岩石学报  2020, Vol. 36 Issue (5): 1409-1425, doi: 10.18654/1000-0569/2020.05.06   PDF    
滇中楚雄盆地六苴铜矿床煌斑岩地球化学、年代学及其地质意义
吴鹏, 谭茂, 韩润生, 江小均, 王蝶, 杨航     
昆明理工大学国土资源工程学院, 昆明 650093
摘要: 云南六苴铜矿床是楚雄盆地砂岩型铜矿床的典型代表。矿区岩浆活动不明显,近年来通过深部钻孔和竖井工程,在矿床深部揭露出煌斑岩脉。通过岩相学、电子探针、ICP-MS、锆石U-Pb定年等分析,确定六苴铜矿床的煌斑岩属云煌岩,其成岩年龄为31~33Ma,于铜矿床的改造成矿期侵位。主量元素特征显示其属于钾质钙碱性煌斑岩;微量元素表现为大离子亲石元素Sr、Th和Rb等相对富集,高场强元素Nb、Ta和Ti等亏损;稀土元素表现出轻稀土强烈富集的特点。锆石176Hf/177Hf值为0.28230~0.28272,比较集中的Hf同位素组成εHft)=-4~2。综合分析认为,六苴铜矿床的煌斑岩主要源自流体交代的富集岩石圈地幔,岩浆在快速上升过程中进一步熔融混染了少部分先存的地壳残片,为喜马拉雅期印度-欧亚板块碰撞挤压背景下,从挤压转换为拉张环境的产物。该煌斑岩与富厚铜矿体二者在空间、时间、构造-热液、产出状态、成矿流体及物质来源等方面均具有紧密联系,对铜矿体的改造富集起到重要作用,可作为预测富厚铜矿体的指示标志。煌斑岩脉内含有方铅矿、闪锌矿等金属硫化物,暗示深部具铅锌成矿潜力。
关键词: 煌斑岩    地球化学    年代学    砂岩型铜矿床    楚雄盆地    
Geochemistry, chronology and geological significance of lamprophyres from the Liuju sandstone copper deposit in the Chuxiong basin, central Yunnan
WU Peng, TAN Mao, HAN RunSheng, JIANG XiaoJun, WANG Die, YANG Hang     
Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract: The Liuju copper deposit is a typical representative of sandstone deposit in the Chuxiong basin of Yunnan Province, Southwest China. The magmatic activity in the mining area is not obvious. In recent years, lamprophyre veins have been exposed in the deep part of the deposit through deep drilling and shaft engineering. Microscope, electron microprobe, ICP-MS and zircon SHRIMP U-Pb dating analysis revealed that the lamprophyres from Liuju belong to minette and have similar forming ages (31~33Ma) to the reformation Cu metallogenic period in this deposit. Geochemically, the lamprophyres are potassic calc-alkaline series and are enriched in large ion lithophile elements (Sr, Th and Rb) and LREE and depleted in the high field strength elements (Nb, Ta and Ti). Furthermore, the 176Hf/177Hf ratios of lamprophyres zircons range from 0.28230 to 0.28272, with relatively concentrated εHf(t) values varying from -4 to 2. Based on the tectonic setting and comprehensive analysis reveals that the lamprophyres in Liuju Cu deposit were mainly derived from fluid metasomatism enriched lithospheric mantle. In the process of rapid rise, the magma further melted and mixed with a few remaining crustal fragments, due to collision between the Indian and Eurasian plate in Himalayan Period (during the transitional stage from compression to extension). In addition, considering lamprophyre and the rich copper deposit are closely related to each other in space, time, tectonic-hydrothermal solution, form, ore-forming fluid and material source, the lamprophyres might have contributed to the enrichment of Cu at Liuiju and can be used as potential indicator for future exploration. Moreover, the lamprophyres form Liuju are rich in other sulfides (e.g., galena, sphalerite), implying potential Pb-Zn mineralization in the deep part of this deposit.
Key words: Lamprophyre    Geochemistry    Chronology    Sandstone copper deposit    Chuxiong basin    

煌斑岩是富含碱质及挥发分的超基性-中性浅成岩,与金、铜等金属成矿关系密切,一直受到地质工作者的关注(黄智龙和王联魁, 1996; 黄智龙等, 1997; 管涛, 2005; Zuo et al., 2011; Štemprok et al., 2014; 胡阿香和彭建堂, 2016; 张朋等, 2016; Deng et al., 2017a, b; Gan and Huang, 2017; Müller and Groves, 2019; 严清高等, 2019)。云南六苴铜矿床位于滇中楚雄陆相红层盆地中北部、含矿砂岩带中段,其铜储量已达到大型规模,是我国陆相砂岩型铜矿床的典型代表。该矿区岩浆活动不明显,仅在矿区北侧的凹地苴矿床零星出露煌斑岩脉(陈国达等, 2004)。近年来随着深部探矿工程的实施,在六苴矿床1400m以深陆续揭露出煌斑岩脉,但砂岩型铜矿床中煌斑岩的相关研究鲜有报道,其作为研究区内唯一出露的岩浆岩,值得关注和深入研究。诸多地质工作者(冉崇英和庄汉平, 1998; 陈根文等, 2002a, b; 吴鹏, 2009; 韩润生等, 2010; 史春鸿, 2010; 吴海枝, 2015)对该矿床的构造、地层、岩石与成矿关系、矿床成因等方面开展了大量的研究工作,获得许多重要成果,但未见煌斑岩及其与铜成矿关系的相关研究。值得注意的是,韩润生等(2010)吴海枝(2015)通过成矿流体与物质来源研究,认为该矿床赋存于陆相砂岩中,但改造成矿期成矿流体显示有岩浆水参与,具有深源岩浆硫和壳幔混源等特点,深部可能存在岩浆热液叠加作用。受当时条件所限未能找到有关岩浆热液作用的更多证据。目前,在矿床深部发现煌斑岩,为进一步研究岩浆热液作用对铜富集的影响提供了新线索。

陆相红层盆地中砂岩型铜矿化强度差异及成因机制等问题长期以来困绕着地质工作者:铜矿化富集与岩浆活动是否存在联系?楚雄盆地内砂岩型铜矿床广泛分布,为什么只有六苴铜矿床达到大型规模?矿区内诸多铜矿(化)点,为什么富厚铜矿体出现在煌斑岩侵位的六苴矿床和凹地苴矿床?一系列问题引发出思考:煌斑岩对陆相砂岩中铜的富集有何影响?因此,六苴铜矿床内煌斑岩的岩石地球化学及年代学亟待研究,其对铜矿化富集的影响有待探索,与区域上岩浆活动及其热事件的关系有待讨论。大型陆相砂岩型铜矿床深部煌斑岩的研究,在典型矿床领域中有重要意义,也具特色和代表性。

本文以六苴铜矿床中的煌斑岩为研究对象,通过岩相学、电子探针、锆石SHRIMP U-Pb定年、锆石Hf同位素、ICP-MS等分析,总结煌斑岩的岩石学、地球化学、年代学特征,探讨其源区性质及地质意义,为区域上岩浆活动及其地质热事件的研究提供参考。

1 地质概况

楚雄盆地位于扬子陆块西南边缘,元谋古陆西侧。王维贤等(1997)将该盆地划分为3个近南北向的一级构造单元,即西部冲断带、中部凹陷带和东部隆起带(图 1a)。盆地内已发现砂岩型铜矿床(点)146处,主要位于中部凹陷带与东部隆起带之间。大姚铜矿区内主要有六苴、凹地苴、石门坎等矿床(点),多分布于大雪山背斜轴向转折地带的西翼、西南倾没端(吴鹏等, 2008a, b)(图 1b)。

