆活动,一直受到地质学界的广泛关注,对该区构造、岩浆作用的研究为全面剖析中亚造山带的演化过程发挥了重要作用(许志琴和杨经绥, 1999;蔡志慧等, 2012;Li et al., 2013;Wang et al., 2017;过磊等, 2018)。此外,甘肃北山地区也是我国北方重要的铜、钼、金、铁多金属成矿带之一,区内许多金矿床和多金属矿床与三叠纪构造-岩浆作用存在密切的时空关系(江思宏等, 2001;王涛等, 2008;李舢等, 2010;彭振安等, 2010;苗来成等, 2014;过磊等, 2018)。因此,前人对该区三叠纪花岗质侵入岩的岩石学、年代学和地球化学开展了大量研究工作(Li et al., 2012;朱江等, 2013, 2015;Zheng et al., 2014;Wang et al., 2017),但对辉绿岩等基性岩体(脉)的关注很少(刘畅等, 2006)。辉绿岩墙是软流圈或岩石圈地幔岩浆侵入的产物,也是岩石圈伸展作用和构造-岩浆活动的重要标志,因此,其研究对于查明三叠纪构造、岩浆、成矿作用发生时的构造环境至关重要(Halls, 1982; 邵济安和张履桥, 2002)。
基于甘肃北山花牛山-柳园地区1:50000矿产地质调查岩脉填图成果,本文以柳园地区辉绿岩脉为研究对象,系统开展了岩石学、锆石U-Pb年代学、Hf同位素示踪及岩石地球化学研究,探讨其形成的时代、成因机制和构造环境,从而为北山三叠纪构造、岩浆、成矿作用的系统研究提供更多证据。
1 区域地质背景北山南部位于中亚造山带的中段南缘,包括红柳河-牛圈子-洗肠井蛇绿混杂岩带以南至敦煌地块北缘的区域,其形成与敦煌地体、花牛山地体以及古亚洲洋南部复杂增生体俯冲碰撞有关(图 1a)。贯穿研究区的四条断裂带自北向南分别是红石山、星星峡-石板井、红柳河-洗肠井和柳园断裂(图 1b),这四条断裂可能分别代表了分隔西伯利亚板块、哈萨克斯坦板块和塔里木板块的古洋盆,前人称其为“蛇绿混杂岩带” (左国朝等, 2003; Xiao et al., 2010)。区内断裂主要呈北西西、近东西和北东走向。晚石炭世至早-中二叠世的地层均有分布,由西往东沿独山-红柳园-后红泉-野马井一线广泛分布,地层由老至新分别是干泉组、双堡塘组、菊石滩组、金塔组(甘肃省地质矿产局, 1997)。干泉组下部由砾岩、砂岩和泥岩组成,局部出现生物碎屑灰岩;其上部主要由火山岩组成,如玄武岩、英安岩和流纹岩等,同位素年代学研究认为干泉组形成时代可能延续至早二叠世早期(卢进才等, 2013),主要分布在黑尖山、三个井以西和金塔县玉石山以东。其底界与石板山组呈整合接触,顶界与上覆双堡塘组地层为不整合接触(江思宏, 2004)。下-中二叠统由双堡塘组、菊石滩组和金塔组组成,其中双堡塘组以粗碎屑岩为主,菊石滩组以细碎屑岩为主,金塔组以火山岩为主,下部由基性火山岩夹细碎屑沉积岩组成,上部以块状-枕状熔岩为主偶夹硅质板岩,三者之间为整合接触,均为海相沉积(甘肃省地质矿产局, 1997)。上二叠统不整合于下-中二叠统之上,由红岩井组和方山口组构成,主要为陆相碎屑岩和火山岩,其中红岩井组以砾岩、砂岩和炭质泥页岩为主;方山口组以酸性火山岩为主,含砂岩和凝灰质砂岩夹层(牛亚卓等, 2018)。区内岩浆活动强烈,以规模巨大、呈复式岩基存在的古生代侵入岩最为发育(江思宏和聂凤军, 2006;Li et al., 2012, 2013)。此外,岩脉广泛出露,以中-酸性、基性为主,脉体走向以北东向和近东西向最为发育(图 1c)。单个脉体长数百米至千余米不等,倾角多在45°~70°之间,局部近直立(图 2a)。
![]() |
图 2 柳园辉绿岩脉露头、样品及镜下照片 (a)辉绿岩脉穿插于中石炭世似斑状花岗岩;(b)辉绿岩脉标本照片;(c、d)显微镜下辉绿岩显示辉石和斜长石都遭受较强蚀变 Fig. 2 The field outcrops and microphotographs of Liuyuan diabase dikes (a) the diabase dyke cross-cutting the Mid-Carboniferous porphyritic granite; (b) photograph of diabase sample; (c, d) microphotographs of altered diabase |
研究区位于红柳河-洗肠井蛇绿混杂岩带与柳园蛇绿混杂岩带之间(图 1b,c)。本次研究的辉绿岩样品采自柳园镇北东约30km左右的岩脉,其围岩为中石炭世似斑状花岗岩,脉宽3~5m,延长大于400m,走向近70°。辉绿岩风化面深褐色、新鲜面灰黑色-墨绿色,暗色矿物主要为辉石和少量黑云母,其中大部分已蚀变为绿泥石、纤闪石等;透明矿物为斜长石,也发生明显绢云母化蚀变(图 2b-d)。
2 样品分析方法 2.1 锆石U-Pb和Hf同位素分析辉绿岩的锆石分选在首钢地质勘查院进行。机械性粉碎含有锆石的岩石样品至80目,重力磁力分选后利用双目镜把锆石颗粒挑出。挑选出的锆石样品在北京锆年领航科技有限公司完成制靶和阴极发光照相。在双目镜下,选择透明、无包裹体、无裂隙、晶型好、颗粒较大的锆石单矿物粘在双面胶上,利用无色透明的环氧树脂固定,待环氧树脂固化后,将锆石抛光,使其内部结构剖面充分暴露。完成制靶后,对样品进行阴极发光图像(CL)的采集,以便观察锆石的内部结构,帮助选择适宜的测试点位。
单颗粒锆石LA-ICP-MS原位U-Pb同位素分析在北京燕都中实测试技术有限公司完成。激光剥蚀系统为NWR193(Elemental Scientific Lasers LLC),ICP-MS为德国耶拿M90。测试过程中激光斑束选择25μm,激光脉冲为8Hz,能量密度为4J/cm2。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合。每个时间分辨分析数据包括大约20~30s的空白信号和50s的样品信号。本次测试91500及Plesovice标样均符合推荐值(Wiedenbeck et al., 1995;Sláma et al., 2008)。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ZSkits完成。锆石的谐和图以及年龄频率图用Isoplot(version 3.0)绘制。年轻的锆石(< 1Ga)采用206Pb/238U年龄。同位素比值及年龄误差均为1σ。
在完成上述锆石U-Pb同位素分析之后,对所测试锆石进行原位Hf同位素分析。Hf同位素测试位置与U-Pb定年点位相同或靠近。锆石原位Lu-Hf同位素分析在北京燕都中实测试技术有限公司使用美国热电Nepture-plus MC-ICP-MS与NWR193激光剥蚀进样系统完成。测试步骤与校准方法参照Wu et al. (2006)。锆石剥蚀使用脉冲频率为8Hz,斑束直径为45μm,能量密度为10J/cm2的激光剥蚀31s。Hf同位素模式年龄的计算公式与计算过程中各种参数的选择可以参考相关文献Blichert-Toft and Albarède(1997)和Griffin et al.(2000)。
2.2 主量、微量元素分析硅酸盐全分析在北京燕都中实测试技术有限公司完成。首先将岩石粗碎至厘米级的块体,选取肉眼观察无蚀变及脉体穿插的新鲜样品用纯化水冲洗干净,烘干并粉碎至200目以备测试使用。主量元素测试首先将粉末样品称量后加入Li2B4O7 (1:8)助熔剂混合,并使用融样机加热至1150℃使其在金铂坩埚中熔融成均一玻璃片体,后使用XRF(Zetium, PANalytical)测试。测试结果保证数据误差小于1%。微量元素测试将200目粉末样品称量后置放入聚四氟乙烯溶样罐,然后加入HF+HNO3,在干燥箱中将的高压消解罐保持在190℃温度72h,后取出经过赶酸并将溶液定容为稀溶液上机测试。测试使用ICP-MS(M90,analytikjena)完成,所测数据根据监控标样GSR-2显示误差小于5%,部分挥发性元素及极低含量元素的分析误差小于10%。
3 分析结果 3.1 LA-ICPMS锆石U-Pb定年本次测试所选的北山辉绿岩(样品TW6241-2)锆石U-Pb分析结果剔除了部分普通铅丢失严重及谐和度低(<90%)的测试数据,有效锆石U-Pb数据为15组(表 1)。锆石CL图像显示锆石结晶均较好,呈短柱状晶形,自形程度较高,长度一般在100~200μm,长宽比2:1.5~2:1,具典型的岩浆震荡环带,为岩浆成因锆石(图 3)。
![]() |
表 1 柳园辉绿岩脉锆石LA-ICPMS U-Pb分析数据 Table 1 Zircon U-Pb isotopic data of the Liuyuan diabase dike |
![]() |
图 3 柳园辉绿岩锆石CL图像 红色圆圈代表锆石U-Pb测年位置,黄色圆圈代表Hf同位素分析位置 Fig. 3 Cathodoluminescence images for zircons of the Liuyuan diabase dyke The red and yellow circles represent the location of zircon U-Pb and Hf isotopic analysis, respectively |
锆石U-Pb分析结果显示,其U和Th含量变化较大,U含量为149×10-6~671×10-6,Th含量为217×10-6~618×10-6,Th/U比值分布比较均衡,为0.72~1.46,平均为1.04。锆石206Pb/238U年龄介于226~230Ma之间(图 4),其分布较为集中,加权平均年龄为227.5±1.4Ma(MSWD=0.075),即晚三叠世,代表辉绿脉成岩年龄。
![]() |
图 4 柳园辉绿岩脉锆石U-Pb年龄图解 Fig. 4 Concordia and weighted mean ages of the Liuyuan diabase dyke |
