岩石学报  2020, Vol. 36 Issue (3): 685-702, doi: 10.18654/1000-0569/2020.03.04   PDF    
黑龙江虎林杂岩变形样式与时代:对中国东北东部早白垩世古太平洋板块俯冲的启示
梁琛岳1,2, 刘永江3,4, 宋志伟1, 张骞1, 杨岩1     
1. 吉林大学地球科学学院, 长春 130061;
2. 吉林大学东北亚矿产资源评价自然资源部重点实验室, 长春 130061;
3. 中国海洋大学海底科学与探测技术教育部重点实验室, 海洋高等研究院, 海洋地球科学学院, 青岛 266100;
4. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室, 青岛 266237
摘要: 黑龙江虎林盆地位于兴凯地块北部,盆地内部中央隆起区出露一套呈NE走向展布的虎林杂岩,岩石强烈韧性变形,对其变形样式及其动力学背景的探讨,为进一步研究兴凯地块乃至中国东北东部中生代构造属性和古太平洋构造体制下构造演化过程提供一个独特的视角。虎林杂岩主体由云母片岩和侵位其中的花岗质岩脉组成,塑性变形特征明显,发育倾向NW向片麻理,走向NE-SW的低角度矿物拉伸线理。岩石矿物组合、微观构造特征和石英EBSD组构分析显示岩石表现中低温变形样式,变形温度为350~450℃,石英变形机制以位错滑移和膨凸重结晶为主。结合宏观变形样式可知,虎林杂岩早期变形以NW倾向片麻理为标志,指示NW-SE向伸展作用,晚期变形以NE倾伏低角度矿物拉伸线理为标志,指示NE-SW向左行走滑事件。侵位的变形闪长玢岩的锆石年代学研究限定晚期左行走滑事件晚于闪长玢岩就位时间107.0±1.7Ma。早白垩世期间,伊泽奈崎板块(古太平洋)NW向斜向俯冲和板片后撤,导致东北东部乃至整个中国东部NW-SE向伸展,造成大陆岩石圈减薄、岩浆活动和虎林伸展断陷盆地的形成。在早白垩世末(104Ma之后),伊泽奈崎板块高速向欧亚大陆俯冲由NNW转向N,由低角度俯冲替代高角度俯冲,使得中国东部再次遭受区域性挤压,导致虎林杂岩发育大规模NE向压扭性左行走滑变形和持续性隆升。
关键词: 虎林杂岩    EBSD    锆石U-Pb年龄    虎林盆地    兴凯地块    伊泽奈崎板块    
Deformation pattern and age of Hulin complex in Heilongjiang Province: Implications for subduction of the Palaeo-pacific plate during the Early Cretaceous, eastern NE China
LIANG ChenYue1,2, LIU YongJiang3,4, SONG ZhiWei1, ZHANG Qian1, YANG Yan1     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. MNR Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Jilin University, Changchun 130061, China;
3. MOE Key Lab of Submarine Geoscience and Prospecting Techniques, Institute for Advanced Ocean Study, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;
4. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
Abstract: The Hulin basin in Heilongjiang Province is located in the north of the Khanka block. A series of Hulin complex with NE trending emerges in the central uplift zone of the Hulin basin, and all the exposed rocks have strong ductile deformation fabrics. The discussion of the deformation pattern and its dynamic background provides a unique perspective for further understanding the Mesozoic evolution process of the Khanka block and even the eastern NE China under the paleo-Pacific tectonic domain. The Hulin complex is composed of mica schist and intrusive granite which have obvious deformation characteristics with mylonitic foliation and NE-trending subhorizontal stretching lineation. Mineral assemblages, microstructural and quartz EBSD fabrics indicate that the deformation occurred in the low-greenschist facies under low-middle temperatures of 350~450℃. Dislocation creep with subgrain-rotation recrystallization sustained to be the dominant deformation mechanism of quartz. Combining with the mesostructures, two phases of deformation were identified. The early-stage deformation of the Hulin complex is marked by gneiss schistosity that trends NW, which indicates an NW-SE extension, and the late-stage deformation is symbolized by NE-trending subhorizontal stretching lineation, which indicates that a NE-SW sinistral shearing. New zircon U-Pb age of the deformed diorite porphyrite shows that the left strike-slip event is later than 107.0±1.7Ma of its emplacement. During the Early Cretaceous, the NW subduction and roll-back of the Izanagi (paleo-Pacific) plate led to the NW-SE extension in the NE China and even the eastern China, which resulted in the lithospheric thinning and destruction, magmatic activities, and the formation of rift basins including Hulin basin. At the end of the Early Cretaceous (after 104Ma), the Izazaki plate subducted towards Eurasia at a high speed and changed from NNW to N, and replaced high-angle subduction with low-angle subduction, together led to the large-scale NE sinistral strike-slip deformation and sustained uplift in the Hulin basin.
Key words: Hulin complex    EBSD    Zircon U-Pb age    Hulin basin    Khanka block    Izanagi plate    

中国东北地区地处中亚造山带(CAOB)东段(Șengör et al., 1993; Jahn et al., 2000; Wu et al., 2002, 2004, 2011; Li, 2006; Xiao et al., 2008, 2009; Zhou et al., 2018; 肖文交等, 2019; 李锦轶等, 2019),或兴蒙造山带东段(Xu et al., 2013a; 徐备等, 2014; Liu et al., 2017a; 许文良等, 2019),位于西伯利亚板块和华北板块之间,由额尔古纳地块、兴安地块、松嫩地块、佳木斯-兴凯地块等拼贴而成(Zhou et al., 2010, 2011; Xu et al., 2013a, b; Yu et al., 2019; 李锦轶等, 2019; 冯志强等, 2019; 刘永江等, 2010, 2019; 许文良等, 2019)。中生代期间,东北地区又遭受了古太平洋构造带和蒙古-鄂霍茨克构造带的双重改造和叠加(Wu et al., 2011; Xu et al., 2013b; 许文良等, 2013, 2019; 梁琛岳等, 2018; 周建波等, 2018; Liang et al., 2019a; Hu et al., 2019)。而东北东部佳木斯-兴凯地块位于古太平洋(伊泽奈崎)板块中生代俯冲增生的最前端,是研究古太平洋板块俯冲过程的良好载体。佳木斯-兴凯地块向西以吉黑高压带为界与松嫩地块相邻,向东以跃进山-同江断裂为界与那丹哈达地体毗邻,向北和向南均延伸至俄罗斯境内(分别称为布列亚地块和兴凯地块;Zhou et al., 2010; Liu et al., 2017a, b; Zhou et al., 2018; 周建波等, 2018; 李锦轶等, 2019; 刘永江等, 2019),该地块具有典型的古老基底-稳定沉积盖层的“二元结构”,即发育有泛非期变质基底(麻山群、黑龙江杂岩等)和不整合于其上的古生代-中生代沉积盖层,除此之外,大面积出露的中生代岩浆岩体也为了解古太平洋板块俯冲过程,乃至不同构造体制叠加、转换与改造提供了一个关键部位和重要窗口(图 1; Wilde et al., 2010; Zhou et al., 2009, 2010, 2014; Liu et al., 2017a, b, c; Zhou and Li, 2017; Aouizerat et al., 2019; Dong et al., 2018; 周建波等, 2018; 张夺等, 2018; 刘永江等, 2010, 2019)。

图 1 中国东北东部大地构造图(a, 据Liu et al., 2017a修改)及虎林地区地质简图(b, 据Zhou et al., 2010修改) Fig. 1 Tectonic map showing the subdivisions of eastern NE China (a, modified after Liu et al., 2017a) and geological sketch map of Hulin area (b, modified after Zhou et al., 2010)

黑龙江虎林地区位于兴凯地块北部,出露一套呈NE走向展布的花岗质-变质岩体,前人称之为虎林杂岩(图 2; Zhou et al., 2010; Wilde et al., 2010; 胥嘉等, 2012; 何松, 2017),主要由绿片岩-蓝片岩相变质的“下元古界黑龙江群”,少量元古代混合花岗岩,以及呈不规则岩基状侵入二者之中的中生代花岗质岩体共同组成,岩体内部局部可见上新统玄武岩不整合覆盖其上(图 2图 3; 黑龙江省地质矿产局, 1993; Wu et al., 2007; Zhou et al., 2010; 胥嘉等, 2012; 何松, 2017)。部分学者对虎林杂岩的年代学和地球化学属性进行了研究(Wilde et al., 2010; Zhou et al., 2010; 胥嘉等, 2012; 何松, 2017),初步认为该套杂岩由一套副变质岩云母片岩(~250Ma, Zhou et al., 2010)和中生代侵入岩体(112~128Ma, Wilde et al., 2010; 胥嘉等, 2012; 何松, 2017)组成,地球化学数据表明,杂岩内早白垩世岩体形成与古太平洋板块俯冲诱发的岩石圈减薄拆沉引发的伸展背景相关(胥嘉等, 2012; 何松, 2017)。但虎林杂岩内部发育多期次花岗质岩脉侵入,并且岩石强烈韧性变形,具有较为统一的片麻理,迄今为止,尚未有学者对虎林杂岩的变形样式及其动力学背景进行探讨,并且后期(同)变形花岗质岩脉的时代和性质也尚不明确。

图 2 虎林地区地质图(a, 据Zhou et al., 2010; 何松, 2017修改)及构造剖面(b)和构造要素赤平投影图(c, 下半球投影图) Fig. 2 Geological map of Hulin area (a, modified after Zhou et al., 2010; He et al., 2017) with geological profile (b) and the lower hemisphere Schmidt diagram (c)

图 3 宏-微观构造变形特征 (a)强变形云母片岩,缓倾线理指示NE向左行走滑;(b)闪长玢岩脉侵入云母片岩之中,角闪石定向排列指示左行走滑;(c、d、f)强变形云母片岩中,黑云母或白云母褶曲变形,部分成云母鱼,指示左行走滑;(e)变形闪长玢岩中钠长石和角闪石弱定向排列,指示左行走滑特征;(g-i)云母片岩中石英的动态重结晶特征. Qtz-石英;Ms-白云母;Ab-钠长石;Am-角闪石 Fig. 3 Representative meso- and micro-fabrics

