锆石是自然界中常见的副矿物,普遍存在于沉积、岩浆和变质岩中,因具有普通铅含量低,富含U、Th等放射性元素,离子扩散速率低,封闭温度高等特点,被广泛用于同位素U-Pb测年研究(Lee et al., 1997)。又因锆石Hf含量较高(通常在0.5%~2%之间),Lu/Hf比值很低(通常小于0.02),同时也是Hf同位素分析的理想矿物,准确的Hf同位素初始比值结合锆石的U-Pb年龄,经常被用于示踪物质的来源,了解大陆地壳增长和演化(侯可军等,2007)。近年来发展起来的锆石微区原位O同位素分析因幔源岩浆结晶出来的锆石有非常一致的δ18O值(5.3±0.3)‰(Valley et al., 1998, 2005),而且这个比值受岩浆分异的影响很小,即由岩浆分异造成的全岩δ18O值增高会被锆石/熔体之间的δ18O分馏增加所补偿,因而锆石O同位素多结合Hf同位素被应用于研究花岗岩的成因、特别是鉴别幔源岩浆在花岗岩形成过程中的作用(Li et al., 2009)。此外,锆石中常含有含量较高的稀土元素及微量元素,稀土元素配分模式可以用于区别幔源和壳源锆石(Hoskin and Ireland, 2000),利用U-Yb、U/Yb-Hf等微量元素图解可区分锆石源自陆壳岩浆结晶还是洋壳岩浆结晶(Grimes et al., 2007)。然而,锆石中铀含量所蕴藏的地质意义却较少被关注。我们目前了解到锆石铀含量具备以下两方面的指示意义:一方面,锆石铀含量和岩石铀含量往往呈良好的正相关关系(相关系数达0.83),可以灵敏、有效地反映出岩体的原始富铀程度(郑懋公和朱杰辰,1984),因而少数学者将锆石铀含量的研究用于评价岩体的产铀远景(李耀菘等,1995;陈振宇和王登红,2014;伍皓等,2019);另一方面,如岩浆锆石中Hf元素含量能指示锆石结晶时熔体中的Hf含量一样(Amelin et al., 1999; Wang et al., 2018),锆石中的铀含量同样能指示熔体中的铀含量(李耀菘等,1995)。但是,运用此原理能发掘出哪些有用的地质信息,目前尚不清楚。
铀源是铀矿形成的先决条件,华南花岗岩型铀矿床中的铀源一直存在争议,主要包括以下观点:(1)已固结地质体:因铀矿床普遍存在矿岩时差(杜乐天,1964;杜乐天和王玉明,1984;李建红和夏宗强,2015),主流观点认为铀主要来自浅部早于铀矿形成的已固结的地质体,包括富铀沉积建造、富铀变质岩层和富铀岩体等(闵茂中和张祖还,1993;邓平等,2003a;陈振宇等,2014;邵飞等,2014;许丽丽等,2017;吴德海等,2019;徐争启等,2019);(2)分异岩浆:强烈的分离结晶作用可以导致铀等元素在花岗岩残余熔体中高度富集(李妩巍等,2011),因此部分学者将花岗岩型铀矿视为岩浆活动后期产物(陈毓川,1989; Hua et al., 2003;吴烈勤等,2003;叶天竺,2014);(3)地幔柱或热点:少数学者认为地幔柱或热点可能为成矿提供物质来源、动力来源和矿化剂(李子颖等, 1999, 2010;赵军红等,2001;李子颖,2006;王正其和李子颖,2007;刘成东等,2016);(4)U、Th、K富集圈:姜耀辉等(2004)依据岩石圈之下可能存在富含U、Th、K等生热元素的富集圈的认识(鲍学昭和张阿利,1998;鲍学昭,1999),认为成矿物质和流体可来源于该富集圈。基于上述锆石铀含量与铀源研究的背景资料,本文以铀矿勘探研究程度相对较高的诸广山南体花岗岩为样本,尝试通过充分搜集以往发表的锆石U-Pb测年文献,统计岩体锆石年龄及其铀含量这种全新方法追索其铀源,探讨锆石铀含量和铀源之间的关系,以期为华南花岗岩型铀矿铀源及其成因研究提供新角度和新认识。
1 地质概况诸广山复式花岗岩体位于广东北部、湖南东南部和江西西南部三省交界区域内,呈巨型岩基产出,总出露面积大于2500km2。本文研究的诸广山南体位于南岭东西向构造带和万洋山-诸广山南北向构造带的复合部位,在行政区划上主要属于粤北的乐昌、仁化和南雄等县市。诸广山南体大致呈东西向展布,出露面积大于1500km2,是一个由加里东期(扶溪岩体和澜河混合岩)、印支期(白云、乐洞、江南、龙华山、大窝子、寨地、古亭、油洞、石溪和塘洞岩体)和燕山期岩体(长江、九峰、三江口、红山、企岭、茶山、赤坑、日庄和百顺岩体)组成的巨型复式岩体(邓平等,2011; Deng et al., 2012)(图 1)。1956年开始至今,诸广山复式花岗岩体内共产有鹿井、长江、百顺、城口和南雄等5个铀矿田,探明铀矿床共计30余个,是我国重要的花岗岩型铀矿聚集区(吕立娜等,2017)。其中,5个矿田中有4个分布在南体印支-燕山期花岗岩中,中国目前花岗岩型铀矿中单个矿床规模最大的棉花坑铀矿床也产在其中(高飞等,2014)。
![]() |
图 1 诸广山南体花岗岩位置图(a)与地质简图(b)(据Deng et al., 2012; Bonnetti et al., 2018修改) Fig. 1 The location (a) and sketch geological map (b) of southern Zhuguangshan granitic composite (modified after Deng et al., 2012; Bonnetti et al., 2018) |
在数据搜集过程中,我们将采自高坪地区29号(G001)、30号(G002)样品根据采样位置归为白云岩体;8号采自钻孔样品(CJ1593)年龄为124Ma,明显晚于长江岩体~160Ma的年龄,本文将其归为长江岩体晚期岩脉或小岩体样品。在此基础之上,共搜集到诸广山南体花岗岩14个岩体(7个燕山期岩体,7个印支期岩体),37件样品(地表 26件,钻孔11件),3种岩性(黑云母花岗岩21件、二云母花岗岩12件、花岗岩岩脉4件),共467个参与岩体U-Pb定年的锆石数据(表 1、表 2)。在数据处理过程中,我们引入变异系数(C.V)来反映各个样品中锆石铀含量的差别情况,其计算公式为: C.V=(σ/μ)×100% (σ为标准偏差,μ为算数平均值),标准偏差(σ)的计算公式为:
![]() |
表 1 诸广山南体花岗岩锆石数据来源表 Table 1 The zircon data source table of the southern Zhuguangshan granitic composite |
![]() |
表 2 诸广山南体花岗岩样品锆石铀含量统计表 Table 2 Statistical data of the uranium contents in zircons from the southern Zhuguangshan granitic composite samples |
