岩石学报  2020, Vol. 36 Issue (5): 1369-1388, doi: 10.18654/1000-0569/2020.05.04   PDF    
云南香格里拉盖吉夏含矿石英二长闪长玢岩年代学、地球化学、锆石Hf同位素特征及其地质意义
董涛1,2, 余海军1,2,3, 段召艳1,2, 魏坤4, 吴俊1, 兰文达1, 刘晓波1, 杜斌1     
1. 云南省地质调查院, 昆明 650216;
2. 自然资源部三江成矿作用及资源勘查利用重点实验室, 昆明 650051;
3. 云南大学地球科学学院, 昆明 650500;
4. 云南省自然资源厅矿产资源储量评审中心, 昆明 650224
摘要: 盖吉夏铜多金属矿床位于香格里拉地区格咱斑岩带红山-普朗铜多金属成矿亚带北段,铜多金属矿化与石英二长闪长玢岩紧密相关。石英二长闪长玢岩LA-ICP-MS锆石U-Pb年龄为216.6±2.3Ma(MSWD=1.9),与区域上普朗、松诺、地苏嘎、雪鸡坪、春都等含矿斑岩体年龄一致。锆石εHft)值分布范围为-1.55~3.27,平均为1.57,分布较集中;单阶段Hf模式年龄(tDM1)变化范围为733~918Ma,平均为795Ma,二阶段Hf模式年龄(tDM2)为923~1178Ma,平均为1015Ma,揭示其源区可能为亏损地幔或新生壳源物质。岩石SiO2为61.08%~69.55%,Na2O+K2O为7.22%~7.82%,Na2O/K2O为0.87~1.87,具高钾钙碱性准铝质-弱过铝质(A/CNK=0.75~1.34)特征,岩石富集轻稀土元素[(La/Yb)N=13.35~24.85]和大离子亲石元素(Rb、Ba、Pb等),相对亏损重稀土元素和高场强元素(Ti、Nb、P等),且具有高Sr(>400×10-6),低Y(< 18×10-6)、Yb(< 1.9×10-6)及高Sr/Y、La/Nb等特点,显示出正常弧岩浆系列钙碱性岩石特征,说明含矿石英二长闪长玢岩与岛弧环境密切相关。这种特征的花岗岩可能为盖吉夏的Cu成矿作用提供了重要的物质来源。
关键词: 石英二长闪长玢岩    锆石U-Pb年龄    岩石地球化学    盖吉夏    香格里拉    
Geochronology, geochemistry, and zircon Hf isotope characteristics and their geological significances of the Gaijixia ore-bearing intrusive rocks in the Shangri-La region, NW Yunnan, SW China
DONG Tao1,2, YU HaiJun1,2,3, DUAN ZhaoYan1,2, WEI Kun4, WU Jun1, LAN WenDa1, LIU XiaoBo1, DU Bin1     
1. Yunnan Geological Survey, Kunming 650216, China;
2. Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization, MNR, Kunming 650051, China;
3. School of Earth Sciences, Yunnan University, Kunming 650500, China;
4. Mineral Resources and Reserves Evaluation Center, Department of Natural Resources of Yunnan Province, Kunming 650224, China
Abstract: The Gaijixia Cu polymetallic mining area is located in the northern segment of the Hongshan-Pulang Cu polymetallic metallogenic sub-belt in the Geza porphyry belt. The Cu polymetallic mineralization at Gaijixia is closely related to the quartz monzodiorite porphyrite, zircons from which yield an average LA-ICP-MS U-Pb age of 216.6±2.3Ma (MSWD=1.9), consistent with the forming ages of Pulang, Songnuo, Disuga, Xuejiping and Chundu ore-bearing intrusive rocks nearby. The concentrated εHf(t) values of these zircon grains range from -1.55 to 3.27 (average of 1.57), with corresponding Hf model ages of tDM1 and tDM2 of 733~918Ma (averaged at 795Ma) and 923~1178Ma (averaged at 1015Ma), respectively, indicating contributions from depleted mantle or neonatal crust-derived materials. The intrusive rocks are lithologically high-K alkaline (SiO2=61.08%~69.55%, Na2O+K2O=7.22%~7.82%, Na2O/K2O=0.87~1.87), metaluminous-weakly peraluminous (A/CNK=0.75~1.34, Al2O3=14.82%~17.07%), enriched in LREEs [(La/Yb)N=13.35~24.85] and LILEs (e.g., Rb, Ba, and Pb), depleted in HREEs and HFSEs (e.g., Ti, Nb, and P), with a high content of Sr (>400×10-6), low contents of Y (< 18×10-6) and Yb (< 1.9×10-6), and high Sr/Y, La/Nb ratios. The geochemical characteristics of them coincide with those of the calc-alkaline rocks of normal arc magma series, suggesting a close correlation with island arc environment. Such type of granites could have provided a significant amount of material sources to the Gaijixia Cu mineralization.
Key words: Quartz monzodiorite porphyrite    Zircon U-Pb age    Petrogeochemistry    Gaijixia    Shangri-La    

香格里拉地区位于中国三江特提斯复合造山带义敦岛弧南段(李文昌等, 2010a; Deng et al., 2014a, b; Wang et al., 2014c, 2016; 邓军等, 2014, 2016; 邓军, 2016; Li et al., 2017),是中国重要的铜多金属资源基地。目前,该地区已发现普朗、雪鸡坪、红山、铜厂沟、烂泥塘等十多个中-超大型斑岩-矽卡岩铜钼多金属矿床。该成矿带优越的成矿地质背景和巨大的找矿潜力,吸引了国内外众多学者的关注,对其开展了大量构造-岩浆-成矿等研究(云南省地质科学研究所, 1985; 吕伯西等, 1993; 莫宣学等, 1993; 侯增谦等, 2001, 2003, 2004; 曲晓明等, 2003; 潘桂棠等, 2003; 曾普胜等, 2003, 2004, 2006; 范玉华和李文昌, 2006; 李文昌和曾普胜, 2007; 李文昌, 2010b, 2012, 2013; Li et al., 2011, 2014, 2017; 邓军等, 2011, 2014; Deng et al., 2014c, 2017; Yu et al., 2014, 2020; 杨立强等, 2015; Deng and Wang, 2016; Yang et al., 2017a, b, 2018)。香格里拉地区与铜成矿作用关系密切的主要为晚三叠世中酸性斑岩体,该期中酸性斑岩体与洋壳俯冲有关,属岛弧岩浆(侯增谦等, 2004; 李文昌和曾普胜, 2007; 李文昌等, 2010b; 余海军, 2018)。关于这套成矿酸性斑岩体的岩石成因和源区有以下几种认识:(1)多数人认为这些含矿斑岩具有部分埃达克岩的地球化学特征,具有岛弧地壳物质或俯冲沉积物(冷成彪等, 2007; Wang et al., 2011; 任江波等, 2011a, b);(2)部分学者认为这种含矿岩浆来源于交代地幔,可能受到了俯冲带流体交代和地壳物质混染的影响(任涛等, 2011);(3)部分研究者认为与富集地幔的部分熔融及幔源玄武岩浆的分离结晶作用有关(曹康等, 2014);(4)部分认为有岛弧新生地壳与古老地壳物质混合等观点(Gao et al., 2018)。

① 云南省地质科学研究所. 1985.滇西东部斑岩与斑岩铜矿科研报告

作者负责的矿调项目在盖吉夏一带进行异常查证时圈定了盖吉夏含矿复式斑岩体,具有较好的矿化特征,经进一步勘查初步圈定3条矿体和多条矿化体,铜矿成矿条件较好,找矿潜力巨大。矿区出露的岩体岩相复杂,岩石年代和岩浆性质不清,以及与Cu矿化之间的关系需要深入研究。本文对盖吉夏含矿石英二长闪长玢岩进行了岩石化学、年代学和Hf同位素研究,结合地质特征对岩体成因机制和构造环境及与铜矿化关系等进行了分析和探讨,研究成果既可补充盖吉夏地区的研究空白,又可以促进该区找矿勘查工作。

1 区域地质背景

盖吉夏铜多金属矿位于香格里拉地区格咱斑岩带红山-普朗铜多金属成矿亚带北段,格咱斑岩带地处“三江”构造岩浆成矿带中部,义敦岛弧带南段的格咱岛弧(侯增谦, 1991; 李文昌等, 2010a),其西侧为中咱地块,东侧为甘孜-理塘结合带南段。二叠纪-早三叠世随着其东侧甘孜-理塘小洋盆的发育转变为被动大陆边缘环境,中三叠世末-晚三叠世初随着甘孜-理塘小洋盆向西俯冲形成主动大陆边缘。晚三叠世岩浆弧发展阶段,该区发育了一套巨厚的碎屑岩-碳酸盐岩-火山岩建造,岩性主要为砂板岩夹灰岩、安山玄武岩-安山岩、英安岩等,划分为曲嘎寺组(T3q)、图姆沟组(T3t)、喇嘛哑组(T3lm),是区内浅成中酸性矿化斑岩的直接围岩。该区主要发育近南北向、北西向、北东向三组构造,早期为近南北向张性断裂;北西向断裂控制了该区的岩浆侵入活动,为控岩、控矿断裂;北东向断裂为晚期断裂(图 1)。

图 1 香格里拉盖吉夏大地构造位置(a,据李文昌等,2011)和区域地质矿产简图(b,据云南省地质调查院,2018修编) Fig. 1 Simplified geological map showing the tectonic position of the Gaijixia area (a, after Li et al., 2011) and regional distribution of mineral deposits in this area (b)