本文聚焦于虎林盆地中央隆起区出露的虎林杂岩(图 1图 2),对其变形样式和构造特征进行解析,同时结合岩石学和岩相学研究,开展变形岩脉的LA-ICP-MS锆石U-Pb同位素年代学、变形岩石的石英EBSD组构测试等多手段综合分析,结合前人年代学研究成果以及与虎林盆地的耦合关系,探讨其变形机制和动力学背景,为进一步研究兴凯地块乃至中国东北东部中生代构造属性和古太平洋构造体制下构造演化过程提供理论支持。

1 区域地质背景

兴凯地块主体位于俄罗斯境内,少量出露于我国境内,其北部与完达山增生地体相邻,西部以敦化-密山断裂为界与佳木斯地块相接,西南以牡丹江-依兰缝合带为界与松嫩地块相邻(Liu et al., 2017a, b; 周建波等, 2018; Zhou et al., 2018; 刘永江等, 2019; 图 1),是兴蒙造山带的重要组成部分(Zhou et al., 2018; 许文良等, 2019; 刘永江等, 2019)。兴蒙造山带(古亚洲洋东段)在古生代期间,额尔古纳地块、兴安地块、松嫩地块与华北板块相继拼合,并于二叠纪末期-中三叠世最终闭合(Wu et al., 2011; Liu et al., 2017a; 刘永江等, 2019; Zhang et al., 2019; Liang et al., 2019b)。之后晚三叠世开始,进入古太平洋的演化阶段,持续性俯冲导致佳木斯-兴凯地块和松嫩地块拼合(Wilde et al., 2000, 2010; Zhou et al., 2010; Wu et al., 2007, 2011; Liu et al., 2017a, b; 周建波等, 2016, 2018; 张夺等, 2018; 刘永江等, 2019),以及包括跃进山杂岩、那丹哈达增生杂岩以及饶河杂岩在内的增生杂岩系统以及大规模的岩浆事件和成矿作用(黑龙江省地质矿产局, 1993; Wu et al., 2011; 孙明道, 2016; Bi et al., 2016, 2017; Wang et al., 2017; 李三忠等, 2017; 周建波等, 2016, 2018; 张夺等, 2018; Li et al., 2019; 许文良等, 2019)。因此,理清楚兴凯地块内部虎林地区出露的虎林杂岩的构造变形样式和大地构造背景,对于理解古太平板块的俯冲过程具有重要的意义。

兴凯地块的变质基底主要沿虎林-虎头一线展布(黑龙江省地质矿产局, 1993; Zhou et al., 2010; Wilde et al., 2010)。虎头地区分布的虎头杂岩为一套绿片岩-蓝片岩相变质杂岩,主体为一套副片麻岩以石榴花岗片麻岩为主,记录了490~510Ma的早古生代岩浆和变质事件(Wilde et al., 2010; Zhou et al., 2010),与佳木斯地基底块麻山群年龄较为一致,同属中国东北~500Ma泛非期孔兹岩带的一部分,指示兴凯地块与佳木斯地块具有相同的泛非期变质基底(周建波等, 2011; Wilde et al., 2010; Zhou et al., 2010)。虎林盆地中央隆起带内出露的虎林杂岩主要由云母片岩和侵入其中的花岗质岩体组成,黑龙江省地质矿产局(1993)将该套云母片岩划分为下元古界黑龙江群,岩体遭受强烈糜棱岩化,片理发育,Zhou et al. (2010)在云母片岩中获得233~270Ma的碎屑锆石年龄,指示其原岩沉积时代不早于233Ma(图 2a)。侵入其中的中生代岩体局部变形强烈,部分学者的年代学工作证实,该时期花岗质岩体/脉侵位时间集中在112~128Ma(Wilde et al., 2010; 胥嘉等, 2012; 何松, 2017; 图 2a),可能与古太平洋板块俯冲诱发的岩石圈减薄拆沉引发的伸展背景相关(胥嘉等, 2012; 何松, 2017)。

值得注意的是,虎林杂岩内云母片岩遭受强烈的变质-变形改造,具有强烈的糜棱面理,而部分侵位于其中的花岗质岩石也具有统一的片理和矿物拉伸线理,这可能代表了晚期岩浆侵位之后二者共同遭受一期变质-变形作用改造。对这一期次变形事件的厘定,对于理解白垩纪早期古太平洋板块的俯冲过程、虎林杂岩的隆升以及虎林盆地沉积过程具有重要的意义。本文正是从虎林杂岩的构造变形入手,细致分析其构造样式,结合变形岩石锆石U-Pb年代学证据,探讨虎林杂岩的隆升时代及变形样式,进而探讨古太平洋板块俯冲过程。

2 宏-微观变形样式

研究区位于黑龙江省虎林市西北(图 2a; 采样位置:N45°46′46.4″、E132°56′17.3″),岩体呈北东向展布,主体为黑龙江群,整体被后期早白垩世花岗质岩石侵入和新生代辉绿岩脉不整合覆盖(黑龙江省地质矿产局, 1993; Wilde et al., 2010; Zhou et al., 2010; 胥嘉等, 2012; 何松, 2017)。变质杂岩明显塑性变形,片麻理倾向NW(339°~352°),走向NE-SW,倾角较缓(倾角10°~25°),片理面上普遍发育矿物拉伸线理,主要由暗色黑云母和石英颗粒相间排列组成(图 3a),主体表现为NE向左行走滑特征(图 2c图 3)。主体岩石为云母片岩,主要组成矿物为石英、黑云母、白云母、较少量长石和副矿物(图 3c-g, i)。侵位其中的闪长玢岩脉宽约1m,强烈变形,不规则侵位界线经变形改造,近似平行于片麻理,野外露头可清晰识别出钠长石残斑与暗色角闪石定向排列(图 3b),在显微镜下暗色角闪石和钠长石斑晶显示类似的定向排列特征(图 3h),钠长石双晶与纤维状角闪石均近平行于片麻理(图 3h),基质由长石、石英组成,并且总体呈定向排列,组成弱S-C组构,共同指示左行剪切特征(图 3h),表明左行走滑事件发生在闪长玢岩侵位之后。本次工作选取其中的强变形云母片岩和侵位其中的变形闪长玢岩作为研究对象,采样位置见(图 2b)。

云母片岩或云母石英片岩均具有片麻状构造,由较为粗粒的石英和黑/白云母相间定向排列而成,各种矿物颗粒或集合体不同程度拉长定向(图 3c, d, f-i)。细粒石英塑性拉长成条带状而形成糜棱线理,石英颗粒细粒化,波状消光,颗粒边界产生膨凸式动态重结晶(图 3c, d, f-i)。片状黑云母定向排列,大量云母平行定向排列形成叶理面,呈丝带状,由于糜棱岩化而被韧性拉长,部分扭折形成云母鱼和S-C组构,指示左行韧性走滑特征(图 3c, d, f)。弱变形闪长玢岩中,钠长石和角闪石斑晶弱定向排列,钠长石颗粒边界相对模糊,可能是受韧性变形改造的结果,颗粒内部脆性破裂明显,与基质内定向排列的细粒长石、石英组成的片麻理面平行,局部角闪石被扭折拉长呈“S-C”状,共同指示左行走滑特征(图 3e)。这些显微组构和矿物组合显示岩石变形发生在浅部地壳的绿片岩相环境下(Stipp et al., 2002, 2010; 向必伟等, 2007; 胡玲等, 2009; Liang et al., 2015, 2019b; 表 1图 3),共同指示了约350~450℃的变形温度。这些中低温组构特征与该地区所表现的走滑相匹配。

表 1 典型变形岩石显微变形特征 Table 1 Microscopic deformation characteristics of typical deformed rocks
3 岩石EBSD组构特征

EBSD(电子背散射衍射)技术是通过分析晶体背散射衍射图像来确定晶轴方向,进而确定晶体颗粒排列的取向性,确定晶体内发育的活动滑移系,进而可以估算矿物的变形温度和滑移系(刘俊来等, 2008; 许志琴等, 2009; 夏浩然和刘俊来, 2011; Liang et al., 2015)。本次EBSD石英C轴组构分析在吉林大学东北亚矿产资源评价自然资源部重点实验室完成,具体流程及判别方法参见Liang et al. (2019b)。为保证测试精度,测试颗粒多选颗粒细小且糜棱质发育部位,采用机器自动识别标定,做图采用下半球投影,极点等密度线以所占百分数表示,测试结果见图 4

图 4 典型变形岩石石英C轴组构图 采用等面积网下半球投影,N为测量的颗粒数,X、Y、Z分别代表应变椭球的最长轴、中间轴和最短轴,X/Y面为糜棱面理面;石英C轴组构指示左行走滑 Fig. 4 C-axis fabric stereograms of quartz in typical deformed rocks

虎林杂岩的石英 < C>轴组构图中可明显见到两组极密点,一组极密点靠近Z轴,显示石英主要发生底面<a>滑移,部分样品18JX1-1、18JX1-3和18JX1-6显示弱交叉环带式,单斜对称,极密靠近Z轴,以低温底面组构为主,指示一种中低温变形组构。但样品18JX1-1、18JX1-3、18JX1-4和18JX1-6均出现次一级极密点,靠近Y轴,多在X轴和Z轴之间,指示菱面<a>滑移系的存在。菱面<a>滑移系和底面<a>滑移系的共存,指示两期变形的叠加,可能暗示存在早期稍高温变形,之后存在一期低温变形的叠加改造,但总体变形温度不超过高绿片岩相。多数极密区均向NE-SW向弥散性扩散,并且测试的6个样品的晶格优选区域的不对称分布,均指示NE向左行走滑,与宏微观构造特征具有较强的一致性。值得注意的是,变形闪长玢岩(18JX1-3)与其余5个云母片岩样品具有统一的石英C轴组构,指示二者应该具有一致的变形历史。

