2. 云南省地质调查局, 自然资源部三江成矿作用及资源勘查利用重点实验室, 昆明 650061;
3. 中国地质大学, 地质过程与矿产资源国家重点实验室, 北京 100083;
4. 云南省自然资源厅, 昆明 650224
2. Yunnan Geological Survey, Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization, Ministry of Natural Resources, Kunming 650061, China;
3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
4. Department of Natural Resources of Yunnan Province, Kunming 650224, China
滇西三江地区地处欧亚板块与印度板块的结合部位,构造复杂、火山作用异常活跃,是特提斯造山带东段的重要组成部分,同时也是特提斯及喜马拉雅巨型成矿域的重要组成部分和中国重要的多金属富集区(莫宣学等, 1993, 1998; 刘本培等, 1993; 钟大赉, 1998; 潘桂棠等, 2003; 李文昌等, 2010)。南澜沧江带位于我国三江构造带南部,带内广泛发育二叠-三叠纪岩浆活动,主要由临沧花岗岩体和三叠-侏罗纪火山岩系组成(图 1)。在该带内沿澜沧江两侧出露一系列南北向带状展布的弧火山岩-侵入岩体,包括著名的半坡-雅口-南林山晚石炭-早二叠世高镁闪长岩-辉长岩-辉橄岩组合(云南省地质调查院, 2013①),以往多数资料认为这些岩体侵位于三叠纪或二叠纪,形成时代为印支期(张魁武等, 1991; 张翼飞等, 2001; Li et al., 2012)。近年来,大量资料研究表明该套岩石组合主要形成于晚古生代,具火山弧特点,是古特提斯洋向东俯冲作用的形成的产物(Hennig et al., 2009; 李钢柱等, 2011, 2012; 张海等, 2013; 孙载波等, 2015; 徐桂香等, 2016; 王晓峰, 2012)。云县-景洪一带发育中生代火山岩,最大厚度可达8000m。大面积分布于中生代火山岩自下而上可划分为三叠系中统忙怀组、三叠系上统小定西组和侏罗系下统芒汇河组。忙怀组以酸性火山岩为主,小定西组发育中基性火山熔岩夹碎屑岩,芒汇河组为一套夹灰色陆缘碎屑沉积岩的酸性、中酸性火山岩,分别代表了澜沧江弧后小洋盆发生碰撞、碰撞后的应力调整和后造山阶段岩浆作用产物(张保民等, 2004a, b; 彭头平等, 2006; 刘德利等, 2008; 王硕等, 2012; 吕留彦, 2013; 韦诚等, 2016)。目前以三叠纪碰撞型的临沧花岗岩和同时期的火山岩研究程度较高。然而,昌宁-孟连缝合带经历了造山后的伸展剥蚀作用及新生代印度-欧亚大陆碰撞作用,导致与古特提斯洋俯冲相关的岩浆活动记录难以保存。Deng et al. (2017)揭示了二叠纪临沧花岗岩锆石U-Pb年龄(263~251Ma),但该组样品在地球化学上不具备岛弧花岗岩特征,因此关于古特提斯岛弧岩浆岩成因、源区组成和构造驱动依然不清晰(Metcalfe, 1996, 2002; Hennig et al., 2009; 孔会磊等, 2012; Dong et al., 2013; Peng et al., 2013; Wang et al., 2015; Deng et al., 2018; 赵枫等, 2018)。
![]() |
图 1 东南亚主要板块构造带分布(a, 据Sone and Metcalfe, 2008修改)和三江南段地质简图(b, 据Burchfiel and Chen, 2012修改) Fig. 1 Distribution of the principal continental blocks and suture and zones in Southeast Asia (a, modified after Sone and Metcalfe, 2008) and geological map of the Changning-Menglian suture in southern Sanjiang orogenic belt (b, modified after Burchfiel and Chen, 2012) |
① 云南省地质调查院. 2013. 1:25万景洪市、勐腊县幅区域地质调查报告
本文选取澜沧江构造带南段大勐龙地区曼兵岩浆岩作为研究对象,通过详细的野外地质调查、岩石学、岩石地球化学及锆石U-Pb-Hf体系的研究,结合区域已有的研究成果,探讨该构造带内花岗岩岩石学成因及其动力学背景,为探讨昌宁-孟连古特提斯洋的消减过程提供了新的依据。
1 地质背景与样品昌宁-孟连缝合带位于西南三江特提斯南段,介于东侧思茅地块和西侧保山地块之间,呈现一条长约200km,宽5~30km的南北向狭长条带,其内发育OIB型玄武岩、蛇绿混杂岩、浅海碳酸盐和远洋沉积物。缝合带东侧为临沧岩基,主体为三叠纪花岗岩,主要的岩石组合为花岗闪长岩、黑云母花岗岩、二长花岗岩和碱长花岗岩等。景洪大勐龙曼兵花岗岩体位于临沧岩基的南段和疆峰、国防两个超大型铁矿的西侧,呈北东-南西向展布,与主构造线方向一致,岩体规模小,呈岩枝状产出,侵入于古元古界大勐龙岩群(Pt1D)中。岩体长0.5~10.4km,宽0.2~2km,出露面积约11km2(图 2)。通过野外的地质调查工作,前人认为该岩体受到复杂变质作用的影响,根据野外的接触关系不足以判定其侵入时代,所以对该类花岗岩未给出准确时代;1:25万景洪幅在该岩体进行定年工作(云南省地质调查院, 2013),获得1件锆石U-Pb年龄值为444±14Ma,将其形成时代厘定为奥陶纪,但因该样品锆石颗粒较少,仅获得5个同位素年龄点,其形成时代存在较大争议。本次样品采样点位于曼约村附近,花岗岩岩体内局部具片麻状构造,主要岩石类型为黑云花岗闪长岩、黑云英云闪长岩、黑云二长花岗岩、黑云石英闪长岩,并以黑云花岗闪长岩为主(图 3a)。在片麻状黑云花岗闪长岩中见暗色细粒斜长角闪岩体,形态多呈不规则状,与片麻状黑云花岗闪长岩界线较清晰(图 3b)。
![]() |
图 2 研究区地质简图 Qh-第四系;N2s-三营组;Em-勐腊组;J2h1-花开左组一段;J2h2-花开左组二段;Pz2dx-大新山岩组;Pt2h-惠民岩组;Pt2ml-曼来岩组;Pt2m-勐井山岩组;Pt2n-南木林岩组;Pt1D-大勐龙岩群;ηοE-古近系石英二长岩;δηοE-古近系石英二长闪长岩;βE-古近系玄武岩;γO-奥陶纪花岗岩;γκT-三叠纪花岗细晶岩;γT-三叠纪花岗岩;ηT-三叠纪二长岩;ητT-三叠纪花岗细晶岩;ηγT-三叠纪二长花岗岩;ηγcT-三叠纪中粗粒黑云二长花岗岩;γδP-二叠纪花岗闪长岩;δμP-二叠纪闪长玢岩;νP-二叠纪辉长岩;βμP-二叠纪辉绿岩;δC-石炭纪闪长岩;νC-石炭纪辉长岩;βμC-石炭纪辉绿岩 Fig. 2 Geological map of the study area |
![]() |
图 3 曼兵花岗闪长岩体野外及镜下特征 (a、c)片麻状花岗闪长岩;(b、d)斜长角闪岩.Pl-斜长石;Hb-角闪石;Bi-黑云母;Or-正长石;Qz-石英 Fig. 3 Field and microscopic characteristics of manbing granodiorite (a, c) gneissic granodiorites; (b, d) plagioclase amphibolites. Pl-plagioclase; Hb-hornblende; Bi-biotite; Or-orthoclase; Qz-quartz |
灰色中细粒片麻状黑云花岗闪长岩:岩石具中细粒柱粒状变晶结构,半定向网结条痕状构造。主要矿物为斜长石(40%)、石英(30%)、钾长石(15%);次要矿物为黑云母(14%)、白云母(1%);副矿物为锆石、磷灰石、金属矿物;次生矿物为绢白云母、绿泥石、白钛石。矿物粒径多在1.2~3.5mm之间。斜长石为无色半自形板状,低突起,具钠长石双晶,一级灰白干涉色,强绢白云母化;石英浑圆-他形粒状,正低突起,一级灰白干涉色;钾长石无色他形粒状,负低突起,一级灰白干涉色;黑云母半自形片状,正中突起;白云母半自形片状,无色,正中突起,二级蓝绿干涉色。镜下见岩石以分布均匀的中细粒镶嵌结构半自形斜长石、他形石英钾长石、片黑云母为主,其中细粒斜长石和黑云母半定向排列。中粒他形石英、钾长石似斑晶常包含细粒云母斜长石等。
深灰色细粒斜长角闪岩:岩石具细粒粒状变晶结构,半定向构造。主要矿物为斜长石(40%)、角闪石(59%);含少量石英及次要矿物。矿物粒径多在0.1~0.6mm之间。斜长石呈他形粒状,具钠长石双晶,圆化细粒化,局部见细粒退变绢云母次变边。角闪石呈他形粒状,发育细粒化退变阳起石绿泥石次变边。
2 测试方法样品全岩的主量元素、微量元素在核工业北京地质研究院分析测试研究中心完成。主量元素采用XRF法在AxiosmAX X射线荧光光谱仪上分析完成,其中二价铁由化学滴定法测定。岩石粉末样品首先进行烧失量分析,然后将岩石粉末样品熔融治饼,并标记样品名称以备测试,对中国标准参考物质GSR-3的分析结果表明,分析精度优于5%。微量元素利用NexION300D等离子质谱仪分析完成。样品溶解采用1.5mL HNO3+1.5mL HF混合酸在Teflon高压密闭熔样弹中进行,以确保所有难容矿物均被溶解。