本次采集甘肃北山柳园镇东北部辉绿岩脉的岩石化学分析结果见表 2。辉绿岩的SiO2含量为43.76%~46.93%,K2O+Na2O为2.86%~3.56%,Na2O>K2O(CLS17-7出现K2O>Na2O,可能与蚀变有关),TiO2含量为1.22%~1.46%,Al2O3含量为15.71%~16.15%,Fe2O3T含量为8.49%~9.77%,MgO含量为6.79%~9.65%,CaO含量为10.24%~10.83%,P2O5含量为0.14%。计算得出Mg#值为65~70。在Nb/Y-Zr/TiO2×0.0001图解上(图 5a),表现为亚碱性,在SiO2-FeOT/MgO图解上表现为拉斑质(图 5b)。
![]() |
表 2 柳园辉绿岩脉全岩主量(wt%)和微量(×10-6)元素分析结果 Table 2 Whole rock major elements (wt%) and trace elements (×10-6) compositions of the Liuyuan diabase dike |
![]() |
图 5 柳园辉绿岩脉Nb/Y-Zr/TiO2×0.0001图解(a,底图据Winchester and Floyd, 1977)和SiO2-FeOT/MgO图解(b,底图据Miyashiro, 1974) Fig. 5 Whole rock Nb/Y vs. Zr/TiO2×0.0001 (a, after Winchester and Floyd, 1977) and SiO2 vs. FeOT/MgO (b, after Miyashiro, 1974) diagrams of the Liuyuan diabase dyke |
辉绿岩的微量元素分析结果见表 2,其稀土元素总量相对较低,ΣREE为56.6×10-6~61.3×10-6,ΣLREE/ΣHREE比值为2.33~2.74,δEu值为1.04~1.08,具弱的Eu正异常。(La/Yb)N比值为1.42~1.94,球粒陨石标准化稀土元素配分模式为轻稀土略富集的平坦型曲线,表明辉绿岩稀土元素的分馏程度不高(图 6a)。原始地幔标准化微量元素蛛网图显示,辉绿岩具有明显的Nb、Ta负异常和Zr、Hf正异常(图 6b)。整体看,辉绿岩在稀土元素和微量元素曲线均位于MORB和OIB之间,并于典型岛弧玄武岩有一定相似性。其中,与MORB相比,重稀土相似,轻稀土略富集,Nb、Ta、Zr、Hf等元素异常特征均存在一定差异(图 6a, b),整体与OIB微量元素曲线存在较大差异。
![]() |
图 6 柳园辉绿岩脉球粒陨石标准化稀土元素配分图解(a)和原始地幔标准化微量元素蛛网图(b) 球粒陨石、原始地幔、MORB、OIB值引自Sun and Mcdonough (1989),IAB数据引自George et al. (2003) Fig. 6 Chondrite-normalized REE patterns (a) and primitive-mantle normalized trace element spider diagrams (b) of the Liuyuan diabase dyke Data of chondrite, primitive-mantle, MORB and OIB are cited from Sun and Mcdonough (1989); data of IAB are cited from George et al. (2003) |
对已获得LA-ICPMS锆石U-Pb年龄的15个锆石颗粒进行Hf同位素分析,分析结果见表 3。Hf同位素分析结果显示,锆石初始(176Hf/177Hf)i值为0.2825760~0.2827496,fLu/Hf值为-0.97~-0.94,变化范围不大,显示出较为均一的特征;以成岩年龄227Ma计算,计算得出的εHf(t)值为-2.21~+4.02,平均值为+1.08;一阶段Hf模式年龄(tDM1)为718~975Ma,二阶段Hf模式年龄(tDM2)值为852~1169Ma。
![]() |
表 3 柳园辉绿岩脉锆石Hf同位素分析结果 Table 3 Zircon Hf isotopic data of the Liuyuan diabase dyke |
基性岩墙(床)群是基性岩浆沿先存裂隙快速侵位的结果,与围岩交代作用很弱,因此,地壳混染不是影响其岩石化学特征的主要机制。受后期蚀变影响较小的高场强元素(Ti、Zr、Y、Nb、Ta、Hf、Th)和稀土元素等不活泼元素的地球化学特征可以反映岩浆源区的性质,微量元素比值可以有效示踪岩浆过程的元素分异,并为岩浆成因提供有效信息(Weaver, 1991)。通常没有受过地壳混染的大陆玄武岩以(Th/Nb)N<l、Nb/La>l为特征,而经受大陆地壳混染后,会造成(Th/Nb)N>l和Nb/La < 1(Zeng et al., 2015)。前人研究发现,大洋玄武岩Nb/U平均比值为52±15(Hofmann et al., 1986),而地壳的比值较低,约为6.2(Rudnick and Gao, 2003),低的Nb/U比值可以反映地壳的同化混染。本文研究辉绿岩(Th/Nb)N值为0.99~2.94(>1),Nb/La比值为0.25~0.31(< 1),同时具有极低的Nb/U比值(3.73~6.51)、明显的Nb、Ta负异常、较低的Nb/Ta比值(13.7~14.8)等证据,均表明可能受到地壳混染或源区遭受了俯冲组分的改造(Weaver, 1991;赵振华等, 2008)。值得注意的是,如果岩浆上升过程存在壳源物质的混染,La/Nb和Th/Nb比值会存在一定变化(Hawkesworth et al., 1995),也会导致Zr和Hf的亏损特征(Sun and McDonough, 1989。反观本文辉绿岩La/Nb(3.19~3.96)和Th/Nb(0.19~0.51)比值几乎一致,并且具有Zr和Hf正异常特征(Hui et al., 2020)。另外,壳源物质混染也不能解释本文如此低的Nb/U比值(3.73~6.51)。因此,我们认为岩浆侵位过程壳源物质的混染并不是很强。
本文研究的辉绿岩脉的微量元素、稀土元素曲线主要介于N-MORB和OIB稀土元素曲线之间。值得注意的是,辉绿岩脉(La/Sm)PM比值(0.95~1.28)明显低于OIB的比值(2.39)(Sun and McDonough, 1989),且HREE相对平坦,并具有明显的Nb和Ta负异常,因此排除了来自OIB类似岩浆源区的可能。较低的Nb/Yb元素比值(图 7)以及本文辉绿岩和邻区同期中-酸性花岗岩岩均具有较高的εHf(t)值(图 8),说明镁铁质岩浆主要来自亏损的软流圈地幔。Pearce (2008)指出,来自地幔的岩浆在到受俯冲相关流体和熔体的影响时,其Th/Yb比值会高于MORB和OIB曲线。Nb/Yb-Th/Yb图解上所有样品均位于N-MORB正上方(图 7),说明存在俯冲物质的参与,这也可能导致了本文辉绿岩具有极低的Nb/U比值(3.73~6.51)特征。此外,本文辉绿岩具有较低的Th/U比值(0.69~3.29)和La/Nb比值(3.19~3.96)与岛弧有关玄武岩(Th/U=2.4±0.8,La/Nb>3)相近(Pearce, 1982; Wilson, 2007),彼此的一些微量元素分布特征也有相似之处(图 6b),推测源区存在俯冲物质的参与。尽管辉绿岩在Ti-Sm-V图解(图 9a)和Zr-Zr/Y图解(图 9b)均落于MORB区域内,但考虑到其微量元素组成与典型岛弧玄武岩和N-MORB均存在一定差别,而且区内同期没有典型洋中脊及岛弧特征岩石发育,因此,该辉绿岩更可能源于受俯冲作用改造的亏损软流圈地幔的部分熔融,此幔源熔体在上升过程中与大陆岩石圈发生相互作用,导致少量壳源物质的混染,表明三叠纪时柳园地区应处于软流圈上隆的岩石圈伸展构造背景。
![]() |
图 7 甘肃柳园地区Nb/Yb-Th/Yb判别图解(底图据Pearce, 2008, 2014) Fig. 7 Nb/Yb vs. Th/Yb diagram of Liuyuan diabase dykes (base map after Pearce, 2008, 2014) |
![]() |
图 8 甘肃北山地区280~220Ma花岗岩和基性-超基性岩体(脉)锆石Hf同位素图解 数据来自Su et al. (2011)、张文等(2011)、李舢(2013)、郑荣国等(2016)、李增达(2018)和本文 Fig. 8 Zircon Hf isotopic data of granitic and basic-ultrabasic intrusions with age of 280~220Ma The Hf isotopic data from Su et al. (2011), Zhang et al. (2011), Li et al. (2013), Zheng et al. (2016), Li et al. (2018) and this paper |
![]() |
图 9 北山柳园地区辉绿岩脉构造环境判别图解 (a)Ti-Zr-Y图解(Pearce and Norry, 1979); (b)Zr-Zr/Y图解(底图据Pearce and Norry, 1979). A-钙碱性玄武岩;B-洋中脊玄武岩+岛弧拉斑玄武岩+钙碱性玄武岩;C-岛弧拉斑玄武岩;D-板内玄武岩;WPB-板内玄武岩;MORB-洋中脊玄武岩;IAB-岛弧玄武岩 Fig. 9 Tectonic discriminative diagrams for the Liuyuan diabase dykes |
一般而言,低的La/Yb,La/Sm、Dy/Yb和Sm/Yb比值说明存在较大程度的部分熔融或熔融发生在尖晶石稳定区域,而较高的比值反应的是较低程度的部分熔融或以石榴石为主要残留矿物的部分熔融(Aldanmaz et al., 2000;Yang et al., 2007)。本文分析结果显示,研究区辉绿岩具有较低的La/Yb(1.98~2.71),La/Sm(1.46~1.97)、Dy/Yb(1.81~1.89)和Sm/Yb(1.36~1.37)比值,说明辉绿岩可能形成于地幔源区的较高程度部分熔融或熔融发生在尖晶石稳定区域。