从37件样品锆石铀含量变异系数来看(表 1),变异系数范围为0.23~2.05,仅7号(CJ-02)、12号(14DL-2)、14号(SJK-02)、22号(ZK3-4-4A)和34号(L-01)共5件样品系数大于1,显示样品中各锆石铀含量之间差别大。其余32件样品中锆石铀含量变异系数小于1,总体差异相对较小。从样品期次统计来看,燕山期样品的锆石平均铀含量为1591×10-6(n=274),印支期样品的锆石平均铀含量为1555×10-6(n=193),两者含量相当。从样品锆石铀含量对比图来看(图 2),8号(CJ1593)、20号(HM906)、29号(G001)、30号(G002)钻孔岩脉(小岩体)样品锆石平均铀含量明显高于同期地表岩体样品。该类锆石在阴极发光下颜色较深,环带不明显。其中,8号(CJ1593)锆石平均铀含量为8938×10-6(n=14),变异系数0.74,最高含量达27833×10-6,锆石铀含量频率分布直方图显示10个锆石铀含量分布于0×10-6~10000×10-6区间,3个在10000×10-6~20000×10-6区间,1个在25000×10-6~30000×10-6区间,其铀含量为长江岩体1~7号样品的7.7~13.1倍(图 3a);20号(HM906)锆石平均铀含量为3528×10-6(n=16),变异系数0.80,最高含量9145×10-6,14个锆石铀含量分布于0×10-6~6000×10-6区间,2个在8000×10-6~10000×10-6区间,其铀含量为油洞岩体21~22号样品的2.7~3.2倍(图 3b);29号(G001)锆石平均铀含量分别为3533×10-6(n=10),变异系数0.66,最高含量为8643×10-6,9个锆石铀含量分布于0×10-6~6000×10-6区间,1个在8000~10000×10-6区间,其含量为白云岩体27-28号样品的1.9~3倍(图 3c);30号(G002)锆石平均铀含量为4520×10-6(n=8),变异系数0.36,最高含量为7529×10-6,7个锆石铀含量分布于0×10-6~6000×10-6区间,1个在6000×10-6~8000×10-6区间,其含量为白云岩体27~28号样品的2.5~3.8倍(图 3d)。
![]() |
图 2 诸广山南体花岗岩样品锆石铀含量对比图 Fig. 2 Zircon uranium content comparison diagram of the southern Zhuguangshan granitic composite samples |
![]() |
图 3 诸广山南体花岗岩岩脉样品锆石铀含量频率分布直方图 Fig. 3 The histograms of the uranium contents of zircons from the acid dike samples in the southern Zhuguangshan granitic composite |
如上所述,诸广山南体花岗岩中8号(CJ1593)、20号(HM906)、29号(G001)、30号(G002)钻孔岩脉(小岩体)样品中锆石的平均铀含量明显高于同期地表岩体样品。鉴于现测锆石铀含量与锆石形成时初始铀含量差异不大(郑懋公和朱杰辰,1984),所以本文统计的锆石铀含量基本能代表锆石结晶时熔体中的铀含量。熔体中铀含量的富集一般被认为是花岗岩浆结晶分异的结果(李妩巍等,2011;吴福元等, 2017),也有学者认为铀富集是因来自深部U、Th、K富集圈中铀的加入(Jiang and Yang, 2000; Jiang et al., 2002)。本文认为前者才是主因,主要依据在于:吴福元等(2017)认为在中国华南地区很多岩体中心部位的补体或晚期岩枝即为高分异花岗岩,岩体的主体本身也是高分异成因的,此时的补体多为超分异岩石。而且,高分异花岗岩中的锆石经常具有较高的U或Th含量,与所谓的热液锆石极为类似(Wang et al., 2016)。实际上,本文8号(CJ1593)、20号(HM906)样品的地化资料显示其稀土元素含量均偏低、Eu负异常明显、配分模式明显呈海鸥型,且表现出一定程度的“四分组效应”,属高分异S型花岗岩(徐文雄等,2014;周航兵等,2018)。29号(G001)、30号(G002)样品虽无地化资料,但锆石中多组数据Th/U小于0.1(虞航等,2017),这些锆石可能是受后期热液改造的热液锆石或是形成于岩浆晚期富含高铀挥发分的高温流体阶段的岩浆锆石(吴元保和郑永飞,2004),所以这两件样品可能也经历了高度的结晶分异作用。因此,我们认为岩体中锆石铀含量富集原因源于花岗岩浆的高度结晶分异作用。
4.2 锆石铀含量与铀源关系探讨 4.2.1 酸性岩脉(小岩体)侵位期、基性岩脉侵位期及铀成矿期对比矿岩时差是中国大部分铀矿床成矿时代的特点,花岗岩型铀矿床中表现明显。研究区印支期岩体多形成于225~239Ma,燕山期岩体形成于152~168Ma(表 1),而铀矿化时间多集中在距今约140±5Ma、120±5Ma、100±5Ma、90±5Ma、70±5Ma和50±5Ma(陈跃辉等,1997;胡瑞忠等, 2007, 2019;夏宗强和李建红,2009;陈振宇等,2014;张龙等,2018),存在明显的矿岩时差。更有如广西摩天岭岩体中达亮矿床与岩体时差382~467Ma,新村矿床与岩体时差达706~713Ma(李建红和夏宗强,2015)。另一方面,早有学者发现燕山晚期岩脉(小岩体)与铀矿化比岩体与铀矿化的形成时间更接近,矿岩脉时差小于矿岩体时差,而且几乎每一期仅形成岩脉(小岩体)的酸性和中基性岩浆活动之后都有相应的铀矿化形成(邓平等,2002;李建红和夏宗强,2015),赣南白面石铀矿田、河草坑铀矿田和隘高铀矿床也存在这种现象(林锦荣等,2011)。酸性岩脉(小岩体)和基性岩脉被认为能为铀成矿提供热源和矿化剂(杜乐天和王玉明,1984;夏宗强等,2016),具较高铀含量的酸性岩脉也被认为能提供部分铀源(周航兵等,2018)。本文对诸广山南体和贵东地区部分铀矿床岩脉与铀矿化形成时间进行了系统梳理,目前发现了~140Ma、~125Ma、~105Ma、~90Ma四期酸性、基性岩岩浆活动及与之相对应的铀矿化(表 3)。
![]() |
表 3 诸广山-贵东地区铀矿床岩脉侵位期与成矿早期对比表 Table 3 Contrast data of the dyke emplacement period and early metallogenic period from the uranium ore deposit in Zhugang-Guidong area |
第一期(~140Ma):诸广302矿床存在142.5Ma的铀矿化,矿床中可见138.6Ma的酸性岩脉和139.6Ma的辉绿岩脉同时侵位;贵东337矿床存在138Ma的铀矿化,矿床中可见141.2Ma帽峰式小岩体和141.4Ma的辉绿岩脉同时侵位。