4 锆石U-Pb年代学 4.1 测试样品及方法

为进一步限定变形时代,选取变形的闪长玢岩脉(18JX1-3)进行LA-ICP-MS锆石U-Pb年代学测试。锆石分选在河北廊坊地质调查院完成,选取5~10kg不等的样品经过破碎、浮选和电磁选方法进行分选,之后在显微镜下观察锆石的标型特征,挑选出各个样品中具有不同特征的锆石单矿物。样品靶在北京锆年领航科技有限公司制备,所选锆石约150颗,置于环氧树脂中,待固结后将锆石抛磨掉大约1/2,使锆石内部结构充分暴露,然后进行锆石的光学、阴极发光图像分析,来选取用于测试微区及测年锆石的部位。LA-ICP-MS锆石U-Pb年代学测试在吉林大学东北亚矿产资源评价自然资源部重点实验室完成。激光剥蚀使用德国相干公司(Coherent)COMPExPro型ArF准分子激光器,质谱仪为美国安捷伦公司7500A型四极杆等离子质谱。激光条件为:激光束斑直径32μm,激光能量密度10J/cm2,剥蚀频率8Hz。剥蚀样品前首先采集30s的空白,随后进行30s的样品剥蚀,剥蚀完成后进行2min的样品池冲洗。载气使用高纯度He气,气流量为600mL/min;辅助气为Ar气,气流量为1.15L/min。对于不用同位素的采集时间,204Pb、206Pb、207Pb和208Pb为20ms,232Th、238U为15ms,49Ti为20ms,其余元素为6ms。使用标准锆石91500(1062Ma)作为外标进行同位素比值校正,标准锆石PLE/GJ-1/Qing Hu为监控盲样。元素含量以国际标样NIST610为外标,Si为内标元素进行计算,NIST612和NIST614为监控盲样。使用Glitter软件进行同位素比值及元素含量的计算。谐和年龄计算及图像绘制采用国际标准程序Isoplot(ver 3.23; Ludwig, 2003)。普通铅校正使用Andersen (2002)给出的程序计算。分析数据及锆石U-Pb谐和图给出误差为1σ,表示95%的置信度(表 2)。

表 2 变形闪长玢岩(样品18JX1-3)锆石U-Pb同位素数据 Table 2 Zircon U-Pb isotopic data of deformed diorite porphyrite (Sample 18JX1-3)
4.2 测试结果

对变形闪长玢岩(18JX1-3)进行锆石U-Pb测年,以期限定其变形年龄。锆石CL图像见图 5a,定年结果见图 5b, c表 2。CL图像显示选取的锆石大多结晶较好,自形到半自形,晶型较完整,多为灰白色长柱状晶形,颗粒长宽比2:1~3:1,粒径多分布在80~150μm之间。部分锆石晶棱较圆滑,呈深灰色,振荡环带变较弱,局部由核到边发生模糊、退化的现象,且核部宽颜色发暗、边部窄而亮,呈现浑圆粒状、椭圆粒状及粒状,表现出继承性锆石的特点(图 5a表 2)。但多数锆石内部具有清晰的振荡环带结构,锆石Th/U比值为0.02~0.79,均大于0.01,显示为岩浆成因(图 5a表 2)。说明该样品中锆石的主体是岩浆锆石,但存在早期受不同程度变质作用改造的捕获锆石,部分捕获锆石具有明显核边结构(测点13,43;图 5a)。总体而言,主体锆石显示岩浆锆石特点,此次共测试43颗锆石,可识别出6期峰值(图 5b, c),其中8个测点年龄较老,~146.5Ma(n=3)、~175.5Ma(n=1)、~255.5Ma(n=1)、~453.5Ma(n=2)和~2520Ma(n=1),CL图像显示这些较老年龄锆石以灰白色短柱状为主,长度100~150μm,长宽比为1:1~2:1,锆石颗粒内部呈现无分带、弱分带、面状分带和溶蚀结构等(图 5a),揭示这些锆石可能为继承锆石、捕获锆石或变质锆石,所代表的年龄可能分别对应于寄主岩石的源区残留锆石、捕获锆石及变质事件(一期和/或多期)的年龄,当然,也不排除一些测点年龄值为混合年龄的可能。35颗锆石年龄显示(图 5c),206Pb/238U加权平均年龄为107.0±1.7Ma(MSWD=2.7,n=35),结合锆石的同位素特征及内部结构,确定变形闪长玢岩的岩浆结晶年龄或岩脉就位年龄为107.0±1.7Ma,形成于早白垩世晚期,因此,可以限定晚期NE向左行走滑事件晚于闪长玢岩就位时间。

图 5 典型锆石CL图像(a)与锆石U-Pb谐和图(b、c) Fig. 5 Cathodoluminescence images of representative zircons (a) and 206Pb/238U vs. 207Pb/235U concordia plots (b, c) of investigated sample
5 讨论 5.1 虎林杂岩伸展变形样式与变形机制

虎林杂岩塑性变形特征明显,片麻理倾向NW,具有统一的NE向低角度矿物拉伸线理,云母鱼以及S-C组构均指示一期左行走滑事件。细粒石英波状消光和不同程度细粒化,指示石英变形以晶内塑性变形、位错滑移和膨凸式动态重结晶为主要的变形机制。云母被韧性拉长,部分扭折形成云母鱼、S-C组构,也指示一种中低温变形样式。变形闪长玢岩中钠长石斑晶颗粒边界模糊,可能指示长石由脆性破裂向韧性变形的转变。结合石英EBSD组构图中可识别出两期变形的叠加,早期稍高温度变形,石英以菱面<a>滑移系为主,晚期底面<a>滑移系启动,但结合矿物组合和矿物微观变形样式,岩石总体变形为中低温变形,变形温度不超过高绿片岩相(350~450℃),石英变形机制以位错滑移和膨凸重结晶为主。结合宏观变形样式可以得知,早期变形以NW倾向片麻理为标志,指示NW-SE向伸展作用,晚期变形以NE走向低角度矿物拉伸线理为标志,指示NE-SW向左行走滑事件。

5.2 兴凯地块早白垩世岩浆-构造事件与虎林杂岩隆升关系

兴凯地块主体位于俄罗斯境内,少量出露于我国境内,是兴蒙造山带的重要组成部分(李旭平等, 2010; Xu et al., 2013a; 徐备等, 2014; Liu et al., 2017a; Yang et al., 2017a, b; 周建波等, 2018; 许文良等, 2019; 刘永江等, 2019; 肖文交等, 2019)。兴凯地块广泛出露古生代-中生代花岗质岩体,为进一步限定虎林杂岩乃至整个兴凯地块的岩浆序列,将兴凯地块已有锆石年龄数据进行统计(图 6),主体年龄可划分为前寒武纪、早古生代、晚古生代晚期和白垩纪。

图 6 兴凯地块花岗质岩石年龄分布图 数据部分来自本文及Wilde et al., 2010; Zhou et al., 2010; 胥嘉等, 2012; 何松, 2017 Fig. 6 The distribution diagram of ages form granitic rocks in Khanka massif

少量前寒武纪结晶基底的年龄,如~2500Ma、~1500Ma、~700Ma的变质年龄,来源于基底岩石锆石的捕获,记录了各微板块的基底年龄,乃至从Rodinia到Gondwana大陆的聚合与离散记录(Zhao et al., 2000; Zhou and Wilde, 2013; 孙立新等, 2013; 吕长禄等, 2014; 周建波等, 2009, 2011, 2016; Sorokin et al., 2016; Zhou et al., 2011, 2018; 刘永江等, 2019)。大量430~550Ma的锆石年龄,记录了兴凯地块早古生代岩浆和变质事件(颉颃强等, 2008a, b; 温泉波等, 2008; Wilde et al., 2010; Zhou et al., 2010; Khanchuk, 2010),与佳木斯地块麻山群的年龄一致,表明二者具有相同的泛非期变质基底(Wilde et al., 2010; Zhou et al., 2010; 周建波等, 2009, 2011; Yang et al., 2014, 2017a, b; Bi et al., 2015)。

晚古生代晚期~256.2Ma的峰值年龄与Zhou et al. (2010)在虎林云母片岩内获取的257±3Ma结晶年龄一致,可能与佳木斯-兴凯地块裂解事件相关(Zhou et al., 2010; Khanchuk et al., 2010),之后早中侏罗世(~200Ma和170~180Ma)的捕获锆石年龄可能与佳木斯-兴凯地块与松嫩地块拼合以及拼合后区域伸展环境导致的岩浆活动有关(Wu et al., 2007; 黄映聪等, 2008; Zhou et al., 2010; Wu et al., 2011; 张磊等, 2013; Wang et al., 2015; 丛智超等, 2016; Zhu et al., 2015, 2017; 曾振等, 2017a, b; 周建波等, 2018),当然也不排除与古亚洲洋在晚二叠-早三叠世闭合后的伸展造山环境有关,或佳木斯地块东侧古洋板块的西向俯冲作用有关(毕君辉等, 2014; 于介江等, 2013)。三叠纪末-侏罗纪初,古亚洲洋构造域结束演化并进入古太平洋构造域演化阶段(Zhou et al., 2010; Khanchuk et al., 2010; Wu et al., 2011; Guo et al., 2015; Liu et al., 2017a, b, c)。

兴凯地块虎林杂岩内早白垩世侵入体也明显显示3个峰期(图 6),~104Ma、~115Ma和~128Ma(图 6),但总体较为连续,也可以认为是一期岩浆事件的不同演化阶段。早白垩世晚期(128~104Ma)期间,佳木斯-兴凯地块已与松嫩地块拼合完成,完达山-锡霍特-阿林造山带主体也已拼贴完成,中国东北东部整体进入古太平洋板块持续俯冲阶段(Wilde et al., 2010; Wu et al., 2007, 2011; 张兴洲等, 2011; 胥嘉等, 2012; 许文良等, 2013; Xu et al., 2013b; Guo et al., 2015; Liu et al., 2017a, b; 周建波等, 2010, 2018),该期岩浆事件主体形成于大陆弧后伸展环境,而相应的广泛分布于东北东部乃至俄罗斯远东的早白垩晚期钙碱性火山岩也多形成于活动大陆边缘的构造背景,与大兴安岭和松辽盆地内部双峰式火山岩一致,均与陆内伸展有关(Deng et al., 2019; Xu et al., 2013b; 孙明道, 2016),是古太平洋板块俯冲后撤相关产物(胥嘉等, 2012; 何松, 2017; Kirillova, 2005; 程瑞玉等, 2006; 孙景贵等, 2008, 2009; Wu et al., 2002, 2011; Xu et al., 2013b; Ouyang et al., 2013; Yang et al., 2014; Sun et al., 2015a, b)。

虎林杂岩紧邻敦密断裂(图 1),前人对敦密断裂研究限定其在早白垩世100~130Ma期间为强烈伸展期,伴随着大规模的韧性变形和火山喷发作用(孙晓猛等, 2016),同时,虽然可以将早白垩世岩浆划分为三期,但很明显的是~115Ma岩浆活动最为强烈,之后趋于平静,仅有的地球化学分析表明,早白垩世花岗质岩石为I型花岗岩,形成于大陆弧引张环境,源区为壳幔混合源,主要来自加厚下地壳基性岩石部分熔融,并受俯冲带流体交代作用形成的富集地幔部分熔融作用的影响(胥嘉等, 2012; 何松, 2017),与中国东北东部同时期的伸展环境相一致。