4.2 构造环境分析古亚洲洋位于西伯利亚地台和华北地台之间,其展布具有复杂的多岛洋特点(Su et al., 2011;Song et al., 2013, 2016;He et al., 2018; Xiao et al., 2018;Liu et al., 2019)。关于其最终闭合的形式已有共识,多认为大洋自西向东呈“剪刀”式闭合,西部地区闭合较早,于二叠纪时期已基本结束; 东部地区闭合较晚,可能持续到中三叠世(李锦轶等, 2006, 2009)。但是,关于古亚洲洋中南段闭合的时限仍争议较大,主要存在泥盆纪(左国朝等, 1990;Niu et al., 2018)、石炭纪(聂凤军等, 2002)、二叠纪(Xiao et al., 2010;Wang et al., 2017)和早-中三叠世(He et al., 2018; Xiao et al., 2018)等四种不同认识。由于北山地区三叠纪沉积记录的缺失,目前对于北山地区三叠纪构造环境的研究较为局限,主要集中在同期岩浆岩的研究,且以中-酸性岩体为主。另外,本文统计发现,自~280Ma至~220Ma,北山南部中-酸性侵入岩锆石εHf(t)值具有先降后升的变化趋势(图 8b)。与中-酸性侵入岩不同,同期基性-超基性岩锆石εHf(t)值呈逐渐降低走势(图 8c)。Hf同位素的这种变化特征,很可能与早二叠世-晚三叠世北山地区构造环境演化有密切联系。因此,为了全面的认识北山地区晚三叠世构造环境,本文将从二叠纪至三叠纪的时间跨度,以更全面的视角来审视晚三叠世北山南部的构造环境特征。
在地层岩石特征方面,柳园地区二叠纪玄武岩底部碎屑岩向上粒度变细,之后盆地水下火山活动及伴随的碳酸岩质和泥质沉积物的沉积形成了含有火山岩和沉积岩的熔积岩建造,说明北山地区在早二叠世局部处于伸展的裂谷盆地环境(Chen et al., 2016)。而北山南带二叠纪地层除金塔组海水较深外其余均以滨浅海相沉积为主,并且红柳河组、红岩井组、方山口组中均含有植物化石,说明二叠纪北山南部水体总体较浅,多数处于浅海陆缘,未发育洋盆(Chen et al., 2016;彭海练等, 2018)。地球化学特征显示出,北山南带柳园地区二叠纪火山岩和碎屑岩具有明显俯冲带岩石特征(宋东方等, 2018),柳园地区蛇绿岩中二叠纪镁铁质岩石相对富集Th,而亏损Nb、Ta、Ti和变化较大的初始Sr同位素比值,与俯冲背景下岩石圈来源熔体或流体的交代特征相一致(Mao et al., 2012)。此外,柳园和黑山口地区二叠纪火山碎屑砂岩物源分别来源于中性-镁铁质和中-酸性源岩,形成于大洋岛弧和安第斯型活动大陆边缘,说明在早二叠世北山地区大洋俯冲作用仍然存在,Guo et al. (2012)在此基础上提出了双向俯冲模式。基于沉积作用、构造变形及年代学的研究,Song et al. (2016)也提出,北山南带在早二叠世仍处于岛弧或活动陆缘环境。此外,研究区及邻区近东西向展布的~280Ma镁铁质-超镁铁质侵入岩具有明显的俯冲带岩石地球化学特征(Ao et al., 2010; Su et al., 2011; Zhang et al., 2015),而且沿该方向分布有高钾和富碱花岗质岩石及一系列表征伸展特征的南北向、北西-南东向镁铁质岩脉,说明北山地区二叠纪局部处于伸展环境(张文等, 2010;Su et al., 2011, 2013;Zhang et al., 2011;Zheng et al., 2014;Gillespie et al., 2017;Wang et al., 2017;Xue et al., 2018;许伟等, 2018;Chen et al., 2019;Liu et al., 2019)。姜洪颖等(2013)发现,北山地区在295~270Ma发生了新元古代花岗质正片麻岩低压高温变形和部分深熔作用事件;而且区域岩浆活动强度在~280Ma达到顶峰,并具有最大的εHf(t)值,说明岩浆在上升和就位过程中存在较多亏损地幔的贡献,与俯冲板片后撤引发岛弧内部及岛弧两翼伸展盆地形成所引发的环境有关(He et al., 2018)。另外,通过显生宙花岗岩填图,Wang et al. (2017)发现北山南部地区二叠纪时仍存在钙碱性I型花岗质岩浆岩,说明二叠纪时在北山地区仍然存在着狭窄的古亚洲洋洋盆。通过对红眼井盆地二叠纪沉积岩地质填图、构造分析和碎屑岩锆石年代学研究,Zhang and Cunningham (2012)和Tian et al. (2013)认为发生于249Ma的褶皱变形受古亚洲洋闭合的汇聚影响。因此,早二叠世柳园地区更可能处于俯冲带环境,由于俯冲板块后撤,导致柳园地区弧后或弧间盆地的发育(李锦轶等, 2009;Tian et al., 2014),并引发了近东西向的局部伸展和强烈的地壳垂向增生(He et al., 2018)。
与二叠纪相比,北方造山带三叠纪沉积记录基本不发育或缺失,即使局部发育也表现为磨拉石建造,说明该区在三叠纪整体表现为强烈的造山抬升剥蚀(苗来成等, 2014)。李舢等(2010)认为早-中三叠世北山造山带花岗岩主要为二长花岗岩-花岗闪长岩-石英二长闪长岩组合,显示出钙碱性、高钾钙碱性I型或S型花岗岩的特征,形成于同造山构造背景。苗来成等(2014)认为东天山-北山地区近东西向大规模右行剪切变形发生于270~245Ma,也支持该认识。柳园东北方向约150km处早三叠世埃达克质花岗岩脉的发现,进一步限定当时地壳厚度应大于50km,说明古亚洲洋于三叠纪之前已经闭合,并导致了早三叠世地壳增厚(过磊等, 2018)。而侵入强变形二叠纪沉积岩的晚三叠世(219Ma)未变形辉绿岩脉(Tian et al., 2013),以及~220Ma甘肃北山地区A型花岗岩大面积出露,如东大泉岩体、花牛山岩体、长流水岩体和白峡尼山岩体(李舢等, 2010;朱江等, 2015;Wang et al., 2017),以及本文辉绿岩脉的发现,说明北山南带晚三叠世整体处于造山后伸展环境。这种认识也可以由东天山-北山地区晚三叠世斑岩型钼矿的广泛分布得到进一步证实,如花黑滩钼矿(辉钼矿Re-Os等时线年龄225±1Ma,朱江, 2013),小狐狸山钼矿(辉钼矿Re-Os等时线年龄222±2Ma,彭振安等, 2010),白山钼矿(辉钼矿Re-Os等时线年龄229Ma±2Ma,李华芹等, 2006),东戈壁钼矿(辉钼矿Re-Os等时线年龄231.1±1.5Ma,涂其军等, 2012)。这些钼矿床表明,~220Ma为东天山东段-北山地区一个较为显著的钼成矿作用时期。一般认为,斑岩型钼矿主要形成于陆缘弧后、板内裂谷和造山后等伸展环境,是地壳演化到一定阶段的产物(侯增谦, 2004;Zeng et al., 2015)。所以,三叠纪北山地区应处于造山后伸展环境,其构造、岩浆、成矿作用是晚古生代造山作用的延续(苗来成等, 2014)。
考虑到280~220Ma岩浆岩锆石Hf同位素的变化,本文认为,北山南部地区在二叠纪由于古亚洲洋残留板块俯冲作用的延续,导致弧后或弧间盆地的形成和发展,形成了局部的盆地伸展构造环境,并伴生了较强烈的岩浆活动和地壳的垂向生长,导致岩浆岩锆石εHf(t)值明显偏高。早-中三叠世,古亚洲洋最终闭合,地壳增厚,抬升剥蚀,形成系列同碰撞花岗质侵入岩,岩浆源区及上升过程可能发生了较多壳源物质参与,导致岩浆岩锆石εHf(t)值明显减小。至晚三叠世地壳伸展垮塌减薄,幔源岩浆上侵,岩浆岩锆石εHf(t)值虽有增加,但仍较二叠纪岩浆岩偏低,可能暗示地壳垂向增生减弱。
5 结论本文对甘肃柳园地区辉绿岩脉开展了详细的锆石U-Pb-Hf同位素和全岩主量、微量元素分析,在结合大量前人分析结果的基础上,得出如下结论:
(1) 锆石LA-ICP MS分析结果显示,研究区辉绿岩形成于晚三叠世(227.5±1.4Ma),其岩石地球化学特征与岛弧环境下受俯冲流体或熔体交代的地幔来源岩浆富集大离子亲石元素、亏损高场强元素特征明显不同,可能形成于先前受俯冲物质的交代地幔源区的较高程度部分熔融或熔融发生在尖晶石稳定区域。
(2) 研究区晚三叠世辉绿岩形成于造山后伸展的构造环境,结合前人关于二叠纪至三叠纪区域构造变形、盆地沉积物源、岩浆演化、成矿作用等研究结果,本文认为北山南部地区的增生造山事件可能持续到早-中三叠世,晚三叠世进入造山后伸展环境,这一认识完善了晚古生代-早中生代北山构造演化过程。
致谢 野外和试验测试工作得到了项目组中国地质大学(北京)康凯、黄式庭、袁伟恒和汪署潮硕士等同志的协助;两位匿名审稿人对本文提出了许多中肯、有益的意见;在此一并表示感谢。
Aldanmaz E, Pearce JA, Thirlwall MF and Mitchell JG. 2000. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology & Geothermal Research, 102(1-2): 67-95 |
Ao SJ, Xiao WJ, Han CM, Mao QG and Zhang JE. 2010. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research, 18(2-3): 466-478 DOI:10.1016/j.gr.2010.01.004 |
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X |
Bureau of Geology and Mineral Resources of Gansu Province. 1997. Stratigraphy (Lithostratic) of Gansu Province. Wuhan: China University of Geosciences Press (in Chinese with English abstract)