锆石单矿物分选工作由河北省廊坊市诚信地质服务有限公司完成,在双目镜下手工挑纯。选取代表性的锆石颗粒制成环氧树脂样品靶。抛光后拍摄锆石的反射光、透射光及阴极发光(CL)显微照片,依据显微照片显示的锆石特点,选择合适的颗粒及颗粒的合适部位进行U-Pb同位素测定。锆石阴极发光(CL)照相在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)的扫描电镜+Gantan公司MonocL4+型阴极荧光探头上完成,分析电压为15kV,电流为19nA。
锆石U-Pb同位素定年和微量元素含量在武汉上谱分析科技有限责任公司利用LA-ICP-MS同时分析完成。详细的仪器参数和分析流程见Zong et al. (2017)。GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7900。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置(Hu et al., 2015)。本次分析的激光束斑和频率分别为32μm和5Hz。U-Pb同位素定年和微量元素含量处理中采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正。每个时间分辨分析数据包括大约20~30s空白信号和50s样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Pb同位素比值和年龄计算)采用软件ICPMSDataCal(Liu et al., 2008, 2010)完成。锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3(Ludwig, 2003)完成。
锆石Hf同位素组成分析是基于阴极发光(CL)图像和锆石U-Pb定年测试的基础上进行的。锆石Lu-Hf同位素原位分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)完成,所用的测试仪器为NEPTUNE多接受器电感耦合等离子质谱仪(MC-ICP-MS)(Thermo Fisher Scientific, 德国)。详细的仪器操作条件和分析方法参考Hu et al. (2012)。在本次实验中,利用实时获取锆石样品自身的βYb用于干扰校正。179Hf/177Hf=0.7325和173Yb/171Yb=1.132685(Fisher et al., 2014)被用于计算Hf和Yb的质量分馏系数βHf和βYb。179Hf/177Hf=0.7325和173Yb/171Yb的比值被用于计算Hf(βHf)和Yb(βYb)的质量偏差(Fisher et al., 2014)。使用176Yb/173Yb=0.79639来扣除176Yb对176Hf的同量异位干扰。使用176Lu/175Lu=0.02656来扣除干扰程度相对较小的176Lu对176Hf的同量异位干扰(Blichert-Toft and Albarède, 1997)。由于Yb和Lu具有相似的物理化学属性,因此在本实验中采用Yb的质量分馏系数βYb来校正Lu的质量分馏行为。分析数据的离线处理(包括对样品和空白信号的选择、同位素质量分馏校正)采用软件ICPMSDataCal(Liu et al., 2010)完成。εHf计算采用176Lu衰变常数为1.867×10-11a-1(Söderlund et al., 2004),球粒陨石现今值176Hf/177Hf=0.282772和176Hf/177Hf=0.0332(Blichert-Toft and Albarède, 1997);单阶段亏损地幔Hf模式年龄(tDM1)计算采用现今亏损地幔值176Hf/177Hf=0.28325和176Lu/177Hf=0.0384(Griffin et al., 2000)。
3 分析结果 3.1 锆石U-Pb定年用于本次同位素年代学研究的4件样品(DMmy-7-1、DMmy-8-1、DMmg-10-1、DMmg-10-2)采自景洪市大勐龙曼约村子和曼兵小学附近。阴极发光图像显示(图 4),DMmy-7-1和DMmg-10-1二件花岗岩类锆石大多数颗粒自形,长柱状,棱角清晰,颗粒长度60~150μm,长宽比介于2:1~3:1之间。发育核-幔-边结构,核部和幔部位为继承锆石,核部色调较暗,幔部形状不规则,色调灰白;边部宽度为10~30μm,色调黑暗并显示密集的韵律生长环带,表明为岩浆成因。少数锆石颗粒仅发育核-边结构,核部色调较亮,围绕核部发育韵律环带暗色生长边。DMmy-8-1和DMmg-10-2二件角闪岩类锆石粒度普遍较小,呈不规则状,颗粒长度50~100μm,长宽比介于1:1~2:1之间,大部分锆石无明显的振荡环带,少量锆石为弱振荡环带,无继承性核、无变质增生边,属典型基性岩浆锆石特征。
![]() |
图 4 曼兵花岗闪长岩(样品DMmg-10-1)和斜长角闪岩(样品DMmg-10-2)锆石CL图像及测点位置 实线圆圈代表U-Pb分析点,虚线圆圈代表Hf分析点 Fig. 4 CL images and analytical positions of zircons from the Manbing granodiorite(Sample DMmg-10-1) and plagioclase amphibolite (Sample DMmg-10-2) Solid circle represent the U-Pb spots and dotted circle represent the Hf spots |
样品DMmy-7-1岩性为浅灰白色片麻状黑云英云闪长岩,共选取30个点位进行U-Pb同位素测试,全部分析点均位于锆石边部的暗色韵律环带上,测试数据见表 1。Th和U含量分别为63.1×10-6~304×10-6和253×10-6~949×10-6,Th/U比值变化于0.15~0.50。其中3个点(DMmy-7-1-3、18、26)给出的年龄值分别为:441Ma、544Ma、617Ma,可能为继承锆石或捕获锆石,反映岩浆区中含有新元古代、寒武纪、奥陶纪的地壳组分;DMmy-7-1-5、6二个偏离协和线,所以上述5个点未纳入加权平均值统计。其余25个分析点均落在谐和线上和谐和线附近,具有非常一致的年龄,206Pb/238U年龄介于250~259Ma之间,加权平均年龄为253.8±1.1Ma(n=25,MSWD=1.5)(图 5a)。
![]() |
表 1 曼兵花岗闪长岩与斜长角闪岩的锆石LA-ICP-MS U-Pb同位素数据表 Table 1 LA-ICP-MS zircon U-Pb dating data from Manbing granodiorites and plagioclase amphibolites |
![]() |
图 5 曼兵花岗闪长岩与斜长角闪岩锆石U-Pb年龄谐和图 (a)片麻状黑云英云闪长岩;(b)深灰色斜长角闪;(c)黑云花岗闪长岩;(d)深灰色斜长角闪岩 Fig. 5 U-Pb age concordia diagram for zircon from the Manbing granodiorites and plagioclase amphibolites |
样品DMmy-8-1岩性为深灰色片理化斜长角闪岩,共选取32个点位进行U-Pb同位素测试,全部分析点均位于锆石边部的暗色韵律环带上,测试数据见表 1。Th和U含量分别为10.5×10-6~781×10-6和24.7×10-6~159×10-6,Th/U比值变化于0.16~1.99。其中DMmy-8-1-22给出的年龄值为:401Ma,可能为继承锆石或捕获锆石,反映岩浆区中含有泥盆纪的地壳组分;DMmy-8-1-29、31偏离协和线,所以上述3个点未纳入加权平均值统计。其余29个分析点均落在谐和线上和谐和线附近,具有非常一致的年龄,206Pb/238U年龄介于250~270Ma之间,加权平均年龄为259.5±1.9Ma(n=29,MSWD=2.0)(图 5b)。
样品DMmg-10-1岩性为浅灰色变质黑云英云闪长岩,共选取35个点位进行U-Pb同位素测试,全部分析点均位于锆石边部的暗色韵律环带上,测试数据见表 1。Th和U含量分别为4.21×10-6~89.8×10-6和10.8×10-6~84.9×10-6,Th/U比值变化于0.39~1.06。除DMmg-10-1-34一个点协和度较低外,其余34个分析点均落在谐和线上和谐和线附近,具有非常一致的年龄,206Pb/238U年龄介于238~269Ma之间,加权平均年龄为251.5±2.7Ma(n=34,MSWD=2.7)(图 5c)。
样品DMmg-10-2岩性为深灰色斜长角闪岩,共选取30个点位进行U-Pb同位素测试,全部分析点均位于锆石边部的暗色韵律环带上,测试数据见表 1。Th和U含量分别为50.3×10-6~209×10-6和66.6×10-6~191×10-6,Th/U比值变化于0.13~1.37。其中6个点(DMmg-10-2-6、8、19、21、24、27)给出的年龄值分别为:783Ma、1678 Ma、1835Ma、225Ma、265Ma、276Ma,可能为继承锆石或捕获锆石,反映岩浆区中含有古元古代、新元古代、二叠纪、三叠纪的地壳组分,其余23个分析点均落在谐和线上和谐和线附近,具有非常一致的年龄,206Pb/238U年龄介于238~269Ma之间,加权平均年龄为241.8±0.8Ma(n=23,MSWD=0.1)(图 5d)。