图 1 楚雄盆地构造单元图(a)和大姚铜矿区地质图(b)(据王维贤等, 1997; 吴鹏, 2009; 吴海枝, 2015修绘) 1-第四系沉积物;2-上白垩统江底河组;3-上白垩统马头山组;4-下白垩统普昌河组;5-下白垩统高峰寺组;6-上侏罗统妥甸组;7-地质界线;8-背斜轴迹;9-向斜轴迹;10-穹窿;11-断层;12-矿体范围(虚线为隐伏矿段) Fig. 1 Tectonic unit of Chuxiong basin (a) and geological map of Dayao copper mining area (b) (modified after Wu, 2009, 2015) 1-Quaternary sediments; 2-Jiangdihe Fm. of the Upper Cretaceous; 3-Matoushan Fm. of the Upper Cretaceous; 4-Puchanghe Fm. of the Lower Cretaceous; 5-Gaofengsi Fm. of the Lower Cretaceous; 6-Tuodian Fm. of the Upper Jurassic; 7-geological boundary; 8-axis trace of anticline; 9-axis trace of syncline; 10-dome; 11-fault; 12-ore body range (hidden ore section with dotted line)

① 王维贤. 1997.楚雄地区砂岩铜矿成矿预测及靶区优选

矿区出露地层从老到新依次为:下白垩统普昌河组(K1p),上白垩统马头山组(K2m),上白垩统江底河组(K2j)。K1p与K2m为假整合接触。铜矿体赋存于上白垩统马头山组六苴下亚段(K2ml1)紫色砂岩与浅色砂岩交互带靠近浅色砂岩一侧,多呈层状、透镜状。主矿体从北(浅部)向南(深部)呈弧状延伸,已控制长度约3000m,宽度300~450m,厚度1~36m,铜平均品位1.34%。区内主要构造为大雪山背斜、岩子口向斜以及NW向、近EW向断裂。

2 煌斑岩岩石学特征

六苴铜矿床深部ZK18801、ZK24404钻孔及南部的新竖井工程中均发现煌斑岩,揭露深度距地表超过1400m。南部新竖井工程中揭露的煌斑岩呈灰黑色,与已知矿体相距较远,岩石较新鲜;矿床深部钻孔揭露的煌斑岩呈深灰色,与细砂岩呈断裂接触,断裂内见方解石脉,构造-热液活动特点显著(图 2a, b),其产出位置铜矿体显著加富变厚(表 1)。由岩心纹层及深部地层产状判断,煌斑岩脉沿着NW走向、倾角大于70°的断裂侵入,可能与扬子地台西缘煌斑岩分布广泛受区域NW向主干断裂控制(王登红等, 2006)有关。

图 2 六苴铜矿床煌斑岩手标本及镜下照片 (a、b)煌斑岩及其与围岩断裂接触;新鲜(c)和弱蚀变(d)煌斑岩手标本照片;单偏光下(e)和正交偏光下(f)煌斑结构;单偏光下(g)和正交偏光下(h)煌斑岩与砂岩接触关系照片 Fig. 2 Photos of hand specimens and microphotographs of lamprophyre in Liuju copper deposit (a, b) lamprophyre and fracture contact with surrounding rock; photographs of the lamprophyre hand specimen with fresh (c) and slight alteration (d); lamprophyric texture under single polarization light (e) and under cross-polarized light (f); microphotographs of contact relationship between lamprophyres and sandstone under single polarization light (g) and cross-polarized light (h)

表 1 六苴铜矿床煌斑岩及铜矿体分布位置表 Table 1 Location of lamprophyres and copper bodies in Liuju copper deposit

值得注意的是,深部钻孔揭露的煌斑岩上部为紫色细砂岩,下部为浅色细砂岩,即煌斑岩产出于浅-紫色砂岩交互带上,而该类矿床铜矿体的最佳赋存位置正是浅-紫色砂岩交互带。宏观上看,深部煌斑岩与富厚铜矿体产出位置具一致性。更为重要的是,煌斑岩下部的浅色细砂岩中断裂及方解石脉发育,铜矿体显著加富变厚,对铜矿化有明显的改造再富集作用。另外,含矿层(K2ml1)与下伏地层(K1p)间的假整合面被煌斑岩脉穿切,反映煌斑岩脉侵位晚于不整合面。从以上宏观特征及产出状态可知,煌斑岩脉产出位置与浅-紫色砂岩交互带、断裂(方解石脉)、富厚铜矿体以及不整合面等在空间上联系紧密,这些现象值得关注。

通过电子显微镜观察,六苴铜矿床中的煌斑岩具典型煌斑结构,呈灰黑-深灰色(图 2c, d),块状构造,斑状结构。斑晶主要为黑云母及少量辉石,基质为黑云母、碱性长石及少量磁铁矿、钛铁矿、磷灰石、锆石等。黑云母呈片状,多色性明显,一组极完全解理,部分黑云母可见环带结构,反映其岩浆成因,且未蚀变或蚀变微弱;碱性长石为微晶板条状,负低突起;磷灰石无色粒状,干涉色为一级灰,中高突起(图 2e-h)。个别样品轻微蚀变,局部长石发生碳酸盐化。根据矿物组合特征,将岩石定名为云煌岩。对比煌斑岩手标本及组构特征,较新鲜的煌斑岩位于南部(竖井工程内)及铜矿体上方(如样品H1),其脉宽较小,颜色相对深,且出现蛇纹石化橄榄石,在同类型的岩石中并不常见,可能与地幔物质有关(路凤香等, 1991)。具微弱蚀变的煌斑岩位于矿床北段深部、铜矿体下方(如样品H2),其脉宽较大,颜色相对浅。

值得关注的是,六苴铜矿床深部的煌斑岩出现显著的Pb、Zn异常,Pb含量高达267.5×10-6,Zn含量高达492.4×10-6,这一特征与含铜砂岩显著不同,是否与滇中地区广泛发育铅锌矿床存在关联,有待于进一步研究。通过电子探针分析,在煌斑岩中发现了粒径小于30μm的方铅矿、闪锌矿颗粒(图 3)。Pb、Zn含量高异常及其硫化物的出现,指示六苴铜矿床煌斑岩与Pb、Zn的矿化富集存在密切联系。

图 3 六苴铜矿床煌斑岩中闪锌矿(a)和方铅矿(b)背散射图像及能谱分析结果 Fig. 3 Back scattering images and energy spectrum analysis results for sphalerite (Sph) (a) and galena (Gn) (b) from lamprophyres in Liuju copper deposit
3 样品采样及测试方法 3.1 样品采样

在六苴铜矿床深部钻孔和南部竖井工程中,采集了煌斑岩和含矿层(K2ml1)细砂岩样品共28件。其中,在南部竖井工程中,远离铜矿体的新鲜煌斑岩样品11件(DY04、05、06、10、11、12、13、14、15、16、H1),煌斑结构典型,岩石由新鲜的黑云母、碱性长石等原生矿物组成,蚀变不明显。选择标准为:灰黑色,原生岩浆结构,矿物未发生蚀变作用(图 2c, e);深部钻孔中靠近铜矿体的弱蚀变煌斑岩样品7件(DY01、02、03、07、08、09、H2),呈深灰色-浅灰色;浅灰白色含铜细砂岩2件(H3、H4);灰白色无矿细砂岩(即浅色带砂岩,位于铜矿体东侧)2件(H5、H6);铜矿体上方紫色细砂岩(上紫砂岩)2件(H7、H8);铜矿体下方紫色细砂岩(下紫砂岩)2件(H9、H10);灰紫色细砂岩(即紫色带砂岩,位于矿体西侧)2件(H11、H12)。

3.2 测试方法

岩石地球化学样品,在西北有色地质研究院测试中心(西安)和中国科学院地球化学研究所完成。主量元素采用氧化物化学全分析法测试,微量元素和稀土元素采用ICP-MS测定,分析流程见文献(管涛,2005),测试数据准确可靠。