虎林杂岩主体由原属中元古界“黑龙江群”(黑龙江省地质矿产局, 1993)的云母/石英片岩组成,Zhou et al. (2010)在云母片岩中获得233~270Ma的年龄,指示其原岩形成时代为233Ma(中三叠统)之后,并非前人认为的中元古界。云母片岩被变形的闪长玢岩脉(107.0±1.7Ma,本文)所侵入,指示主期左行走滑事件晚于岩脉侵位时间。详细的野外观察发现,虎林杂岩强烈韧性变形,早期变形以NW倾向片麻理为标志,指示NW-SE向伸展作用,该期伸展作用与区域岩浆事件相吻合。晚期变形以NE向低角度矿物拉伸线理为标志,指示NE-SW向左行走滑事件。闪长玢岩脉在侵位过程中,伴随着虎林杂岩整体隆升,之后在虎林片岩继续向地壳浅部抬升过程中,在挤压背景下,形成NE-SW向左行走滑事件,产生低角度矿物拉伸线理。

综上所述,早白垩世期间,古太平洋-伊泽奈崎板块由向NWW运动转变为向NW运动,从而导致东北东部乃至中国东部东部伸展方向由WNW-ESE向转变为NW-SE向(Wu et al., 2011; Zhu et al., 2010, 2012; Wang et al., 2018; 朱日祥等, 2012; Kusky et al., 2014; 周丽云等, 2015; Zhou and Li, 2017; 郑建平和戴宏坤, 2018; 图 7a),对应着古太平洋-伊泽奈崎俯冲板片的后撤,在弧后拉张的动力学背景下,诱发岩石圈大规模减薄拆沉,致使软流圈地幔和地壳直接接触,岩浆底垫作用和深部地壳的高温变质及部分熔融作用,导致包括虎林花岗质岩石在内的中国东北东部地区早白垩世(128~104Ma)发生剧烈火山-岩浆活动和突发性成矿作用(毛景文等, 2005; 程瑞玉等, 2006; 孙景贵等, 2008, 2009; Wu et al., 2002, 2011; Xu et al., 2013b),该期伸展活动同时造就了中国东北东部地区大量伸展断陷盆地的形成,伸展方向为NW-SE向(周建波, 2009; 张兴洲和马志红, 2010; 林伟等, 2013; 张兴洲等, 2015; 孙晓猛等, 2016; Wang et al., 2017, 2018; 李三忠等, 2017; Dai et al., 2018; Li et al., 2019),这也与中国东部岩石圈减薄高潮期(130~120Ma)的观点基本一致(吴福元等, 2003; 董树文等, 2007, 2008; Wu et al., 2002, 2011; 朱日祥等, 2012; Dong et al., 2018; Wang et al., 2018),一直持续到早白垩世末期。该期伸展事件也导致了虎林杂岩隆升、系列犁式正断层的发育和虎林盆地的大范围坳沉(具体见下节)。

图 7 中国东北东部早白垩世构造演化图(据朱光等, 2018修改) Fig. 7 Tectonic evolution of eastern NE China during Early Cretaceous (modified after Zhu et al., 2018)

在早白垩世末(104Ma之后),古太平洋-伊泽奈崎板块向NNW向运动可能再次加速(Maruyama et al., 1997; 刘志宏等, 2014; 朱光等, 2018),由NNW转向N,由低角度俯冲替代高角度俯冲,使得中国东部再次遭受区域性挤压,导致虎林杂岩发育大规模NE向左行走滑变形和持续性隆升,此时敦-密断裂、佳-伊断裂乃至整个郯庐断裂带显示为左行汇聚型走滑,同时,岩石圈减薄拆沉告一段落,大规模岩浆事件较少出现(图 7b)。同样,该期挤压事件在整个中国东部也可以发现,如整个郯庐断裂带的伸展活动减弱,盆地反转、隆升且范围缩小,岩浆活动明显减弱(朱光等, 2018),是华北克拉通破坏结束的标志之一(Wu et al., 2002, 2011; 朱日祥等, 2012; 朱光等, 2018; Dai et al., 2018),也是燕山运动最后一期挤压事件导致的不整合的表现(董树文等, 2007, 2008; 朱光等, 2018; Dong et al., 2018; Wang et al., 2018)。类似的左行走滑构造在锡霍特-阿林地区能够很清晰地识别,早期形成的浊积岩盆地、增生楔和火山岛弧,均沿着东亚大陆边缘向北东移动,如佳木斯-兴凯地块在这一时期(Albian期末期)的运移、拼贴,同时导致侏罗纪形成的与古太平洋俯冲相关的褶皱构造再一次遭受挤压,轴面陡倾变为紧闭褶皱(Kemkin et al., 2016; 刘凯等, 2016),在虎林地区识别出的大量紧闭褶皱,可能与该期构造有关。而晚白垩世-古新世期间,古太平洋-伊泽奈崎板块又转为斜向俯冲,区域性左行走滑作用减弱,域内岩浆活动频发,形成东锡霍特-阿林陆源火山弧(杂岩带)和西库页前陆盆地等地质单元(Deng et al., 2019; Xu et al., 2013b; 邵济安和唐克东, 2015; 孙明道, 2016; Kemkin et al., 2016; Wang et al., 2019)。

5.3 虎林杂岩隆升与虎林盆地沉积的耦合关系

虎林盆地是佳木斯隆起周缘中新生代盆地之一,与敦-密断裂带毗邻,总体上表现为北东向隆坳相间分布,其内的北部坳陷区和南部坳陷区被NEE向展布的中央隆起所分隔(曹成润等, 2001; 张凤旭等, 2010)。中央隆起区主要由虎林杂岩和少量白垩纪花岗岩侵入体组成,上部几乎没有中-新生代地层覆盖。南北凹陷区主要发育有白垩系、渐新统和中新统,自下而上可见裴德组(K1p)、七虎林组(K1q)、云山组(K1y)、珠山组(K1z)、东山组(K1d)、虎林组(E2-3h)、富锦组(N1f)和第四纪系(图 8a)。但重磁异常显示盆地存在明显的高磁高重力异常,说明盆地下部分布着统一的较老的结晶基底(曹成润等, 2001; 刘银萍和孟令顺, 2007; 张凤旭等, 2010)。

图 8 虎林盆地地层表(a, 据韩国卿等, 2008修改)及地震反射剖面解释图(b, 据刘志宏等, 2014修改; 位置见图 1a) Fig. 8 Stratigraphic chart (a, modified after Han et al., 2008) and geological interpretation of seismic profiles (b, modified after Liu et al., 2014; See Fig. 1a for their locations) of the Hulin basin

在裴德期-东山期,虎林盆地处于强烈伸展构造体制当中,受呈NE-NNE向展布的主要伸展控陷断层影响,形成一系列相互独立的伸展断陷,在断陷中不仅有正常沉积的碎屑岩类,而且伴随广泛分布的早白垩世钙碱性火山碎屑岩建造主要为岛弧系列岩浆岩(王伟涛等, 2007)。早白垩世碎屑岩建造主要为海陆交互相沉积,并见有植物化石和大量海相化石,如菊石、双壳类、腹足类、介形虫和沟鞭藻化石,揭示盆地的形成时代为Hauterivian期(132.9Ma)至Albian期(100.5Ma)(何承全等, 1999)。同时,伴随的广泛分布的早白垩世晚期东山组火山岩,其形成时代为110~117Ma(张兴洲和马志红, 2010),二者共同指示虎林盆地早白垩世沉积时代应该为132.9~100.5Ma,与区域岩浆事件相吻合(图 6)。值得关注的是,盆地南部穆棱河凹陷内的白垩系以变质岩岩屑为主,与中央隆起出露的基底变质岩组成一致(张兴洲和马志红, 2010),暗示盆地基底岩石是其物源之一。在虎林盆地北缘跨过敦-密断裂的地震反射剖面中可以发现,在控陷断层上盘,离断裂较近的部位,下白垩统的沉积厚度更大一些,远离断裂的部位,下白垩统的沉积厚度逐渐减小,反映出虎林盆地在早白垩世受到NW-SE向的持续伸展作用(刘志宏等, 2014; 图 8b),可能与古太平洋-伊泽纳奇板块NW向俯冲和板片后撤有关,形成了系列的NE向铲式正断层控制了普遍存在的NE-NEE向伸展断陷盆地群的形成、广泛的沉积作用和盆地间的断垒构造(图 7a图 8b; 刘志宏等, 2014),虎林盆地中央隆起和周缘地层区为其主要的沉积物源(王伟涛等, 2007; 韩国卿等, 2008; 张兴洲和马志红, 2010)。

早白垩晚期区域持续隆升机制与古太平洋-伊泽奈崎板块高速向欧亚大陆俯冲由NNW转向N有关,造成区域性的挤压隆升(图 7b; 韩国卿等, 2008; 朱光等, 2018),敦-密断裂大规模的左行走滑,同时,虎林盆地由早白垩世的伸展应力体制转换为挤压应力体制(图 7b),出现系列的构造反转,使早期形成的伸展控陷正断层转换为NE向压扭性的左行走滑(刘志宏等, 2014),伴随虎林杂岩的强烈韧性变形,形成NE向近水平矿物拉伸线理,同时导致早白垩世形成的伸展型虎林盆地大幅度快速隆升。该时期的挤压隆升导致盆地在东山组沉积期后整体处于剥蚀状态,而且隆升剥蚀速率大于沉积速率,持续为周缘盆地提供物源,使得盆内晚白垩世及古近纪初期地层保留甚少(王伟涛等, 2007; 韩国卿等, 2008; 刘志宏等, 2014; 图 8a),直至始新世开始接受沉积,沉积以粗碎屑岩建造为主的虎林组(韩国卿等, 2008; 图 8a),盆地转换为挤压拗陷型盆地。

6 结论

(1) 虎林杂岩塑性变形特征明显,发育片麻理倾向NW,低角度矿物拉伸线理走向NE-SW。微观构造特征和石英EBSD组构分析显示,岩石总体变形为中低温变形,变形温度350~450℃,石英变形机制以位错滑移和膨凸重结晶为主。

(2) 结合宏观变形样式可以得知,虎林杂岩早期变形以NW倾向片麻理为标志,指示NW-SE向伸展作用,晚期变形以NE向低角度矿物拉伸线理为标志,指示NE-SW向左行走滑事件。变形闪长玢岩的锆石206Pb/238U加权平均年龄为107.0±1.7Ma(MSWD=2.7, n=35),指示岩脉形成于早白垩世晚期,限定NE向左行走滑事件晚于闪长玢岩就位时间。