3.2 锆石Hf同位素特征本文选择其中2件样品进行Hf同位素分析,分别为花岗闪长岩样品DMmg-10-1和斜长角闪岩样品DMmg-10-2,测试点位于锆石测点附近、且具有相同CL结构的位置。分析结果见表 2和图 6。样品DMmg-10-1和DMmg-10-2所有测点的176Lu/177Hf比值均小于0.002,表明这些锆石在形成后,仅具有较少的放射性成因Hf的积累,因而可以用初始176Hf/177Hf比值代表锆石形成时的176Hf/177Hf比值(吴福元等, 2007)。考虑到样品的fLu/Hf变化范围在-0.98~-0.95之间,明显小于镁铁质地壳的fLu/Hf(-0.34, Amelin et al., 2000)和硅铝值地壳的fLu/Hf(-0.72, Vervoort et al., 1996),故二阶段模式年龄525~633Ma和349~525Ma更能反映其源区物质从亏损地幔被抽取的时间(或其物源区物质在地壳的平均留存年龄)。
![]() |
表 2 曼兵花岗闪长岩与斜长角闪岩锆石Hf同位素数据 Table 2 Zircon Hf isotopic compositions of the Manbing granodiorite and plagioclase amphibolite |
![]() |
图 6 曼兵花岗岩体花岗闪长岩(a)与斜长角闪岩(b)的εHf(t)与锆石结晶年龄图解 基性地壳(176Lu/177Hf=0.022)与平均地壳(176Lu/177Hf=0.015)的Hf演化线据Yang et al. (2008) Fig. 6 Plots of εHf(t) versus crystallization age of the magmatic zircons from the Manbing granodiorite (a) and plagioclase amphibolite (b) |
花岗闪长岩样品DMmg-10-1(176Hf/177Hf)t的变化范围在0.282904~0.282953之间(表 2),Hf同位素成分比较均一,加权平均值0.282928,对应的εHf(t)变化范围在10.1~11.8之间,平均值11.0;地壳模式年龄tDMC变化范围在525~633Ma,加权平均值为578Ma,较新的模式年龄反映了亏损地幔来源的新生下地壳为主导的岩浆岩源区(图 6a)。
斜长角闪岩样品DMmg-10-2(176Hf/177Hf)t的变化范围在0.282956~0.283032之间(表 2),Hf同位素成分比较均一,加权平均值0.282980,对应的εHf(t)变化范围在11.7~14.4之间,平均值12.5;地壳模式年龄tDMC变化范围在349~525Ma,加权平均值为469Ma,较新的模式年龄反映了亏损地幔来源的新生下地壳为主导的岩浆岩源区(图 6b)。
3.3 全岩地球化学曼兵花岗闪长岩的主量、微量元素数据见表 3。该岩体具较高的SiO2(65.55%~70.70%,平均67.70%)、Al2O3(12.61%~15.31%,平均14.22%)含量,富K2O(1.93%~3.83%,平均2.84%)、Na2O(1.27%~3.74%,平均2.31%),CaO(0.73%~3.75%,平均2.26%)和MgO(0.96%~3.11%,平均2.02%)含量较低。在R1-R2图解中,样品点投入花岗闪长岩与二长花岗岩区域(图 7a);A/NCK=1.01~1.97,均大于1,大部分大于1.1,为铝过饱和系列,A/NK=1.31~2.99,在A/CNK-A/NK图解中(图 7b),样品点大多数落入过铝质区域;K2O/Na2O较高,均大于1,为1.02~1.66,在SiO2-K2O图解中,样品点大部分位于高钾钙碱性系列(图 7c)。在Na2O-K2O图解中(图 7d),样品点全部落入钾质区域。表明该花岗岩体为高钾钙碱性过铝质花岗岩。
![]() |
表 3 曼兵花岗闪长岩岩的全岩主量(wt%)、微量和稀土(×10-6)元素测试数据 Table 3 Whole-rock major (wt%) and trace (×10-6) element analyses of the Manbing granodiorites |
![]() |
图 7 地球化学判别图解 (a) R1-R2图解(Batchelor and Bowden, 1985);(b) A/NK-A/CNK判别图(Kemp and Hawkesworth, 2003);(c) SiO2-K2O判别图(Peccerillo and Taylor, 1976);(d) Na2O-K2O判别图(Turner et al., 1996) Fig. 7 Discriminant plots by geochemistry (a) R1 vs. R2 plot (Batchelor and Bowden, 1985); (b) A/CN vs. A/CNK plot (Kemp and Hawkesworth, 2003); (c) SiO2 vs. K2O plot (Peccerillo and Taylor, 1976); (d) Na2O vs. K2O plot (Turner et al., 1996) |
曼兵花岗闪长岩的稀土总量∑REE=217×10-6~366×10-6,具明显的轻稀土富集,重稀土亏损的特征,(La/Yb)N=9.41~31.5,δEu=0.45~0.69,δCe=0.90~0.98,球粒陨石标准化模式显示明显负铕异常特征图(图 8a)。在原始地幔标准化微量元素蛛网图上(图 8b),该花岗岩显示富集Rb、Th、U、Pb、Sm等元素,具有明显的Ba、Nb、Ta、Sr、Ti亏损,反映花岗岩岩浆部分熔融或结晶分异过程中具有斜长石与角闪石的分离。
![]() |
图 8 曼兵花岗闪长岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace earth element patterns (b) from the Manbing granodiorites |
昌宁-孟连缝合带发育大规模二叠纪到三叠纪花岗岩,其侵位年龄一直被关注且存在争议,其中出露面积最大的临沧岩基花岗岩形成时代为235~203Ma(Metcalfe, 1996, 1997, 2002; Hennig et al., 2009; 孔会磊等, 2012; Dong et al., 2013; Peng et al., 2013; Wang et al., 2015; Deng et al., 2018; 赵枫等, 2018),临沧花岗岩是古特提斯洋闭合作用的产物,代表了典型的后碰撞背景。近年来,前人对南澜沧江构造带内几个著名的岩体进行了详细研究,为三江地区古特提斯发展演化提供丰富岩石学和年代学证据。Hennig et al. (2009)获得景洪花岗闪长岩U-Pb年龄为284~282Ma;Jian et al.(2009a, b)获得半坡杂岩体闪长岩锆石U-Pb年龄为285Ma;李钢柱等(2012)采用ID-TIMS锆石U-Pb年代学方法获得景谷半坡杂岩体中辉长闪长岩年龄为294Ma、景洪南林山岩体中闪长岩年龄为298Ma;在澜沧县糯扎渡镇雅口一带新识别出一规模较大基性岩体,并获得该岩体内堆晶辉长岩锆石U-Pb年龄为296Ma;孙载波等(2015)采用LA-ICP-MS锆石U-Pb年代学方法获得景洪曼秀闪长岩年龄为321~291Ma;徐桂香等(2016)采用LA-ICP-MS锆石U-Pb年代学方法获得景洪南林山闪长岩年龄为300~305Ma。岩石地球化学特征表明,上述晚石炭-早二叠世(高)镁闪长岩-辉长岩-辉橄岩组合,均具典型的岛弧火山岩的特征,形成于俯冲的构造环境。
本文分析4组锆石U-Pb定年结果显示曼兵花岗岩体形成于晚二叠世-早三叠世(259~242Ma),并非前人讨论的晚奥陶世,而与整个澜沧江构造岩浆岩带内的(高)镁闪长岩-辉长岩-辉橄岩组合相比,其侵入时代明显较晚,与该构造带内邦沙地区忙怀组下段致密块状岛弧安山岩年龄248Ma(范蔚茗等, 2009)相接近,同样在哀牢山构造带内也存在这一时期岩浆作用,元阳新安寨花岗岩体锆石U-Pb年龄为251Ma,其时代均为早三叠世(刘汇川等, 2013);老王寨花岗斑岩的年龄为255~247Ma(李龚健等, 2013)。但曼兵花岗岩的形成时代要早于临沧岩基后碰撞型花岗岩年龄(235~203Ma)。因此,曼兵花岗岩形成于古特提斯洋由洋陆俯冲向陆陆碰撞的转换阶段。
4.2 岩石成因与源区曼兵花岗岩基于存在角闪石的矿物组合,结合全岩地球化学主微量元素分析结果表明曼兵花岗岩属于钙碱性I型系列,其富集大离子亲石元素Rb、Th、U、Pb等,亏损Nb、Ta、Sr、Ti等元素,符合岛弧岩浆的基本特征。曼兵花岗岩低的Sr/Y(2~13)和La/Yb(14~46)比值(图 9a),在判别图解中均落于岛弧花岗岩区域。结合锆石微量元素分析结果在Nb/Hf-Th/U和Hf/Th-Th/Nb图解中(图 9b, c),花岗岩样品的锆石微量都落于岛弧相关的区域。因此,曼兵花岗闪长岩属于典型的岛弧岩浆岩。
![]() |