锆石挑选在北京锆年领航科技有限公司利用单矿物常规分选技术完成。锆石U-Pb测试在北京离子探针中心采用SHRIMP Ⅱ完成,标准锆石为91500(或M257)和TEMORA,U-Pb同位素测年中采用澳大利亚国家地质调查局标准锆石TEM做外标进行同位素分馏校正,每分析5个样品点后对锆石标准TEM做分析。Pb/U校正公式采用Pb/U=A(UO/U)2(Claoué-Long et al., 1995),应用另一标准锆石M257标定所测锆石的U、Th、Pb含量。普通铅根据实测204Pb校正,采用206Pb/238U(>1200Ma年龄采用207Pb/206Pb年龄值)的年龄加权平均值,其误差为2σ。锆石样品U-Pb年龄谐和图的绘制以及年龄加权平均值计算采用ISOPLOT软件完成。锆石Hf同位素测试在中国地质科学院国家地质实验测试中心采用LA-MC-ICP-MS完成,标准物质为Plesovice仪器运行条件及详细测试流程参考侯可军等(2007)。实验过程中采用He作为剥蚀物质载气,根据锆石大小,剥蚀直径40~60μm不等,激光剥蚀点靠近U-Pb年龄测定点,测试时使用锆石标样Plesovice作为参考物质。εHf(t)计算采用衰变常数λ=1.865×10-11year-1(Scherer et al., 2001),(176Hf/177Hf)CHUR=0.032,(176Hf/177Hf)CHUR, 0=0.282772(Blichert-Toft et al., 1997),亏损地幔模式年龄(tDM1)计算采用(176Lu/177Hf)DM=0.0384,(176Hf/177Hf)DM=0.28325(Griffin et al., 2000; 赵辰等, 2019),二阶段Hf模式年龄(tDM2)计算时,平均地壳的176Lu/177Hf比值为0.015(Griffin et al., 2002)。

4 测试结果 4.1 煌斑岩地球化学特征 4.1.1 主量元素地球化学

六苴铜矿床煌斑岩、砂岩样品主量元素含量见表 2

表 2 六苴铜矿床煌斑岩及典型砂岩主量元素含量(wt%) Table 2 Major elements concentrations (wt%) for lamprophyres and typical sandstones in Liuju copper deposit

对比区域煌斑岩岩石化学研究成果(黄智龙和王联魁, 1996; 管涛等, 2006),样品主量元素含量在新鲜煌斑岩范围内。六苴铜矿床煌斑岩SiO2含量40.69%~53.23%,TiO2含量0.70%~1.16%,K2O含量3.17%~5.15%,Na2O含量1.86%~4.83%,(K2O+Na2O)含量5.76%~9.55%,K2O/Na2O值为0.7~2.1,显示其为一种富碱、高钾、高钛的超基性-基性岩脉。对比煌斑岩、含矿层(K2ml1)砂岩以及区域上煌斑岩等样品的主量元素含量(表 2),该煌斑岩SiO2含量较低(< 50%),TiO2、Al2O3、TFe等含量均较高。在SiO2-(Na2O+K2O)图解上(图 4),区域上煌斑岩投点于钙碱性煌斑岩区(Rock, 1987),而六苴铜矿床煌斑岩投点于钙碱性煌斑岩至碱性煌斑岩的过渡区,其碱性增强的特点显著。根据路凤香等(1991)的划分方案,六苴铜矿床煌斑岩属于钾质钙碱性煌斑岩,为交代富集地幔部分熔融的产物。

图 4 六苴铜矿床煌斑岩(Na2O+K2O)-SiO2图(底图据Rock, 1987; 王登红等, 2006) CAL-钙碱质煌斑岩;AL-碱性煌斑岩;UML-超铁镁煌斑岩;LL-钾镁煌斑岩;ALK-碱性岩;TH-拉斑玄武岩 Fig. 4 K2O+Na2O vs. SiO2 classification of lamprophyres in Liuju copper deposit (base map after Rock, 1987; Wang et al., 2006) CAL-calc-alkaline lamprophyre; AL-alkaline lamprophyre; UML-ultramafic lamprophyre; LL-lamproite; ALK-Alkaline rock; TH-Tholeiite
4.1.2 微量、稀土元素地球化学

六苴铜矿床煌斑岩、砂岩样品微量元素含量见表 3。煌斑岩富集Sr、Th、Rb等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,显示出弧岩浆地球化学特征(Deng et al., 2017a),与区域上煌斑岩特征相似。与Rock (1990)统计全球的云斜煌岩过渡元素平均含量相比,六苴铜矿床煌斑岩Sc、V、Cr、Co、Ni、Cu、Zn等过渡元素含量指示其属于钙碱性煌斑岩。与含铜砂岩相比,煌斑岩中微量元素含量普遍增高(表 3图 5a),尤其是Sr、Sc、Ti、V、Cr、Ni、Co等含量高出3倍以上。Cu、Ag、Mo、Hg、Sb等含量显著降低。

表 3 六苴铜矿床煌斑岩及典型砂岩微量元素含量(×10-6) Table 3 Trace element contents in lamprophyres and typical sandstones in Liuju copper deposit (×10-6)

图 5 六苴铜矿床煌斑岩原始地幔标准化微量元素蛛网图(a, 标准化值据Sun and McDonough, 1989)和球粒陨石标准化稀土元素配分图(b, 标准化值据Boynton, 1984) Fig. 5 Primitive mantle-normalized spidergrams (a, normalization values after Sun and McDonough, 1989) and chondrite-normalized REE patterns (b, normalization values after Boynton, 1984) for lamprophyres in Liuju copper deposit

煌斑岩、砂岩样品稀土元素含量及相关参数列于表 4。煌斑岩稀土总量(∑REE)较高,达446.1×10-6~854.0×10-6,其中LREE含量为422.7×10-6~823.5×10-6,HREE含量为20.0×10-6~31.2×10-6,LREE/HREE为18.1~27.3,(La/Yb)N为44.4~88.4,δEu为0.82~0.96,δCe为0.66~0.98,表现出轻稀土强烈富集,重稀土相对亏损的特点(图 5b)。Aumento et al. (1971)分析玄武岩浆时提出,分熔程度低,相对碱性程度增加,相应的稀土总量增加,尤其是轻稀土元素含量明显增高。六苴铜矿床煌斑岩LREE(平均值798.3×10-6)明显高于原始地幔和洋中脊玄武岩的稀土总量(Sun and McDonough, 1989),可能与该区煌斑岩碱性增强有关,反映六苴铜矿床煌斑岩可能源于相对富集轻稀土元素的玄武岩地幔源区。

表 4 六苴铜矿床煌斑岩、典型砂岩稀土元素含量(×10-6)及相关参数值 Table 4 Rare element content (×10-6) and related parameters in lamprophyres and typical sandstones in Liuju copper deposit

煌斑岩稀土元素含量变化范围较窄,其∑REE、LREE、HREE、LREE/HREE、(La/Yb)N均高于砂岩。与区域上煌斑岩相比,六苴铜矿床煌斑岩稀土元素含量略高于马厂菁铜矿床和老王金矿床,与姚安金矿床煌斑岩相似。六苴铜矿床煌斑岩、砂岩稀土元素分配模式图(图 6)均表现为轻稀土富集型,下紫色细砂岩稀土元素配分曲线与煌斑岩更为接近。

图 6 区域煌斑岩(a)及六苴铜矿床典型砂岩(b)球粒陨石标准化稀土元素配分图(标准化值据Boynton, 1984) Fig. 6 Chondrite-normalized REE patterns for regional lamprophyres (a) and typical sandstones in Liuju copper deposit (b) (normalization values after Boynton, 1984)
4.2 锆石SHRIMP U-Pb分析

