中亚造山带作为世界上最大的显生宙造山带,夹持在西伯利亚克拉通与塔里木-华北克拉通之间(图 1a),其复杂的构造演化过程被认为与古亚洲洋的构造运动密切相关(Windley et al., 1990, 2007;Xiao et al., 2010)。古亚洲洋盆的形成、演化以及增生造山与地体拼贴过程造就了中亚造山带现有的构造格架(图 1a)(Coleman,1989;Allen et al., 1993, 1995;Şengör et al., 1993;Jahn et al., 2000;Xiao et al., 2004, 2010;Windley et al., 2007;Zheng et al., 2013, 2018)。
|
图 1 中亚造山带构造简图(a)及北山造山带蛇绿岩时空分布(b)(据Xiao et al., 2010, 略有修改) Fig. 1 Structural sketch of the Central Asian orogenic belt (a) and the temporal and spatial distribution of ophiolites in the Beishan orogenic belt (b) (modified after Xiao et al., 2010) |
内蒙古北山造山带分布于中亚造山带南缘,经历了多阶段的俯冲拼贴过程,形成了从南向北依次出露的柳园-账房山、洗肠井-白云山-牛圈子-红柳河、小黄山-芨芨台子及红石山-百合山等多条蛇绿混杂岩带(图 1b)。前人对上述不同的蛇绿岩进行了研究,获得了丰富的资料(于福生等,2006;张元元和郭召杰,2008;Wu et al., 2011;李向民等,2012;侯青叶等,2012;余吉远等,2012; Tian et al., 2014;王国强等,2014;孙立新等,2017)。其中,小黄山-芨芨台子及红石山-百合山蛇绿岩带为晚古生代SSZ型蛇绿岩带,具有弧后盆地蛇绿岩的特征(杨合群等,2010;王国强等,2014);柳园-账房山蛇绿岩带作为中亚造山带与敦煌地块的重要界线(Xiao et al., 2010),存在早古生代及晚古生代复合增生的认识(Mao et al., 2012b;余吉远等,2012;Guo et al., 2014, 2017);洗肠井-白云山-牛圈子-红柳河蛇绿岩带作为古亚洲洋分支早古生代俯冲消减的遗迹(Zuo et al., 1991;Xiao et al., 2010;杨合群等,2010),近年来的年代学资料进一步表明,该蛇绿岩最早形成于寒武纪(张元元和郭召杰,2008;侯青叶等,2012;胡新茁等,2015),在奥陶纪-志留纪发生俯冲作用(Song et al., 2013a, b,2014)。
随着研究的深入,北山地区中部发育的泥盆纪岩浆岩成为了研究古生代洋陆转化的重要载体之一,受到了较为广泛的关注,也存在很多不同认识:如对于广泛发育的晚泥盆世岩浆作用,前人提出了小黄山蛇绿岩向南俯冲(Zhang et al., 2012)、牛圈子-洗肠井蛇绿岩向北俯冲(Song et al., 2015)、柳园蛇绿岩向北俯冲(Guo et al., 2014, 2017)及造山后伸展(李向民等,2011;Yu et al., 2016;Niu et al., 2018)等多种观点;具有明显正εHf(t)值的花岗岩类所反映的陆壳增生机制也存在伸展背景下的年轻地壳(Yuan et al., 2018)及俯冲背景下的复杂弧增生物(Şengör et al., 1993;Guo et al., 2014, 2017;Xiao and Santosh, 2014)两种认识。另外,前人的研究大多集中在花岗岩类,而对与其同时代地层的研究很少。事实上,该地区并不缺乏上泥盆统地层,如在牛圈子地区就报道了上泥盆统墩墩山群(李向民等,2011;Guo et al., 2014, 2017),该地层呈东西向延伸,但其区域对比亟需进一步研究,这些资料对于研究北山地区中部晚泥盆世构造属性及陆壳增生事件具有重要的意义。