图 9 曼兵花岗闪长岩成因判别图 (a)全岩Y-Sr/Y判别图(Defant and Drummond, 1990);锆石微量Th/U-Nb/Hf判别图(b)和Th/Nb-Hf/Th判别图(c)(Carley et al., 2014) Fig. 9 Discrimination diagrams for the genetic types of the Manbing granodiorites (a) Y vs. Sr/Y plot of whole rocks (Defant and Drummond, 1990); Th/U vs. Nb/Hf plot (b) and Th/Nb vs. Hf/Th plot (c) of zircon trace elements (Carley et al., 2014) |
前人对于岛弧岩浆的成因一直存在争议,主要有以下几种解释,包括(1)俯冲洋壳的部分熔融(Drummond and Defant, 1990);(2)镁铁质下地壳的部分熔融(Atherton and Petford, 1993; Atherton and Sanderson, 1985)和(3)初生地壳物质(地幔楔)的部分熔融(Atherton and Sanderson, 1985; Sajona et al., 1996)。对于俯冲洋壳形成的熔体通常具有埃达克质的特征,与曼兵花岗岩熔体相比,其具有更明显的轻重稀土的分异和更高的Sr/Y比值,因此,曼兵花岗质熔体不是由俯冲洋壳的部分熔融形成。镁铁质下地壳的高温作用指示部分熔融产生的熔体与俯冲板片熔体相似,并且地幔橄榄岩的部分熔融只能产生高镁安山岩的成分,只有在较低程度下的部分熔融才产生花岗质的岩浆,而本文中的花岗岩具有较低的Al含量和高度亏损的Hf同位素特征,因此镁铁质下地壳的低程度的部分熔融不能产生曼兵花岗质岩浆。
板片汇聚边缘是大陆地壳生长的显要场所,大量的新生地壳成分主要来源于洋壳的俯冲消减作用导致地幔楔的部分熔融,因此使地壳增长。与曼兵花岗岩同层产出的斜长角闪岩具有亏损的εHf(t)值(11.7~14.4)和年轻地壳模式年龄tDMC(525~349Ma)代表了新生地壳。在Na2O+K2O+FeOT+MgO+TiO2对(Na2O+K2O)/(FeOT+MgO+TiO2)图解中(图 10a),元素点主要落于角闪岩源区;在Sm/La-Th/La和Ce/Pb-Ce图解中(图 10b, c),曼兵花岗岩具有低的Th/La、Sm/La和Ce/Pb值,同时表明了新生地壳受到了沉积物的混染,导致强烈的Nb、Ta亏损。结合曼兵花岗岩亏损的εHf(t)值(10.1~11.8)和地壳模式年龄tDMC(633~525Ma),指示了曼兵花岗岩的岩浆应该来自初生地壳的角闪岩源区的部分熔融。
![]() |
图 10 曼兵花岗闪长岩源区判别图 (a) (Na2O+K2O+FeOT+MgO+TiO2)-(Na2O+K2O)/(FeOT+MgO+TiO2)判别图(Patiño Douce, 1999);(b) Sm/La-Th/La图解(Plank, 2005);(c) Ce/Pb-Ce图解(Sims and Depaolo, 1997) Fig. 10 Discrimination diagrams for the source of the Manbing granodiorites (a) (Na2O+K2O+FeOT+MgO+TiO2) vs. (Na2O+K2O)/(FeOT+MgO+TiO2) diagrams (Patiño Douce, 1999); (b) Sm/La vs. Th/La plot (Plank, 2005); (c) Ce/Pb vs. Ce plot (Sims and Depaolo, 1997) |
昌宁-孟连古特提斯洋开启于泥盆纪,闭合于中三叠世(Deng et al., 2014)。由于缝合带内发育广泛的后碰撞花岗岩,因此前人对古特提斯洋的闭合过程已经取得突破性进展。然而,昌宁-孟连缝合带内缺少岛弧岩浆作用,导致古特提斯洋的消减过程尚不明确。结合区域内已发现的地质记录:(1)澜沧群与俯冲相关的高压变质岩带,蓝闪石、多硅白云母Ar-Ar年龄在293~242Ma(Zhang et al., 1993; Fan et al., 2009);(2)湾河蛇绿混杂岩带中的高压退变质榴辉岩,锆石U-Pb年龄245~230Ma,代表了古特提斯洋由消减到碰撞的转换阶段(孙载波等, 2018; Wang et al., 2019);(3)忙怀组同碰撞中酸性火山岩,锆石U-Pb年龄241~231Ma,指示了古特提斯洋同碰撞阶段的岩浆作用(Wang et al., 2010; Peng et al., 2013);(4)临沧花岗岩基与同时代的中基性小定西组火山岩火山岩(230~200Ma),揭示了同碰撞的伸展的阶段导致高压榴辉岩和蓝片岩抬升至地表。曼兵岛弧花岗闪长岩和斜长角闪岩形成于260~241Ma,根据Hf同位素分布,古特提斯洋在俯冲阶段,俯冲板片的远洋沉积物发生脱水,导致地幔楔的部分熔融形成新生地壳,在持续俯冲的作用下壳发生部分熔融作用,形成以曼兵花岗闪长岩为代表的岛弧花岗质熔体。在240Ma之后,随着保山板块与思茅板块的碰撞发生,以地壳基底为主导物质源区熔融产生了以忙怀组和临沧岩基为代表的同碰撞和后碰撞岩浆岩(图 11)。
![]() |
图 11 滇西昌宁-孟连缝合带二叠纪-三叠纪火山岩锆石εHf(t)值和U-Pb年龄图解 数据来源:忙怀组流纹岩据Peng et al. (2013);小定西组玄武岩据Wang et al. (2010);临沧花岗岩据Dong et al. (2013), Peng et al. (2013), Wang et al. (2015)和Deng et al. (2018) Fig. 11 εHf(t) value vs. U-Pb age of zircon from Permian-Triassic volcanic rocks in Changning-Menglian suture zone, western Yunnan Data source: Manghui Formation rhyolite from Peng et al. (2013); Xiaodingxi Formation basalt from Wang et al. (2010); Lincang granitoids from Dong et al. (2013), Peng et al. (2013), Wang et al. (2015) and Deng et al. (2018) |
详细的岩石学、锆石U-Pb年代学及Hf同位素和岩石地球化学研究表明:
(1) 南澜沧江构造岩浆岩带内曼兵花岗岩体片麻状花岗闪长岩和斜长角闪岩的锆石U-Pb加权平均年龄分别为251.5±2.7Ma、253.8±1.1Ma和241.8±0.8Ma、259.5±1.9Ma,主体时代为晚二叠世,并非原先认为的晚奥陶世。
(2) 2件样品锆石εHf(t)分别为10.1~11.8和11.7~14.4,平均为11.0和12.5;Hf的二阶段模式年龄分别为525~633Ma和349~525Ma。表明曼兵I型钙碱性岛弧花岗闪长岩是以角闪岩源区为主的新生地壳的部分熔融生成。
(3) 曼兵花岗闪长岩和斜长角闪岩形成与俯冲有关的岛弧火山岩,结合区域上普遍缺失早三叠世地层的特征,暗示古特提斯主洋盆的闭合时间至少到早三叠世早期之后才完成。
致谢 本次研究的测试分析得到中国地质大学(武汉)地质过程与矿产资源国家重点实验室和武汉上谱分析测试有限公司实验室工作人员的帮助;论文成文过程中得到云南省地质调查院李静、张虎和俞赛赢三位教授级高工的指导;二位审稿人提出了宝贵的修改意见;在此一并表示衷心的感谢。
Amelin Y, Lee DC and Halliday AN. 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225 DOI:10.1016/S0016-7037(00)00493-2 |
Atherton MP and Sanderson LM. 1985. The chemical variation and evolution of the super-units of the segmented Coastal Batholith. In: Pitcher WS, Atherton MP, Cobbing EJ and Beckinsale RD (eds.). Magmatism at a Plate Edge: The Peruvian Andes. Glasgow: Blackie Halsted Press, 208-227
|
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146 DOI:10.1038/362144a0 |
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55 DOI:10.1016/0009-2541(85)90034-8 |
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X |
Burchfiel BC and Chen ZL. 2012. Tectonics of the Southeastern Tibetan Plateau and its adjacent foreland. Geological Society of America Memoirs, 210: 1-164 |