(3) 早白垩世期间,伊泽奈崎板块NW向俯冲和板片后撤,导致东北东部乃至中国东部东部NW-SE向伸展,造成大陆岩石圈减薄、岩浆活动和包括虎林盆地在内的伸展断陷盆地的形成。在早白垩世末(104Ma之后),伊泽奈崎板块高速向欧亚大陆俯冲由NNW转向N,由低角度俯冲替代高角度俯冲,使得中国东部再次遭受区域性挤压,导致虎林杂岩发育大规模NE向压扭性左行走滑变形和盆地的持续隆升。

致谢      对吉林大学东北亚矿产资源评价自然资源部重点实验室在锆石U-Pb测试和EBSD组构测试方面给予的支持表示感谢。感谢吉林大学郑常青教授和周建波教授在野外工作中的帮助与指导,感谢刘志宏教授在论文修改过程中提供的帮助。同时感谢两位审稿人提出的宝贵而细致的修改意见。

参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79
Aouizerat A, Xiao WJ, Schulman K, Jeřábek P, Monié P, Zhou JB, Zhang JJ, Ao SJ, Li R, Li YC and Esmaeili R. 2019. Structures, strain analyses, and 40Ar/39Ar ages of blueschist-bearing Heilongjiang Complex (NE China):Implications for the Mesozoic tectonic evolution of NE China. Geological Journal, 54(2): 716-745
Bi JH, Ge WC, Zhang YL, Yang H and Wang ZH. 2014. Petrogenesis of Permian Jinshan granitic complex in the eastern Jiamusi Massif and its geological implications. Journal of Earth Sciences and Environment, 36(4): 16-31 (in Chinese with English abstract)
Bi JH, Ge WC, Yang H, Zhao GC, Xu WL and Wang ZH. 2015. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi Massif, NE China: Petrogensis and tectonic implications. Lithos, 234-235: 27-46
Bi JH, Ge WC, Yang H, Wang ZH, Xu WL, Yang JH, Xing DH and Chen HJ. 2016. Geochronology and geochemistry of Late Carboniferous-Middle Permian I- and A-type granites and gabbro-diorites in the eastern Jiamusi Massif, NE China: Implications for petrogenesis and tectonic setting. Lithos, 266-267: 213-232
Bi JH, Ge WC, Yang H, Wang ZH, Tian DX, Liu XW, Wu WL and Xing DH. 2017. Geochemistry of MORB and OIB in the Yuejinshan Complex, NE China:Implications for petrogenesis and tectonic setting. Journal of Asian Earth Sciences, 145: 475-493
Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House, 439-507 (in Chinese)
Cao CR, Liu ZH and Wang DP. 2001. The structure features and the movement regularity of fault blocks in Hulin Basin, East Heilongjiang Province. Journal of Changchun University of Science and Technology, 31(4): 340-344 (in Chinese with English abstract)
Cheng RY, Wu FY, Ge WC, Sun DY, Liu XM and Yang JH. 2006. Emplacement age of the Raohe Complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of northeastern China. Acta Petrologica Sinica, 22(2): 353-376 (in Chinese with English abstract)
Cong ZC, Sun FY, Wang G, Wang YD, Huo L, Pan ZC and Cao HL. 2016. Zircon U-Pb age and geochemistry of the magmatic rocks in the Jiamusi massif, NE China and their tectonic implications. Acta Petrologica Sinica, 32(4): 1141-1152 (in Chinese with English abstract)
Dai LM, Li SZ, Li ZH, Somerville I, Suo YH, Liu XC, Gerya T and Santosh M. 2018. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems:Numerical modeling and implications for the western Dabie orogen. Earth-Science Reviews, 182: 68-84
Deng CZ, Sun DY, Li GH, Lu S, Tang ZY, Gou J and Yang Y. 2019. Early Cretaceous volcanic rocks in the Great Xing'an Range:Late effect of a flat-slab subduction. Journal of Geodynamics, 124: 38-51
Dong SW, Zhang YQ, Long CX, Yang ZY, Ji Q, Wang T, Hu JM and Chen XH. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement. Acta Geologica Sinica, 81(11): 1449-1461 (in Chinese with English abstract)
Dong SW, Zhang YQ, Chen XH, Long CX, Wang T, Yang ZY and Hu JM. 2008. The formation and deformational characteristics of East Asia multi-direction convergent tectonic system in Late Jurassic. Acta Geoscientica Sinica, 29(3): 306-317 (in Chinese with English abstract)
Dong SW, Zhang YQ, Li HL, Shi W, Xue HM, Li JH, Huang SQ and Wang YC. 2018. The Yanshan orogeny and Late Mesozoic multi-plate convergence in East Asia:Commemorating 90th years of the "Yanshan Orogeny". Science China (Earth Sciences), 61: 1888-1909
Feng ZQ, Liu YJ, Jin W, Jiang LW, Li WM, Wen QB, Li XY, Zhang TA, Du BY, Ma YF and Zhang L. 2019. Spatiotemporal distribution of ophiolites in the northern Great Xing'an Range and its relationship with the geotectonic evolution of NE China. Earth Science Frontiers, 26(2): 120-136 (in Chinese with English abstract)
Guo F, Li HX, Fan WM, Li JY, Zhao L, Huang MW and Xu WL. 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China:Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos, 224-225: 46-60
Han GQ, Liu YJ, Li JJ, Bai JZ, Sun XM, Wen QB and Wu LN. 2008. Uplifting time of Huanan Uplift in the northeastern Heilongjiang, China. Journal of Jilin University (Earth Science Edition), 38(3): 389-397 (in Chinese with English abstract)
He CQ, Wan CB and Yang MJ. 1999. Hauterivian-Barremian Dinoflagellates from the Longzhaogou Group of the H87-3 Well in Hulin Basin, eastern Heilongjiang, NE China. Acta Palaeontologica Sinica, 38(2): 183-202 (in Chinese with English abstract)
He S. 2017. Geochronological, geochemical characteristics and tectonics setting of granitica rocks in the Hulin area, Heilongjiang Province. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Hu L, Liu JL, Ji M, Cao SY, Zhang HY and Zhao ZY. 2009. Recognizing Manual of Deformation Microstructure. Beijing: Geological Publishing House, 41-73 (in Chinese)
Hu PY, Liang CY, Zheng CQ, Zhou X, Yang Y and Zhu EL. 2019. Tectonic Transformation and metallogenesis of the Yanshan Movement during the Late Jurassic Period:Evidence from geochemistry and zircon U-Pb geochronology of the adamellites in Xingcheng, western Liaoning, China. Minerals, 9(9): 518
Huang YC, Ren DH, Zhang XZ, Xiong XS, Zhang CY, Wang Y and Zhao LL. 2008. Zircon U-Pb dating of the Meizuo granite and geological significance in the Huanan Uplift, East Heilongjiang Province. Journal of Jilin University (Earth Science Edition), 38(4): 631-638 (in Chinese with English abstract)
Jahn BM, Griffin WL and Windley B. 2000. Continental growth in the Phanerozoic:Evidence from Central Asia. Tectonophysics, 328(1-2): ⅶ-ⅹ
Kemkin IV, Khanchuk AI and Kemkina RA. 2016. Accretionary prisms of the Sikhote-Alin Orogenic Belt:Composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin. Journal of Geodynamics, 102: 202-230
Khanchuk AI, Vovna GM, Kiselev VI, Mishkin MA and Lavrik SN. 2010. First results of zircon LA ICP MS U-Pb dating of the rocks from the granulite complex of Khanka massif in the Primorye region. Doklady Earth Sciences, 434(1): 1164-1167
Kirillova GL. 2005. The Late Mesozoic-Cenozoic sedimentary basins at the continental margin of southeastern Russia:Geodynamic evolution and coal and petroleum potential. Geotectonics, 39(5): 389-407
Kusky TM, Windley BF, Wang L, Wang ZS, Li XY and Zhu PM. 2014. Flat slab subduction, trench suction, and craton destruction:Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630: 208-221
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224
Li JY, Liu JF, Qu JF, Zheng RG, Zhao S, Zhang J, Wang LJ and Zhang XW. 2019. Paleozoic tectonic units of Northeast China:Continental blocks or orogenic belts?. Earth Science, 44(10): 3157-3177 (in Chinese with English abstract)
Li SZ, Zhang Y, Guo LY, Suo YH, Cao HH, Li XY, Zhou ZZ, Wang PC and Guo RH. 2017. Mesozoic deformation and accretionary orogenic processes around the Nadanhada Terrane. Earth Science Frontiers, 24(4): 200-212 (in Chinese with English abstract)
Li SZ, Suo YH, Li XY, Zhou J, Santosh M, Wang PC, Wang GZ, Guo LL, Yu SY, Lan HY, Dai LM, Zhou ZZ, Cao XZ, Zhu JJ, Liu B, Jiang SH, Wang G and Zhang GW. 2019. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91-137
Li XP, Kong FM, Zheng QD, Dong X and Yang ZY. 2010. Geochronological study on the Heilongjiang complex at Luobei area, Heilongjiang Province. Acta Petrologica Sinica, 26(7): 2015-2024 (in Chinese with English abstract)
Liang CY, Liu YJ, Neubauer F, Bernroider M, Jin W, Li WM, Zeng ZX, Wen QB and Zhao YL. 2015. Structures, kinematic analysis, rheological parameters and temperature-pressure estimate of the Mesozoic Xingcheng-Taili ductile shear zone in the North China craton. Journal of Structural Geology, 78: 27-51
Liang CY, Liu YJ, Li W, Liu BR, Li WM, Zhang D and Liu TJ. 2018. The extensional uplift style of north part of the Da Hinggan Mountains:Evidences from ductile deformation zone of Keluo-Galashan. Acta Petrologica Sinica, 34(10): 2873-2900 (in Chinese with English abstract)