① 云南省地质调查院. 2018.云南香格里拉格咱地区铜多金属矿整装勘查区矿产调查与找矿预测成果报告

格咱岛弧内构造-岩浆-成矿作用强烈、复杂,主要发育两期:(1)晚三叠世岩浆侵入活动,发育岛弧型中酸性浅成-超浅成岩(李文昌和曾普胜, 2007; 冷成彪等, 2007, 2008a, b; 李文昌, 2010a, 2013; Li et al., 2011; 姜丽莉等, 2015; Cao et al., 2018),岩性以闪长玢岩-石英闪长玢岩-石英二长斑岩-花岗闪长斑岩-正长斑岩为主,形成斑岩型-矽卡岩-热液脉型铜金多金属矿床,如普朗、雪鸡坪、浪都、甭哥等;(2)晚白垩世后碰撞阶段花岗岩侵入活动,发育加厚地壳部分熔融形成的S型花岗岩(徐兴旺等, 2006; 李建康等, 2007; 尹光候等, 2009; 王新松等, 2011, 2015; Li et al., 2014, 2017; Wang et al., 2014a, b; Yu et al., 2014; 杨立强等, 2015; 余海军等, 2015; 余海军和李文昌, 2016; Gao et al., 2017; Yang et al., 2017a, b, 2018),岩性以似斑状石英二长岩-二长花岗斑岩-花岗斑岩为主,形成斑岩型-矽卡岩型-热液脉型钨钼多金属矿床,如铜厂沟、休瓦促、热林等。

2 矿床及岩体地质特征 2.1 矿区地层及构造

矿区内主要出露地层为上三叠统曲嘎寺组(T3q)、图姆沟组(T3t),二者为断层接触(图 2a)。

图 2 盖吉夏矿区地质简图(a)及0号线勘探线剖面图(b) Fig. 2 Geological map (a) and No.0 geological section (b) of the Gaijixia copper deposit

曲嘎寺组(T3q),出露于矿区中部及西部,其中二段(T3q2)岩性为灰色、灰白色灰岩、粉砂质绢云板岩、变质砂岩,夹玄武岩、灰岩透镜体;三段(T3q3)岩性为深灰色板岩、粉砂质板岩、变质砂岩、粉晶灰岩夹角砾状灰岩。图姆沟组一段(T3t1),出露于矿区中东部,岩性为深灰色板岩,粉砂质板岩,变质砂岩,局部夹灰岩。

盖吉夏向斜呈北西-南东穿过矿区,核部地层为T3q3,翼部地层为T3q2,两翼倾角40°~50°,向斜直立开阔、对称。红山-盖吉夏断裂(F3)穿过矿区中部,为一逆断层,走向北西,倾向南西,倾角约41°,断裂带上岩石破碎,断层两侧石英脉发育,该断层控制了矿(化)体(层)走向。

2.2 矿体特征

矿区地表圈出3条矿体,主要赋存于石英二长闪长玢岩外接触带矽卡岩化大理岩中(图 2a, b)。各矿体特征为:

KT1:为铜多金属矿体,赋存于石英二长闪长玢岩外接触带大理岩裂隙中,走向北西,倾向北东,呈脉状。矿体真厚1.37m,铜品位1.42%,伴生Pb品位0.65%、Zn品位0.42%。含矿岩性为碎裂大理岩,岩石具硅化、绢云母化蚀变。

KT2:为铜铁多金属矿体,赋存于石英二长闪长玢岩外接触带矽卡岩化大理岩中,走向北西,倾向北东,呈脉状、透镜状,连续性差。矿体真厚1.03m,全铁品位31.01%、铜品位0.30%,伴生Zn品位0.37%,其中有1件样品Pb品位达到2.39%。含矿岩性为褐铁矿石,沿走向矿化不均匀。

KT3:为铁多金属矿体,赋存于石英二长闪长玢岩外接触带矽卡岩化大理岩中,走向北西,倾向北东,呈脉状;控制矿体长65m,矿体真厚1.01~5.33m,平均真厚3.17m;全铁品位44.94%~50.91%,平均45.89%;伴生铜品位0.18%~0.22%、Pb品位0.31%~0.52%、Zn品位0.12%~0.16%。含矿岩性为褐铁矿石、磁铁矿石。

2.3 岩体特征

盖吉夏复式岩体由石英二长闪长玢岩和石英闪长玢岩构成(图 2a),根据野外的观察,二者未见直接接触,均侵位于曲嘎寺组二段,呈岩株状产出,出露面积约2km2,呈不规则椭圆状,与围岩呈港湾状接触,岩体边缘及顶部见有顶垂体及捕虏体。结合区域资料分析,石英二长闪长玢岩侵入时间应稍晚于石英闪长玢岩。石英闪长玢岩具斑状结构、块状构造,蚀变较弱,少量黄铁矿化,未见黄铜矿化;石英二长闪长玢岩具“斑岩型”蚀变矿化特征,其外接触矽卡岩化大理岩中圈定了铜多金属矿体,为区内的含矿岩体。

石英二长闪长玢岩:具显著斑状结构(图 3),块状构造。主要由斜长石、碱性长石、角闪石、石英和少量锆石、磷灰石、榍石、磁铁矿等副矿物组成。斑晶可见斜长石(50%)、碱性长石(35%)和角闪石(8%),偶见石英斑晶(7%)(图 3a-d),斑晶大小不一,多数0.3~3mm,不同地段石英二长闪长玢岩中的斑晶成分略有变化,斑晶数量也会略有差异。斜长石斑晶常呈较自形的板状、边缘平直,常发生蚀变,普遍常见的是斜长石边缘绢云母化而中心部位仍保留新鲜,呈交代残留,或斜长石整体被绢云母集合体或粘土矿物集合体取代而保留板状外形,在蚀变较弱的颗粒中可见聚片双晶或肖钠双晶,其次为黝帘石化、绿帘石化和碳酸盐化。碱性长石斑晶主要为正长石,镜下呈灰白色,浅灰色,也呈自形的板条状,具低负突起,偶见卡斯巴双晶,相对斜长石来说其蚀变较弱,通常仅在边缘或外带出现褐色粘土化或稀疏星状绢云母化,中心干净,常见较新鲜的碱性长石斑晶包含绢云母化斜长石嵌晶或细小角闪石嵌晶(图 3d)。普通角闪石斑晶在镜下呈浅黄褐-褐色,具明显多色性,常见简单双晶,自形程度好,常发生不同程度蚀变,蚀变类型主要为次闪石化、纤闪石化、绿泥石化,常见沿两组节理出现绿泥石化,或普通角闪石完全被绿泥石、次闪石、碳酸盐类、不透明铁质等矿物集合体取代。石英斑晶在岩石中偶见,多呈他形粒状,边缘常被熔蚀呈不规则状。基质常具他形细粒结构或微-细粒结构,基质矿物主要由碱性长石、斜长石和石英组成,与斑晶成分量比不同,表现为基质中含有较多碱性长石和石英、斜长石在基质中数量相对较少,暗色矿物在基质中很少,可以看出钾质和硅质组分在基质中更为丰富。

图 3 盖吉夏石英二长闪长玢岩显微特征 Pl-斜长石;Afs-碱性长石;Hbl-普通角闪石;Qz-石英;Ser-绢云母;Zo-黝帘石;Ep-绿帘石;Urt-纤闪石 Fig. 3 Microscopic characteristics of quartz monzobiorite porphyrite from Gaijixia Pl-plagioclase; Afs-alkali feldspar; Hbl-hornblende; Qz-quartz; Ser-sericite; Zo-zeolite; Ep-epidote; Urt-uralite
2.4 围岩蚀变

盖吉夏石英二长闪长玢岩及其围岩蚀变类型多、蚀变强烈。主要有矽卡岩化、角岩化、大理岩化、绢云母化、绿泥石化、绿帘石化、碳酸盐化及硅化等和作为成矿作用直接标志的硫化物化(主要为黄铁矿化、磁黄铁矿化、黄铜矿化、磁铁矿化、方铅矿化等)。

盖吉夏石英二长闪长玢岩显示出“斑岩型”蚀变分带特征,目前主要发现外蚀变带,由内向外为绢英岩化带→青磐岩化带。绢云母化:在绢云母化强烈的部位硅酸盐矿物几乎全部为绢云母所取代(图 3c, f);青磐岩化:岩石中的斜长石和暗色矿物不同程度地蚀变为绿帘石、黝帘石、纤闪石、阳起石、绿泥石等矿物(图 3e, f),或绿帘石、纤闪石、石英等呈脉状充填于岩石裂隙;硅化:微细粒状石英交代原生矿物;碳酸盐化:斜长石或角闪石均为碳酸盐类代替,基质中的交代更为明显。

3 样品采集及分析方法 3.1 样品采集

为了对盖吉夏含矿石英二长闪长玢岩进行岩石学、年代学和同位素示踪等系统研究,笔者在矿区挑选了6件石英二长闪长玢岩样品进行地球化学分析,其中样品GJXT1蚀变较强,GJXT3弱蚀变,GJXT2、GJXT4、GJXT5和GJXT6为新鲜样品,样品分别采自探槽(TC2、TC3、TC7、TC11、TC12、TC15)。用于LA-ICP-MS锆石定年的样品GJXG-1采自地表含铜蚀变石英二长闪长玢岩(图 2a),同时对该样品测年锆石进行了Hf同位素测试,样品均具有较好的代表性。