本次工作基于北山地区月牙山等两幅1:5万区域地质调查的基础上,在白云山蛇绿混杂岩带两侧首次填绘出上泥盆统墩墩山组(图 2),通过对其中火山岩的岩石学、锆石年代学、地球化学、Hf同位素等特征的综合研究,对比牛圈子地区墩墩山群火山岩的特征,探讨该期岩浆作用的岩石成因及构造背景,为中亚造山带南缘晚古生代洋陆转化及地壳增生提供可靠的证据。
|
图 2 白云山地区墩墩山组区域地质背景及火山岩采样点位置(据天津地质调查中心,2018①,略修改) Fig. 2 Regional geological background and volcanic sampling point location of Dundunshan Formation in Baiyunshan area |
① 天津地质调查中心. 2018.内蒙古1:5万月牙山、儿驼山幅地质图
1 地质概况及岩相学特征 1.1 区域地质概况北山造山带,位于中亚造山带南缘,向东与兴蒙造山带相连,向西与天山造山带相连,由前寒武纪地体、蛇绿混杂岩、增生杂岩及沟弧盆沉积-岩浆岩组成(Xiao et al., 2010)。
研究区位于北山造山带中部,内蒙古额济纳旗白云山地区。区内蛇绿混杂岩带呈北西西向带状展布,向东延伸至月牙山-洗肠井地区,向西延伸至牛圈子-红柳园地区(图 1b)。混杂带中斜长花岗岩的锆石U-Pb年龄(519.8±2.3Ma,天津地质调查中心,2018)显示该蛇绿岩形成于早寒武世(图 2)。蛇绿岩混杂带北部为上奥陶统白云山组,为一套大洋俯冲的弧前盆地沉积建造,与蛇绿混杂岩之间为断层接触;增生杂岩由构造混杂岩及强变形的砂板岩组成,其南侧与墩墩山组呈断层接触,北侧与蛇绿混杂岩呈断层接触。下泥盆统三个井组主要为一套凝灰质细砂岩、粉砂岩夹晶屑凝灰岩、枕状玄武岩、灰岩透镜体,与红柳园及牛圈子地区发育的三个井组岩石组合一致(李向民等,2011;Guo et al., 2017)。本次研究的上泥盆统墩墩山组分布于蛇绿岩带两侧,平行不整合在下泥盆统三个井组之上(图 3a),与上奥陶统白云山组或锡林柯博组呈断层接触。墩墩山组总体呈近东西向展布,蛇绿岩带北侧为褐红色岩屑砂岩(图 3b)、灰绿色安山岩、灰紫色英安岩(图 3b)及英安质含角砾熔结凝灰岩,被东西向展布的早石炭世花岗闪长斑岩(325.9±1.5Ma,天津地质调查中心,2018)侵入(图 2);蛇绿岩带南侧底部为一套灰紫色底砾岩(图 3c)、中部为英安岩、英安质角砾熔岩及含角砾晶屑凝灰岩,顶部为英安岩(图 4),砾岩中砾石(图 3c,d)呈椭圆状-圆状,大者可达15~20cm,砾石成分主要为三个井组玄武岩。蛇绿岩带北侧发育大面积的晚泥盆世花岗闪长岩,这一岩石类型在区域上广泛发育(Wang et al., 2018)。
|
图 3 上泥盆统墩墩山组火山岩野外特征 (a)三个井组与墩墩山组平行不整合接触关系;(b)岩屑砂岩与英安岩的整合接触关系;(c、d)墩墩山组底部底砾岩砾石特征 Fig. 3 Field characteristics of the volcanic rocks of the Upper Devonian Dundunshan Formation (a) parallel unconformity contact relationship between Sangejing and Dundunshan Formation; (b) conformable contact relationship between lithic sandstone and dacite; (c, d) gravel characteristics of basal conglomerate of Dundunshan Formation |
|
图 4 白云山南侧上泥盆统墩墩山组实测剖面(Pm04) Fig. 4 Measured section of the Upper Devonian Dundushan Formation on the south of Baiyun Mountain (Pm04) |