Liang CY, Liu YJ, Zheng CQ, Li WM, Neubauer F, Zhang Q and Zhang D. 2019a. Deformation patterns and timing of the thrust-nappe structures in the Mohe Formation in Mohe Basin, Northeast China:Implication of the closure timing of Mongol-Okhotsk Ocean. Geological Journal, 54(2): 746-769
Liang CY, Liu YJ, Zheng CQ, Li WM, Neubauer F and Zhang Q. 2019b. Macro- and microstructural, textural fabrics and deformation mechanism of calcite mylonites from Xar Moron-Changchun dextral shear zone, Northeast China. Acta Geologica Sinica, 93(5): 1477-1499
Lin W, Wang J, Liu F, Ji WB and Wang QC. 2013. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics. Acta Petrologica Sinica, 29(5): 1791-1810 (in Chinese with English abstract)
Liu JL, Cao SY, Zhou YX and Song ZJ. 2008. EBSD analysis of rock fabrics and its application. Geological Bulletin of China, 27(10): 1638-1645 (in Chinese with English abstract)
Liu K, Zhang JJ, Wilde SA, Zhou JB, Wang M, Ge MH, Wang JM and Ling YY. 2017b. Initial subduction of the Paleo-Pacific Oceanic plate in NE China:Constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Khanka Lake granitoids. Lithos, 274-275: 254-270
Liu K, Zhang JJ, Ge MH and Ling YY. 2016. Mesozoic Subduction of the Paleo-Pacific Plate along the eastern margin of the Xing-Meng Orogenic Belt. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 6+33-43 (in Chinese with English abstract)
Liu SF, Gurnis M, Ma PF and Zhang B. 2017c. Reconstruction of Northeast Asian deformation integrated with western Pacific plate subduction since 200Ma. Earth-Science Reviews, 175: 114-142
Liu YJ, Zhang XZ, Jin W, Chi XG, Wang CW, Ma ZH, Han GX, Wen QB, Zhao YL, Wang WD and Zhao XF. 2010. Late Paleozoic tectonic evolution in Northeast China. Geology in China, 37(4): 943-951 (in Chinese with English abstract)
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017a. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148
Liu YJ, Feng ZQ, Jiang LW, Jin W, Li WM, Guan QB, Wen QB and Liang CY. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China. Acta Petrologica Sinica, 35(10): 3017-3047 (in Chinese with English abstract)
Liu YP and Meng LS. 2007. Using gravity anomaly study structure division and basement morphology of the Hulin Basin. Journal of Jilin University (Earth Science Edition), 37(Suppl.1): 36-39 (in Chinese)
Liu ZH, Mei M, Gao JY, Wu XM, Huang CY, Lin DC and Sun LN. 2014. Structural features, formation mechanism of Hulin Basin and deformation time of northeastern segment of Dunhua-Mishan Fault Zone in Northeast China. Journal of Jilin University (Earth Science Edition), 44(2): 480-489 (in Chinese with English abstract)
Ludwig KR. 2003. User's Manual for Isoplot 3.0:A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-71
Lü CL, Feng JL, Zheng WZ, Ren FH and Wang QM. 2014. Zircon dating and its geological significance of hornblende-biotite granite gneiss in Jiamusi Massif:The clue comes from the Neoproterozoic basement. China Mining Magazine, 23(Suppl.2): 127-132 (in Chinese with English abstract)
Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)
Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750Ma to the present. Island Arc, 6(1): 121-142
Ouyang HG, Mao JW, Santosh M, Zhou J, Zhou ZH, Wu Y and Hou L. 2013. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions:Perspectives from spatio-temporal distribution patterns of ore deposits. Journal of Asian Earth Sciences, 78: 222-236
Şengör AMC, Natal'in BA, Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307.
Shao JA and Tang KD. 2015. Research on the Mesozoic ocean-continent transitional zone in the Northeast Asia and its implications. Acta Petrologica Sinica, 31(10): 3147-3154 (in Chinese with English abstract)
Sorokin AA, Ovchinnikov RO, Kudryashov NM and Sorokina AP. 2016. An Early Neoproterozoic gabbro-granite association in the Bureya Continental Massif (Central Asian fold belt):First geochemical and geochronological data. Doklady Earth Sciences, 471(2): 1307-1311
Stipp M, Stünitz H, Heilbronner R and Schmid SM. 2002. The eastern Tonale fault zone:A 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24(12): 1861-1884
Stipp M, Tullis J, Scherwath M and Behrmann JH. 2010. A new perspective on paleopiezometry:Dynamically recrystallized grain size distributions indicate mechanism changes. Geology, 38(8): 759-762
Sun JG, Men LJ, Zhao JK, Chen L, Liang SN, Chen D and Pang W. 2008. Zircon chronology of melanocratic dykes in the district of the Xiaoxinancha Au-rich Cu deposit in Yanbian and its geological implication. Acta Geologica Sinica, 82(4): 517-527 (in Chinese with English abstract)
Sun JG, Men LJ, Chen D, Chen L, Pang W, Liang SN, Chang Y, Zhang P and Nie XT. 2009. Constraints of magmatism on the ore-forming process of magmatic hydrothermal gold-rich copper deposits as recorded from the element geochemistry and zircon CL image features:A case study of the Xiaoxinancha gold-rich copper deposit, Yanbian, Jilin Province. Journal of Mineralogy and Petrology, 29(3): 43-52 (in Chinese with English abstract)
Sun LX, Ren BF, Zhao FQ, Ji SP and Geng JZ. 2013. Late Paleoproterozoic magmatic records in the Eerguna massif:Evidences from the zircon U-Pb dating of granitic gneisses. Geological Bulletin of China, 32(2-3): 341-352 (in Chinese with English abstract)
Sun MD, Xu YG, Wilde SA, Chen HL and Yang SF. 2015a. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China:Implications for Paleo-Pacific subduction. Tectonophysics, 659: 122-136
Sun MD, Xu YG, Wilde SA and Chen HL. 2015b. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China:Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific. Tectonics, 34(6): 1269-1289
Sun MD. 2016. Cretaceous magmatism in NE China and adjacent areas and its relationship with the paleo-Pacific plate subduction. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1090-1097, 1071 (in Chinese with English abstract)
Sun XM, Zhang XQ, He S, Wang PJ, Zheng H, Wan K and Li DZ. 2016. Two important Cretaceous deformation events of the Dunhua-Mishan Fault Zone, NE China. Acta Petrologica Sinica, 32(4): 1114-1128 (in Chinese with English abstract)
Wang F, Xu WL, Xing KC, Tang J, Wang ZW, Sun CY and Wu W. 2019. Temporal changes in the subduction of the Paleo-Pacific plate beneath Eurasia during the Late Mesozoic:Geochronological and geochemical evidence from Cretaceous volcanic rocks in eastern NE China. Lithos, 326-327: 415-434
Wang WT, Liu ZJ and Chen XY. 2007. Tectonic setting and provenance analysis of Mesozoic-Cenozoic clastic rocks in northern depression of Hulin Basin. Global Geology, 26(1): 14-19 (in Chinese with English abstract)
Wang Y, Sun LX, Zhou LY and Xie YT. 2018. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China. Science China (Earth Sciences), 61(5): 499-514
Wang ZH, Ge WC, Yang H, Zhang YL, Bi JH, Tian DX and Xu WL. 2015. Middle Jurassic oceanic island igneous rocks of the Raohe accretionary complex, northeastern China:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 111: 120-137
Wang ZH, Ge WC, Yang H, Bi JH, Ji Z, Dong Y and Xu WL. 2017. Petrogenesis and tectonic implications of Early Jurassic volcanic rocks of the Raohe accretionary complex, NE China. Journal of Asian Earth Sciences, 134: 262-280
Wen QB, Liu YJ, Li WM, Han GQ and Ding L. 2008. Monazite ages and its geological significance of granitoid gneiss in the Jiamusi Massif. Journal of Jilin University (Earth Science Edition), 38(2): 187-193 (in Chinese with English abstract)
Wilde SA, Zhang XZ and Wu FY. 2000. Extension of a newly identified 500Ma metamorphic terrain in northeast China:Further U-Pb SHRIMP dating of the Mashan complex, Heilongjiang Province, China. Tectonophysics, 328(1-2): 115-130
Wilde SA, Wu F and Zhao GC. 2010. The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geological Society, London, Special Publications, 338: 117-137
Wu FY, Sun DY, Li HM, Jahn BM and Wilde S. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173