Carkey TL, Miller CF, Wooden JL, Padilla AJ, Schmitt AK, Economos RC, Bindeman IL and Jorfaan BT. 2014. Iceland is not a magmatic analog for the Hadean:Evidence from the zircon record. Earth and Planetary Science Letters, 405: 85-97 DOI:10.1016/j.epsl.2014.08.015 |
Deng J, Wang QF, Li GJ and Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299 DOI:10.1016/j.earscirev.2014.05.015 |
Deng J, Wang CM, Zi JW, Xia R and Li Q. 2018. Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture:New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith. Gondwana Research, 62: 75-92 DOI:10.1016/j.gr.2017.10.008 |
Dong GC, Mo XX, Zhao ZD, Zhu DC, Goodman RC, Kong HL and Wang S. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in western Yunnan, China:Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282-294 DOI:10.1016/j.jseaes.2012.10.003 |
Drummond MS and Defant MJ. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting:Archean to modern comparisons. Journal of Geophysical Research, 95(B13): 21503-21521 DOI:10.1029/JB095iB13p21503 |
Fan WM, Peng TP and Wang YJ. 2009. Triassic magmatism in the southern Lancangjiang zone, southwestern China and its constraints on the tectonic evolution of Paleo-Tethys. Earth Science Frontiers, 16(6): 291-302 (in Chinese with English abstract) |
Fisher CM, Vervoort JD and Hanchar JM. 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical Geology, 363: 125-133 DOI:10.1016/j.chemgeo.2013.10.019 |
Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9 |
Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF and Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys:U-Pb age and Nd-Sr isotope data from the southern Lancangjiang Zone, Yunnan, China. Lithos, 113(3-4): 408-422 DOI:10.1016/j.lithos.2009.04.031 |
Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L and Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399 DOI:10.1039/c2ja30078h |
Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH and Hu SH. 2015. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis:Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152-1157 DOI:10.1021/ac503749k |
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅰ):Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113(3-4): 748-766 DOI:10.1016/j.lithos.2009.04.004 |
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009b. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅱ):Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767-784 DOI:10.1016/j.lithos.2009.04.006 |
Kemp AIS and Hawkesworth CJ. 2003. Granitic perspectives on the generation and secular evolution of the continental crust. Treatise on Geochemistry, 3: 349-410 |
Kong HL, Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang S, Li R and Wang QL. 2012. Petrogenesis of Lincang granites in Sanjiang area of western Yunnan Province:Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope. Acta Petrologica Sinica, 28(5): 1438-1452 (in Chinese with English abstract) |
Li GJ, Wang QF, Yu L, Hu ZC, Ma N and Huang YH. 2013. Closure time of the Ailaoshan Paleo-Tethys Ocean:Constraints from the zircon U-Pb dating and geochemistry of the Late Permian granitoids. Acta Petrologica Sinica, 29(11): 3883-3900 (in Chinese with English abstract) |
Li GZ, Su SG, Lei WY and Duan XD. 2011. Precise ID-TIMS zircon U-Pb age and whole-rock geochemistry of the Nanlinshan mafic intrusion in the southern Lancangjiang arc terrane, Sanjiang area, SW China. Earth Science Frontiers, 18(5): 206-212 (in Chinese with English abstract) |
Li GZ, Su SG and Duan XD. 2012. Precise ID-TIMS zircon U-Pb age, whole-rock geochemistry and plate tectonic setting of the Banpo Complex in the southern Lancangjiang arc terrane, Sanjiang area, SW China. Earth Science Frontiers, 19(4): 96-109 (in Chinese with English abstract) |
Li WC, Pan GT, Hou ZQ, Mo XX and Wang LQ. 2010. The Archipelagic Arc Basin-collision Orogeny Metallogenic Theory and Exploration Technology in Sanjiang Area of Western China. Beijing: Geological Publishing House, 1-490 (in Chinese)