第二期(~125Ma):诸广302矿床存在120Ma的铀矿化,矿床中可见123.9Ma的酸性岩脉,基性岩浆侵入活动在区域岩体内还未发现,仅在曲江县长坝地区以玄武岩产出,呈似层状侵入于丹霞盆地下部地层(K1)中,成岩年龄为128.49Ma;诸广361矿床存在120Ma、124.9Ma的铀矿化年龄,区域上分布九龙岩式小岩体,主要为细粒二云母花岗岩,成岩年龄为115~119Ma;贵东下庄333矿床存在122.3Ma的铀矿化,区域上分布竹筒尖式小岩体,主要为细粒含斑白云母化的黑云母花岗岩,成岩年龄为125~128Ma。
第三期(~105Ma):诸广302、贵东339矿床存在100~113Ma的铀矿化,区域上分布竹山下式小岩体,主要为浅色细粒二(白)云母花岗岩,成岩年龄为112~116Ma,矿床中可见105~110Ma的辉绿岩侵入。
第四期(~90Ma):贵东335矿床存在93.5Ma的铀矿化,区域上分布88~95Ma的细晶岩和花岗斑岩,也可见92Ma的拉辉煌斑岩侵位。70±5Ma和50±5Ma属晚期铀矿化,该期基性岩体主要分布在广西、浙江和江西境内(徐夕生和谢昕,2005),而华南该期花岗岩体鲜见报道,是否该期岩体均呈隐伏状态还未被发现?尚需进一步研究。
4.2.2 高分异酸性岩脉(小岩体)侵位期、基性岩脉侵位期及铀成矿早期的初步对应上文已初步证实140~90Ma期间酸性岩脉(小岩体)侵位期、基性岩体侵位期及铀成矿期具有良好的对应关系。其中,诸广山南体302矿床中138.6Ma(CJ1593)和123.9Ma(HM906)酸性岩脉均属与第一、二期铀矿化对应的高分异花岗岩体。诸广塘湾燕山晚期花岗岩小岩体、苗儿山同期花岗岩岩脉同样被认为是与铀矿化紧密相关的高分异岩体(李妩巍等,2011;阮昆等,2017),结合华南很多岩体中心部位的补体或晚期岩枝即为高分异花岗岩的宏观认识(吴福元等,2017),我们推测上述(表 3)帽峰式、九龙岩式、竹筒尖式、竹山下式小岩体等可能都属于高分异花岗岩体,如此,高分异酸性岩脉(小岩体)侵位期、基性岩脉侵位期与铀成矿早期(140~90Ma)则具有良好的对应关系。
4.2.3 矿-岩脉短时差及岩脉锆石富铀对铀源的启示基性岩脉与铀矿化的关系研究已获得诸多进展:基性脉岩不但可以为内生型铀矿化提供有利于富集场所,控制铀矿床的定位,而且成矿流体中的CO2等矿化剂组份可能是受基性岩脉侵位代表的岩石圈伸展事件控制而主要来自地幔(邓平等,2003b;胡瑞忠等,2007; Hu et al., 2009;刘治恒和巫晓兵,2009;严冰等,2013;陈佑纬等,2019;骆金诚等,2019;钟福军等,2019)。基性岩脉侵位期与花岗岩型铀化期的良好对应揭示出一旦矿化剂注入(基性岩脉侵位)就会形成铀矿化,表明每期铀成矿过程迅速,这就要求短时间内必须有充足的铀供给,符合这一条件的铀只能主要来自地壳高分异花岗岩浆,因同期高分异酸性岩脉锆石指示深部高温熔体中已富集大量的铀,只有此处才能在更深部地幔矿化剂注入后短时间内提供充足的铀源形成铀矿化,这也是高分异酸性岩脉(小岩体)、基性岩脉和铀矿化时间基本一致的原因所在。因幔源物质参与地壳花岗岩浆铀富集的可能性较小,目前认为铀源不大可能来自地幔。考虑到成矿期含矿化剂流体沿断裂上升速度快,近地表热量有限,难以与已固结地质体进行高效的热交换和铀活化、萃取。而且依据锆石铀含量与全岩铀含量成正相关的指示来看,浅部早期已固结地质体锆石铀含量明显较成矿期岩脉低(表 1),表明其全岩相对来说也并不富铀,所以浅部地质体对铀源贡献较小。综上,初步认为华南花岗岩型铀矿床中铀可能主要来自高分异花岗岩浆。
4.3 成矿过程初步推演高分异酸性岩脉(小岩体)侵位期、基性岩脉侵位期及铀成矿早期的契合初步指示铀源可能主要来自地壳高分异花岗岩浆。但是根据杜乐天和王文广(2009)、杜乐天(2015)的研究,除CO2等矿化剂之外本区富碱热液也主要来自地幔,初步推测出华南花岗岩型铀成矿可能属壳幔混合作用结果。国内余达淦(2001)最早预见到这一深源成矿过程的可能性,他指出深部CO2和F的贡献将是壳幔作用过程的重要纽带,因F能活化、迁移熔体中的铀,CO2则是铀在转入溶液后进行搬运和沉淀的主要载体。据此,推演华南花岗岩型铀矿成矿过程可能为:岩石圈伸展期,软流圈地幔上涌,使岩石圈地幔部分熔融,形成基性岩浆;同时岩石圈地壳因地幔热烘烤,地壳发生部分熔融,发生高分异结晶作用形成高分异富铀岩浆和酸性岩脉;随后地幔基性岩浆、富含矿化剂(CO2和F)流体沿深断裂上升,幔源流体溶解、活化地壳高分异岩浆中铀形成成矿流体与基性岩浆共同向上运移,至近地表带,成矿流体与裂隙带中的大气降水混合,造成温度骤然降低和流体稀释而沉淀成矿,基性岩浆则形成岩脉,断裂系统为铀矿的形成提供了运移通道和成矿空间。铀成矿时间与酸性、基性岩脉形成时间基本一致,每期成矿过程短暂而剧烈,成矿期次受控于岩石圈伸展周期。
4.4 锆石铀含量的找矿意义探讨铀主要来自地壳高分异花岗岩浆,燕山晚期酸性岩脉(小岩体)又是高分异花岗岩浆的产物,岩浆中铀的丰度能较好记录在锆石中,若将岩脉(小岩体)锆石铀含量作为铀源丰度乃至矿床品位的判别指标将从理论上是可行的。本文通过对诸广山南体37个样品统计发现,当20号样品(HM906)锆石平均铀含量达到3528×10-6才发现了同期的沥青铀矿化,因此,是否可以将锆石平均铀含量达到3500×10-6作为铀成矿下限参考值?即达到或大于此值才会出现铀矿化,值得进一步探索。此外,如上文所述,高分异岩体锆石一般具有极高的铀含量,此类锆石能否作为特殊的含铀矿物进行铀元素的萃取,值得做相关矿冶实验进行尝试。
5 结论(1) 华南花岗岩型铀矿存在矿岩长时差和矿岩脉(小岩体)间的短时差均早已被前人注意到,本文在此基础之上,通过统计岩体锆石中铀含量这种全新方法,首次揭示出酸性岩脉(小岩体)锆石较岩体锆石结晶时熔体中的铀会成倍富集,发现花岗岩脉(小岩体)可能均属岩浆分异结晶晚期产物。依据高分异花岗岩脉(小岩体)侵位期、基性岩脉侵位期、铀成矿早期(140~90Ma)三者的良好对应,初步认为铀并非来自占地表绝大部分面积的早期形成的已固结花岗岩及其他地质体,也非来自地幔,而是主要来自地表出露极少的与矿化同期的花岗岩脉(小岩体)的母体——地壳高分异熔融态花岗岩浆。成矿期的铀主要不是在浅部地质体中被动萃取而来,而是在花岗岩浆中高度结晶分异而成,支持花岗岩型铀矿为岩浆活动后期产物的认识。
(2) 华南花岗岩型铀成矿可能属壳幔混合作用结果,即铀源来自地壳分异岩浆,成矿流体和矿化剂主要来自地幔,而成矿空间受断裂系统控制。初步认为因岩石圈伸展能促使地壳铀源(高分异花岗岩浆)、地幔矿化剂及运移、储集空间(基性岩脉及断裂系统)的同期形成,可致使每期岩石圈伸展必然成矿。
致谢 两位匿名审稿专家和本刊编辑提出了很多宝贵的修改意见,提升了文章质量,在此表示衷心感谢!
Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399(6733): 252-255 DOI:10.1038/20426 |
Bao XZ and Zhang AL. 1998. Geochemistry of U and Th and its influence on the origin and evolution of the earth's crust and the biological evolution. Acta Petrologica et Mineralogica, 17(2): 160-172 (in Chinese with English abstract) |
Bao XZ. 1999. Distribution of U and Th and their nuclear fission in the outer core of the earth and their effects on the geodynamics. Geological Review, 45(Suppl.1): 82-92 (in Chinese with English abstract) |
Bonnetti C, Liu XD, Mercadier J, Cuney M, Deloule E, Villeneuve J and Liu WQ. 2018. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China:Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralization. Ore Geology Review, 92: 588-612 DOI:10.1016/j.oregeorev.2017.12.010 |
Chen YC, Pei RF, Zhang HL, Lin XD, Bai G, Li CY, Hu YJ, Liu Q and Xian BQ. 1989. Geology of Nonferrous and Rare Metal Deposits Related to Mesozoic Granites in Nanling Area. Beijing: Geological Publishing House, 1-508 (in Chinese)
|
Chen YH, Chen ZY, Cai YQ, Shi ZH, Feng QH and Fu J. 1997. Space-time evolution of Meso-Cenozoic extensional tectonics and distributions of uranium mineralizations in southeastern China. Uranium Geology, 13(3): 128-138 (in Chinese with English abstract) |
Chen YW, Hu RZ, Luo JC and Dong SH. 2019. In-situ mineral chemistry and chronology analyses of the pitchblende in the Shazijiang uranium deposit and their implications for mineralization. Acta Petrologica Sinica, 35(9): 2679-2694 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.09.04 |
Chen ZY and Wang DH. 2014. The discriminate significance of Th, U content and Th/U ratio of zircon for uranium and non-uranium granite. Mineral Deposits, 33(Suppl.): 1159-1160 (in Chinese) |
Chen ZY, Huang GL, Zhu B, Chen ZH, Huang F, Zhao Z and Tian ZJ. 2014. The characteristics and metallogenic specialization of granite-hosted uranium deposits in the Nanling Region. Geotectonica et Metallogenia, 38(2): 264-275 (in Chinese with English abstract) |
Deng P, Shu LS, Tan ZZ and Wu LQ. 2002. Mesozoic tectonomagmatic activity and uranium metallogenetic sequence in Mid-Nanling tectonic belt. Uranium Geology, 18(5): 257-263 (in Chinese with English abstract) |
Deng P, Shu LS and Tan ZZ. 2003a. The geological setting for the formation of rich uranium ores in Zhuguang-Guidong large-scale uranium metallogenetic area. Geological Review, 49(5): 486-494 (in Chinese with English abstract) |
Deng P, Shen WZ, Ling HF, Ye HM, Wang XC, Pu W and Tan ZZ. 2003b. Uranium mineralization related to mantle fluid:A case study of the Xianshi deposit in the Xiazhuang uranium orefield. Geochimica, 32(6): 520-528 (in Chinese with English abstract) |
Deng P, Ren JS, Ling HF, Shen WZ, Sun LQ, Zhu B and Tan ZZ. 2011. Yanshanian granite batholiths of southern Zhuguang Mountian:SHRIMP zircon U-Pb dating and tectonic implications. Geological Review, 57(6): 881-888 (in Chinese with English abstract) |
Deng P, Ren JS, Ling HF, Shen WZ, Sun LQ, Zhu B and Tan ZZ. 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chinese Science Bulletin, 57(13): 1542-1552 DOI:10.1007/s11434-011-4951-8 |
Du LT. 1964. A brief evaluation on the concept of epithermal hydrothermal pumping deposits and related issues. Uranium Geology, (2): 10-11 (in Chinese) |
Du LT and Wang YM. 1984. The unity of metallogenic mechanism of granite-type, volcanic-type, carbon-silicone-mudstone and sandstone-type uranium deposits in South China. Radioactive Geology, (3): 1-10 (in Chinese) |
Du LT and Wang WG. 2009. Alkaline mantle fluids and alkali-rich hydrothermal metallogenesis. Mineral Deposits, 28(5): 599-610 (in Chinese with English abstract) |
Du LT. 2015. Global Hydrothermal Uranium Geochemistry:Reconstruction of Contemporary International Hydrothermal Uranium Theory. Beijing: Geological Press, 1-142 (in Chinese)
|
Gao F, Pang YQ and Zhao L. 2014. Study on mineral characteristics of extra-rich ore body of Mianhuakeng uranium deposit in northern Guangdong Province. Mineral Deposits, 33(Suppl.): 191-192 (in Chinese) |
Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K and Schwartz JJ. 2007. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance. Geology, 35(7): 643-646 DOI:10.1130/G23603A.1 |
Hoskin PWO and Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630 DOI:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2 |
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract) |
Hu RZ, Bi XW, Peng JT, Liu S, Zhong H, Zhao JH and Jiang GH. 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China. Mineral Deposits, 26(2): 139-152 (in Chinese with English abstract) |
Hu RZ, Burnard PG, Bi XW, Zhou MF, Peng JT, Su WC and Zhao JH. 2009. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China:Evidence from He, Ar and C isotopes. Chemical Geology, 266(1-2): 86-95 DOI:10.1016/j.chemgeo.2008.07.017 |
Hu RZ, Luo JC, Chen YW and Pan LC. 2019. Several progresses in the study of uranium deposits in South China. Acta Petrologica Sinica, 35(9): 2625-2636 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.09.01 |
Hua RM, Chen PR, Zhang WL, Liu XD, Lu JJ, Lin JF, Yao JM, Qi WH, Zhang ZS and Gu CY. 2003. Metallogenic systems related to Mesozoic and Cenozoic granitoids in South China. Science in China (Series D), 46(8): 816-829 DOI:10.1007/BF02879525 |
Huang GL, Cao HJ, Ling HF, Shen WZ, Wang XD and Fu SC. 2012. Zircon SHRIMP U-Pb age, geochemistry and genesis of the Youdong granite in northern Guangdong. Acta Geologica Sinica, 86(4): 577-586 (in Chinese with English abstract) |
Huang GL, Liu XY, Sun LQ, Li ZS and Zhang SJ. 2014. Zircon U-Pb dating, geochemical characteristic and genesis of the Changjiang granite in northern Guangdong. Acta Geologica Sinica, 88(5): 836-849 (in Chinese with English abstract) |
Jiang YH and Yang WZ. 2000. High contents of Th and U in late orogenic granitoids to track lithospheric delamination:Evidence from granitoids in western Kunlun orogenic belt, China. Chinese Journal of Geochemistry, 19(3): 267-272 DOI:10.1007/BF03166886 |