Wu FY, Ge WC, Sun DY and Guo CL. 2003. Discussions on the lithospheric thinning in eastern China. Earth Science Frontiers, 10(3): 51-60 (in Chinese with English abstract)
Wu FY, Sun DY, Jahn BM and Wilde S. 2004. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 23(5): 731-744
Wu FY, Yang JH, Lo CH, Wilde SA, Sun DY and Jahn BM. 2007. The Heilongjiang Group:A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc, 16(1): 156-172
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30
Xia HR and Liu JL. 2011. The crystallographic preferred orientation of quartz and its applications. Geological Bulletin of China, 30(1): 58-70 (in Chinese with English abstract)
Xiang BW, Zhu G, Wang YS, Xie CL and Hu ZQ. 2007. Mineral deformation thermometer for mylonitization. Advances in Earth Science, 22(2): 126-135 (in Chinese with English abstract)
Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117
Xiao WJ, Kröner A and Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98(6): 1185-1188
Xiao WJ, Song DF, Windley BF, Li JL, Han CM, Wan B, Zhang JE, Ao SJ and Zhang ZY. 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt:Advances and perspectives. Science China (Earth Sciences), 63: 329-361
Xie HQ, Zhang FQ, Miao LC, Chen FK and Liu DY. 2008a. Zircon SHRIMP U-Pb dating of the amphibolite from "Heilongjiang Group" and the granite in Mudanjiang area, NE China, and its geological significance. Acta Petrologica Sinica, 24(6): 1237-1250 (in Chinese with English abstract)
Xie HQ, Miao LC, Chen FK, Zhang FQ and Liu DY. 2008b. Characteristics of the "Mashan Group" and zircon SHRIMP U-Pb dating of granite in Muling area, southeastern Heilongjiang Province, China:Constrains on crustal evolution of the southernmost of Jiamusi Massif. Geological Bulletin of China, 27(12): 2127-2137 (in Chinese with English abstract)
Xu B, Charvet J, Chen Y, Zhao P and Shi GZ. 2013a. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364
Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with English abstract)
Xu J, Xing DH, Yang H and Zhang YL. 2012. Zircon U-Pb age of Hulin pluton in Heilongjiang Province and its geological implication. Global Geology, 31(4): 631-637 (in Chinese with English abstract)
Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB and Wang W. 2013b. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences, 74: 167-193
Xu WL, Wang F, Pei FP, Meng E, Tang J, Xu MJ and Wang W. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China:Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract)
Xu WL, Sun CY, Tang J, Luan JP and Wang F. 2019. Basement nature and tectonic evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1648 (in Chinese with English abstract)
Xu ZQ, Wang Q, Liang FH, Chen FY and Xu CP. 2009. Electron backscatter diffraction (EBSD) technique and its application to study of continental dynamics. Acta Petrologica Sinica, 25(7): 1721-1736 (in Chinese with English abstract)
Yang H, Ge WC, Zhao GC, Dong Y, Bi JH, Wang ZH, Yu JJ and Zhang YL. 2014. Geochronology and geochemistry of Late Pan-African intrusive rocks in the Jiamusi-Khanka Block, NE China:Petrogenesis and geodynamic implications. Lithos, 208-209: 220-236
Yang H, Ge WC, Dong Y, Bi JH, Wang ZH, Ji Z, Yang H, Ge WC, Dong Y, Bi JH, Wang ZH and Ji Z. 2017a. Record of Permian-Early Triassic continental arc magmatism in the western margin of the Jiamusi Block, NE China:Petrogenesis and implications for Paleo-Pacific subduction. International Journal of Earth Sciences, 106(6): 1919-1942
Yang H, Ge WC, Zhao GC, Bi JH, Wang ZH, Dong Y and Xu WL. 2017b. Zircon U-Pb ages and geochemistry of newly discovered Neoproterozoic orthogneisses in the Mishan region, NE China:Constraints on the high-grade metamorphism and tectonic affinity of the Jiamusi-Khanka Block. Lithos, 268-271: 16-31
Yu JJ, Hou XG, Ge WC, Zhang YL and Liu JC. 2013. Magma mixing genesis of the Early Permian Liulian pluton at the northeastern margin of the Jiamusi massif in NE China:Evidences from petrography, geochronology and geochemistry. Acta Petrologica Sinica, 29(9): 2971-2986 (in Chinese with English abstract)
Yu SY, Zhang JX, Li SZ, Santosh M, Li YS, Liu YJ, Li XY, Peng YB, Sun DY and Wang ZY and Lü P. 2019. TTG-adakitic-like (tonalitic-trondhjemitic) magmas resulting from partial melting of metagabbro under high-pressure condition during continental collision in the North Qaidam UHP Terrane, western China. Tectonics, 38: 791-822
Zeng Z, Zhang XZ and Zhou JB. 2017a. Zircon U-Pb chronology, geochemistry of Permian gabbro from the Yuejinshan complexes, and its tectonic implications. Geological Review, 63(Suppl.1): 267-268 (in Chinese)
Zeng Z, Zhang XZ, Zhou JB, Zhang HT, Liu Y and Cui WL. 2017b. Geochemistry and zircon U-Pb age of Permian metabasalts in the Yuejinshan complexes and its tectonic implications. Geotectonica et Metallogenia, 42(2): 365-378 (in Chinese with English abstract)
Zhang D, Liu YJ, Li WM, Wen QB and Wu DS. 2018. Early Paleozoic-Late Mesozoic tectonic evolution in Jiamusi Block and adjacent areas. Global Geology, 37(4): 1149-1166 (in Chinese with English abstract)
Zhang FX, Zhang XZ, Zhang FQ, Sun JP, Qiu DM and Xue J. 2010. Study on geology and geophysics on structural units of Hulin Basin in Heilongjiang Province. Journal of Jilin University (Earth Science Edition), 40(5): 1170-1176 (in Chinese with English abstract)
Zhang L, Liu QG, Shi XJ, Tong Y, Hou JY, Zhang JJ and Wang T. 2013. Zircon U-Pb age and geochemistry of the Permian Yongqing granodiorite intrusion in Jiamusi massif of Northeast China and their implications. Acta Petrologica et Mineralogica, 32(6): 1022-1036 (in Chinese with English abstract)
Zhang Q, Liang CY, Liu YJ, Zheng CQ and Li WM. 2019. Final closure time of the Paleo-Asian Ocean:Implication from the provenance transformation from the Yangjiagou Formation to Lujiatun Formation in the Jiutai area, NE China. Acta Geologica Sinica, 93(5): 1456-1476
Zhang XZ and Ma ZH. 2010. Evolution of Mesozoic-Cenozoic basins in the eastern Heilongjiang Province, Northeast China. Geology and Resources, 19(3): 191-196 (in Chinese with English abstract)
Zhang XZ, Qiao DW, Chi XG, Zhou JB, Sun YW, Zhang FX, Zhang SQ and Zhao QY. 2011. Late-Paleozoic tectonic evolution and oil-gas potentiality in northeastern China. Geological Bulletin of China, 30(2-3): 205-213 (in Chinese with English abstract)
Zhang XZ, Guo Y, Zeng Z, Fu QL and Pu JB. 2015. Dynamic evolution of the Mesozoic-Cenozoic basins in the northeastern China. Earth Science Frontiers, 22(3): 88-98 (in Chinese with English abstract)
Zhao GC, Cawood PA, Wilde SA, Sun M and Lu LZ. 2000. Metamorphism of basement rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic tectonic evolution. Precambrian Research, 103(1-2): 55-88
Zheng JP and Dai HK. 2018. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Science China (Earth Sciences), 61(4): 406-424
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH. 2009. The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3-4): 230-246
Zhou JB, Zhang XZ, Wilde SA, Zheng CQ, Jin W, Chen H and Han J. 2009. Detrital zircon U-Pb dating of Heilongjiang complex and its tectonic implications. Acta Petrologica Sinica, 25(8): 1924-1936 (in Chinese with English abstract)
Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Wang H and Zeng WS. 2010. Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia:An intriguing dilemma?. Journal of Geodynamics, 50(3-4): 300-317
Zhou JB, Han J, Zhang XZ and Zeng WS. 2010. Geochemical characteristics of the Mudanjiang blueschists in the NE China and its tectonic implications. Journal of Jilin University (Earth Science Edition), 40(1): 93-103 (in Chinese with English abstract)
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Liu FL, Qiao DW, Ren SM and Liu JH. 2011. A>1300km late Pan-African metamorphic belt in NE China:New evidence from the Xing'an block and its tectonic implications. Tectonophysics, 509(3-4): 280-292