六苴铜矿床煌斑岩样品中的锆石CL图像如图 7a所示。锆石可分为两种类型:一种自形程度高,呈短柱状或长柱状,内部普遍发育良好的生长韵律环带或振荡环带,显示为典型的岩浆锆石(Hoskin and Schaltegger, 2003);另一种则分带不明显。16颗锆石SHRIMP U-Pb定年结果见表 5图 7b。其中11颗岩浆锆石分析点的206Pb/238U年龄值集中在31~33Ma且分布于协和曲线附近,在置信度达95%时206Pb/238U加权平均年龄值为32.59±0.27Ma(n=11,MSWD=1.9),代表了该煌斑岩的结晶年龄。其余5颗分带不明显的锆石206Pb/238U表面年龄为757~784Ma,推测为煌斑岩侵位途中捕获的锆石。

图 7 六苴铜矿床煌斑岩中锆石阴极发光图像(a)和锆石SHRIMP U-Pb年龄谐和图(b) Fig. 7 Cathodoluminescence images of the analyzed zircon grains (a) and zircon SHRIMP U-Pb concordia diagram (b) for lamprophyres from the Liuju copper deposit

表 5 六苴铜矿床煌斑岩中锆石SHRIMP U-Pb年龄分析结果 Table 5 Zircon SHRIMP U-Pb dating results for the lamprophyres in Liuju copper deposit
4.3 锆石Hf同位素

在锆石SHRIMP U-Pb定年基础上,同岩浆期锆石中共测定了13个Hf同位素数据点(表 6)。锆石的176Lu/177Hf值在0.00045~0.00124之间,所有比值均小于0.002,显示锆石形成后较低放射性成因Hf的累积,所测176Lu/177Hf值可代表岩石形成时体系的Hf同位素组成(吴福元等, 2007; 郭文琳等, 2019)。13个测试点的176Hf/177Hf值范围为0.28230~0.28272,其中9个岩浆锆石测试点的εHf(t)=-4.3~-1.2,对应二阶段Hf模式年龄为1019~1189Ma,远大于煌斑岩结晶年龄,表明岩浆源区受到过地壳物质的混染或来自于富集性地幔(吴福元等, 2007);4个捕获锆石εHf(t)较大,介于0.1~3.5之间,对应二阶段Hf模式年龄为1356~1530Ma。

表 6 六苴铜矿床煌斑岩中锆石Hf同位素分析结果 Table 6 Zircon Hf isotopic results for the lamprophyres in Liuju copper deposit
5 讨论 5.1 煌斑岩成岩时代

前人运用多种方法对楚雄盆地煌斑岩进行年代学研究。王江海等(2001)研究老王寨金矿床煌斑岩年龄为30.8±0.4Ma~34.3±0.2Ma;云南白马寨镍矿床煌斑岩年龄为32.46±0.62Ma,是哀牢山早期高钾岩浆活动的产物(管涛等, 2006)。采用Ar-Ar法得到姚安老街子铅矿床煌斑岩的年龄为33.7±0.5Ma(Lu et al., 2015);严清高等(2019)在姚安干沟金矿床采用LA-ICP-MS U-Pb法得到煌斑岩年龄为31.22±0.33Ma。本文通过锆石SHRIMP U-Pb测试,获得六苴铜矿床煌斑岩结晶年龄为32.59±0.27Ma,与区域上主要煌斑岩的侵位时代一致,为古近纪始新世-渐新世。

前人在区域上还获得了大量与煌斑岩同期的中酸性岩浆和热液活动年龄(表 7)。如罗晨皓(2018)采用锆石U-Pb法得到姚安正长斑岩年龄为33.45±0.3Ma、粗面岩年龄为32.99±0.5Ma、白榴石斑岩年龄为33.31±0.5Ma;Sun et al. (2017)采用锆石U-Pb法得到姚安假白榴石斑岩年龄为34.1±0.3Ma;直苴铅-锌-铜多金属矿区二长花岗岩年龄为34.0±1.7Ma、似斑状正长花岗岩年龄为30.7±2.5Ma、斑岩型铜钼成矿年龄为31.3±0.4Ma(吴海枝, 2015)。这些结果表明,楚雄盆地古近纪始新世-渐新世中酸性岩浆活动及成矿作用显著,区域煌斑岩与它们形成于同一期岩浆-构造热事件。

表 7 滇中楚雄盆地古近纪始新世-渐新世火山-侵入杂岩体同位素年代学统计表 Table 7 Summary of isotopic ages for Eocene-Oligocene volcanic-intrusive complexes in the Chuxiong basin, central Yunnan

刘树根等(2001)认为楚雄盆地构造时限为燕山期(120~130Ma)、喜马拉雅早期(约60Ma)、喜马拉雅中期(30~40Ma)、喜马拉雅晚期(20~25Ma)、喜马拉雅末期(10Ma),六苴铜矿床煌斑岩代表了区域喜马拉雅期中期岩浆活动的产物。

5.2 煌斑岩源区性质

前人对区域上白马寨、老王寨、马厂箐、北衙、姚安等地区煌斑岩成因研究显示,其主要起源于交代富集的岩石圈地幔,部分岩体源区(如姚安)可能有地壳的参与(黄智龙等, 1997; 贾丽琼等, 2013; 严清高等, 2019)。煌斑岩起源于地壳深部的岩浆,上升途中难免会经受地壳混染作用。六苴铜矿床煌斑岩与区域中生代煌斑岩呈现相似的地球化学性质(图 4-图 6),表现出富集大离子亲石元素和轻稀土元素、亏损高场强元素和重稀土元素、高钾高碱钙碱性等特征,暗示有相似的起源演化过程。

锆石Hf同位素可作为岩浆源区判断的重要依据,通常认为球粒陨石、亏损地幔、新生地壳的176Hf/177Hf值较大(≥0.282772),对应的εHf(t)值大于零,古老地壳物质或不同类型富集岩石圈地幔的176Hf/177Hf值较小,其εHf(t)为负值(吴福元等, 2007; 郭文琳等, 2019)。本文对六苴铜矿床煌斑岩开展锆石Hf同位素研究,获得岩浆锆石176Hf/177Hf值为0.28244~0.28272,比较集中的Hf同位素组成εHf(t)=-4~2(图 8a),岩浆锆石对应的εHf(t)值范围变化在-4.3~-1.2之间(与北衙地区煌斑岩相似),对应二阶段Hf模式年龄为1019~1189Ma,远大于煌斑岩结晶年龄,表明岩浆受到过老地壳物质的混染或来自于富集岩石圈地幔(吴福元等, 2007)。Wang et al. (2016)认为始新世-渐新世形成的斑岩-矽卡岩铜金成矿作用下的钾岩体εHf(t)值在-4.5~+3.6,对应二阶段Hf模式年龄为1300~900Ma,是沿金沙江-哀牢山下岩石圈地幔拆沉作用形成的。

图 8 六苴铜矿床煌斑岩锆石εHf(t)值柱状图(a)和εHf(t)-t(Ma)图解(b, 底图据吴福元等,2007) Fig. 8 Histogram of εHf(t) value (a) and εHf(t) vs. t(Ma) plot (b, base map after Wu et al., 2007) for zircons from lamprophyres in Liuju copper deposit

六苴铜矿床煌斑岩Nb/Ta比值22.0~30.7,高于原始地幔值17.5±1.9(Weaver, 1991);Zr/Hf比值38.0~49.1,高于原始地幔值36.3±2(Weaver, 1991),这两对元素比值均明显高于陆壳值的11和33(Taylor and McClennan, 1985),表明地壳的贡献较少。此外,六苴铜矿床煌斑岩的固结指数高、La/Sm比值随La含量增大而增大(图 9a),主要为源自地幔源区的特征,显示该岩体主要由部分熔融形成。由Nb/U-Nb图解(图 9b),煌斑岩的Nb/U值大部分接近全球平均俯冲沉积物的值,少部分接近上地壳的值,反映洋陆俯冲过程中释放的流体对地幔的交代作用是地幔源区成分变化的重要原因。六苴铜矿床煌斑岩Zr/Hf值偏高、轻稀土富集、高Sr含量(最高达3910×10-6)、“Ta-Nb-Ti”负异常、出现单斜辉石和磷灰石等典型矿物等特征,均反映了俯冲流体交代富集的地幔源区特点(Frey and Green, 1974; Rock et al., 1991; Dupuy et al., 1992; Liang et al., 2018)。结合煌斑岩岩浆锆石的二阶段Hf模式年龄和靠近0的负εHf(t)值特征,六苴铜矿床煌斑岩主要起源于1019~1189Ma间形成的交代富集岩石圈地幔。