3.2 分析方法

LA-ICP-MS锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所LA-ICP-MS实验室完成,采用Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。信号较小的207Pb、206Pb、204Pb(+204Hg)、202Hg用离子计数器(multi-ion-counters)接收,208Pb、232Th、238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据。均匀锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1% (2σ)左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态。锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127 (U: 923×10-6;Th: 439×10-6;Th/U:0.475;Nasdala et al., 2008)为外标进行校正。测试过程中在每测定5~7个样品前后重复测定两个锆石GJ1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal 4.3程序(Liu et al., 2008),测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb由离子计数器检测,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序获得。详细实验测试过程可参见侯可军等(2009)。样品分析过程中,Plesovice标样作为未知样品的分析结果为337.8±2.8Ma (n=2,2σ),对应的年龄推荐值为337.13±0.37 (2σ) (Sláma et al., 2008),两者在误差范围内完全一致。

锆石Lu-Hf同位素在国家地质实验测试中心激光剥蚀-多接收电感耦合等离子体质谱仪(LA-MC-ICP-MS)上测试,仪器运行条件及详细测试流程参考侯可军等(2007)。实验过程中采用He作为剥蚀物质载气,根据锆石大小,剥蚀直径40~60μm不等,激光剥蚀点靠近U-Pb年龄测定点,测试时使用锆石国际标样GJ1作为参考物质,其176Hf/177Hf测试加权平均值为0.282015±8(2,n=10),与文献报道值(Elhlou et al., 2006)在误差范围内完全一致。εHf(t)计算采用衰变常数λ=1.865×10-11y-1(Scherer et al., 2001),(176Hf/177Hf)CHUR=0.032,(176Hf/177Hf)CHUR,0=0.282772 (Blichert-Toft et al., 1997),亏损地幔模式年龄(tDM1)计算采用(176Lu/177Hf)DM=0.0384,(176Hf/177Hf)DM=0.28325 (Griffin et al., 2000),二阶段Hf模式年龄(tDM2)计算时,平均地壳的176Lu/177Hf比值为0.015 (Griffin et al., 2002)。

6件样品的主量元素和微量元素分析在国土资源部昆明矿产资源监督检测中心完成。送样前首先经过薄片显微镜下鉴定,然后选取新鲜至弱蚀变的样品,去除风化面,手工碎至1mm,依次用3%的HCl和去离子水超声浸泡和清洗,烘干后用不锈钢钵粉碎至200目用于化学分析。主量元素采用硅酸盐岩石化学分析方法X射线荧光光谱(飞利浦PW2404X射线荧光光谱仪)法测定。微量元素采用高温高压消解,利用ELEMENT等离子体质谱分析仪分析。主量元素的分析精度好于5%,微量元素的分析精度优于10%。

4 分析结果 4.1 锆石U-Pb年龄

显微镜下石英二长闪长玢岩的锆石多为呈两端带锥面的板状,长轴为50~160μm,自形良好,晶体透明干净,阴极发光影像显示样品锆石具典型的韵律环带结构(图 4),内部结构单一,少量锆石中见包裹体,为岩浆成因锆石。该样品共测试了25颗锆石的25个测点,其中有效点23个,分析数据详见表 1。锆石样品的Pb含量为18.1×10-6~50.7×10-6,Th含量为320.9×10-6~1215×10-6,U含量为403.7×10-6~903.6×10-6,Th/U值为0.79~1.37。样品的锆石Th、U含量及Th/U值(变化幅度较小)均显示为典型的岩浆锆石特征(Hoskin and Black, 2000; 吴元保和郑永飞, 2004)。测年结果显示,样品23个测试点的206Pb/238U表面年龄介于208.5~227.6Ma,基本一致,表明该年龄可以代表锆石的结晶年龄,再将207Pb/235U和206Pb/238U数据投到谐和图中,所有锆石样品的同位素数据显示出较好的线性关系,测点均沿或靠近谐和曲线分布(图 5),利用ISOPLOT程序(Ludwig, 2003)计算,获得206Pb/238U加权平均年龄为216.6±2.3Ma (MSWD=1.9, 图 5),可以代表盖吉夏含矿石英二长闪长玢岩体的结晶年龄。

图 4 盖吉夏石英二长闪长玢岩锆石阴极发光图像和U-Pb、Hf测试点位 Fig. 4 CL images of zircons with analyzed spots for U-Pb and Hf from the Gaijixia quartz monzobiorite porphyrite

表 1 盖吉夏石英二长闪长玢岩LA-ICP-MS锆石测试结果 Table 1 LA-ICP-MS dating results of zircons from the Gaijixia quartz monzodiorite porphyrite

图 5 盖吉夏石英二长闪长玢岩锆石U-Pb加权平均年龄和谐和图 Fig. 5 Zircon U-Pb weighted mean age and concordia diagram for the Gaijixia quartz monzobiorite porphyrite
4.2 锆石Hf同位素组成

锆石的Hf同位素分析结果见表 2图 6a176Yb/177Hf比值范围为0.013295~0.031438,176Lu/177Hf比值范围为0.00052~0.001097,176Lu/177Hf同位素比值普遍较低,均小于0.002,显示锆石在形成之后放射性成因Hf的积累极为有限,因而可以用初始176Hf/177Hf比值代表锆石形成时的176Hf/177Hf比值(吴福元等, 2007a)。176Hf/ 177Hf同位素比值较稳定,分布范围为0.282599~0.282730,εHf(t)值分布范围为-1.55~3.27,平均为1.57,分布较集中,单阶段Hf模式年龄(tDM1)变化范围为733~918Ma,平均年龄为795Ma,二阶段模式年龄(tDM2)为923~1178Ma,平均为1015Ma。

表 2 盖吉夏石英二长闪长玢岩锆石Hf同位素组成 Table 2 Zircon Hf isotopic compositions of the Gaijixia quartz monzodiorite porphyrite

图 6 盖吉夏石英二长闪长玢岩锆石εHf(t)柱状图(a)及t-εHf(t)图解(b,底图据王新松,2014) Fig. 6 Histogram of εHf(t) (a) and t vs. εHf(t) diagram (b, base map after Wang, 2014) of zircons from Gaijixia quartz monzobiorite porphyrite
4.3 主量元素

盖吉夏石英二长闪长玢岩的主量元素分析结果见表 3。SiO2含量为61.08%~69.55%,平均64.29%,属于中-酸性岩类范畴。Na2O介于3.42%~4.99%,平均3.86%,K2O与Na2O含量相当,为2.80%~4.05%,平均3.67%,其全碱Na2O+K2O变化范围为7.22%~7.82%,平均7.54%,在TAS图解上(图 7a)主要落入二长岩、石英二长岩区,与野外及薄片观察较一致。Na2O/K2O在0.87~1.87之间,平均1.08,为钙碱性岩石系列,在SiO2-K2O图(图 7b)中主要落入高钾钙碱性岩区。Al2O3含量14.82%~17.07%,平均15.35%,铝饱和指数(A/CNK)为0.75~1.34,平均0.99,显示准铝质-弱过铝质特征(图 7c)。MgO为0.32%~2.90%,平均1.95%,具有较高的Mg#(26.6~58.7)。P2O5含量较低(0.08%~0.49%)。固结指数(SI)为3.27~19.85,表明岩浆酸性程度较高,分异指数(DI)为70.0~89.5,表明岩浆分异演化彻底。

表 3 盖吉夏石英二长闪长玢岩主量(wt%)和微量(×10-6)元素分析结果 Table 3 The components of major elements (wt%) and trace elements (×10-6) of the Gaijixia quartz monzodiorite porphyrite

图 7 盖吉夏石英二长闪长玢岩TAS图解(a,据Middlemost,1994)、SiO2-K2O图解(b,据Peccerillo and Taylor, 1976Middlemost,1985)、A/NK-A/CNK图解(c,据Maniar and Piccoli, 1989)及SiO2-Ce图解(d,据Collins et al., 1982) Fig. 7 TAS diagram (a, after Middlemost, 1994), SiO2 vs. K2O discrimination diagram (b, after Peccerillo and Taylor, 1976; Middlemost, 1985), A/NK vs. A/CNK molar plot (c, after Maniar and Piccoli, 1989) and SiO2 vs. Ce diagram (d, after Collins et al., 1982) for Gaijixia quartz monzobiorite porphyrite
4.4 微量元素

盖吉夏石英二长闪长玢岩的微量元素分析结果见表 3

样品稀土元素的含量较高,ΣREE为129.9×10-6~181.0×10-6,平均为154.4×10-6;LREE为120.9×10-6~170.0×10-6,HREE为8.12×10-6~12.56×10-6,LREE/HREE为10.84~18.27,平均14.00;有较高的(La/Yb)N值(13.35~24.85,平均19.45)。轻、重稀土元素发生了明显分异,在球粒陨石标准化稀土元素分配模式图(图 8a)中,各样品配分曲线基本一致,均向右倾斜,表现为轻稀土元素(LREE)强富集型,重稀土相对亏损。δCe表现为在无异常的范围(介于0.81~0.86,平均0.84),δEu总体表现为弱的负异常(介于0.66~0.86,平均为0.78)。

图 8 盖吉夏石英二长闪长玢岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized rare earth element distribution patterns (a) and primitive mantle-normalized trace element concentrations (b) of Gaijixia quartz monzobiorite porphyrite (normalization values after Sun and McDonough, 1989)