|
Liu BP, Feng QL, Fang NQ, Jia JH and He FX. 1993. Tectonic evolution of Palaeo-Tethys poly-island-ocean in Changning-Menglian and Lancangjiang belts, southwestern Yunnan, China. Earth Science (Journal of China University of Geosciences), 18(5): 529-539 (in Chinese with English abstract) |
Liu DL, Liu JS, Zhang CH and Zhou YG. 2008. Geological characteristics and tectonic setting of Yunxian granite in the northern part of South Lancangjiang convergent margin, western Yunnan Province. Acta Petrologica et Mineralogica, 27(1): 23-31 (in Chinese with English abstract) |
Liu HC, Wang YJ, Cai YF, Ma LY, Xing XW and Fan WM. 2013. Zircon U-Pb geochronology and Hf isotopic composition of the Xin'anzhai granite along the Ailaoshan tectonic zone in west Yunnan Province. Geotectonica et Metallogenia, 37(1): 87-98 (in Chinese with English abstract) |
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004 |
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082 |
Ludwig KR. 2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 39
|
Lü LY. 2013. Redefinition of the Manghuihe Group and its tectonic implications for the southern Lancangjiang tectonic zone in western Yunnan. Master Degree Thesis. Kunming: Kunming University of Science and Technology, 1-63 (in Chinese with English summary)
|
Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605-623 DOI:10.1080/08120099608728282 |
Metcalfe I. 1997. The Palaeo-Tethys and Palaeozoic-Mesozoic tectonic evolution of Southeast Asia. In: Dheeradilok, P, Hinthong C, Chaodumrong P, Putthapiban P, Tansathien W, Utha-Aroon C, Sattyarak N, Nuchanong T and Techawan S (eds.). Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific. Bangkok: Department of Mineral Resources, 19-24
|
Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551-566 DOI:10.1016/S1367-9120(02)00022-6 |
Mo XX, Lu FX, Shen SY, Zhu QW, Hou ZQ, Yang KH, Deng JF, Liu XP and He CX. 1993. Volcanism and Mineralization in the Sanjiang Area. Beijing: Geological Publishing House, 1-267 (in Chinese)
|
Mo XX, Shen SY, Zhu QW, Xu TR, Wei QR, Tan J, Zhang SQ and Chen HL. 1998. Volcanics-Ophiolite and Mineralization of Middle and Southern Part in Sanjiang, Southern China. Beijing: Geological Publishing House, 1-128 (in Chinese)
|
Pan GT, Xu Q, Hou ZQ, Wang LQ, Du DX, Mo XX, Li DM, Wang MJ, Li XZ, Jiang XS and Hu YZ. 2003. Arckipelagic Orogenesis Metallogenic Systems and Assessment of the Mineral Resources along the Sanjiang Area in Southwestern China. Beijing: Geological Publishing House, 1-420 (in Chinese)
|
Patiño Douce AE. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C and Vigneresse JL (eds.). Understanding Granites: Intergrating New and Classical Techniques. 168. Special Publications, Geological Society London, 55-75
|
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745 |
Peng TP, Wang YJ, Fan WM, Liu DY, Shi YR and Miao LC. 2006. SHRIMP zircon U-Pb geochronology of Early Mesozoic felsic igneous rocks from the southern Lancangjiang and its tectonic implications. Science in China (Series D), 49(10): 1032-1042 DOI:10.1007/s11430-006-1032-y |
Peng TP, Wilde SA, Wang YJ, Fan WM and Peng BX. 2013. Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China:Petrogenesis and implications for the evolution of Paleo-Tethys. Lithos, 168-169: 15-32 DOI:10.1016/j.lithos.2013.01.015 |
Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5): 921-944 DOI:10.1093/petrology/egi005 |
Sajona FG, Maury RC, Bellon H, Cotten J and Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga peninsula, western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726 DOI:10.1093/petrology/37.3.693 |
Sims KW and DePaolo DJ. 1997. Inferences about mantle magma sources from incompatible element concentration ratios in oceanic basalts. Geochimica et Cosmochimica Acta, 61(4): 765-784 DOI:10.1016/S0016-7037(96)00372-9 |
Söderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324 DOI:10.1016/S0012-821X(04)00012-3 |