图 9 六苴铜矿床煌斑岩La-La/Sm图解(a)和Nb/U-Nb图解(b, 底图据姜耀辉等,2006) Fig. 9 La vs. La/Sm diagram (a) and Nb/U vs. Nb diagram (b, base map after Jiang et al., 2006) of lamprophyres in Liuju copper deposit

六苴铜矿床煌斑岩含有部分捕获锆石,单一交代岩石圈地幔部分熔融不能合理的予以解释。这些捕获锆石具有较老的206Pb/238U表面年龄(757~784Ma)和εHf(t)值为低的正值(0.1~3.5),对应二阶段Hf模式年龄为1356~1530Ma,在εHf(t)-t图解上(图 8b),捕获锆石落在球粒陨石演化线附近,靠近1.8Ga地壳演化上方,可能代表了1356~1530Ma间增生的陆壳。Deng et al. (2018)研究总结鲁西地块εHf(t)值为-15.7~+6.5,对应二阶段Hf模式年龄为2140~750Ma,其源区可能是扬子克拉通改造的中元古地壳。入侵在金沙江缝合带的岩体εHf(t)值为-3.7~+1.8,对应二阶段Hf模式年龄为1500~1100Ma,与混合岩浆有关,是幔源熔体和晚期碰撞背景下形成的地壳岩浆混合(Wang et al., 2016)。综上所述,六苴铜矿床煌斑岩主要源自流体交代的的富集岩石圈地幔(1019~1189Ma),该地幔部分熔融产生的基性煌斑岩母岩浆在壳-幔边界演化,岩浆在快速上升过程中进一步熔融混染了少部分先存的地壳残片(1356~1530Ma),进而形成了具有壳-幔混合特征的玄武质岩浆(εHf(t)值=-4~2)。

5.3 地质意义

西南三江地区位于欧亚板块与印度板块结合部东侧,构造岩浆活动频繁而强烈,成矿条件优越(Hou et al., 2007; 邓军等, 2012, 2016; Wang et al., 2014; Zhang et al., 2014)。从新生代早期(65Ma)开始,高原地区东部的晚碰撞期岩浆活动强烈而广泛,形成金沙江-红河富碱侵入岩带和岩浆碳酸岩-碱性岩杂岩带以及一个岩浆活动区,即大理—西昌煌斑岩区(侯增谦等, 2006)。金沙江-红河富碱斑岩成矿带内蕴藏着大量与富碱斑岩有关的Cu-Au-Mo多金属矿床(Hou et al., 2007; Deng et al., 2014a, b)。金志升等(1997)研究认为,云南三江地区的富碱侵入岩和煌斑岩可能是同源岩浆活动产物。

喜马拉雅期,滇西地区经历强烈挤压和左行走滑,伴随着大量的富碱斑岩岩浆与地幔流体沿深大断裂上侵,形成了滇西地区始新世-渐新世强烈的构造-岩浆活动。走滑断层作用的发生使得滇西地块局部出现较强的拉张环境(周洁, 2017),哀牢山构造带岩浆岩的年龄主要为33~36Ma(李泽, 2014),属后造山期伸展环境。楚雄盆地在32~36Ma经历强烈的构造-岩浆活动(Zhang et al., 2005; 管涛, 2005; 李勇等, 2011; 李泽, 2014; 周洁, 2017),与区域上富碱斑岩形成时代一致,因此加厚岩石圈地幔拆沉模型更合理地解释了该区域大范围发生的新生代火山-岩浆活动。随着挤压转换为拉张环境,诱发富碱斑岩岩浆和地幔流体上侵,在楚雄盆地广泛分布有喜马拉雅期的富碱侵入岩和煌斑岩,带来了丰富的成矿物质。由此可见,新生代以来,扬子克拉通西缘下地壳依次经历碰撞增厚-失稳拆沉的过程(Lu et al., 2013),残余的元古代交代富集的岩石圈地幔部分熔融,产生基性岩浆,即煌斑岩母岩浆,沿构造薄弱带底侵至莫霍面,混合了古老地壳部分熔融岩浆。由挤压到伸展过程中形成了足够压力梯度的减压带,诱发壳-幔岩浆上侵,岩浆在快速上升过程中,混染了少部分地壳物质,形成了六苴铜矿床的煌斑岩。

铜、金等成矿效应多与煌斑岩的分布密切相关(瓦西拉里等, 2011)。综合前期研究成果和宏观地质事实,认为六苴铜矿床深部揭露的煌斑岩,对铜矿的改造富集产生了重要影响,主要证据如下:(1)从空间关系上看,富厚铜矿体与煌斑岩均产出在浅、紫色砂岩交互处(图 2a表 1),二者在空间上紧密相伴;(2)从时间关系上看,六苴砂岩型铜矿床的次改造成矿期(喜马拉雅中期:32.4~42.3Ma)矿体加富变厚(韩润生等, 2010),煌斑岩成岩时代(33~31Ma)对应于改造成矿期;(3)从构造-热液活动及产出状态上看,六苴铜矿床改造成矿期的构造发育地段见脉状矿体分布于断裂带中(韩润生等, 2010; 吴海枝, 2015),局部沿断裂带产出的矿脉品位高达20%,而煌斑岩产出地段的断裂、方解石和石英脉等构造-热液活动明显,铜矿体也相应地加富变厚,表明二者在构造-热液活动方式及改造富集的宏观产状上是一致的;(4)从成矿流体和物质来源来看,吴海枝(2015)研究六苴铜矿床改造期含矿石英脉中包裹体均一温度可达227.2℃,部分样品氢-氧同位素比值位于岩浆水区域(反映成矿流体可能有岩浆水的参与),2个硫化物样品的δ34S(-1.84‰和+2.65‰)具有深源岩浆硫的特点,该期铅-锶同位素结果指示成矿物质具壳幔混源特点,认为该矿床改造成矿期与盆地喜马拉雅期区域性岩浆热液活动有关,存在岩浆热液叠加的可能性,这与史春鸿(2010)的认识一致。煌斑岩正是这一区域性岩浆热液作用在六苴铜矿床的具体表现,作为研究区内唯一出露的岩浆岩,煌斑岩对改造成矿期铜再富集的影响,从成矿流体和物质来源等方面也得到印证,这为前期研究所提出的“改造期成矿作用可能与岩浆活动有关”这一认识做出了进一步的解释。综上所述,六苴铜矿床深部煌斑岩与富厚铜矿体二者在空间、时间、构造-热液、产出状态、成矿流体及物质来源等方面均具有密切联系:在改造成矿期强烈的构造作用下,煌斑岩侵位并切穿不整合面至主要含铜层位(K2ml1),其富含的挥发分可以提供大量热流体,促进铜的活化、迁移与再富集,使矿体加厚变富,对铜矿体的改造富集起到重要作用,是预测富厚铜矿体的重要指示标志。此外,六苴铜矿床蚀变的煌斑岩中出现方铅矿、闪锌矿等金属硫化物,可能与滇中地区广泛发育铅锌矿床的深部物质来源有关,暗示该砂岩型铜矿床深部可能具有铅锌成矿的潜力,这一推论有待于进一步研究。

6 结论

(1) 六苴铜矿床煌斑岩为云煌岩,属钾质钙碱性煌斑岩。该煌斑岩锆石U-Pb年龄为32.59±0.27Ma,与楚雄盆地喜马拉雅期成岩成矿作用属同期岩浆-成矿热事件,对应于六苴铜矿床的改造成矿期。