安山岩:浅灰色-灰绿色,岩石为块状构造(图 5a),岩石由斑晶(5%~10%)、基质(90%~95%)组成(图 5b)。斑晶主要由斜长石、角闪石组成,粒径一般为0.2~1.5mm。斜长石呈半自形板状,强绢云母化,多呈假像产出,仅可见其半自形板状外形。角闪石呈半自形-他形柱粒状,强绿泥石化、黝帘石化、碳酸盐化。基质主要由长英质组成,粒径一般为 < 0.1mm。
|
图 5 墩墩山组火山岩岩石学、岩相学特征 (a、b)灰绿色安山岩的野外宏观及镜下特征;(c、d)灰紫色英安岩组构特征及镜下特征;(e、f)灰紫色英安质角砾熔岩组构特征及镜下特征;(g、h)紫红色英安质含角砾凝灰岩组构特征及镜下特征. Pl-斜长石; Am-角闪石 Fig. 5 Petrological and petrographic characteristics of the volcanic rocks of Dudunshan Formation (a, b) field macroscopic and microscopic characteristics of grey-green andesite; (c, d) fabric characteristics and microscopic characteristics of gray-purple dacite; (e, f) fabric characteristics and microscopic characteristics of gray-purple dacitic breccia lava; (g, h) fabric characteristics and microscopic characteristics of purple dacitic breccia tuff. Pl-plagioclase; Am-amphibolite |
英安岩:灰紫色,岩石为块状构造,斑状结构(图 5c),由斑晶(10%~20%)和基质(80%~85%)组成(图 5d)。基质包括斜长石(70%~75%)和火山玻璃(10%±)。斑晶由斜长石组成,半自形板状,粒径一般0.2~2.5mm,轻度高岭土化、绢云母化,少量碳酸盐化,可见聚片双晶。基质由斜长石及少量火山玻璃组成,斜长石呈半自形板条状,长径一般 < 0.1mm,少数0.1~0.2mm,似交织状排列;火山玻璃暗褐色,与铁质混杂,似填隙状分布于斜长石间。
英安质角砾熔岩:灰紫色-灰红色(图 5e),岩石为块状构造,角砾状结构,由火山碎屑物、熔岩胶结物组成(图 5f)。火山角砾:30%±;凝灰质:10%±;熔岩胶结物60%±(斑晶:10%~15%;基质:45%~50%)。火山碎屑物为岩屑,以2~12mm的火山角砾为主,0.2~2mm的凝灰质成分次之,二者杂乱分布,为英安岩,具斑状结构,斑晶由斜长石组成,半自形板状,粒径一般0.2~0.8mm,可见聚片双晶。基质似玻晶交织结构,由斜长石、火山玻璃组成,斜长石呈半自形板条状,长径一般 < 0.1mm,半定向排列,轻高岭土化、绢云母化,局部碳酸盐化;火山玻璃暗褐色,含大量铁质,似填隙状分布于斜长石间。熔岩胶结物为英安岩,具斑状结构,基质似玻晶交织结构,斑晶由斜长石组成,基质由斜长石、火山玻璃组成。
英安质含角砾凝灰岩:灰红色,岩石为块状构造(图 5g),具熔结凝灰结构,假流纹构造(图 5h),由晶屑(35%~40%)、岩屑(10%±)、玻屑(40%~45%)组成(图 5h),以 < 2mm的凝灰物为主,2~5mm的火山角砾次之(10%±)。晶屑由斜长石组成,棱角状、次棱角状外形,大小一般02~1.5mm,杂乱分布。岩屑主为刚性,团块状外形,大小一般以0.2~2mm的凝灰物为主,2~5mm的火山角砾次之,杂乱分布,成分主为英安岩,局部碳酸盐化、褐铁矿化。玻屑隐约可见鸡骨状、弧面棱角状等外形,已脱玻为隐晶-霏细状长英质。