|
Cai ZH, Xu ZQ, He BZ and Wang RR. 2012. Age and tectonic evolution of ductile shear zones in the eastern Tianshan-Beishan orogenic belt. Acta Petrologica Sinica, 28(6): 1875-1895 (in Chinese with English abstract) |
Chen BY, Yu JJ and Liu SJ. 2019. Contributions of basaltic underplating to crustal growth in island arc and extensional tectonic settings in the Chinese Tianshan Orogenic Belt, NW China. Gondwana Research, 69: 106-121 DOI:10.1016/j.gr.2019.01.004 |
Chen S, Guo ZJ, Qi JF, Zhang YY, Pe-Piper G and Piper DJW. 2016. Early Permian volcano-sedimentary successions, Beishan, NW China: Peperites demonstrate an evolving rift basin. Journal of Volcanology & Geothermal Research, 309: 31-44 DOI:10.1016/j.jvolgeores.2015.11.004 |
George R. 2003. Melting processes and fluid and sediment transport rates along the Alaska-Aleutian arc from an integrated U-Th-Ra-Be isotope study. Journal of Geophysical Research, 108(B5): 2252 DOI:10.1029/2002JB001916 |
Gillespie J, Glorie S, Xiao WJ, Zhang ZY, Collins AS, Evans N, McInnes B and De Grave J. 2017. Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: Insights from low-temperature thermochronology. Gondwana Research, 43: 107-122 DOI:10.1016/j.gr.2015.10.004 |
Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9 |
Guo L, Wang GQ, Guo L and Bu T. 2018. Petrogenesis of Early Triassic felsic dikes in the Lucaogou area of southern Beishan Orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 502-512 (in Chinese with English abstract) |
Guo QQ, Xiao WJ, Windley BF, Mao QG, Han CM, Qu JF, Ao SJ, Li JL, Song Y and Yong Y. 2012. Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China: Implications for the Late Paleozoic accretionary tectonics of the southern Altaids. Journal of Asian Earth Sciences, 49: 54-68 DOI:10.1016/j.jseaes.2011.03.013 |
Halls H. 1982. The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geoscience Canada, 9(3): 145-154 |
Han YG and Zhao GC. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152 DOI:10.1016/j.earscirev.2017.09.012 |
Hawkesworth C, Turner S, Gallagher K, Hunter A, Bradshaw T and Rogers N. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research: Solid Earth, 100(B6): 10271-10286 DOI:10.1029/94JB02508 |
He ZY, Klemd R, Yan LL and Zhang ZM. 2018. The origin and crustal evolution of microcontinents in the Beishan Orogen of the southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14 DOI:10.1016/j.earscirev.2018.05.012 |
Hofmann AW, Jochum KP, Seufert M and White WM. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1): 33-45 |
Hou ZQ. 2004. Porphyry Cu-Mo-Au deposits: Some new insights and advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract) |
Hui B, Dong YP, Liu G, Zhao HYZ, Sun SS, Zhang FF and Liu XM. 2020. Origin of mafic intrusions in the Micangshan Massif, Central China: Implications for the Neoproterozoic tectonic evolution of the northwestern Yangtze Block. Journal of Asian Earth Sciences, 190: 104132 DOI:10.1016/j.jseaes.2019.104132 |
Jahn BM, Wu FY and Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193 DOI:10.1017/S0263593300007367 |
Jiang HY, He ZY, Zong KQ, Zhang ZM and Zhao ZD. 2013. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan Orogenic belt. Acta Petrologica Sinica, 29(11): 3949-3967 (in Chinese with English abstract) |
Jiang SH, Nie FJ, Bai DM, Zhao XM, Wang XL, Su XX, Zhao YM, Li JC and Li CY. 2001. Relationship between the magmatic activities and the gold metallogenesis in the northern belt of Beishan area. Chinese Geology, 28(3): 24-28, 23 (in Chinese with English abstract) |
Jiang SH. 2004. Magmatism and gold metallogeny in Beishan Mt., northwestern China. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary) http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213422.htm
|
Jiang SH and Nie FJ. 2006. Nd-isotope constraints on origin of granitoids in Beishan Mountain area. Acta Geologica Sinica, 80(6): 826-842 (in Chinese with English abstract) |
Li HQ, Chen FW, Li JY, Qu WJ, Wang DH, Wu H, Deng G and Mei YP. 2006. Age of mineralization and host rocks in the Baishan rhenium-molybdenum district, East Tianshan, Xinjiang, China: Revisited. Geological Bulletin of China, 25(8): 916-922 (in Chinese with English abstract) |
Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM and Zhu ZX. 2006. Crustal tectonic framework of Northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract) |
Li JY, Zhang J, Yang TN, Li YP, Sun GH, Zhu ZX and Wang LJ. 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract) |
Li S, Wang T and Tong Y. 2010. Spatial-temporal distribution and tectonic settings of Early Mesozonic granitoids in the middle-south segment of the Central Asia Orogenic System. Acta Petrologica et Mineralogica, 29(6): 642-662 (in Chinese with English abstract) |
Li S, Wang T, Wilde SA, Tong Y, Hong DW and Guo QQ. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos, 134-135: 123-145 DOI:10.1016/j.lithos.2011.12.005 |
Li S. 2013. Triassic granite in Beishan-Inner Mongolia and its tectonic significance. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056600.htm
|
Li S, Wang T, Wilde SA and Tong Y. 2013. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews, 126: 206-234 DOI:10.1016/j.earscirev.2013.06.001 |
Li ZD. 2018. Magmatic mineralization and prospecting of the Huaniushan lead-zinc-silver polymetallic ore field in Gansu Province, China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary) http://cdmd.cnki.com.cn/Article/CDMD-11415-1018015355.htm
|
Liu C, Zhao ZH and Guo SJ. 2006. Chronology and geochemistry of lamprophyre dykes from Beishan area, Gansu Province and implications for the crust-mantle interaction. Acta Petrologica Sinica, 22(5): 1294-1306 (in Chinese with English abstract) |
Liu Q, Zhao GC, Han YG, Zhu YL, Wang B, Eizenhöfer PR and Zhang XR. 2019. Detrital zircon provenance constraints on the final closure of the middle segment of the Paleo-Asian Ocean. Gondwana Research, 69: 73-88 DOI:10.1016/j.gr.2019.01.001 |
Lu JC, Niu YZ, Wei XY, Chen GC and Li YH. 2013. LA-ICP-MS zircon U-Pb dating of the Late Paleozoic volcanic rocks from the Hongshishan area of the Beishan Orogenic Belt and its tectonic significances. Acta Petrologica Sinica, 29(8): 2685-2694 (in Chinese with English abstract) |
Mao QG, Xiao WJ, Fang TH, Wang JB, Han CM, Sun M and Yuan C. 2012. Late Ordovician to Early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China: Implications for Early Paleozoic slab-melting and crustal growth in the southern Altaids. Gondwana Research, 22(2): 534-553 DOI:10.1016/j.gr.2011.06.006 |
Miao LC, Zhu MS and Zhang FQ. 2014. Tectonic setting of Mesozoic magmatism and associated metallogenesis in Beishan area. Geology in China, 41(4): 1190-1204 (in Chinese with English abstract) |
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274: 321-365 DOI:10.2475/ajs.274.4.321 |
Nie FJ, Jiang SH and Bai DM, et al. 2002. Metallogenic Rule and Prospecting Direction of Metal Deposits in Beishan Area. Beijing: Geological Publishing House (in Chinese)
|
Niu YZ, Liu CY, Shi GR, Lu JC, Xu W and Shi JZ. 2018. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure. Journal of Asian Earth Sciences, 167: 11-32 DOI:10.1016/j.jseaes.2018.06.019 |
Niu YZ, Lu JC, Liu CY, Song B, Shi JZ and Xu W. 2018. Chronostratigraphy and regional comparison of marine Permian system in the Beishan region, North China. Acta Geologica Sinica, 92(6): 1131-1148 (in Chinese with English abstract) |
Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47 DOI:10.1007/BF00375192 |
Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Andesites: Orogenic Andesites and Related Rocks. Chichester: Wiley, 525-548 https://www.mendeley.com/catalogue/f14248a8-6083-3eb5-933d-9c8c41d11b53/
|
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48 DOI:10.1016/j.lithos.2007.06.016 |
Pearce JA. 2014. Immobile Element fingerprinting of ophiolites. Elements, 10(2): 101-108 DOI:10.2113/gselements.10.2.101 |
Peng HL, Gao F, Jian KL, Li N, Zhao PB, Li WJ and Zhao DC. 2018. Zircon U-Pb age and its geological significance of gabbro in the South Hongshi Mountain, Ejinna, Inner Mongolia Autonomous Region. Mineral Exploration, 9(9): 1705-1712 (in Chinese with English abstract) |
Peng ZA, Li HH, Qu WJ, Zhang SQ, Ding HJ, Chen XR, Zhang B, Zhang YZ, Xu M and Cai MH. 2010. Molybdenite Re-Os age of Xiaohulishan molybdenum deposit in Beishan area, Inner Mongolia. Mineral Deposits, 29(3): 510-516 (in Chinese with English abstract) |