原始地幔标准化微量元素蛛网图(图 8b)可以看出岩石具有相似的微量元素地球化学特征,蛛网图解曲线表现出向右陡倾的特征,表明随着元素不相容性的增加,岩石的富集度呈几何级增加。Rb、Ba、U、La和Pb等大离子亲石元素(LILE)的富集程度较强,在蛛网图上为明显的峰;Ti、Nb、P、Ta等较不活泼的高场强元素(HFSE)相对亏损,表现为谷;Sr具有一定的正异常,Eu为弱的负异常。

5 讨论 5.1 岩体形成时代

义敦岛弧是甘孜-理塘洋壳向西俯冲的产物,甘孜-理塘洋壳向西俯冲增生造山作用时限为237~206Ma(侯增谦等, 2004),其中南段格咱岛弧甘孜-理塘洋壳俯冲造山时限为235~210Ma(杨岳清等, 2002)。本次研究结果显示,盖吉夏含矿石英二长闪长玢岩锆石U-Pb年龄为216.6±2.3Ma(MSWD=1.9),其结晶成岩时间在晚三叠世,盖吉夏岩体形成时代介于甘孜-理塘洋盆俯冲其间,应为洋壳俯冲增生造山过程的产物。区域上同期形成了一系列中-超大型以Cu为主的斑岩-矽卡岩型矿床,如普朗超大型斑岩铜矿床、雪鸡坪大型斑岩铜矿床、烂泥塘中型斑岩铜矿床、浪都中型矽卡岩铜矿床和红山大型矽卡岩铜矿床等(李文昌等, 2011; 余海军等, 2015)。盖吉夏岩体与区域上普朗213~218Ma、松诺220Ma、浪都216Ma、地苏嘎217Ma、卓玛218Ma、欠虽217Ma、亚杂214Ma、烂泥塘216Ma、雪鸡坪215Ma、春都217Ma、阿热219Ma等岩体年龄基本一致(表 4),应形成于同一构造-岩浆事件,受控于同一地球动力学背景。

表 4 香格里拉地区晚三叠世成岩成矿同位素年龄 Table 4 Isotopic ages of Late Triassic intrusions in Shangri-La region
5.2 岩石成因和源区性质

花岗岩成因类型的判定是花岗岩研究中一个重要的基础问题,需要结合岩石学、矿物学、地球化学和同位素等进行综合的判别。现阶段,大家较推崇且应用较广泛的ISAM花岗岩分类法,根据不同的源岩(物质来源)将花岗岩划分为I型、S型、A型、M型(肖庆辉等,2002)。已有众多学者先后从不同的角度提出过多种判别方法,如Chappell BW and White AJR(1974)以铝指数1.1作为区分I型和S型的界线;Miller(1985)吴福元等(2007b)认为角闪石、堇青石和碱性铁镁矿物是判断I型、S型和A型花岗岩最有效的矿物学标志;Chappell(1999)对Lachlan褶皱带花岗岩的研究发现,由于磷灰石在准铝-弱铝质的I型花岗质岩浆中溶解度很低优先结晶,从而使残余岩浆P2O5含量越来越低,故I型花岗岩中,P2O5含量随SiO2含量的增加而降低,而在S型花岗岩中,P2O5含量随SiO2含量的增加而增高或基本不变;Kinny and Mass(2003)认为岩浆锆石Hf同位素具有低的176Hf/177Hf及εHf(t)值的岩石往往指示其源区为地壳或经过地壳物质的混染,而具有较高的176Hf/177Hf及εHf(t)值的岩石直接来自地幔或由幔源物质分异的新生壳源物质。

盖吉夏石英二长闪长玢岩从矿物组成上看,样品中暗色矿物多为角闪石,而没有出现堇青石等过铝质矿物。主量元素分析也显示,Na2O平均为3.86%、K2O平均为3.67%、Na2O/K2O平均为1.08、Al2O3为14.82%~17.07%,P2O5含量随SiO2含量的增加而降低,样品的A/CNK均值为0.99,小于1.1,属高钾钙碱性准铝质-弱过铝质花岗岩类;稀土元素分析结果表明岩石轻重稀土元素分馏明显((La/Yb)N为13.35~24.85,平均19.45),且富集轻稀土、相对亏损重稀土;微量元素分析结果,岩石富集大离子亲石元素(LILE)、亏损高场强元素(HFSF),Ta、Nb、P、Ti明显亏损,显示出弧岩浆系列钙碱性岩石特征,在(Yb+Ta)-Rb、(Y+Nb)-Rb构造判别图解(图 9)中,所有岩石样品均落在了岩浆弧花岗岩区,揭示了岩浆岩主要形成于俯冲造山的构造环境。以上说明盖吉夏石英二长闪长玢岩具有洋壳俯冲作用形成的岛弧I型花岗岩特征(图 7d),与区域上普朗、雪鸡坪、浪都等含矿斑岩体一致(冷成彪等, 2007; 任江波等, 2011a; 任涛等, 2011)。

图 9 盖吉夏石英二长闪长玢岩构造环境判别图解(据Pearce et al., 1984) ORG-洋脊花岗岩;VAG-火山岛弧花岗岩;WPG-板内花岗岩;syn-COLG-同碰撞花岗岩 Fig. 9 Discriminate diagrams for tectonic environments for the Gaijixia quartz monzobiorite porphyrite by trace element (after Pearce et al., 1984)

盖吉夏石英二长闪长玢岩的MgO (0.32%~2.90%)、Cr (3.86×10-6~54.7×10-6)、Ni (3.7×10-6~14.4×10-6)含量均低于原生岩浆参考值(MgO=10%~12%,Cr=250×10-6,Ni=90×10-6~670×10-6),表明该岩浆可能非原始地幔岩浆,而是经分异或演化的产物,与同化混染或分离结晶有关(Arth, 1976; 代友旭等, 2017)。盖吉夏石英二长闪长玢岩无明显的Eu负异常(δEu为0.66~0.86,均值0.78),Na2O/K2O均值为1.08,分异指数(DI)为70.03~89.5,也指示岩石经历了高程度的分异演化作用,表明其形成过程与洋壳的俯冲密切相关。

盖吉夏石英二长闪长玢岩具较高的SiO2(61.08%~69.55%)、Mg#(26.6~58.7)、Sr (410×10-6~830×10-6)含量,较低的Y (10.87×10-6~15.61×10-6)、Yb (1.05×10-6~1.44×10-6)含量,较高的Sr/Y (37.41~63.80)、La/Nb (1.00~1.45,岛弧岩浆La/Nb>1,Condie, 1982)、Ba/La (48.63~70.47)和Ba/Nb (85.97~170.73)比值,显示区内石英二长闪长玢岩与岛弧环境有关(Condie, 1986),同时显示原始岩浆可能源于受俯冲板片脱水融熔交代的亏损地幔楔(Ellam and Hawkesworth, 1988)。另外,Rb/Sr为0.10~0.22,平均值0.17,介于上地幔值(0.034)与地壳值(0.35)之间(Taylor and McLennan, 1995),反映出壳幔混源的特点;较低的Ba/Rb (12.6~27.7,<50)和Nb/La(0.31~0.58,<1)比值,说明岩浆源区与俯冲有关,同时暗示沉积物对本区岩浆作用的影响;较低的Ce/Pb (2.09~5.15,<20)和较高的Th/La (0.35~0.58,>0.25)比值则反映流体交代对本区岩浆源区的影响;岩石所具有高Al2O3含量(14.82%~17.07%)、Th/Ce (0.21~0.31)和Nb/Zr (0.07~0.16)比值,也证明来自于板片的沉积物熔体对岩石圈地幔有一定的贡献(Stolz et al., 1988, 1990; Plank and Langmuir, 1998)。说明盖吉夏斑岩体可能是晚三叠世甘孜-理塘大洋板片向西俯冲导致上覆地幔楔遭受流体交代,被流体交代的地幔楔进而发生部分熔融,形成正常钙碱性弧岩浆。

盖吉夏石英二长闪长玢岩锆石具有较高的176Hf/177Hf值(0.282599~0.282730)及εHf(t)值(-1.55~3.27,均值为1.57),εHf(t)大部分具正值,揭示其源区为亏损地幔或新生壳源物质(图 6b),部分锆石的εHf(t)为负值,说明在其形成过程中有少量陆壳物质的加入,源区同位素的不均一,是壳幔相互作用的结果,这些变化的Hf同位素说明其源区可能为混合岩浆源区,这是岛弧岩浆的同位素特征。以地壳为标准计算的二阶段Hf模式年龄(tDM2)值为923~1178Ma,平均值为1015Ma。由于所有锆石Lu/Hf比(fLu/Hf为-0.97和-0.98)显著小于大陆地壳Lu/Hf比(下地壳的fLu/Hf=-0.34,上地壳的fLu/Hf=-0.72),因此二阶段模式年龄能更真实地反映其源区物质从亏损地幔抽取的时间或其源区物质在地壳的平均存留时间,表明其源区可能为亏损地幔或新生壳源物质,在其形成过程中有少量陆壳物质的加入。

5.3 岩体与成矿关系

斑岩型铜矿主要形成于大洋板块俯冲产生的岛弧和陆缘弧环境以及陆陆碰撞造山环境(芮宗瑶等, 2004; 侯增谦, 2010)。香格里拉地区在晚三叠世时期为岛弧环境或活动大陆边缘背景,甘孜-理塘大洋板片向西俯冲的挤压环境形大量中酸性岩浆,具有富水、高氧逸度特征(Chappell and White, 2001; 王强等, 2008),有利于Cu保留其中不被分散,随着岩浆一起迁移(Sun et al., 2004),形成斑岩型-矽卡岩型铜矿床,如普朗超大型斑岩铜矿、浪都中型矽卡岩铜矿床等。