(2) 六苴铜矿床煌斑岩具有大离子亲石元素、轻稀土元素相对富集,高场强元素、重稀土元素相对亏损的特点,结合Hf同位素特征,认为六苴铜矿床煌斑岩主要源自流体交代的富集岩石圈地幔。部分熔融产生的基性煌斑岩母岩浆在壳-幔边界演化,岩浆在快速上升过程中熔融混染了少部分先存的地壳残片,进而形成了具有壳-幔混合特征的玄武质岩浆,是喜马拉雅期印度-欧亚板块碰撞挤压背景下,从挤压转换为拉张环境的产物。

(3) 六苴铜矿床煌斑岩对铜的改造富集起到重要作用,它与富厚铜矿体二者在空间、时间、构造-热液、产出状态、矿源等方面均具有紧密联系,可作为预测深部富厚铜矿体的指示标志。煌斑岩中出现方铅矿、闪锌矿等金属硫化物,暗示该矿床深部具铅锌成矿潜力。

致谢      感谢中国地质大学(北京)张静教授、中国科学院地球化学研究所黄智龙研究员、北京大学严清高博士及审稿专家对本文提出了宝贵的修改意见。

参考文献
Aumento F, Loncarevic BD, Ross DI and Nayudu YR. 1971. IV. Regional studies. Hudson Geotraverse: Geology of the Mid-Atlantic Ridge at 45°N/Petrology of submarine volcanics from the NE Pacific. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 268: 623-651
Blichert-Toft J, Chauvel C and Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260 DOI:10.1007/s004100050278
Boynton WV. 1984. Cosmochemistry of the rare earth elements:Meteorite studies. Developments in Geochemistry, 2: 63-114 DOI:10.1016/B978-0-444-42148-7.50008-3
Chen GD, Peng SL and Dai TG. 2004. The Crustobody Integrative Geotectonics Metallogenia of Cu-polymetallic, Yunnan. Changsha: Central South University Press, 197-198 (in Chinese)
Chen GW, Wu YZ, Xia B, Wang H, Zhong ZH and Wang GQ. 2002a. Isotopic characteristics and genesis of the sandstone-type copper deposits in the Chuxiong basin, Yunnan Province. Geotectonica et Metallogenia, 26(3): 279-284 (in Chinese with English abstract)
Chen GW, Xia B, Wu YZ, Zhong ZH and Wang GQ. 2002b. Controls of sedimentary rock on sandstone-hosted copper deposits in Chuxiong basin. Journal of Mineralogy and Petrology, 22(3): 24-28 (in Chinese with English abstract)
Claoué-Long JC, Compston W, Roberts J and Fanning CM. 1995. Two carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren WA, Kent DV, Aubry MP and Hardenbol J (eds.). Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication, 54: 3-21
Deng J, Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349-1361 (in Chinese with English abstract)
Deng J, Wang QF, Li GJ and Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299 DOI:10.1016/j.earscirev.2014.05.015
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437 DOI:10.1016/j.gr.2013.08.002
Deng J, Wang QF and Li GJ. 2016. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt, SW China. Acta Petrologica Sinica, 32(8): 2225-2247 (in Chinese with English abstract)
Deng J, Liu XF, Wang QF, Dilek Y and Liang YY. 2017a. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking:Lithospheric extension in the North China craton, eastern Asia. GSA Bulletin, 129(11-12): 1379-1407 DOI:10.1130/B31609.1
Deng J, Wang QF and Li GJ. 2017b. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Research, 50: 216-266 DOI:10.1016/j.gr.2017.02.005
Deng J, Wang CM, Bagas L, Santosh M and Yao EY. 2018. Crustal architecture and metallogenesis in the south-eastern North China Craton. Earth-Science Reviews, 182: 251-272 DOI:10.1016/j.earscirev.2018.05.001
Dupuy C, Liotard JM and Dostal J. 1992. Zr/Hf fractionation in intraplate basaltic rocks:Carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta, 56(6): 2417-2423 DOI:10.1016/0016-7037(92)90198-R
Frey FA and Green DH. 1974. The mineralogy, geochemistry and origin of iherzolite inclusions in Victorian basanites. Geochimica et Cosmochimica Acta, 38(7): 1023-1059 DOI:10.1016/0016-7037(74)90003-9
Gan T and Huang ZL. 2017. Platinum-group element and Re-Os geochemistry of lamprophyres in the Zhenyuan gold deposit, Yunnan Province, China:Implications for petrogenesis and mantle evolution. Lithos, 282-283: 228-239 DOI:10.1016/j.lithos.2017.03.018
Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9
Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269 DOI:10.1016/S0024-4937(02)00082-8
Guan T. 2005. Geochemistry of lamprophyres in the Baimazhai nickel deposit, Yunnan Province, China: Implications for their origin. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Guan T, Huang ZL, Xu C, Zhang ZL, Yan ZF and Chen M. 2006. 40Ar-39Ar dating and geochemical characteristics of lamprophyres in the Baimazhai nickel deposit, Yunnan Province. Acta Petrologica Sinica, 22(4): 873-883 (in Chinese with English abstract)
Guo WL, Su WB, Zhang J, Li HM, Zhou HY, Li HK, Ettensohn FR and Huff WD. 2019. Zircon U-Pb dating and Hf isotopes of K-bentonites from the Tieling Formation in a new exposure of the Jixian Section, Tianjin, North China Craton. Acta Petrologica Sinica, 35(8): 2433-2454 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.08.08
Han RS, Zou HJ, Wu P, Fang WX and Hu YZ. 2010. Coupling tectonic-fluid metallogenic model of the sandstone-type copper seposit in the Chuxiong basin, China. Acta Geologica Sinica, 84(10): 1438-1447 (in Chinese with English abstract)
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)
Hou ZQ, Pan GT, Wang AJ, Mo XX, Tian SH, Sun XM, Ding L, Wang EQ, Gao YF, Xie YL, Zeng PS, Qin KZ, Xu JF, Qu XM, Yang ZM, Yang ZS, Fei HC, Meng XJ and Li ZQ. 2006. Metallogenesis in Tibetan collisional orogenic belt:Ⅱ. Mineralization in late-collisional transformation setting. Mineral Deposits, 25(5): 521-543 (in Chinese with English abstract)
Hou ZQ, Zaw K, Pan GT, Mo XX, Xu Q, Hu YZ and Li XZ. 2007. Sanjiang Tethyan metallogenesis in SW China:Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4): 48-87 DOI:10.1016/j.oregeorev.2004.12.007
Hu AX and Peng JT. 2016. Mesozoic lamprophyre and its origin in the Xikuangshan district, central Hunan. Acta Petrologica Sinica, 32(7): 2041-2056 (in Chinese with English abstract)
Huang ZL and Wang LK. 1996. Geochemistry of lamprophyres in Laowangzhai gold deposit, Yunnan Province. Geochimica, 25(3): 255-263 (in Chinese with English abstract)
Huang ZL, Liu J and Wang LK. 1997. Compositional modeling of mantle source for lamprophyres in the Laowangzhai gold orefield, Yunnan. Acta Mineralogica Sinica, 17(3): 316-320 (in Chinese with English abstract)