Jiang YH, Ling HF, Jiang SY, Zhou XR, Rui XJ and Yang WZ. 2002. Enrichment of mantle-derived fluids in the formation process of granitoids:Evidence from the Himalayan granitoids around Kunjirap in the western Qinghai-Tibet Plateau. Acta Geologica Sinica, 76(3): 343-350 |
Jiang YH, Jiang SY and Ling HF. 2004. Mantle-derived fluids and uranium mineralization. Earth Science Frontiers, 11(2): 491-499 (in Chinese with English abstract) |
Lan HF, Ling HF, Sun LQ, Wang KQ, Ouyang PN, Liu JW and Wang HZ. 2016. Study on petrogenesis and uranium mineralization potential of Taojindong Granite in southern Zhuguangshan composite pluton. Geological Journal of China Universities, 22(1): 12-29 (in Chinese with English abstract) |
Lan HF, Ling HF, Chen WF, Liu JW and Ouyang PN. 2018. Study on petrogenesis and uranium mineralization potential of eastern Sanjiangkou granitic pluton. Geological Journal of China Universities, 24(2): 172-185 (in Chinese with English abstract) |
Lee JKW, Williams IS and Ellis DJ. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390(6656): 159-162 DOI:10.1038/36554 |
Li JH and Xia ZQ. 2015. The time difference between uranium ore-forming and intrusive pluton in Southeast China. Acta Geologica Sinica, 89(Suppl.): 154-156 (in Chinese) |
Li WW, Chen WF and Zhu KR. 2011. Geochemical characteristics and genesis of Mesozoic acid dikes in Miaoershan area. Uranium Geology, 27(6): 337-344 (in Chinese with English abstract) |
Li XH, Hu RZ and Rao B. 1997. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China. Geochimica, 26(2): 14-30 (in Chinese with English abstract) |
Li XH, Li XW, Wang XC, Li LQ, Liu Y and Tang GQ. 2009. Role of mantle-derived magma in genesis of Early Yanshanian granites in the Nanling Range, South China:In situ zircon Hf-O isotopic constraints. Science in China (Series D), 52(9): 1262-1278 DOI:10.1007/s11430-009-0117-9 |
Li YS, Zhu JC and Xia YL. 1995. The significance of zircon characteristic and its uranium concentration in evaluation of uranium metallogenetic prospect. China Nuclear Science and Technology Report, (1): 1-14 (in Chinese with English abstract) |
Li ZY, Li XZ and Lin JR. 1999. On the Meso-Cenozoic mantle plume tectonics, its relationship to uranium metallogenesis and prospecting directions in South China. Uranium Geology, 15(1): 9-17 (in Chinese with English abstract) |
Li ZY. 2006. Hostspot uranium metallogenesis in South China. Uranium Geology, 22(2): 65-69, 82 (in Chinese with English abstract) |
Li ZY, Huang ZX, Li XZ and He JG. 2010. Guidong Magmatite and Uranium Mineralization in Nanling Area. Beijing: Geological Publishing House, 1-277 (in Chinese with English abstract)
|
Lin JR, Li ZY, He YQ, Pang YQ, Hu ZH and Gao F. 2011. Mesozoic-Cenozoic magmatic evolution and uranium mineralization in southern Jiangxi. Acta Mineralogica Sinica, (Suppl.1): 262-263 (in Chinese) |
Liu CD, Li ZW, Liu JH and Liang L. 2016. Research progress in mantle fluids involved uranium metallization:A case study of granite type uranium deposit cluster area, northern Guangdong. Uranium Geology, 32(4): 193-199 (in Chinese with English abstract) |
Liu ZH and Wu XB. 2009. The relationship between medium-mafic dykes and uranium mineralization. Modern Mining, 25(3): 77-80 (in Chinese) |
Luo JC, Hu RZ, Fayek M, Li CS, Bi XW, Abdu Y and Chen YW. 2015. In-situ SIMS uraninite U-Pb dating and genesis of the Xianshi granite-hosted uranium deposit, South China. Ore Geology Reviews, 65: 968-978 DOI:10.1016/j.oregeorev.2014.06.016 |
Luo JC, Qi YQ, Wang LX, Chen YW, Tian JJ and Shi SH. 2019. Ar-Ar dating of mafic dykes from the Xiazhuang uranium ore field in northern Guangdong, South China:A reevaluation of the role of mafic dyke in uranium mineralization. Acta Petrologica Sinica, 35(9): 2660-2678 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.09.03 |
Lv LN, Dai FH, Li L and Han ZH. 2017. Zhuguangshan rock mass uranium metallogenic conditions and potentiality analysis in South China. Coal Geology of China, 29(12): 36-40, 87 (in Chinese with English abstract) |
Min MZ and Zhang ZH. 1993. On uraniferous depositional formation in South China. Acta Sedimentologica Sinica, 11(4): 1-7 (in Chinese with English abstract) |
Ruan K, Wu XG, Long ZQ, Wu JY, Sun ZR, Liu GA and Wu LQ. 2017. Discussion on the geochemical characteristics and uranium mineralization of fine-grained two-mica granite in Tangwan, North Guangdong. Journal of Mineralogy and Petrology, 37(3): 38-45 |
Shao F, Xu JJ, Shao S, Yao PF, Liu K, Wu WT and Zhang Y. 2014. Geological characteristics and mineralization of the granite-type uranium deposits in South China. Resources Survey and Environment, 35(3): 211-217 (in Chinese with English abstract) |
Sun LQ. 2018. Petrogenesis of the Mesozoic granites in the Zhuguangshan area in Nanling Region and their implications for the uranium mineralization. Ph. D. Dissertation. Nanjing: Nanjing University, 1-179 (in Chinese with English summary)
|
Valley JW, Kinny PD, Schulze DJ and Spicuzza MJ. 1998. Zircon megacrysts from kimberlite:Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133(1-2): 1-11 DOI:10.1007/s004100050432 |
Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK and Wei CS. 2005. 4.4 billion years of crustal maturation:Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580 DOI:10.1007/s00410-005-0025-8 |
Wang D, Wang XL, Cai Y, Goldstein SL and Yang T. 2018. Do Hf isotopes in magmatic zircons represent those of their host rocks?. Journal of Asian Earth Sciences, 154: 202-212 DOI:10.1016/j.jseaes.2017.12.025 |
Wang X, Chen J and Ren MH. 2016. Hydrothermal zircon geochronology:Age constraint on Nanling Range tungsten mineralization (Southeast China). Ore Geology Reviews, 74: 63-75 DOI:10.1016/j.oregeorev.2015.10.034 |
Wang ZQ and Li ZY. 2007. Discussion on mantle-derived uranium mineralization. Geological Review, 53(5): 608-615 (in Chinese with English abstract) |