盖吉夏含矿石英二长闪长玢岩结晶成岩时间与区域上普朗斑岩型铜矿、松诺斑岩型铜矿、浪都矽卡岩型铜矿、地苏嘎铜多金属矿、欠虽铜多金属矿等含矿岩体年龄一致,均为晚三叠世;其岩石地球化学特征也较为一致(李文昌和曾普胜, 2007; 冷成彪等, 2008a; 任江波等, 2011a, b; 任涛等, 2011; 李文昌等, 2013; 曹康等, 2014)。表明盖吉夏含矿石英二长闪长玢岩与区域上含矿斑岩形成环境和物质来源应属同一构造-岩浆事件,具有产出斑岩-矽卡岩型铜矿床的成矿地质条件。盖吉夏含矿石英二长闪长玢岩常见含水矿物角闪石斑晶,微量元素分析其源区可能混合有俯冲沉积物,表明其原始岩浆具有很高的水含量,为后期岩浆-热液过程提供有利的环境。盖吉夏石英二长闪长玢岩及围岩的蚀变矿化均显示出强烈而普遍的特征,岩体具面状蚀变分布特征,蚀变类型及其矿物组合均具典型斑岩型铜矿化的外带蚀变(青磐岩化带/绢英岩化带)特征;且其外接触带(围岩)具角岩化、矽卡岩化、大理岩化蚀变。岩体矿化不均,其中绢英岩化带内强黄铁矿化、磁黄铁矿化(呈浸染状、细脉浸染状分布),弱黄铜矿化(呈星点状、小团块状产出),青磐岩化带内以弱黄铁矿化为主;外接触矽卡岩中圈定了3条脉状铜铅锌铁多金属矿体,主要为黄铜矿化、方铅矿化、磁铁矿化等。在SiO2-Rb/Sr图解中(图 10),大部分样品落入矽卡岩型多金属矿靠近斑岩型铜矿区域,1件样品落入斑岩型铜矿与矽卡岩型多金属矿交界处,与盖吉夏铜多金属矿床斑岩型-矽卡岩型铜多金属矿化较一致,说明盖吉夏石英二长闪长玢岩为含矿岩体,具有寻找斑岩型-矽卡岩型铜多金属矿的成矿条件和重要找矿前景,值得进一步开展相关研究和勘查工作。

图 10 盖吉夏石英二长闪长玢岩SiO2-Rb/Sr判别图解 Fig. 10 SiO2 vs. Rb/Sr diagram for the Gaijixia quartz monzobiorite porphyrite

盖吉夏地区中酸性岩浆侵位于曲嘎寺组硅铝质围岩中,岩体顶部热流体减压爆破后,地下水热液加入到富含挥发组份的上升热流体,形成混合热流体,在斑岩体及周围岩石中循环时,形成了不同类型的蚀变、矿化及其分带,形成斑岩型铜多金属矿体;当围岩中含有碳酸盐岩时,岩浆流体与其发生交代反应形成以石榴子石和透辉石为主体的无水矽卡岩,随后富含挥发组分的含矿残余流体再次渗透到矽卡岩中活动,在温度下降和组分梯度的影响下,对矽卡岩产生酸性淋虑交代,造成含矿络合物的分解,最终在阶段性矿化中形成矽卡岩型Cu、Pb、Zn、Fe多金属矿体;岩浆期后含矿热液沿构造破碎带、断裂带或裂隙带运移,在合适的构造虚脱空间沉淀富集,形成热液脉型Pb、Zn多金属矿体,构成铜→铜铅锌铁→铅锌银的成矿元素分带和斑岩成矿系统(图 11),盖吉夏铜多金属矿床与含矿石英二长闪长玢岩存在内在成因关系。

图 11 盖吉夏成岩成矿模式图 Fig. 11 Metallogenic model of Gaijixia deposit
6 结论

(1) 本次获得香格里拉地区盖吉夏含矿石英二长闪长玢岩的成岩年龄为216.6±2.3Ma,成岩时代为晚三叠世,与区域上普朗、雪鸡坪、浪都、春都等含矿斑岩体年龄一致,属甘孜-理塘洋壳向西俯冲的产物。

(2) 盖吉夏含矿石英二长闪长玢岩具较高的SiO2、Al2O3、Sr,较低的Y、Yb含量,较高的Sr/Y、La/Nb、Ba/La和Ba/Nb比值,轻重稀土元素分馏明显,且富集轻稀土、相对亏损重稀土,富集大离子亲石元素(LILE)、亏损高场强元素(HFSF),属高钾钙碱系列准铝质-弱过铝质花岗岩类,显示出弧岩浆I型花岗岩特征,说明含矿石英二长闪长玢岩与岛弧环境有关。盖吉夏含矿石英二长闪长玢岩锆石εHf(t)值为-1.55~3.27,平均为1.57,tDM1为733~918Ma,tDM2为923~1178Ma,平均为1015Ma。揭示其源区可能为亏损地幔或新生壳源物质。

(3) 盖吉夏石英二长闪长玢岩的含矿性非常好,具备斑岩型-矽卡岩型铜多金属矿的成矿条件,具有重要找矿前景,值得进一步开展深入研究和勘查工作。

致谢      成文过程中锆石U-Pb定年及Hf同位素分析得到中国地质科学院矿产资源研究所李超博士的帮助;岩石显微镜下观察得到昆明理工大学朱俊博士的热情指导;两位审稿专家提出了诸多宝贵的意见;在此一并表示衷心感谢!