Jia LQ, Mo XX, Dong GC, Xu WY, Wang L, Guo XD, Wang ZH and Wei SG. 2013. Genesis of lamprophyres from Machangqing, western Yunnan:Constraints from geochemistry, geochronology and Sr-Nd-Pb-Hf isotopes. Acta Petrologica Sinica, 29(4): 1247-1260 (in Chinese with English abstract)
Jiang YH, Jiang SY, Ling HF and Dai BZ. 2006. Petrogenesis of Cu-bearing porphyry associated with continent-continent collisional setting:Evidence from the Yulong porphyry Cu ore-belt, East Tibet. Acta Petrologica Sinica, 22(3): 697-706 (in Chinese with English abstract)
Jin ZS, Huang ZL and Zhu CM. 1997. Consanguinity of alkaline intrusions and lamprophyres of Sanjiang district, Yunnan Province. Bulletin of Mineralogy, Petrology and Geochemistry, 16(4): 222-224 (in Chinese with English abstract)
Li Y, Mo XX, Yu XH, Huang XK and He WY. 2011. Geochemical and geological significance of the high-Mg potassic volcanic rocks in Sanjiang area, western Yunnan. Acta Petrologica Sinica, 27(9): 2510-2518 (in Chinese with English abstract)
Li Z. 2014. The mineral composition and structure evolution of Yunnan Nanjian structure transition zone. Master Degree Thesis. Chengdu: Chengdu University of Technology (in Chinese with English summary)
Liang YY, Deng J, Liu XF, Wang QF, Qin C, Li Y, Yang Y, Zhou M and Jiang JY. 2018. Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton:Insights into magma mixing and source metasomatism. Lithos, 302-303: 480-495 DOI:10.1016/j.lithos.2018.01.031
Liu SG, Zhao XK, Luo ZL, Xu GS, Wang GZ, Wilson CJL and Arne D. 2001. Study on the tectonic events in the system of the Longmen Mountain-West Sichuan foreland basin, China. Journal of Chengdu University of Technology, 28(3): 221-230 (in Chinese with English abstract)
Lu FX, Shu XX and Zhao CH. 1991. A suggestion on classification of lamprophyres. Geological Science and Technology Information, 10(Suppl.1): 55-62 (in Chinese with English abstract)
Lu YJ, Kerrich R, McCuaig TC, Li ZX, Hart CJR, Cawood PA, Hou ZQ, Bagas L, Cliff J, Belousova EA and Tang SH. 2013. Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China:Petrogenesis and tectonic implications. Journal of Petrology, 54(7): 1309-1348 DOI:10.1093/petrology/egt013
Lu YJ, McCuaig TC, Li ZX, Jourdan F, Hart CJR, Hou ZQ and Tang SH. 2015. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton:Mantle source and tectonic implications. Lithos, 233: 139-161 DOI:10.1016/j.lithos.2015.02.003
Luo CH. 2018. The geochronology, geochemistry characteristics and petrogenesis of the alkali-rich porphyry in Yao'an, West Yunnan Province. Master Degree Thesis. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
Müller D and Groves DI. 2019. Indirect associations between lamprophyres and gold-copper deposits. In: Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Cham: Springer, 279-306
Ran CY and Zhuang HP. 1998. Geochemistry of Copper, Salt and Organic Associated Deposits in the Chuxiong Basin, Yunnan, China. Beijing: Science Press, 10-16 (in Chinese with English abstract)
Rock NMS. 1987. The nature and origin of lamprophyres:An overview. Geological Society, London, Special Publications, 30(1): 191-226 DOI:10.1144/GSL.SP.1987.030.01.09
Rock NMS. 1990. The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme:Computerization and its consequences. Mineralogy & Petrology, 43(2): 99-119
Rock NMS, Bowes DR and Wright AE. 1991. Lamprophyres. Blackie: Glasgow, 1-285
Scherer CM, Münker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683-687 DOI:10.1126/science.1061372
Shi CH. 2010. Comparative study on geological and geochemical characteristics of Haojiahe and Liuju copper deposits in central Yunnan. Master Degree Thesis. Kunming: Kunming University of Science and Technology (in Chinese with English summary)
Štemprok M, Dolejš D and Holub FV. 2014. Late Variscan calc-alkaline lamprophyres in the Krupka ore district, Eastern Krušné hory/Erzgebirge:Their relationship to Sn-W mineralization. Journal of Geosciences, 59(1): 41-68
Sun CD, Wu P, Wang D, Guan SJ, Jiang XJ, Jiang LY and Wang LY. 2017. Geochemistry and zircon U-Pb age of the Yao'an pseudoleucite porphyry, Yunnan Province, China. Acta Geochimica, 36(2): 316-328 DOI:10.1007/s11631-017-0149-3
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Taylor SR and McClennan SM. 1985. The Continental Crust:Its Composition and Evolution. London: Blackwell Scientific Publications, 57-72
Wa XLL, Li HZ, Liang J and Zhou LY. 2011. Review of the species, petrogenesis of Lamprophyre and its relationship with mineralization. Journal of the Graduates Sun Yat-Sen University (Natural Sciences, Medicine), 32(4): 1-13 (in Chinese with English abstract)
Wang CM, Bagas L, Lu YJ, Santosh M, Du B and McCuaig TC. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39-65 DOI:10.1016/j.earscirev.2016.02.008
Wang DH, Ying HL, Liang HY, Huang ZL and Luo YN. 2006. Cenozoic Continental Geodynamics and Large Scale Mineralization in the Sanjiang (Nujiang, Lancangjiang and Jinshajiang) Region, China. Beijing: Geological Publishing House, 61-75 (in Chinese with English abstract)
Wang JH, Qi L, Yin A and Xie GH. 2001. Emplacement age and PGE geochemistry of lamprophyres in the Laowangzhai gold deposit, Yunnan, SW China. Science in China (Series D), 44(1): 146-154
Wang QF, Deng J, Li CS, Li GJ, Yu L and Qiao L. 2014. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438-448 DOI:10.1016/j.gr.2013.10.002
Weaver BL. 1991. The origin of ocean island basalt end-member compositions:Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397 DOI:10.1016/0012-821X(91)90217-6
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu HZ. 2015. Study on major types of copper deposits and their evolution of metallogenic processes in the Chuxiong Basin, Yunnan, China. Ph. D. Dissertation. Kunming: Kunming University of Science and Technology (in Chinese with English summary)