Sone M and Metcalfe I. 2008. Parallel Tethyan sutures in mainland Southeast Asia:New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340(2-3): 166-179 DOI:10.1016/j.crte.2007.09.008 |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
|
Sun ZB, Lu XP, Yu SY, Liu JP, Tian SM and Li XG. 2015. Zircon U-Pb ages and petro-geochemical characteristics of Manxiu diorite pluton, Jinghong City, Yunnan Province, China. Acta Mineralogica Sinica, 35(4): 473-480 (in Chinese with English abstract) |
Sun ZB, Li J, Zhou K, Zeng WT, Wu JL, Hu SB, Liu GC and Zhao JT. 2018. Zircon U-Pb age and geological significance of retro-graded eclogites from Mengku area in western Yunnan Province. Geological Bulletin of China, 37(11): 2032-2043 (in Chinese with English abstract) |
Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P and Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45-71 DOI:10.1093/petrology/37.1.45 |
Vervoort JD, Patchett PJ, Gehrels GE and Nutman AP. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379(6566): 624-627 DOI:10.1038/379624a0 |
Wang CM, Deng J, Santosh M, Lu YJ, McCuaig TC, Carranza EJM and Wang QF. 2015. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen. Journal of Asian Earth Sciences, 113: 656-676 DOI:10.1016/j.jseaes.2015.05.001 |
Wang HN, Liu FL, Li J, Sun ZB, Ji L, Tian ZH, Liu LS and Santosh M. 2019. Petrology, geochemistry and P-T-t path of lawsonite-bearing retrograded eclogites in the Changning-Menglian orogenic belt, Southeast Tibetan Plateau. Journal of Metamorphic Geology, 37(4): 439-478 DOI:10.1111/jmg.12462 |
Wang S, Dong GC, Mo XX, Zhao ZD, Zhu DC, Kong HL, Wang X and Nie F. 2012. Petrological and geochemical characteristics, Ar-Ar geochronology study and their tectonic significance of Triassic volcanic rocks in southern Lancangjiang zone. Acta Petrologica Sinica, 28(4): 1148-1162 (in Chinese with English abstract) |
Wang XF. 2012. Study on the petrology of mafic-ultramafic complex in south Lancang River, Southwest Yunnan Province: Yakou complex as an example. Master Degree Thesis. Kunming: Kunming University of Science and Technology, 1-58 (in Chinese with English summary)
|
Wang YJ, Zhang AM, Fan WM, Peng TP, Zhang FF, Zhang YH and Bi XW. 2010. Petrogenesis of Late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, Southwest China, and tectonic implications for the evolution of the eastern Paleotethys:Geochronological and geochemical constraints. Lithos, 120(3-4): 529-546 DOI:10.1016/j.lithos.2010.09.012 |
Wei C, Qi XX, Chang YL, Ji FB and Zhang SQ. 2016. Identification on age of Xiaodingxi Formation volcanic rocks in central-sourthern Lancangjiang orogeny and its tectonic implication. Acta Geologica Sinica, 90(11): 3192-3214 (in Chinese with English abstract) |
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract) |
Xu GX, Liu GC, Liu JP and Tian SM. 2016. The U-Pb age and significance of zircon in Nanlianshan diorite body in Jinghong, Yunnan. Yunnan Geology, 35(2): 131-136 (in Chinese with English abstract) |
Yang JH, Wu FY, Wilde SA, Belousova E and Griffin WL. 2008. Mesozoic decratonization of the North China block. Geology, 36(6): 467-470 DOI:10.1130/G24518A.1 |
Zhang BM, Shen SY, Mo XX, Zhang ZB and Zhang H. 2004a. Characteristics and tectonic environment of the volcanic rocks of Chahe area in Jinggu, Yunnan Province. Geological Science and Technology Information, 23(1): 5-10, 20 (in Chinese with English abstract) |
Zhang BM, Shen SY, Mo XX, Zhang ZB, Zhang H, Zhang QY and Tian YG. 2004b. The characteristics and tectonic environment of volcanic rocks in Chahe and Maomihe of Jinggu, Yunnan Province. Mineralogy and Petrology, 24(2): 19-25 (in Chinese with English abstract) |
Zhang H, Jin CH, Fan WY, Shen ZW, Zhang Y and Gao JH. 2013. Zircon LA-ICP-MS U-Pb dating of gabbro of the Banpo Pt-Pd-polymetallic deposit in Jinggu, Yunnan Province, and its geological significance. Geology in China, 40(5): 1433-1442 (in Chinese with English abstract) |