Zhou JB, Zhang XZ, Wilde SA and Zheng CQ. 2011. Confirming of the Heilongjiang ~500Ma Pan-African khondalite belt and its tectonic implications. Acta Petrologica Sinica, 27(4): 1235-1245 (in Chinese with English abstract)
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377
Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ and Wang B. 2014. Paleo-Pacific subduction-accretion:Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12): 2444-2466
Zhou JB, Shi AG and Jing Y. 2016. Combined NE China blocks:Tectonic evolution and supercontinent reconstructions. Journal of Jilin University (Earth Science Edition), 46(4): 1042-1055 (in Chinese with English abstract)
Zhou JB and Li L. 2017. The Mesozoic accretionary complex in Northeast China:Evidence for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences, 145: 91-100
Zhou JB, Wilde SA, Zhao GC and Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93
Zhou JB, Pu XG, Hou HS, Hou W, Cao JL and Li GY. 2018. The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo-Pacific plate beneath the Eurasia. Acta Petrologica Sinica, 34(10): 2845-2856 (in Chinese with English abstract)
Zhou LY, Wang Y and Wang N. 2015. Syn-tectonic magmatic emplacement in Wanda Mountain, Northeast China:A response to the Late Mesozoic sinistral strike slip motion. Geological Bulletin of China, 34(2-3): 400-418 (in Chinese with English abstract)
Zhu CYL, Zhao GC, Sun M, Liu Q, Han YG, Hou WZ, Zhang XR and Eizenhöfer PR. 2015. Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang Complex, northeastern China and tectonic implications. Lithos, 216-217: 241-253
Zhu CYL, Zhao GC, Ji JQ, Sun M, Han YG, Liu Q, Eizenhöfer PR, Zhang XR and Hou WZ. 2017. Subduction between the Jiamusi and Songliao blocks: Geological, geochronological and geochemical constraints from the Heilongjiang Complex. Lithos, 282-283: 128-144
Zhu G, Niu ML, Xie CL and Wang YS. 2010. Sinistral to normal faulting along the Tan-Lu Fault Zone:Evidence for geodynamic switching of the East China continental margin. The Journal of Geology, 118(3): 277-293
Zhu G, Jiang DZ, Zhang BL and Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting:Evidence from crustal deformation kinematics. Gondwana Research, 22(1): 86-103
Zhu G, Liu C, Gu CC, Zhang S, Li YJ, Su N and Xiao SY. 2018. Oceanic plate subduction history in the western Pacific Ocean:Constraint from Late Mesozoic evolution of the Tan-Lu Fault Zone. Science China (Earth Sciences), 61(4): 386-405
Zhu RX, Xu YG, Zhu G, Zhang HF, Xia QK and Zheng TY. 2012. Destruction of the North China Craton. Science China (Earth Sciences), 55(10): 1565-1587
毕君辉, 葛文春, 张彦龙, 杨浩, 王智慧. 2014. 佳木斯地块东部二叠纪锦山花岗杂岩体的成因及其地质意义. 地球科学与环境学报, 36(4): 16-31.
曹成润, 刘正宏, 王东坡. 2001. 黑龙江省东部虎林盆地断块构造特征及其运动学规律. 长春科技大学学报, 31(4): 340-344.
程瑞玉, 吴福元, 葛文春, 孙德有, 柳晓明, 杨敬辉. 2006. 黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化. 岩石学报, 22(2): 353-376.
丛智超, 孙丰月, 王冠, 王英德, 霍亮, 潘忠翠, 曹海龙. 2016. 佳木斯地块中部岩浆岩锆石U-Pb年代学、地球化学及其大地构造意义. 岩石学报, 32(4): 1141-1152.
董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461.
董树文, 张岳桥, 陈宣华, 龙长兴, 王涛, 杨振宇, 胡健民. 2008. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征. 地球学报, 29(3): 306-317.
冯志强, 刘永江, 金巍, 蒋立伟, 李伟民, 温泉波, 李小玉, 张铁安, 杜冰盈, 马永非, 张丽. 2019. 东北大兴安岭北段蛇绿岩的时空分布及与区域构造演化关系的研究. 地学前缘, 26(2): 120-136.
韩国卿, 刘永江, 李俊杰, 白晶哲, 孙晓猛, 温泉波, 吴琳娜. 2008. 黑龙江省东北部桦南隆起的隆升时期. 吉林大学学报(地球科学版), 38(3): 389-397.
何承全, 万传彪, 杨明杰. 1999. 黑龙江省东部虎林盆地欧特里夫-巴列姆期沟鞭藻类. 古生物学报, 38(2): 183-202.
何松. 2017.黑龙江虎林地区花岗质岩石年代学、地球化学特征及构造背景.硕士学位论文.长春: 吉林大学
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社.
胡玲, 刘俊来, 纪沫, 曹淑云, 张宏远, 赵中岩. 2009. 变形显微构造识别手册. 北京: 地质出版社.
黄映聪, 任东辉, 张兴洲, 熊小松, 张春艳, 王跃, 赵亮亮. 2008. 黑龙江省东部桦南隆起美作花岗岩的锆石U-Pb定年及其地质意义. 吉林大学学报(地球科学版), 38(4): 631-638.
李锦轶, 刘建峰, 曲军峰, 郑荣国, 赵硕, 张进, 王励嘉, 张晓卫. 2019. 中国东北地区古生代构造单元:地块还是造山带?. 地球科学, 44(10): 3157-3177.
李三忠, 张勇, 郭玲莉, 索艳慧, 曹花花, 李玺瑶, 周在征, 王鹏程, 郭润华. 2017. 那丹哈达地体及周缘中生代变形与增生造山过程. 地学前缘, 24(4): 200-212.
李旭平, 孔凡梅, 郑庆道, 董晓, 杨振毅. 2010. 黑龙江萝北地区黑龙江杂岩年代学研究. 岩石学报, 26(7): 2015-2024.
梁琛岳, 刘永江, 李伟, 刘勃然, 李伟民, 张夺, 刘同君. 2018. 大兴安岭北段伸展隆升样式:来自科洛-嘎拉山韧性变形带的证据. 岩石学报, 34(10): 2873-2900.
林伟, 王军, 刘飞, 冀文斌, 王清晨. 2013. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论. 岩石学报, 29(5): 1791-1810.
刘俊来, 曹淑云, 邹运鑫, 宋志杰. 2008. 岩石电子背散射衍射(EBSD)组构分析及应用. 地质通报, 27(10): 1638-1645.
刘恺, 张进江, 葛茂卉, 凌逸云. 2016. 中生代兴蒙造山带东缘的古太平洋板块俯冲. 矿物岩石地球化学通报, 35(6): 6.
刘永江, 张兴洲, 金巍, 迟效国, 王成文, 马志红, 韩国卿, 温泉波, 赵英利, 王文弟, 赵喜峰. 2010. 东北地区晚古生代区域构造演化. 中国地质, 37(4): 943-951.
刘永江, 冯志强, 蒋立伟, 金巍, 李伟民, 关庆彬, 温泉波, 梁琛岳. 2019. 中国东北地区蛇绿岩. 岩石学报, 35(10): 3017-3047.
刘永江, 冯志强, 蒋立伟, 金巍, 李伟民, 关庆彬, 温泉波, 梁琛岳. 2019. 中国东北地区蛇绿岩. 岩石学报, 35(10): 3017-3047.
刘银萍, 孟令顺. 2007.利用重力异常研究虎林盆地的构造分区和基底形态.吉林大学学报(地球科学版), 37(增1): 36-39
刘志宏, 梅梅, 高军义, 吴相梅, 黄超义, 林东成, 孙理难. 2014. 东北东部虎林盆地的构造特征、成盆机制及敦-密断裂带北东段的形成时代. 吉林大学学报(地球科学版), 44(2): 480-489.
吕长禄, 冯俊岭, 郑卫政, 任凤和, 王强茂. 2014. 佳木斯地块角闪黑云花岗质片麻岩的锆石定年及其地质学意义:新元古代结晶基底的证据. 中国矿业, 23(增2): 127-132.
毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188.
邵济安, 唐克东. 2015. 东北亚中生代洋陆过渡带的研究及启示. 岩石学报, 31(10): 3147-3154.
孙景贵, 门兰静, 赵俊康, 陈雷, 梁树能, 陈冬, 逄伟. 2008. 延边小西南岔大型富金铜矿床矿区内暗色脉岩的锆石年代学及其地质意义. 地质学报, 82(4): 517-527.
孙景贵, 门兰静, 陈冬, 陈雷, 逄伟, 梁树能, 常艳, 张鹏, 聂喜淘. 2009. 岩浆作用对岩浆热液金铜成矿制约的元素地球化学和锆石CL图像记录——以延边小西南岔富金铜矿床为例. 矿物岩石, 29(3): 43-52.
孙立新, 任邦方, 赵凤清, 冀世平, 耿建珍. 2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录——来自花岗片麻岩的锆石U-Pb年龄证据. 地质通报, 32(2-3): 341-352.
孙明道. 2016. 中国东北及邻区白垩纪岩浆活动与古太平洋板块俯冲的关系. 矿物岩石地球化学通报, 35(6): 1090-1097, 1071.
孙晓猛, 张旭庆, 何松, 王璞珺, 郑涵, 万阔, 李多姿. 2016. 敦密断裂带白垩纪两期重要的变形事件. 岩石学报, 32(4): 1114-1128.
王伟涛, 刘招君, 陈秀艳. 2007. 虎林盆地北部坳陷中、新生代碎屑岩源区构造背景与物源区分析. 世界地质, 26(1): 14-19.
温泉波, 刘永江, 李伟民, 韩国卿, 丁凌. 2008. 佳木斯地块花岗质片麻岩的独居石年龄及其地质意义. 吉林大学学报(地球科学版), 38(2): 187-193.
吴福元, 葛文春, 孙德有, 郭春丽. 2003. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 10(3): 51-60.
夏浩然, 刘俊来. 2011. 石英结晶学优选与应用. 地质通报, 30(1): 58-70.
向必伟, 朱光, 王勇生, 谢成龙, 胡召齐. 2007. 糜棱岩化过程中矿物变形温度计. 地球科学进展, 22(2): 126-135.
肖文交, 宋东方, Windley BF, 李继亮, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学(地球科学), 49(10): 1512-1545.
颉颃强, 张福勤, 苗来成, 陈福坤, 刘敦一. 2008a. 东北牡丹江地区"黑龙江群"中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义. 岩石学报, 24(6): 1237-1250.
颉颃强, 苗来成, 陈福坤, 张福勤, 刘敦一. 2008b. 黑龙江东南部穆棱地区"麻山群"的特征及花岗岩锆石SHRIMP U-Pb定年-对佳木斯地块最南缘地壳演化的制约. 地质通报, 27(12): 2127-2137.
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
胥嘉, 邢德和, 杨浩, 张彦龙. 2012. 黑龙江虎林岩体的锆石U-Pb年龄及地质意义. 世界地质, 31(4): 631-637.
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353.
许文良, 孙晨阳, 唐杰, 栾金鹏, 王枫. 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1648.
许志琴, 王勤, 梁凤华, 陈方远, 许翠萍. 2009. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用. 岩石学报, 25(7): 1721-1736.
于介江, 侯雪刚, 葛文春, 张彦龙, 柳佳成. 2013. 佳木斯地块东北缘早二叠世六连岩体的岩浆混合成因:岩相学、年代学和地球化学证据. 岩石学报, 29(9): 2971-2986.
曾振, 张兴洲, 周建波. 2017a. 跃进山杂岩中二叠纪辉长岩的锆石U-Pb年代学、地球化学及其地质意义. 地质论评, 63(增1): 267-268.
曾振, 张兴洲, 周建波, 张宏涛, 刘洋, 崔维龙. 2017b. 跃进山杂岩中二叠纪变玄武岩的锆石U-Pb年代学、地球化学及其地质意义. 大地构造与成矿学, 42(2): 365-378.
张夺, 刘永江, 李伟民, 温泉波, 吴迪生. 2018. 佳木斯地块及邻区早古生代-晚中生代构造演化. 世界地质, 37(4): 1149-1166.
张凤旭, 张兴洲, 张凤琴, 孙加鹏, 邱殿明, 薛进. 2010. 黑龙江省虎林盆地单元结构的地质-地球物理研究. 吉林大学学报(地球科学版), 40(5): 1170-1176.
张磊, 李秋根, 史兴俊, 童英, 侯继尧, 张建军, 王涛. 2013. 佳木斯地块中部二叠纪永清花岗闪长岩的锆石U-Pb年龄、地球化学特征及其地质意义. 岩石矿物学杂志, 32(6): 1022-1036.
张兴洲, 马志红. 2010. 黑龙江东部中-新生代盆地演化. 地质与资源, 19(3): 191-196.
张兴洲, 乔德武, 迟效国, 周建波, 孙跃武, 张凤旭, 张淑琴, 赵庆英. 2011. 东北地区晚古生代构造演化及其石油地质意义. 地质通报, 30(2-3): 205-213.
张兴洲, 郭冶, 曾振, 付秋林, 蒲建彬. 2015. 东北地区中-新生代盆地群形成演化的动力学背景. 地学前缘, 22(3): 88-98.
郑建平, 戴宏坤. 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合. 中国科学(地球科学), 48(4): 436-456.
周建波, 张兴洲, Wilde SA, 郑常青, 金巍, 陈红, 韩杰. 2009. 黑龙江杂岩的碎屑锆石年代及其大地构造意义. 岩石学报, 25(8): 1924-1936.
周建波, 韩杰, 张兴洲, 曾维顺. 2010. 牡丹江地区蓝片岩的地球化学特征及其大地构造意义. 吉林大学学报(地球科学版), 40(1): 93-103.
周建波, 张兴洲, Wilde SA, 郑常青. 2011. 中国东北~500Ma泛非期孔兹岩带的确定及其意义. 岩石学报, 27(4): 1235-1245.
周建波, 石爱国, 景妍. 2016. 东北地块群:构造演化与古大陆重建. 吉林大学学报(地球科学版), 46(4): 1042-1055.
周建波, 蒲先刚, 侯贺晟, 韩伟, 曹嘉麟, 李功宇. 2018. 东北中生代增生杂岩及对古太平洋向欧亚大陆俯冲历史的制约. 岩石学报, 34(10): 2845-2856.
周丽云, 王瑜, 王娜. 2015. 中国东北完达山地区早白垩世同构造岩浆侵位——对晚中生代左行走滑作用的响应. 地质通报, 34(2-3): 400-418.
朱光, 刘程, 顾承串, 张帅, 李云剑, 苏楠, 肖世椰. 2018. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示. 中国科学(地球科学), 48(4): 415-435.
朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学(地球科学), 42(8): 1135-1159.