Wu P, Han RS, Hu YZ, Li LQ, Guo XB and Su JQ. 2008a. Geological characteristics of faults in the Liuju sandstone copper district in the Chuxiong red-bed basin, Yunnan, China, and their relation to mineralization. Geological Bulletin of China, 27(5): 618-625 (in Chinese with English abstract)
Wu P, Han RS, Li J, Li DL, Li LQ, Guo XB and Su JQ. 2008b. Geochemical anomaly pattern of Liuju sandstone-type copper deposit in Yunnan Province. Geochimica, 37(5): 488-498 (in Chinese with English abstract)
Wu P. 2009. Study on the geology and geochemistry, and the prospecting prognosis for the sandstone copper deposit, in the Chuxiong Basin: Taking Liuju and Haojiahe copper deposit. Ph. D. Dissertation. Kunming: Kunming University of Science and Technology (in Chinese with English summary)
Yan QG, Jiang XJ, Wu P, Sun HY and Guan SJ. 2017. Zircon SHRIMP U-Pb geochronology and volcanic edifice division of the Laojiezi intraplate alkali-rich volcanic rocks in Yao'an, central Yunnan Province. Acta Geologica Sinica, 91(8): 1743-1759 (in Chinese with English abstract)
Yan QG, Guo ZL, Li C, Jiang XJ, Wang ZQ and Li YD. 2019. Zircon LA-ICP-MS U-Pb geochronology and Hf isotopes of lamprophyre in Gan'gou gold deposit, Yao'an County, Central Yunnan Province. Mineral Deposits, 38(3): 526-540 (in Chinese with English abstract)
Zhang HH, He HY, Wang JH and Xie GH. 2005. 40Ar/39Ar chronology and geochemistry of high-K volcanic rocks in the Mangkang basin, Tibet. Science in China (Series D), 48(1): 1-12 DOI:10.1007/BF02990906
Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research, 26(2): 557-575 DOI:10.1016/j.gr.2013.11.003
Zhang P, Chen D, Zhao Y, Kou LL, Yang HZ, Wang XJ and Sha DM. 2016. Zircon U-Pb geochronology, geochemical characteristics and its geological significance of lamprophyres in Zhenzigou Pb-Zn deposit, Liaodong. The Chinese Journal of Nonferrous Metals, 26(3): 636-647 (in Chinese with English abstract)
Zhao C, Zhang J, Liu J, Yin CQ, Yang CH, Cui YS, Peng YB and Jiang CY. 2019. Detrital zircon U-Pb and Hf isotopic study of the Yushulazi Formation in the Gaizhou-Zhuanghe area of the eastern Liaoning:Constraints on the crustal evolution of the North China Craton. Acta Petrologica Sinica, 35(8): 2407-2432 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.08.07
Zhou J. 2017. Study on the mineralized intrusion features and tectonic setting of Cu polymetallic deposits in the Bijiashan-Fenshuiling, western Yunnan Province. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
Zuo LY, Pei RF, Shuai KY, Yang FQ, Zhu RW and Zhang LM. 2011. Geochemistry of ore-bearing lamprophyre from the Cu-Ni deposit in Dhi Samir, Yemen. Acta Geologica Sinica, 85(1): 200-210 DOI:10.1111/j.1755-6724.2011.00390.x
陈国达, 彭省临, 戴塔根. 2004. 云南铜-多金属壳体大地构造成矿学. 长沙: 中南大学出版社, 197-198.
陈根文, 吴延之, 夏斌, 王核, 钟志洪, 王国强. 2002a. 楚雄盆地砂岩铜矿床同位素特征及矿床成因. 大地构造与成矿学, 26(3): 279-284.
陈根文, 夏斌, 吴延之, 钟志洪, 王国强. 2002b. 沉积岩对楚雄盆地砂岩铜矿成矿的控制. 矿物岩石, 22(3): 24-28.
邓军, 王长明, 李龚健. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349-1361.
邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统:三江特提斯例析. 岩石学报, 32(8): 2225-2247.
管涛. 2005.云南白马寨镍矿区煌斑岩地球化学及其成因.博士学位论文.贵阳: 中国科学院地球化学研究所
管涛, 黄智龙, 许成, 张振亮, 严再飞, 陈觅. 2006. 云南白马寨镍矿区煌斑岩40Ar-39Ar定年和地球化学特征. 岩石学报, 22(4): 873-883.
郭文琳, 苏文博, 张健, 李惠民, 周红英, 李怀坤, Ettensohn FR, Huff WD. 2019. 天津蓟县铁岭组新剖面钾质斑脱岩锆石U-Pb测年及Hf同位素研究. 岩石学报, 35(8): 2433-2454.
韩润生, 邹海俊, 吴鹏, 方维萱, 胡煜昭. 2010. 楚雄盆地砂岩型铜矿床构造-流体耦合成矿模型. 地质学报, 84(10): 1438-1447.
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
侯增谦, 潘桂棠, 王安建, 莫宣学, 田世洪, 孙晓明, 丁林, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清. 2006. 青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用. 矿床地质, 25(5): 521-543. DOI:10.3969/j.issn.0258-7106.2006.05.001
胡阿香, 彭建堂. 2016. 湘中锡矿山中生代煌斑岩及其成因研究. 岩石学报, 32(7): 2041-2056.
黄智龙, 王联魁. 1996. 云南老王寨金矿区煌斑岩的地球化学. 地球化学, 25(3): 255-263. DOI:10.3321/j.issn:0379-1726.1996.03.006
黄智龙, 刘钧, 王联魁. 1997. 云南老王寨金矿区煌斑岩的源区成分模拟. 矿物学报, 17(3): 316-320. DOI:10.3321/j.issn:1000-4734.1997.03.013
贾丽琼, 莫宣学, 董国臣, 徐文艺, 王梁, 郭晓东, 王治华, 韦少港. 2013. 滇西马厂箐煌斑岩成因:地球化学、年代学及Sr-Nd-Pb-Hf同位素约束. 岩石学报, 29(4): 1247-1260.
姜耀辉, 蒋少涌, 凌洪飞, 戴宝章. 2006. 陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例. 岩石学报, 22(3): 697-706.
金志升, 黄智龙, 朱成明. 1997. 云南三江地区富碱侵入岩与煌斑岩的同源性. 矿物岩石地球化学通报, 16(4): 222-224.
李勇, 莫宣学, 喻学惠, 黄行凯, 和文言. 2011. 滇西"三江"地区高镁钾质火山岩地球化学特征及其地质意义. 岩石学报, 27(9): 2510-2518.
李泽. 2014.云南省南涧地区哀牢山构造带物质组成特征及构造演化.硕士学位论文.成都: 成都理工大学
刘树根, 赵锡奎, 罗志立, 徐国盛, 王国芝, Wilson CJL, Arne D. 2001. 龙门山造山带-川西前陆盆地系统构造事件研究. 成都理工学院学报, 28(3): 221-230. DOI:10.3969/j.issn.1671-9727.2001.03.001
路凤香, 舒小辛, 赵崇贺. 1991. 有关煌斑岩分类的建议. 地质科技情报, 10.
罗晨皓. 2018.滇西姚安富碱斑岩年代学、地球化学特征及岩石成因.硕士学位论文.北京: 中国地质大学
冉崇英, 庄汉平. 1998. 楚雄盆地铜、盐、有机矿床组合地球化学. 北京: 科学出版社, 10-16.
史春鸿. 2010.滇中郝家河、六苴铜矿床地质地球化学特征对比研究.硕士学位论文.昆明: 昆明理工大学
瓦西拉里, 李红中, 梁锦, 周留煜. 2011. 煌斑岩的种类、成因及其与成矿作用的关系. 中山大学研究生学刊(自然科学、医学版), 32(4): 1-13.
王登红, 应汉龙, 梁华英, 黄智龙, 骆耀南. 2006. 西南三江地区新生代大陆动力学过程与大规模成矿. 北京: 地质出版社, 61-75.
王江海, 漆亮, 尹安, 解广轰. 2001. 云南老王寨金矿区煌斑岩的侵位年龄和铂族元素地球化学. 中国科学(D辑), 31(增1): 122-127.
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴海枝. 2015.楚雄盆地主要铜矿床类型及其成矿作用演化.博士学位论文.昆明: 昆明理工大学
吴鹏, 韩润生, 胡煜昭, 李路乔, 郭学兵, 苏继泉. 2008a. 云南楚雄红层盆地六苴砂岩铜矿区断裂的地质特征及其与成矿的关系. 地质通报, 27(5): 618-625.
吴鹏, 韩润生, 李静, 李端龙, 李路乔, 郭学兵, 苏继泉. 2008b. 云南六苴砂岩型铜矿床地球化学异常模式. 地球化学, 37(5): 488-498.
吴鹏. 2009.楚雄盆地砂岩型铜矿床地质地球化学及找矿预测研究——以六苴、郝家河矿床为例.博士学位论文.昆明: 昆明理工大学
严清高, 江小均, 吴鹏, 孙会一, 管申进. 2017. 滇中姚安老街子板内富碱火山岩锆石SHRIMP U-Pb年代学及火山机构划分. 地质学报, 91(8): 1743-1759. DOI:10.3969/j.issn.0001-5717.2017.08.007
严清高, 郭忠林, 李超, 江小均, 王忠强, 李亚东. 2019. 滇中姚安干沟金矿床煌斑岩锆石LA-ICP-MS U-Pb年代学及Hf同位素特征. 矿床地质, 38(3): 526-540.
张朋, 陈冬, 赵岩, 寇林林, 杨宏智, 王希今, 沙德铭. 2016. 辽东榛子沟铅锌矿煌斑岩锆石U-Pb年代学、地球化学特征及其地质意义. 中国有色金属学报, 26(3): 636-647.
赵辰, 张健, 刘锦, 尹常青, 杨成会, 崔育菘, 彭游博, 姜春宇. 2019. 辽东盖州-庄河地区榆树砬子岩组碎屑锆石U-Pb年代学与Hf同位素研究:对华北克拉通陆壳演化的制约. 岩石学报, 35(8): 2407-2432.
周洁. 2017.云南省永胜分水岭-大理笔架山铜多金属矿床成矿岩体特征及构造背景研究.博士学位论文.北京: 中国地质大学(北京)