Wu DH, Xia F, Pan JY, Liu GQ, Huang GL, Liu WQ and Wu JY. 2019. Characteristics of hydrothermal alteration and material migration of Mianhuakeng uranium deposit in northern Guangdong Province. Acta Petrologica Sinica, 35(9): 2745-2764 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.09.08 |
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites:Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 DOI:10.1007/s11430-016-5139-1 |
Wu H, Xia Y, Zhou KK and Zhang JJ. 2019. Study on correlation between uranium content of zircons and the metallization capacity of pluton:A case study of southern Zhuguang granitic composite. Uranium Geology, 35(4): 206-213 (in Chinese with English abstract) |
Wu LQ, Tan ZZ, Liu RZ and Huang GL. 2003. Discussion on uranium ore-formation age in Xiazhuang ore-field, northern Guangdong. Uranium Geology, 19(1): 28-33 (in Chinese with English abstract) |
Wu YB and Zheng YF. 2004. Mineralogical study of zircon genesis and constraints on U-Pb age interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese) DOI:10.1360/csb2004-49-16-1589 |
Xia ZQ and Li JH. 2009. Characteristics of basic dykes in the Cretaceous and its relationship with uranium mineralization in the Guidong-Zhuguangshan area. Acta Mineralogica Sinica, 29(Suppl.1): 641-643 (in Chinese) |
Xia ZQ, Wang BH, Xie XZ, Liu J, Pang YQ and Zhang MY. 2016. Preliminary ascertainment of the ore-forming geological bodies of granite-type uranium deposits and its prospecting significance, northern Guangdong Province. Journal of East China University of Technology, 39(2): 132-138 (in Chinese with English abstract) |
Xu LL, Li ZS and Tan ZZ. 2017. Analysis of the metallogenic conditions and model of the granite type uranium-rich orebody in southern China. Mineral Exploration, 8(2): 239-247 (in Chinese with English abstract) |
Xu WX, Tan ZY, Luo CW, Xu LL and Huang GL. 2014. Geochemical characteristic and ore-forming geological significance of fine crystalline granite in Mianhuakeng uranium deposit, northern Guangdong. Uranium Geology, 30(6): 345-355 (in Chinese with English abstract) |
Xu XS and Xie X. 2005. Late Mesozoic-Cenozoic basaltic rocks and crust-mantle interaction, SE China. Geological Journal of China Universities, 11(3): 318-334 (in Chinese with English abstract) |
Xu ZQ, Song H, Yin MH, Zhang CJ, Cheng FG and Tang CY. 2019. Uranium metallogenic mechanism of Neoproterozoic granites in South China:A case study from the Motianling granite. Acta Petrologica Sinica, 35(9): 2695-2710 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.09.05 |
Yan B, Yan H, Zhou L, Wang T, Xu GM and Cao Y. 2013. Isotopic characteristics of C, O, H and S in Xiangshan uranium orefield, Jiangxi Province. Journal of Mineralogy and Petrology, 33(3): 47-53 (in Chinese with English abstract) |
Ye TZ, Lü ZC and Pang ZS. 2014. Theory and Method of Prospecting Prediction in Exploration Area:Each Theory. Beijing: Geological Publishing House, 469-488 (in Chinese)
|
Yu DG. 2001. Prospecting ideas for Mesozoic granite-type, volcanics-type and exocontact-type uranium deposits in South China (Ⅰ). Uranium Geology, 17(5): 257-265 (in Chinese with English abstract) |
Yu H, Cai YQ, Li WL, Huang GL, Pang YQ, Wang WB and Zhang C. 2017. LA-ICP-MS zircon U-Pb ages of the fine-grained granites in Gaoping area, southern Zhuguang Mountains and their geological significances. Geological Review, 63(3): 781-792 (in Chinese with English abstract) |
Zhang L, Chen ZY, Li SG, Santosh M, Huang GL and Tian ZJ. 2017. Isotope geochronology, geochemistry, and mineral chemistry of the U-bearing and barren granites from the Zhuguangshan complex, South China:Implications for petrogenesis and uranium mineralization. Ore Geology Reviews, 91: 1040-1065 DOI:10.1016/j.oregeorev.2017.07.017 |
Zhang L, Chen ZY, Li XF, Li SG, Santosh M and Huang GL. 2018. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China:Implications for uranium mineralization. Lithos, 308-309: 19-33 DOI:10.1016/j.lithos.2018.02.029 |
Zhang L, Chen ZY, Li SR and Huang GL. 2018. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No.302) uranium deposit, northern Guangdong, South China. Acta Petrologica Sinica, 34(9): 2657-2670 (in Chinese with English abstract) |
Zhao JH, Hu RZ, Jiang GH and Xie GQ. 2001. Discussion of the relationship between mantle plume and uranium mineralization. Geotectonica et Metallogenia, 25(2): 171-178 (in Chinese with English abstract) |
Zheng MG and Zhu JC. 1984. Changes of uranium content in medium-acidic magmatite zircon and its geological significance in China. Radioactivity Geology, 23(3): 17-23 (in Chinese) |
Zhong FJ, Yan J, Xia F, Pan JY, Liu WQ, Lai J and Zhao QF. 2019. In-situ U-Pb isotope geochronology of uraninite for Changjiang granite-type uranium ore field in northern Guangdong, China:Implications for uranium mineralization. Acta Petrologica Sinica, 35(9): 2727-2744 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.09.07 |
Zhou HB, Pan JY, Zhong FJ, Qi JM and Han SC. 2018. Genesis of fine grained biotite granite in the Changjiang uranium ore field, northern Guangdong of China, and its relation with uranium mineralization. Journal of Mineralogy and Petrology, 38(1): 10-19 (in Chinese with English abstract) |
Zhu B, Deng P, Ling HF, Shen WZ and Tan ZZ. 2009. Research on the age and origin of Hongshan pluton in north Guangdong. Uranium Geology, 25(6): 321-329 (in Chinese with English abstract) |
Zou DF, Li FL, Zhang S, Huang B and Zong KQ. 2011. Timing of No. 335 ore deposit in Xiazhuang uranium orefield, northern Guangdong Province:Evidence from LA-ICP-MS U-Pb dating of pitchblende. Mineral Deposits, 30(5): 912-922 (in Chinese with English abstract) |
鲍学昭, 张阿利. 1998. 铀钍的地球化学及对地壳演化和生物进化的影响. 岩石矿物学杂志, 17(2): 160-172. |
鲍学昭. 1999. 外地核中U、Th的分布、核裂变及其对地球动力学的影响. 地质论评, 45(增1): 82-92. |
陈毓川, 裴荣富, 张宏良, 林新多, 白鸽, 李崇佑, 胡永嘉, 刘群, 冼柏棋. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 北京: 地质出版社, 1-508.