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Oxford: Elsevier-Pergaman, 3: 1-64 DOI:10.1016/B978-0-08-095975-7.00301-6 |
Shao JA and Zhang LQ. 2002. Mesozoic dyke swarms in the north of North China. Acta Petrologica Sinica, 18(3): 312-318 (in Chinese with English abstract) |
Slama J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005 |
Song DF, Xiao WJ, Han CM, Li JL, Qu JF, Guo QQ, Lin LN and Wang ZM. 2013. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U-Pb and Hf isotopic data of high-grade complexes. Precambrian Research, 227: 368-388 DOI:10.1016/j.precamres.2012.06.011 |
Song DF, Xiao WJ, Windley BF, Han CM and Yang L. 2016. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt. Tectonophysics, 688: 135-147 DOI:10.1016/j.tecto.2016.09.012 |
Song DF, Xiao WJ, Han CM, Tian ZH and Li YC. 2018. Accretionary processes of the central segment of Beishan: Constraints from structural deformation and 40Ar-39Ar geochronology. Acta Petrologica Sinica, 34(7): 2087-2098 (in Chinese with English abstract) |
Su BX, Qin KZ, Sakyi PA, Li XH, Yang YH, Sun H, Tang DM, Liu PP, Xiao QH and Malaviarachchi SPK. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516-531 DOI:10.1016/j.gr.2010.11.015 |
Su BX, Qin KZ, Santosh M, Sun H and Tang DM. 2013. The Early Permian mafic-ultramafic complexes in the Beishan Terrane, NW China: Alaskan-type intrusives or rift cumulates?. Journal of Asian Earth Sciences, 66: 175-187 DOI:10.1016/j.jseaes.2012.12.039 |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19 |
Tian ZH, Xiao WJ, Shan YH, Windley B, Han CM, Zhang JE and Song DF. 2013. Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo-Triassic termination of the Altaids. Journal of Structural Geology, 52: 119-135 DOI:10.1016/j.jsg.2013.03.016 |
Tian ZH, Xiao WJ, Windley BF, Lin LN, Han CM, Zhang JE, Wan B, Ao SJ, Song DF and Feng JY. 2014. Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids. Gondwana Research, 25(2): 820-841 DOI:10.1016/j.gr.2013.05.006 |
Tu QJ, Dong LH and Wang KZ. 2012. Molybdenite Re-Os Dating and its geological implication for the East Gebi molybdenum deposit of the Eastern Tianshan Mountain in Xinjiang. Xinjiang Geology, 30(3): 272-276 (in Chinese with English abstract) |
Wang T, Li WP, Li JB, Hong DW, Tong Y and Li S. 2008. Increase of juvenal mantle-derived composition from syn-orogenic to post-orogenic granites of the east part of the eastern Tianshan (China) and implications for continental vertical growth: Sr and Nd isotopic evidence. Acta Petrologica Sinica, 24(4): 762-772 (in Chinese with English abstract) |
Wang T, Tong Y, Zhang L, Li S, Huang H, Zhang JJ, Guo L, Yang QD, Hong DW, Donskaya T, Gladkochub D and Tserendash N. 2017. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance. Journal of Asian Earth Sciences, 145: 368-392 DOI:10.1016/j.jseaes.2017.06.029 |
Weaver BL. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397 DOI:10.1016/0012-821X(91)90217-6 |
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23 DOI:10.1111/j.1751-908X.1995.tb00147.x |
Wilson M. 2007. Igneous Petrogenesis: A Global Tectonic Approach. Netherlands: Springer
|
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series their differentiation products using immobile elements. Chemical Geology, 20: 325-345 DOI:10.1016/0009-2541(77)90057-2 |
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003 |
Xiao WJ, Shu LS, Gao J, Xiong XL, Wang JB, Guo ZJ, Li JY and Sun M. 2008. Continental dynamics of the Central Asian Orogenic Belt and its metallogeny. Xinjiang Geology, 26(1): 4-8 (in Chinese with English abstract) |
Xiao WJ, Mao QG, Windley BF, Han CM, Qu JF, Zhang JE, Ao SJ, Guo QQ, Cleven NR, Lin SF, Shan YH and Li JL. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science, 310(10): 1553-1594 DOI:10.2475/10.2010.12 |
Xiao WJ, Windley BF, Han CM, Liu W, Wan B, Zhang JE, Ao SJ, Zhang ZY and Song DF. 2018. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, 186: 94-128 DOI:10.1016/j.earscirev.2017.09.020 |
Xu W, Xu XY, Niu YZ, Chen GC, Shi JZ, Wei JS, Song B and Zhang YX. 2018. Geochronology, petrogenesis and tectonic implications of Early Permian A-type rhyolite from southern Beishan Orogen, NW China. Acta Petrologica Sinica, 34(10): 3011-3033 (in Chinese with English abstract) |