参考文献
Arth JG. 1976. Behavior of trace elements during magmatic processes:A summary of theoretical models and their applications. Reston:U.S. Geological Survey: 41-47
Blichert-Toft J, Chauvel C and Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260 DOI:10.1007/s004100050278
Cao DH. 2007. Porphyry copper deposit model and exploration technique in Zhongdian, Yunnan. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
Cao DH, Wang AJ, Huang YF, Zhang W, Hou KJ, Li RP and Li YK. 2009. SHRIMP geochronology and hf isotope composition of zircons from Xuejiping porphyry copper deposit, Yunnan Province. Acta Geologica Sinica, 83(10): 1430-1435 (in Chinese with English abstract)
Cao K, Xu JF, Chen JL, Huang XX and Ren JB. 2014. Origin of porphyry intrusions hosting superlarge Pulang porphyry copper deposit in Yunnan Province:Implications for metallogenesis. Mineral Deposits, 33(2): 307-322 (in Chinese with English abstract)
Cao K, Yang ZM, Xu JF, Fu B, Li WK and Sun MY. 2018. Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc, eastern Tibet. Lithos, 304-307: 436-449 DOI:10.1016/j.lithos.2018.02.018
Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551
Chappell BW and White AJR. 2001. Two contrasting granite types:25 years later. Australian Journal of Earth Sciences, 48(4): 489-499 DOI:10.1046/j.1440-0952.2001.00882.x
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200 DOI:10.1007/BF00374895
Condie KC. 1982. Plate Tectonics and Crustal Evolution. 2nd Edition. Oxford: Pergamon Press
Condie KC. 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwestern United States. The Journal of Geology, 94(6): 845-864 DOI:10.1086/629091
Dai YX, Dong GC, Jing GQ, Li XF, Wang P, He WY and Zhou Q. 2017. Zircon U-Pb chronology, geochemical characteristics of Late-Triassic volcanic rocks from Geza of Zhongdian area, Yunnan and their tectonic significance. Acta Petrologica Sinica, 33(8): 2548-2562 (in Chinese with English abstract)
Deng J, Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509 (in Chinese with English abstract)
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437 DOI:10.1016/j.gr.2013.08.002
Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299 DOI:10.1016/j.earscirev.2014.05.015
Deng J, Gong QJ, Wang CM, Carranza EJM and Santosh M. 2014c. Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong'ershan region, Central China:An overview with new zircon U-Pb geochronology data on quartz porphyries. Journal of Asian Earth Sciences, 79: 161-172 DOI:10.1016/j.jseaes.2013.09.018
Deng J, Wang CM, Li WC, Yang LQ and Wang QF. 2014. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. Earth Science Frontiers, 21(1): 52-64 (in Chinese with English abstract)
Deng J. 2016. The Composite Orogeny and Mineralization of Sanjiang Tethys. Beijing: Science Press622 (in Chinese)
Deng J and Wang QF. 2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, 36: 219-274 DOI:10.1016/j.gr.2015.10.003
Deng J, Wang QF and Li GJ. 2016. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt, SW China. Acta Petrologica Sinica, 32(8): 2225-2247 (in Chinese with English abstract)
Deng J, Wang QF and Li GJ. 2017. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Research, 50: 216-266 DOI:10.1016/j.gr.2017.02.005
Dong Y. 2013. Geochronology and geochemistry of A're porphyry in Shangri-La, Northwest Yunnan: Petrogenesis and implications. Master Degree Thesis. Chengdu: Chengdu University of Technology (in Chinese with English summary)
Elhlou S, Belousova E, Griffin WL, Pearson NJ and O'Reilly SY. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, 70(18S): A158
Ellam RM and Hawkesworth CJ. 1988. Elemental and isotopic variations in subduction related basalts:Evidence for a three component model. Contributions to Mineralogy and Petrology, 98(1): 72-80 DOI:10.1007/BF00371911
Fan YH and Li WC. 2006. Geological characteristics of the Pulang porphyry copper deposit, Yunnan. Geology in China, 33(2): 352-362 (in Chinese with English abstract)
Gao X, Yang LQ, Meng JY and Zhang LJ. 2017. Zircon U-Pb, molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian, Northwest Yunnan, China. Ore Geology Reviews, 91: 945-962 DOI:10.1016/j.oregeorev.2017.08.012
Gao X, Yang LQ and Orovan EA. 2018. The lithospheric architecture of two subterranes in the eastern Yidun Terrane, East Tethys:Insights from Hf-Nd isotopic mapping. Gondwana Research, 62: 127-143 DOI:10.1016/j.gr.2018.02.010
Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9
Griffin WJ, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269 DOI:10.1016/S0024-4937(02)00082-8
He DF, Zhu WG, Zhong H, Ren T, Bai ZJ and Fan HP. 2013. Zircon U-Pb geochronology and elemental and Sr-Nd-Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun Arc, SW China. Journal of Asian Earth Sciences, 67-68: 1-17 DOI:10.1016/j.jseaes.2013.02.002
Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hou ZQ. 1991. Characteristics of tectono- magmatic evolution of Yidun island arc in Sanjiang region. In: Li TD (ed.). Geological Collected Works of Qinghai-Tibet Plateau. Beijing: Geological Publishing House, 153-156 (in Chinese)
Hou ZQ, Qu XM, Zhou JR, Yang YQ, Huang DH, Lv QT, Tang SH, Yu JJ, Wang HP and Zhao JH. 2001. Collision-orogenic processes of the Yidun arc in the Sanjiang region:Record of granites. Acta Geologica Sinica, 75(4): 484-497 (in Chinese with English abstract)
Hou ZQ, Yang YQ, Wang HP, Qu XM and Huang DH. 2003. Collision-Orogenic Processes and Mineralization Systems of the Yidun Arc. Beijing: Geological Publishing House, 1-345 (in Chinese)
Hou ZQ, Yang YQ, Qu XM, Huang DH, Lv QT, Wang HP, Yu JJ and Tang SH. 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang region, China. Acta Geologica Sinica, 78(1): 109-120 (in Chinese with English abstract)
Hou ZQ. 2010. Metallogensis of continental collision. Acta Geologica Sinica, 84(1): 30-58 (in Chinese with English abstract)
Huang XX, Xu JF, Chen JL and Ren JB. 2012. Geochronology, geochemistry and petrogenesis of two periods of intermediate-acid intrusive rocks from Hongshan area in Zhongdian arc. Acta Petrologica Sinica, 28(5): 1493-1506 (in Chinese with English abstract)
Jiang LL, Xue CD, Hou ZQ and Xiang K. 2015. Petrogenesis of the Bengge syenites, northwestern Yunnan:Geochemistry, geochronology and Hf isotopes evidence. Acta Petrologica Sinica, 31(11): 3234-3246 (in Chinese with English abstract)
Kinny PD and Mass R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341 DOI:10.2113/0530327
Leng CB, Zhang XC, Wang SX, Qin CJ and Gou TZ. 2007. Geochemical characteristics of porphyry copper deposits in the Zhongdian area, Yunnan as exemplified by the Xuejiping and Pulang porphyry copper deposits. Acta Mineralogica Sinica, 27(3-4): 414-422 (in Chinese with English abstract)
Leng CB, Zhang XC, Wang SX, Qin CJ, Gou TZ and Wang WQ. 2008a. SHRIMP Zircon U-Pb Dating of the Songnuo ore-hosted porphyry, Zhongdian, northwest Yunnan, China and its geological implication. Geotectonica et Metallogenia, 32(1): 124-130 (in Chinese with English abstract)
Leng CB, Zhang XC, Wang SX, Wang WQ, Qin CJ, Wu KW and Ren T. 2008b. Sulfur and lead isotope compositions of the Xuejiping porphyry copper deposit in Northwest Yunnan, China:Tracing for the source of metals. Journal of Mineralogy and Petrology, 28(4): 80-88 (in Chinese with English abstract)
Leng CB, Zhang XC, Hu RZ, Wang SX, Zhong H, Wang WQ and Bi XW. 2012. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. Journal of Asian Earth Sciences, 60: 31-48 DOI:10.1016/j.jseaes.2012.07.019
Leng CB, Huang QY, Zhang XC, Wang SX, Zhong H, Hu RZ, Bi XW, Zhu JJ and Wang XS. 2014. Petrogenesis of the Late Triassic volcanic rocks in the southern Yidun arc, SW China:Constraints from the geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes. Lithos, 190-191: 363-382 DOI:10.1016/j.lithos.2013.12.018
Li JK, Li WC, Wang DH, Lu YX, Yin GH and Xue SR. 2007. Re-Os dating for ore- forming event in the Late Yanshan Epoch and research of ore-forming regularity in Zhongdian Arc. Acta Petrologica Sinica, 23(10): 2415-2422 (in Chinese with English abstract)
Li WC and Zeng PS. 2007. Characteristics and metallogenic model of the Pulang superlarge porphyry copper deposit in Yunnan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 34(4): 436-446 (in Chinese with English abstract)