|
陈跃辉, 陈祖伊, 蔡煜琦, 施祖海, 封全宏, 付锦. 1997. 华东南中新生代伸展构造时空演化与铀矿化时空分布. 铀矿地质, 13(3): 128-138. |
陈佑纬, 胡瑞忠, 骆金诚, 董少花. 2019. 桂北沙子江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示. 岩石学报, 35(9): 2679-2694. |
陈振宇, 黄国龙, 朱捌, 陈郑辉, 黄凡, 赵正, 田泽瑾. 2014. 南岭地区花岗岩型铀矿的特征及其成矿专属性. 大地构造与成矿学, 38(2): 264-275. |
陈振宇, 王登红. 2014. 锆石Th、U含量和Th/U比值对产铀、不产铀花岗岩体的判别意义. 矿床地质, 33(增): 1159-1160. |
邓平, 舒良树, 谭正中, 吴烈勤. 2002. 南岭中段中生代构造-岩浆活动与铀成矿序列. 铀矿地质, 18(5): 257-263. DOI:10.3969/j.issn.1000-0658.2002.05.001 |
邓平, 舒良树, 谭正中. 2003a. 诸广-贵东大型铀矿聚集区富铀矿成矿地质条件. 地质论评, 49(5): 486-494. |
邓平, 沈渭洲, 凌洪飞, 叶海敏, 王学成, 濮巍, 谭正中. 2003b. 地幔流体与铀成矿作用:以下庄矿田仙石铀矿床为例. 地球化学, 32(6): 520-528. |
邓平, 任纪舜, 凌洪飞, 沈渭洲, 孙立强, 朱捌, 谭正中. 2011. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质论评, 57(6): 881-888. |
杜乐天. 1964. "浅成低温热液铀矿床的概念及有关问题"一文的简短评介. 铀矿地质, (2): 10-11. |
杜乐天, 王玉明. 1984. 华南花岗岩型、火山岩型、碳硅泥岩型、砂岩型铀矿成矿机理的统一性. 放射性地质, (3): 1-10. |
杜乐天, 王文广. 2009. 碱型地幔流体与富碱热液成矿. 矿床地质, 28(5): 599-610. DOI:10.3969/j.issn.0258-7106.2009.05.006 |
杜乐天. 2015. 全球热液铀矿地球化学:对当代国际热液铀矿理论的重建. 北京: 地质出版社, 1-142.
|
高飞, 庞雅庆, 赵琳. 2014. 粤北棉花坑铀矿床特富矿体矿物特征研究. 矿床地质, 33(增): 191-192. |
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025 |
胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139-152. DOI:10.3969/j.issn.0258-7106.2007.02.001 |
胡瑞忠, 骆金诚, 陈佑纬, 潘力川. 2019. 华南铀矿床研究若干进展. 岩石学报, 35(9): 2625-2636. |
黄国龙, 曹豪杰, 凌洪飞, 沈渭洲, 王小冬, 付顺成. 2012. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究. 地质学报, 86(4): 577-586. DOI:10.3969/j.issn.0001-5717.2012.04.004 |
黄国龙, 刘鑫扬, 孙立强, 李钟枢, 张世佳. 2014. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究. 地质学报, 88(5): 836-849. |
姜耀辉, 蒋少涌, 凌洪飞. 2004. 地幔流体与铀成矿作用. 地学前缘, 11(2): 491-499. DOI:10.3321/j.issn:1005-2321.2004.02.019 |
兰鸿锋, 凌洪飞, 孙立强, 王凯兴, 欧阳平宁, 刘建伟, 王洪作. 2016. 诸广山南体桃金洞花岗岩成因和铀成矿潜力探讨. 高校地质学报, 22(1): 12-29. |
兰鸿锋, 凌洪飞, 陈卫锋, 刘建伟, 欧阳平宁. 2018. 三江口东岩体岩石成因及产铀潜力分析. 高校地质学报, 24(2): 172-185. |
李建红, 夏宗强. 2015. 华东南与侵入岩体有关的铀成矿带矿岩时差. 地质学报, 89(增): 154-156. |
李妩巍, 陈卫锋, 朱康任. 2011. 苗儿山地区中生代酸性脉岩地球化学特征及其成因. 铀矿地质, 27(6): 337-344. DOI:10.3969/j.issn.1000-0658.2011.06.004 |
李献华, 胡瑞忠, 饶波. 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-30. DOI:10.3321/j.issn:0379-1726.1997.02.004 |
李耀菘, 朱杰辰, 夏毓亮. 1995. 锆石特征及铀含量在铀成矿远景评价中的意义. 中国核科技报告, (1): 1-14. |
李子颖, 李秀珍, 林锦荣. 1999. 试论华南中新生代地幔柱构造、铀成矿作用及其找矿方向. 铀矿地质, 15(1): 9-17. DOI:10.3969/j.issn.1000-0658.1999.01.002 |
李子颖. 2006. 华南热点铀成矿作用. 铀矿地质, 22(2): 65-69, 82. DOI:10.3969/j.issn.1000-0658.2006.02.001 |
李子颖, 黄志幸, 李秀珍, 何建国. 2010. 南岭贵东岩浆岩与铀成矿作用. 北京: 地质出版社, 1-277.