Xu ZQ, Yang JS, Zhang JX, Jiang M, Li HB and Cui JW. 1999. A comparison between the tectonic units on the two sides of the Altun Sinistral strike-slip fault and the mechanism of lithospheric shearing. Acta Geologica Sinica, 77(3): 193-205 (in Chinese with English abstract) DOI:10.3321/j.issn:0001-5717.1999.03.001 |
Xue SC, Qin KZ, Li CS, Tang DM, Wang QF and Wang XS. 2018. Permian bimodal magmatism in the southern margin of the Central Asian Orogenic Belt, Beishan, Xinjiang, NW China: Petrogenesis and implication for post-subduction crustal growth. Lithos, 314-315: 617-629 DOI:10.1016/j.lithos.2018.06.021 |
Yang JH, Sun JF, Chen FK, Wild SA and Wu FY. 2007. Sources and petrogenesis of Late Triassic dolerite dikes in the Liaodong Peninsula: Implications for post-collisional lithosphere thinning of the eastern North China Craton. Journal of Petrology, 48(10): 1973-1997 DOI:10.1093/petrology/egm046 |
Zeng QD, Qin KZ, Liu JM, Li GM, Zhai MG, Chu SX and Guo YP. 2015. Porphyry molybdenum deposits in the Tianshan-Xingmeng orogenic belt, northern China. International Journal of Earth Sciences, 104(4): 991-1023 DOI:10.1007/s00531-014-1122-6 |
Zhao ZH, Xiong XL, Wang Q and Qiao YL. 2008. Some aspects on geochemistry of Nb and Ta. Geochimica, 37(4): 304-320 (in Chinese with English abstract) DOI:10.3321/j.issn:0379-1726.2008.04.005 |
Zhang J and Cunningham D. 2012. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China. Tectonics, 31(3): TC3009 |
Zhang W, Wu TR, He YK, Feng JC and Zheng RG. 2010. LA-ICP-MS zircon U-Pb ages of Xijianquanzi alkali-rich potassium-high granites in Beishan, Gansu Province, and their tectonic significance. Acta Petrologica et Mineralogica, 29(6): 719-731 (in Chinese with English abstract) |
Zhang W, Feng JC, Zheng RG, Wu TR, Luo HL, He YK and Jing X. 2011. LA-ICP MS zircon U-Pb ages of the granites from the south of Yin'aoxia and their tectonic significances. Acta Petrologica Sinica, 27(6): 1649-1661 (in Chinese with English abstract) |
Zhang YY, Dostal J, Zhao ZH, Liu C and Guo ZZ. 2011. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust-mantle interaction. Gondwana Research, 20(4): 816-830 DOI:10.1016/j.gr.2011.03.008 |
Zhang YY, Yuan C, Sun M, Long XP, Xia XP, Wang XY and Huang ZY. 2015. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere-lithosphere interaction in response to slab break-off. Lithos, 233: 174-192 DOI:10.1016/j.lithos.2015.04.001 |
Zheng RG, Wu TR, Zhang W, Meng QP and Zhang ZY and Zhang ZY. 2014. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Yinwaxia area, Beishan: Implications for rift magmatism in the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 91: 39-55 DOI:10.1016/j.jseaes.2014.04.022 |
Zheng RG, Wu TR, Xiao WJ, Meng QP and Zhang W. 2016. Geochronology, geochemistry and tectonic implications of the Shuangjizi composite pluton in the northern Beishan. Acta Geologica Sinica, 90(11): 3153-3172 (in Chinese with English abstract) |
Zhu J. 2013. Tectono-magmatic formation and gold polymetallic metallogenesis of southern Beishan Orogenic Belt. Ph. D. Dissertation. Wuhan: China University of Geosciences (Wuhan) (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10491-1013354282.htm
|
Zhu J, Lü XB, Chen C, Cao XF and Hu QC. 2013. Geological characteristics, metallogenic time and tectonic setting of the Triassic molybdenum deposits in the eastern part of the East Tianshan and the Beishan area, NW China. Xinjiang Geology, 31(1): 21-28 (in Chinese with English abstract) |
Zhu J, Lü XB, Peng SG, Gong YJ, Qiu XF and Xiao GL. 2015. LA-ICP-MS zircon U-Pb geochronology and geochemical characteristics of the quartz syenite porphyry in the Xiaoxigong gold deposit and their geological implications. Geological Bulletin of China, 34(8): 1460-1469 (in Chinese with English abstract) DOI:10.3969/j.issn.1671-2552.2015.08.006 |
Zuo GC, Zhang SL, He GQ and Zhang Y. 1990. Early Paleozoic plate tectonics in Beishan area. Scientia Geologica Sinica, (4): 305-314 (in Chinese with English abstract) |
Zuo GC, Liu YK and Liu CY. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract) |
蔡志慧, 许志琴, 何碧竹, 王瑞瑞. 2012. 东天山-北山造山带中大型韧性剪切带属性及形成演化时限与过程. 岩石学报, 28(6): 1875-1895. |
甘肃省地质矿产局. 1997. 甘肃省岩石地层. 武汉: 中国地质大学出版社.