Li WC, Pan GT, Hou ZQ, Mo XX, Wang LQ and Ding J. 2010a. Archipelagic-Basin, Forming Collision Theory and Prospecting Techniques along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing: Geological Publishing House (in Chinese)
Li WC, Yin GH, Lu YX, Wang YB, Yu HJ, Cao XM and Zhang SQ. 2010b. Delineation of Hongshan-Shudu ophiolite mélange in Geza volcanic-magmatic arc and its significance, Southwest "Jinsha-Lancang-Nu rivers". Acta Petrologica Sinica, 26(6): 1661-1671 (in Chinese with English abstract)
Li WC, Zeng PS, Hou ZQ and White NC. 2011. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, Southwest China. Economic Geology, 106(1): 79-92 DOI:10.2113/econgeo.106.1.79
Li WC, Yin GH, Yu HJ, Lu YX and Liu XL. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan. Acta Petrologica Sinica, 27(9): 2541-2552 (in Chinese with English abstract)
Li WC, Yu HJ, Yin GH, Cao XM, Huang DZ and Dong T. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in Northwest Yunnan and its metallogenic environment. Mineral Deposits, 31(2): 282-292 (in Chinese with English abstract)
Li WC, Yu HJ and Yin GH. 2013. Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China. Acta Petrologica Sinica, 29(4): 1129-1144 (in Chinese with English abstract)
Li WC, Yin GH, Yu HJ and Liu XL. 2014. The Yanshanian granites and associated Mo-polymetallic mineralization in the Xiangcheng-Luoji area of the Sanjiang-Yangtze conjunction zone in Southwest China. Acta Geologica Sinica, 88(6): 1742-1756 DOI:10.1111/1755-6724.12341
Li WC, Yu HJ, Gao X, Liu XL and Wang JH. 2017. Review of Mesozoic multiple magmatism and porphyry Cu-Mo (W) mineralization in the Yidun Arc, eastern Tibet Plateau. Ore Geology Reviews, 90: 795-812 DOI:10.1016/j.oregeorev.2017.03.009
Lin QC, Xia B and Zhang YQ. 2006. Zircon SHRIMP U-Pb dating of the syn-collisional Xuejiping quartz diorite porphyrite in Zhongdian, Yunnan, China, and its geological implications. Geological Bulletin of China, 25(1-2): 133-137 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao GH and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Ludwig KR. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 1-70
Lv BX, Wang Z, Zhang ND, Duan JZ, Gao ZY, Shen GF, Pan YC and Yao P. 1993. Granitoids in the Sanjiang Region and Their Metallogenic Specialization. Beijing: Geological Publishing House (in Chinese)
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Middlemost EAK. 1985. Magmas and Magmatic Rocks:An Introduction to Igneous Petrology. London: Longman, 1-266
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9
Miller CF. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources?. The Journal of Geology, 93(6): 673-689 DOI:10.1086/628995
Mo XX, Lu FX, Shen S, Zhu QW, Hou ZQ, Yang KH, Deng JF and He XP. 1993. Volcanic Rocks and Metallogeny of the Sanjiang Region, Southwestern China. Beijing: Geological Publishing House (in Chinese)
Nasdala L, Hofmeister W, Norberg N, Martinson J, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257:A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265 DOI:10.1111/j.1751-908X.2008.00914.x
Pan GT, Xu Q, Hou ZQ, Wang LQ, Du DX, Mo XX, Li DM, Wang MJ, Li XZ, Jiang XS and Hu YZ. 2003. Archipelagic Orogenesis, Metallogenic Systems and Assessment of the Mineral Resources along the Nujiang-Lancangjiang- Jinshajiang Area in Southwestern China. Beijing: Geological Publishing House, 11-30 (in Chinese)
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394 DOI:10.1016/S0009-2541(97)00150-2
Qu XM, Hou ZQ and Tang SH. 2003. Age of intraplate volcanism in the back-arc area of Yidun island arc and its significance. Acta Petrologica et Mineralogica, 22(2): 131-137 (in Chinese with English abstract)
Ren JB, Xu JF, Chen JL, Zhang SQ and Liang HY. 2011a. Geochemistry and petrogenesis of Pulang porphyries in Sanjiang region. Acta Petrologica et Mineralogica, 30(4): 581-592 (in Chinese with English abstract)
Ren JB, Xu JF and Chen JL. 2011b. Zircon geochronology and geological implications of ore-bearing porphyries from Zhongdian arc. Acta Petrologica Sinica, 27(9): 2591-2599 (in Chinese with English abstract)
Ren T, Zhong H, Chen JF, Zhu WG and Zhang XC. 2011. Geochemical characteristics of the Langdu high-K intermediate-acid intrusive rocks in the Zhongdian area, Northwest Yunnan Province, P. R. China. Acta Mineralogica Sinica, 31(1): 43-54 (in Chinese with English abstract)
Rui ZY, Zhang LS, Chen ZY, Wang LS, Liu YL and Wang YT. 2004. Approach on source rock or source region of porphyry copper deposits. Acta Petrologica Sinica, 20(2): 229-238 (in Chinese with English abstract)
Scherer E, Münker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683-687 DOI:10.1126/science.1061372
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005
Stolz AJ, Varne R, Wheller GE, Foden JD and Abbott MJ. 1988. The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda Arc. Contributions to Mineralogy and Petrology, 98(3): 374-389 DOI:10.1007/BF00375187
Stolz AJ, Varne R, Davies GR, Wheller GE and Foden JD. 1990. Magma source components in an arc-continent collision zone:The Flores-Lembata sector, Sunda Arc, Indonesia. Contributions to Mineralogy and Petrology, 105(5): 585-601 DOI:10.1007/BF00302497
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sun WD, Arculus RJ, Kamenetsky VS and Binns RA. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978 DOI:10.1038/nature02972
Taylor SR and McLennan SM. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265
Wang BQ, Zhou MF, Li JW and Yan DP. 2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau:Adakitic magmatism and porphyry copper mineralization. Lithos, 127(1-2): 24-38 DOI:10.1016/j.lithos.2011.07.028
Wang CM, Deng J, Carranza EJM and Santosh M. 2014c. Tin metallogenesis associated with granitoids in the Southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research, 26(2): 576-593 DOI:10.1016/j.gr.2013.05.005
Wang CM, Bagas L, Lu YJ, Santosh M, Du B and McCuaig TC. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39-65 DOI:10.1016/j.earscirev.2016.02.008
Wang Q, Tang GJ, Jia XH, Zi F, Jiang ZQ, Xu JF and Zhao ZH. 2008. The metalliferous mineralization associated with adakitic rocks. Geological Journal of China Universities, 14(3): 350-364 (in Chinese with English abstract)
Wang XS, Bi XW, Leng CB, Tang YY, Lan JB, Qi YQ and Shen NP. 2011. LA-ICP-MS zircon U-Pb dating of granite porphyry in the Hongshan Cu-Polymetallic deposit, Zhongdian, Northwest Yunnan, China and its geological implication. Acta Mineralogica Sinica, 31(3): 315-321 (in Chinese with English abstract)
Wang XS. 2014. Geological setting and genesis of Late Cretaceous igneous rocks and associated mineralization in the southern Yindun Arc, eastern Tibetan Plateau. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences (in Chinese)
Wang XS, Bi XW, Leng CB, Zhong H, Tang HF, Chen YW, Yin GH, Huang DZ and Zhou MF. 2014a. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting. Ore Geology Reviews, 61: 73-95 DOI:10.1016/j.oregeorev.2014.01.006
Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ and Chen YW. 2014b. Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209: 202-219 DOI:10.1016/j.lithos.2014.08.016
Wang XS, Bi XW, Hu RZ, Leng CB, Yu HJ and Yin GH. 2015. S-Pb isotopic geochemistry of Xiuwacu magmatic hydrothermal Mo-W deposit in Zhongdian area, NW Yunnan:Constrains on the sources of metal. Acta Petrologica Sinica, 31(11): 3171-3188 (in Chinese with English abstract)
Wu FY, Li XH, Zheng YF and Gao S. 2007a. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu FY, Li XH, Yang JH and Zheng YF. 2007b. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569 DOI:10.1007/BF03184122
Xiao QH, Deng JF, Ma DQ, Hong DW, Mo XX, Lu XX, Li ZC, Wang XW, Ma CQ, Wu FY, Luo ZH and Wang T. 2002. The Ways of Investigation on Granitoids. Beijing: Geological Publishing House, 1-230 (in Chinese)
Xu XW, Cai XP, Qu WJ, Song BC, Qiu KZ and Zhang BL. 2006. Later cretaceous granitic porphyritic Cu-Mo mineralization system in the Hong Shan area, northwestern Yunnan and its significances for tectonics. Acta Geologica Sinica, 80(9): 1422-1433 (in Chinese with English abstract)
Yang F, Zou GF, Wu J, Li F, Jiang YG and Zhao XD. 2011. Ages and geological significance of the porphyries in the Chundu copper mining area in Zhongdian, Yunnan Province. Geotectonica et Metallogenia, 35(2): 307-314 (in Chinese with English abstract)