|
林锦荣, 李子颖, 何奕强, 庞雅庆, 胡志华, 高飞. 2011. 赣南中新生代岩浆演化与铀成矿. 矿物学报, (增1): 262-263. |
刘成东, 李志文, 刘江浩, 梁良. 2016. 地幔流体参与铀成矿作用的研究进展——以粤北花岗岩型铀矿矿集区为例. 铀矿地质, 32(4): 193-199. DOI:10.3969/j.issn.1000-0658.2016.04.001 |
刘治恒, 巫晓兵. 2009. 中基性脉岩与铀成矿的关系. 现代矿业, 25(3): 77-80. DOI:10.3969/j.issn.1674-6082.2009.03.022 |
骆金诚, 齐有强, 王连训, 陈佑纬, 田建吉, 石少华. 2019. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识. 岩石学报, 35(9): 2660-2678. |
吕立娜, 代凤红, 李莉, 韩志华. 2017. 华南诸广山岩体铀成矿条件及成矿潜力分析. 中国煤炭地质, 29(12): 36-40, 87. DOI:10.3969/j.issn.1674-1803.2017.12.07 |
闵茂中, 张祖还. 1993. 论华南含铀沉积建造. 沉积学报, 11(4): 1-7. |
阮昆, 吴星根, 龙自强, 吴建勇, 孙中瑞, 刘国安, 吴烈勤. 2017. 粤北塘湾地区燕山晚期小岩体地球化学特征与铀成矿探讨. 矿物岩石, 37(3): 38-45. |
邵飞, 许健俊, 邵上, 姚鹏飞, 刘琨, 吴闻涛, 张莹. 2014. 华南花岗岩型铀矿地质特征及成矿作用. 资源调查与环境, 35(3): 211-217. DOI:10.3969/j.issn.1671-4814.2014.03.009 |
孙立强. 2018.南岭诸广山地区中生代花岗岩成因及其对铀成矿作用的启示.博士学位论文.南京: 南京大学, 1-179
|
王正其, 李子颖. 2007. 幔源铀成矿作用探讨. 地质论评, 53(5): 608-615. DOI:10.3321/j.issn:0371-5736.2007.05.005 |
吴德海, 夏菲, 潘家永, 刘国奇, 黄国龙, 刘文泉, 吴建勇. 2019. 粤北棉花坑铀矿床热液蚀变与物质迁移研究. 岩石学报, 35(9): 2745-2764. |
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765. |
伍皓, 夏彧, 周恳恳, 张建军. 2019. 锆石铀含量与岩体成矿能力相关性研究——以诸广南部花岗岩为例. 铀矿地质, 35(4): 206-213. DOI:10.3969/j.issn.1000-0658.2019.04.003 |
吴烈勤, 谭正中, 刘汝洲, 黄国龙. 2003. 粤北下庄矿田铀矿成矿时代探讨. 铀矿地质, 19(1): 28-33. DOI:10.3969/j.issn.1000-0658.2003.01.005 |
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002 |
夏宗强, 李建红. 2009. 贵东-诸广山地区白垩纪中基性岩脉特征及其与铀成矿关系. 矿物学报, 29(增1): 641-643. |
夏宗强, 王丙华, 谢小占, 刘军, 庞雅庆, 张敏燕. 2016. 粤北花岗岩型铀矿成矿地质体的初步厘定及其找矿意义. 东华理工大学学报(自然科学版), 39(2): 132-138. DOI:10.3969/j.issn.1674-3504.2016.02.005 |
许丽丽, 李钟枢, 谭正中. 2017. 华南花岗岩型富铀矿体形成条件分析及成矿模式研究. 矿产勘查, 8(2): 239-247. DOI:10.3969/j.issn.1674-7801.2017.02.007 |
徐文雄, 谭忠银, 罗春梧, 许丽丽, 黄国龙. 2014. 棉花坑铀矿床花岗质脉岩地球化学特征及其与铀成矿的关系. 铀矿地质, 30(6): 345-355. DOI:10.3969/j.issn.1000-0658.2014.06.005 |
徐夕生, 谢昕. 2005. 中国东南部晚中生代-新生代玄武岩与壳幔作用. 高校地质学报, 11(3): 318-334. DOI:10.3969/j.issn.1006-7493.2005.03.004 |
徐争启, 宋昊, 尹明辉, 张成江, 程发贵, 唐纯勇. 2019. 华南地区新元古代花岗岩铀成矿机制——以摩天岭花岗岩为例. 岩石学报, 35(9): 2695-2710. |
严冰, 严寒, 周莉, 王腾, 许国明, 曹阳. 2013. 江西相山火山岩型铀矿C、O、H、S同位素特征及意义. 矿物岩石, 33(3): 47-53. DOI:10.3969/j.issn.1001-6872.2013.03.008 |
叶天竺, 吕志成, 庞振山. 2014. 勘查区找矿预测理论与方法——各论. 北京: 地质出版社, 469-488.
|
余达淦. 2001. 华南中生代花岗岩型、火山岩型、外接触带型铀矿找矿思路(Ⅰ). 铀矿地质, 17(5): 257-265. DOI:10.3969/j.issn.1000-0658.2001.05.001 |
虞航, 蔡煜琦, 李伟林, 黄国龙, 庞雅庆, 江卫兵, 张闯. 2017. 诸广山南部高坪地区细粒花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质论评, 63(3): 781-792. |
张龙, 陈振宇, 李胜荣, 黄国龙. 2018. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究. 岩石学报, 34(9): 2657-2670. |
赵军红, 胡瑞忠, 蒋国豪, 谢桂青. 2001. 初论地幔热柱与铀成矿的关系. 大地构造与成矿学, 25(2): 171-178. DOI:10.3969/j.issn.1001-1552.2001.02.009 |
郑懋公, 朱杰辰. 1984. 我国中酸性岩浆岩锆石铀含量变化及其地质意义. 放射性地质, 23(3): 17-23. |
钟福军, 严杰, 夏菲, 潘家永, 刘文泉, 赖静, 赵奇峰. 2019. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义. 岩石学报, 35(9): 2727-2744. |
周航兵, 潘家永, 钟福军, 祁家明, 韩善楚. 2018. 粤北长江铀矿田细粒黑云母花岗岩的成因及其与铀成矿关系. 矿物岩石, 38(1): 10-19. |
朱捌, 邓平, 凌洪飞, 沈渭洲, 谭正中. 2009. 粤北红山岩体形成时代及成因研究. 铀矿地质, 25(6): 321-329. DOI:10.3969/j.issn.1000-0658.2009.06.001 |
邹东风, 李方林, 张爽, 黄彬, 宗克清. 2011. 粤北下庄335矿床成矿时代的厘定——来自LA-ICP-MS沥青铀矿U-Pb年龄的制约. 矿床地质, 30(5): 912-922. DOI:10.3969/j.issn.0258-7106.2011.05.012 |