|
过磊, 王国强, 郭琳, 卜涛. 2018. 北山造山带南部芦草沟地区早三叠世酸性脉岩成因. 矿物岩石地球化学通报, 37(3): 502-512. |
侯增谦. 2004. 斑岩Cu-Mo-Au矿床:新认识与新进展. 地学前缘, 11(1): 131-144. DOI:10.3321/j.issn:1005-2321.2004.01.010 |
姜洪颖, 贺振宇, 宗克清, 张泽明, 赵志丹. 2013. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究. 岩石学报, 29(11): 3949-3967. |
江思宏, 聂凤军, 白大明, 赵省民, 王新亮, 苏新旭, 赵月明, 李景春, 李存有. 2001. 北山北带岩浆活动与金矿成矿作用. 中国地质, 28(3): 24-28, 23. |
江思宏. 2004.北山地区岩浆活动与金的成矿作用.博士学位论文.北京: 中国地质科学院 http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213422.htm
|
江思宏, 聂凤军. 2006. 北山地区花岗岩类成因的Nd同位素制约. 地质学报, 80(6): 826-842. DOI:10.3321/j.issn:0001-5717.2006.06.005 |
李华芹, 陈富文, 李锦轶, 屈文俊, 王登红, 吴华, 邓刚, 梅玉萍. 2006. 再论东天山白山铼钼矿区成岩成矿时代. 地质通报, 25(8): 916-922. DOI:10.3969/j.issn.1671-2552.2006.08.003 |
李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168. DOI:10.3321/j.issn:0001-5717.2006.01.017 |
李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605. |
李舢, 王涛, 童英. 2010. 中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境. 岩石矿物学杂志, 29(6): 642-662. DOI:10.3969/j.issn.1000-6524.2010.06.004 |
李舢. 2013.北山-内蒙古地区三叠纪花岗岩及其构造意义.博士学位论文.北京: 中国地质科学院 http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056600.htm
|
李增达. 2018.甘肃花牛山铅锌银多金属矿田岩浆成矿作用与找矿.博士学位论文.北京: 中国地质大学(北京) http://cdmd.cnki.com.cn/Article/CDMD-11415-1018015355.htm
|
刘畅, 赵泽辉, 郭召杰. 2006. 甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论. 岩石学报, 22(5): 1294-1306. |
卢进才, 牛亚卓, 魏仙样, 陈高潮, 李玉宏. 2013. 北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义. 岩石学报, 29(8): 2685-2694. |
苗来成, 朱明帅, 张福勤. 2014. 北山地区中生代岩浆活动与成矿构造背景分析. 中国地质, 41(4): 1190-1204. DOI:10.3969/j.issn.1000-3657.2014.04.013 |
聂凤军, 江思宏, 白大明, 等. 2002. 北山地区金属矿床成矿规律及找矿方向. .
|
牛亚卓, 卢进才, 刘池阳, 宋博, 史冀忠, 许伟. 2018. 甘蒙北山地区海相二叠系时代及其区域对比. 地质学报, 92(6): 1131-1148. DOI:10.3969/j.issn.0001-5717.2018.06.003 |
彭海练, 高峰, 菅坤坤, 李宁, 赵鹏彬, 李武杰, 赵端昌. 2018. 内蒙古红石山南辉长岩体锆石U-Pb年龄及地质意义. 矿产勘查, 9(9): 1705-1712. DOI:10.3969/j.issn.1674-7801.2018.09.010 |
彭振安, 李红红, 屈文俊, 张诗启, 丁海军, 陈晓日, 张斌, 张永正, 徐明, 蔡明海. 2010. 内蒙古北山地区小狐狸山钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 29(3): 510-516. DOI:10.3969/j.issn.0258-7106.2010.03.012 |
邵济安, 张履桥. 2002. 华北北部中生代岩墙群. 岩石学报, 18(3): 312-318. |
宋东方, 肖文交, 韩春明, 田忠华, 李咏晨. 2018. 北山中部增生造山过程:构造变形和40Ar-39Ar年代学制约. 岩石学报, 34(7): 2087-2098. |
涂其军, 董连慧, 王克卓. 2012. 东天山东戈壁钼矿辉钼矿Re-Os同位素年龄及地质意义. 新疆地质, 30(3): 272-276. DOI:10.3969/j.issn.1000-8845.2012.03.006 |
王涛, 李伍平, 李金宝, 洪大卫, 童英, 李舢. 2008. 东天山东段同造山到后造山花岗岩幔源组分的递增及陆壳垂向生长意义——Sr、Nd同位素证据. 岩石学报, 24(4): 762-772. |
肖文交, 舒良树, 高俊, 熊小林, 王京彬, 郭召杰, 李锦轶, 孙敏. 2008. 中亚造山带大陆动力学过程与成矿作用. 新疆地质, 26(1): 4-8. DOI:10.3969/j.issn.1000-8845.2008.01.002 |
许伟, 徐学义, 牛亚卓, 陈高潮, 史冀忠, 魏建设, 宋博, 张宇轩. 2018. 北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义. 岩石学报, 34(10): 3011-3033. |
许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 77(3): 193-205. DOI:10.3321/j.issn:0001-5717.1999.03.001 |
赵振华, 熊小林, 王强, 乔玉楼. 2008. 铌与钽的某些地球化学问题. 地球化学, 37(4): 304-320. DOI:10.3321/j.issn:0379-1726.2008.04.005 |
张文, 吴泰然, 贺元凯, 冯继承, 郑荣国. 2010. 甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA-ICP-MS定年及其构造意义. 岩石矿物学杂志, 29(6): 719-731. DOI:10.3969/j.issn.1000-6524.2010.06.009 |
张文, 冯继承, 郑荣国, 吴泰然, 罗红玲, 贺元凯, 荆旭. 2011. 甘肃北山音凹峡南花岗岩体的锆石LA-ICP MS定年及其构造意义. 岩石学报, 27(6): 1649-1661. |
郑荣国, 吴泰然, 肖文交, 孟庆鹏, 张文. 2016. 北山北部双井子复式岩体年代学、地球化学及其大地构造意义. 地质学报, 90(11): 3153-3172. DOI:10.3969/j.issn.0001-5717.2016.11.012 |
朱江. 2013.北山造山带南带构造-岩浆建造与金多金属成矿.博士学位论文.武汉: 中国地质大学(武汉) http://cdmd.cnki.com.cn/Article/CDMD-10491-1013354282.htm
|
朱江, 吕新彪, 陈超, 曹晓峰, 胡庆成. 2013. 东天山东段-北山地区三叠纪钼矿床地质特征、时空分布及含矿花岗岩成岩-成矿构造背景. 新疆地质, 31(1): 21-28. DOI:10.3969/j.issn.1000-8845.2013.01.007 |
朱江, 吕新彪, 彭三国, 龚银杰, 邱啸飞, 肖广玲. 2015. 甘肃北山小西弓金矿区石英正长斑岩LA-ICP-MS锆石U-Pb年龄和地球化学特征. 地质通报, 34(8): 1460-1469. DOI:10.3969/j.issn.1671-2552.2015.08.006 |
左国朝, 张淑玲, 何国琦, 张杨. 1990. 北山地区早古生代板块构造特征. 地质科学, (4): 305-314. |
左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及演化. 甘肃地质学报, 12(1): 1-15. |