Zhang KW, Zhang Q, Li DZ, Wang MX, Zhao DX and Xu SR. 1991. The Characteristics and geological significance of the peritotite-diorite type of body in Nanlianshan, Jinghong County, Yunnan Province. Mineralogy and Petrology, 11(3): 21-28 (in Chinese with English abstract) |
Zhang RY, Cong BL, Maruyama S and Liou JG. 1993. Metamorphism and tectonic evolution of the Lancang paired metamorphic belts, south-western China. Journal of Metamorphic Geology, 11(4): 605-619 DOI:10.1111/j.1525-1314.1993.tb00175.x |
Zhang YF, Duan JS and Zhang G. 2001. Study on Tectonic Evolution of Ophiolite and Lancangjiang Plate Suture in West Yunnan. Kunming: Yunnan Science and Technology Press, 1-101 (in Chinese)
|
Zhao F, Li GJ, Zhang PF, Wang CB, Sun ZB and Tang X. 2018. Petrogenesis and tectonic implications of the Lincang batholith in the Sanjiang, Southwest China:Constraints by geochemistry, zircon U-Pb chronology and Hf isotope. Acta Petrologica Sinica, 34(5): 1397-1412 (in Chinese with English abstract) |
Zhong DL. 1998. The Paleotethys Orogenic Belt in West of Sichuan and Yunnan. Beijing: Science Press, 1-230 (in Chinese)
|
Zong KQ, Klemd R, Yuan Y, He ZY, Guo JL, Shi XL, Liu YS, Hu ZC and Zhang ZM. 2017. The assembly of Rodinia:The correlation of Early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48 DOI:10.1016/j.precamres.2016.12.010 |
范蔚茗, 彭头平, 王岳军. 2009. 滇西古特提斯俯冲-碰撞过程的岩浆作用记录. 地学前缘, 16(6): 291-302. DOI:10.3321/j.issn:1005-2321.2009.06.031 |
孔会磊, 董国臣, 莫宣学, 赵志丹, 朱弟成, 王硕, 李荣, 王乔林. 2012. 滇西三江地区临沧花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报, 28(5): 1438-1452. |
李龚健, 王庆飞, 禹丽, 胡兆初, 马楠, 黄钰涵. 2013. 哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约. 岩石学报, 29(11): 3883-3900. |
李钢柱, 苏尚国, 雷玮琰, 段向东. 2011. 三江地区澜沧江带南段南林山基性岩体锆石U-Pb年龄及岩石地球化学特征. 地学前缘, 18(5): 206-212. |
李钢柱, 苏尚国, 段向东. 2012. 三江地区澜沧江带南段半坡杂岩体锆石U-Pb年龄、岩石地球化学特征及板块构造环境. 地学前缘, 19(4): 96-109. |
李文昌, 潘桂棠, 候增谦, 莫宣学, 王立全. 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社, 1-490.
|
刘本培, 冯庆来, 方念乔, 贾进华, 何馥香. 1993. 滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化. 地球科学(中国地质大学学报), 18(5): 529-539. |
刘德利, 刘继顺, 张彩华, 周余国. 2008. 滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境. 岩石矿物学杂志, 27(1): 23-31. DOI:10.3969/j.issn.1000-6524.2008.01.003 |
刘汇川, 王岳军, 蔡永丰, 马莉燕, 刑晓婉, 范蔚茗. 2013. 哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究. 大地构造与成矿学, 37(1): 87-98. DOI:10.3969/j.issn.1001-1552.2013.01.010 |
吕留彦. 2013.滇西南澜沧江构造带江桥地区芒汇河组的重新厘定及其构造意义.硕士学位论文.昆明: 昆明理工大学, 1-63
|
莫宣学, 路风香, 沈上越, 朱勤文, 侯增谦, 杨开辉, 邓晋福, 刘祥品, 何昌祥. 1993. 三江特提斯火山作用与成矿. 北京: 地质出版社, 1-267.
|
莫宣学, 沈上越, 朱勤文, 须同瑞, 魏启荣, 谭劲, 张双全, 程惠兰. 1998. 三江中南段火山岩-蛇绿岩与成矿. 北京: 地质出版社, 1-128.
|
潘桂棠, 徐强, 候增谦, 王立全, 杜德勋, 莫宣学, 李定谋, 汪名杰, 李兴振, 江新胜, 胡云中. 2003. 西南"三江"多岛弧造山过程成矿系统与资源评价. 北京: 地质出版社, 1-420.
|
彭头平, 王岳军, 范蔚茗, 刘敦一, 石玉若, 苗来成. 2006. 澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义. 中国科学(D辑), 36(2): 123-132. |
孙载波, 卢晓萍, 俞赛赢, 刘军平, 田素梅, 李序贵. 2015. 云南景洪曼秀闪长岩体锆石U-Pb年龄与岩石地球化学特征. 矿物学报, 35(4): 473-480. |
孙载波, 李静, 周坤, 曾文涛, 吴嘉林, 胡绍斌, 刘桂春, 赵江泰. 2018. 滇西勐库地区退变质榴辉岩锆石U-Pb年龄及其地质意义. 地质通报, 37(11): 2032-2043. |
王硕, 董国臣, 莫宣学, 赵志丹, 朱弟成, 孔会磊, 王霞, 聂飞. 2012. 澜沧江南带三叠纪火山岩岩石学、地球化学特征、Ar-Ar年代学研究及其构造意义. 岩石学报, 28(4): 1148-1162. |
王晓峰. 2012.滇西南南澜沧江镁铁-超镁铁杂岩的岩石学研究——以雅口岩体为例.硕士学位论文.昆明: 昆明理工大学, 1-58
|
韦诚, 戚学祥, 常裕林, 吉风宝, 张诗启. 2016. 澜沧江构造带中南段小定西组火山岩形成时代的厘定及其构造意义. 地质学报, 90(11): 3192-3214. DOI:10.3969/j.issn.0001-5717.2016.11.014 |
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. |
徐桂香, 刘桂春, 刘军平, 田素梅. 2016. 云南景洪南联山闪长岩体锆石U-Pb年龄及其意义. 云南地质, 35(2): 131-136. DOI:10.3969/j.issn.1004-1885.2016.02.001 |
张保民, 沈上越, 莫宣学, 张志斌, 张虎. 2004a. 云南省景谷岔河地区火山岩及其构造环境. 地质科技情报, 23(1): 5-10, 20. |
张保民, 沈上越, 莫宣学, 张志斌, 张虎, 张启跃, 田应贵. 2004b. 云南景谷岔河、茂密河火山岩及其构造环境. 矿物岩石, 24(2): 19-25. |
张海, 金灿海, 范文玉, 沈战武, 张玙, 高建华. 2013. 云南景谷半坡铂钯多金属矿床辉长岩锆石U-Pb同位素定年及其意义. 中国地质, 40(5): 1433-1442. DOI:10.3969/j.issn.1000-3657.2013.05.008 |
张魁武, 张旗, 李达周, 王明新, 赵大贤, 徐顺荣. 1991. 云南景洪南联山橄榄岩-闪长岩型岩体的特征及地质意义. 矿物岩石, 11(3): 21-28. |
张翼飞, 段锦荪, 张罡. 2001. 滇西蛇绿岩带地质构造演化与澜沧江板块缝合线研究. 昆明: 云南科技出版社, 1-101.
|
赵枫, 李龚健, 张鹏飞, 王传斌, 孙载波, 唐鑫. 2018. 西南三江临沧花岗岩基成因与构造启示:元素地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报, 34(5): 1397-1412. |
钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 1-230.
|