Yang LQ, Gao X and He WY. 2015. Late Cretaceous porphyry metallogenic system of the Yidun Arc, SW China. Acta Petrologica Sinica, 31(11): 3155-3170 (in Chinese with English abstract)
Yang LQ, Deng J, Gao X, He WY, Meng JY, Santosh M, Yu HJ, Yang Z and Wang D. 2017a. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit:Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau. Ore Geology Reviews, 81: 1015-1032 DOI:10.1016/j.oregeorev.2016.03.015
Yang LQ, Gao X and Shu QH. 2017b. Multiple Mesozoic porphyry-skarn Cu (Mo-W) systems in Yidun Terrane, East Tethys:Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 90: 813-826 DOI:10.1016/j.oregeorev.2017.01.030
Yang LQ, He WY, Gao X, Xie SX and Yang Z. 2018. Mesozoic multiple magmatism and porphyry-skarn Cu-polymetallic systems of the Yidun Terrane, Eastern Tethys:Implications for subduction- and transtension-related metallogeny. Gondwana Research, 62: 144-162 DOI:10.1016/j.gr.2018.02.009
Yang YQ, Hou ZQ, Huang DH and Qu XM. 2002. Collision orogenic process and magmatic metallogenic system in Zhongdian Arc. Acta Geoscientia Sinica, 23(1): 17-24 (in Chinese with English abstract)
Yin GH, Li WC, Jiang CX, Xu D, Li JK and Yang SR. 2009. The evolution of Relin uplex rock masses in Yanshan Phase and Ar-Ar dating age and copper-molybdenum mineralization characteristics of Zhongdian volcanic-magma arc. Geology and Prospecting, 45(3): 385-394 (in Chinese with English abstract)
Yu HJ, Li WC, Yin GH, Lu YX, Cao XM, Huang DZ, Dong T and Zhang YM. 2014. Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication. Acta Geologica Sinica, 88(4): 1183-1194 DOI:10.1111/1755-6724.12282
Yu HJ, Li WC, Yin GH, Wang JH, Jiang WT, Wu S and Tang Z. 2015. Geochronology, geochemistry and geological significance of the intrusion from the Tongchanggou Mo-Cu deposit, northwestern Yunnan. Acta Petrologica Sinica, 31(11): 3217-3233 (in Chinese with English abstract)
Yu HJ and Li WC. 2016. Geochronology and geochemistry of Xiuwacu intrusions, NW Yunnan:Evidences for two-period magmatic activity and mineralization. Acta Petrologica Sinica, 32(8): 2265-2280 (in Chinese with English abstract)
Yu HJ. 2018. Composite metallogenic system and exploration research of the Geza porphyry belt, SW China. Ph. D. Dissertation. Wuhan: China University of Geosciences (in Chinese with English summary)
Yu HJ, Jiang JW and Li WC. 2020. Controls of variable crustal thicknesses on Late Triassic mineralization in the Yidun Arc, Eastern Tibet. Journal of Asian Earth Sciences, 195: 104285 DOI:10.1016/j.jseaes.2020.104285
Zeng PS, Mo XX, Yu XH, Hou ZQ, Xu QD, Wang HP, Li H and Yang CZ. 2003. Porphyries and porphyry copper deposits in Zhongdian area, northwestern Yunnan. Mineral Deposits, 22(4): 393-400 (in Chinese with English abstract)
Zeng PS, Wang HP, Mo XX, Yu XH, Li WC, Li TG, Li H and Yang CZ. 2004. Tectonic setting and prospects of porphyry copper deposits in Zhongdian island arc belt. Acta Geoscientia Sinica, 25(5): 535-540 (in Chinese with English abstract)
Zeng PS, Li WC, Wang HP and Li H. 2006. The Indosinian Pulang superlarge porphyry copper deposit in Yunnan, China:Petrology and chronology. Acta Petrologica Sinica, 22(4): 989-1000 (in Chinese with English abstract)
曹殿华. 2007.中甸地区斑岩铜矿成矿模式与综合勘查评价技术研究.博士学位论文.北京: 中国地质科学院
曹殿华, 王安建, 黄玉凤, 张维, 侯可军, 李瑞萍, 李以科. 2009. 中甸弧雪鸡坪斑岩铜矿含矿斑岩锆石SHRIMP U-Pb年代学及Hf同位素组成. 地质学报, 83(10): 1430-1435. DOI:10.3321/j.issn:0001-5717.2009.10.007
曹康, 许继峰, 陈建林, 黄肖潇, 任江波. 2014. 云南普朗超大型斑岩铜矿床含矿斑岩成因及其成矿意义. 矿床地质, 33(2): 307-322. DOI:10.3969/j.issn.0258-7106.2014.02.005
代友旭, 董国臣, 景国庆, 李雪峰, 王鹏, 和文言, 周千. 2017. 云南中甸格咱地区晚三叠世火山岩年代学、地球化学特征及其构造意义. 岩石学报, 33(8): 2548-2562.
邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509.
邓军, 王长明, 李文昌, 杨立强, 王庆飞. 2014. 三江特提斯复合造山与成矿作用研究态势及启示. 地学前缘, 21(1): 52-64.
邓军. 2016. 三江特提斯复合造山与成矿作用. 北京: 科学出版社, 1-622.
邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统:三江特提斯例析. 岩石学报, 32(8): 2225-2247.
董毅. 2013.云南香格里拉阿热岩体年代学与地球化学.硕士学位论文.成都: 成都理工大学
范玉华, 李文昌. 2006. 云南普朗斑岩铜矿床地质特征. 中国地质, 33(2): 352-362. DOI:10.3969/j.issn.1000-3657.2006.02.014
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. DOI:10.3969/j.issn.0258-7106.2009.04.010
侯增谦. 1991.三江地区义敦岛弧构造-岩浆演化特征.见: 李廷栋编.青藏高原地质文集.北京: 地质出版社, 153-165
侯增谦, 曲晓明, 周继荣, 杨岳清, 黄典豪, 吕庆田, 唐绍华, 余金杰, 王海平, 赵金花. 2001. 三江地区义敦岛弧碰撞造山过程:花岗岩记录. 地质学报, 75(4): 484-497. DOI:10.3321/j.issn:0001-5717.2001.04.008
侯增谦, 杨岳清, 王海平, 曲晓明, 黄典豪. 2003. 三江义敦岛弧碰撞造山过程与成矿系统. 北京: 地质出版社, 1-345.
侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120.
侯增谦. 2010. 大陆碰撞成矿论. 地质学报, 84(1): 30-58.
黄肖潇, 徐继峰, 陈建林, 任江波. 2012. 中甸岛弧红山地区两期中酸性侵入岩的年代学、地球化学特征及其成因. 岩石学报, 28(5): 1493-1506.
姜丽莉, 薛传东, 侯增谦, 向坤. 2015. 滇西北甭哥正长岩体成因:锆石U-Pb年龄、Hf同位素和地球化学证据. 岩石学报, 31(11): 3234-3246.
冷成彪, 张兴春, 王守旭, 秦朝建, 苟体忠. 2007. 云南中甸地区两个斑岩铜矿容矿斑岩的地球化学特征——以雪鸡坪和普朗斑岩铜矿床为例. 矿物学报, 27(3-4): 414-422.
冷成彪, 张兴春, 王守旭, 秦朝建, 苟体忠, 王外全. 2008a. 滇西北中甸松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义. 大地构造与成矿学, 32(1): 124-130.
冷成彪, 张兴春, 王守旭, 王外全, 秦朝建, 吴孔文, 任涛. 2008b. 滇西北雪鸡坪斑岩铜矿S, Pb同位素组成及对成矿物质来源的示踪. 矿物岩石, 28(4): 80-88.
李建康, 李文昌, 王登红, 卢映祥, 尹光侯, 薛顺荣. 2007. 中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究. 岩石学报, 23(10): 2415-2422. DOI:10.3969/j.issn.1000-0569.2007.10.010
李文昌, 曾普胜. 2007. 云南普朗超大型斑岩铜矿特征及成矿模型. 成都理工大学学报(自然科学版), 34(4): 436-446. DOI:10.3969/j.issn.1671-9727.2007.04.011
李文昌, 潘桂棠, 侯增谦, 莫宣学, 王立全, 丁俊. 2010a. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社.
李文昌, 尹光候, 卢映祥, 王彦斌, 余海军, 曹晓民, 张世权. 2010b. 西南"三江"格咱火山-岩浆弧中红山-属都蛇绿混杂岩带的厘定及其意义. 岩石学报, 26(6): 1661-1671.
李文昌, 尹光侯, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用. 岩石学报, 27(9): 2541-2552.
李文昌, 余海军, 尹光侯, 曹晓民, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境. 矿床地质, 31(2): 282-292. DOI:10.3969/j.issn.0258-7106.2012.02.009
李文昌, 余海军, 尹光候. 2013. 西南"三江"格咱岛弧斑岩成矿系统. 岩石学报, 29(4): 1129-1144.
林清茶, 夏斌, 张玉泉. 2006. 云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义. 地质通报, 25(1-2): 133-137.
吕伯西, 王增, 张能德, 段建中, 高子英, 沈敢富, 潘云长, 姚鹏. 1993. 三江地区花岗岩类及其成矿专属性. 北京: 地质出版社.
莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉, 邓晋福, 刘祥品, 何昌祥. 1993. 三江特提斯火山作用与成矿. 北京: 地质出版社.
潘桂棠, 徐强, 侯增谦, 王立全, 杜德勋, 莫宣学, 李定谋, 汪名杰, 李兴振, 江新胜, 胡云中. 2003. 西南"三江"多岛弧造山过程成矿系统与资源评价. 北京: 地质出版社, 11-30.
曲晓明, 侯增谦, 唐绍华. 2003. 义敦岛弧带弧后区板内岩浆作用的时代及意义. 岩石矿物学杂志, 22(2): 131-137. DOI:10.3969/j.issn.1000-6524.2003.02.004
任江波, 许继峰, 陈建林, 张世权, 梁华英. 2011a. "三江"地区中甸弧普朗成矿斑岩地球化学特征及其成因. 岩石矿物学杂志, 30(4): 581-592.
任江波, 许继峰, 陈建林. 2011b. 中甸岛弧成矿斑岩的锆石年代学及其意义. 岩石学报, 27(9): 2591-2599.
任涛, 钟宏, 陈金法, 朱维光, 张兴春. 2011. 云南中甸地区浪都高钾中酸性侵入岩的地球化学特征. 矿物学报, 31(1): 43-54.
芮宗瑶, 张立生, 陈振宇, 王龙生, 刘玉琳, 王义天. 2004. 斑岩铜矿的源岩或源区探讨. 岩石学报, 20(2): 229-238.
王强, 唐功建, 贾小辉, 资峰, 姜子奇, 许继峰, 赵振华. 2008. 埃达克质岩的金属成矿作用. 高校地质学报, 14(3): 350-364. DOI:10.3969/j.issn.1006-7493.2008.03.006
王新松, 毕献武, 冷成彪, 唐永永, 兰江波, 齐有强, 沈能平. 2011. 滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义. 矿物学报, 31(3): 315-321.
王新松. 2014.滇西北中甸地区燕山晚期花岗岩浆系统成岩成矿作用.博士学位论文.北京: 中国科学院大学
王新松, 毕献武, 胡瑞忠, 冷成彪, 余海军, 尹光侯. 2015. 滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束. 岩石学报, 31(11): 3171-3188.
吴福元, 李献华, 郑永飞, 高山. 2007a. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴福元, 李献华, 杨进辉, 郑永飞. 2007b. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
肖庆辉, 邓晋福, 马大铨, 洪大卫, 莫宣学, 卢欣祥, 李志昌, 汪雄武, 马昌前, 吴福元, 罗照华, 王涛. 2002. 花岗岩研究思维与方法. 北京: 地质出版社, 1-230.
徐兴旺, 蔡新平, 屈文俊, 宋保昌, 秦克章, 张宝林. 2006. 滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义. 地质学报, 80(9): 1422-1433. DOI:10.3321/j.issn:0001-5717.2006.09.016
杨帆, 邹国富, 吴静, 李峰, 姜永果, 赵向东. 2011. 中甸春都铜矿区岩体成岩时代及地质意义. 大地构造与成矿学, 35(2): 307-314. DOI:10.3969/j.issn.1001-1552.2011.02.016
杨立强, 高雪, 和文言. 2015. 义敦岛弧晚白垩世斑岩成矿系统. 岩石学报, 31(11): 3155-3170.
杨岳清, 侯增谦, 黄典豪, 曲晓明. 2002. 中甸弧碰撞造山作用和岩浆成矿系统. 地球学报, 23(1): 17-24. DOI:10.3321/j.issn:1006-3021.2002.01.004
尹光候, 李文昌, 蒋成兴, 许东, 李建康, 杨舒然. 2009. 中甸火山-岩浆弧燕山期热林复式岩体演化与Ar-Ar定年及铜钼矿化. 地质与勘探, 45(4): 385-394.
余海军, 李文昌, 尹光候, 王建华, 姜文涛, 吴松, 唐忠. 2015. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义. 岩石学报, 31(11): 3217-3233.
余海军, 李文昌. 2016. 滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据. 岩石学报, 32(8): 2265-2280.
余海军. 2018.格咱斑岩带复合成矿系统及找矿方向.博士学位论文.武汉: 中国地质大学
曾普胜, 莫宣学, 喻学惠, 侯增谦, 徐启东, 王海平, 李红, 杨朝志. 2003. 滇西北中甸斑岩及斑岩铜矿. 矿床地质, 22(4): 393-400. DOI:10.3969/j.issn.0258-7106.2003.04.008
曾普胜, 王海平, 莫宣学, 喻学惠, 李文昌, 李体刚, 李红, 杨朝志. 2004. 中甸岛弧带构造格架及斑岩铜矿前景. 地球学报, 25(5): 535-540. DOI:10.3321/j.issn:1006-3021.2004.05.008
曾普胜, 李文昌, 王海平, 李红. 2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征. 岩石学报, 22(4): 989-1000.