2 分析方法 2.1 全岩分析主量、微量和稀土元素分析在中国地质调查局天津地质调查中心元素分析实验室完成。将样品熔制成玻璃饼,然后采用X射线荧光光谱仪XRF-1500进行主元素测定,分析精度优于l%。称取40mg样品于Tenon罐中,加人HNO3和HF充分溶解后,用l%的HNO3稀释后,在Finigan MAT公司生产的双聚焦电感藕合等离子质谱仪(ICP-MS)ELEMENT上测定微量和稀土元素,分析精度优于5%。分析结果见表 1。
|
|
表 1 白云山地区墩墩山组火山岩的全岩主量元素(wt%)、微量元素和稀土元素(×10-6)数据 Table 1 Whole-rock major element (wt%) and trace element (×10-6) compositions for the volcanic rocks from Dundunshan Formation in Baiyunshan area |
样品无污染碎样和锆石的挑选工作由在河北省廊坊区域地质矿产调查研究所实验室完成的。并由北京锆年领航科技有限公司制靶,锆石粘贴制成环氧树脂样品靶,经过打磨抛光使锆石露出中心后进行透射光、反射光和阴极发光(CL)显微照相。
锆石U-Pb年代学和Lu-Hf同位素分析在中国地质调查局天津地质调查中心实验室的193nm激光剥蚀系统(New Wave)和多接收器电感耦合等离子体质谱仪(MC-ICP-MS,Neptune)上完成。U-Pb年代学测试方法见(李怀坤等,2009)。采用GJ-1作为外部标准校正锆石的U、Th和Pb同位素分馏:采用NIST610玻璃作为标样计算锆石中U、Th和Pb含量:利用ICPMSDataCal程序(Liu et al., 2011)和Isoplot程序(Ludwig,2003)进行数据处理,分析结果见表 2。Lu-Hf同位素实验过程中,91500的176Hf/177Hf和176Lu/177Hf测定结果分别为0.282303±37(2σ,n=35)和0.00030,亏损地幔模式年龄(tDM)计算采用Griffin et al. (2000)的推荐值,等离子体质谱实验室方法和同位素分馏校正参考文献Wu et al.(2006),分析结果见表 3。
|
|
表 2 白云山地区墩墩山组火山岩锆石U-Pb定年数据 Table 2 Zircon LA-ICP-MS U-Pb data for the volcanic rocks from Dundunshan Formation in Baiyunshan area |
|
|
表 3 白云山地区墩墩山组火山岩的Hf同位素特征 Table 3 Hf isotopic compositions of the volcanic rocks from Dundunshan Formation in Baiyunshan area |
本次工作对测区内墩墩山组采集的英安质熔结凝灰岩(Tw4001.1)、英安质角砾熔岩(Tw4013.1)进行了锆石U-Pb同位素年龄测试(图 2),锆石CL图像中,多呈半自形长柱状,长宽比在2:1~1:1之间,生长环带清晰(图 6a,b),属典型酸性岩岩浆锆石。Tw4001.1样品共测试24个数据点(全部位于谐和线上),比较集中的16个数据点(1,4~7,9~13,15~18,21,22)给出的206Pb/238U加权平均年龄为368.1±1.8Ma(图 6c);7个点显示了446~451Ma、500~501Ma、1716~1864Ma的捕获锆石年龄信息;1个点年龄偏小,为279Ma。Tw4013.1共测试24个数据点(22个点在谐和线上),其中21个集中的数据点(1~5,7~14,16~20,22~24)给出的206Pb/238U加权平均年龄为363.5±2.5Ma(图 6d);1个点年龄偏小,为321Ma。由此可见,墩墩山组顶部火山岩的成岩年龄为368.1±1.8Ma~363.5±2.5Ma,属晚泥盆世。
|
图 6 英安质含角砾熔结凝灰岩和英安质角砾熔岩的锆石CL图像与206Pb/238U年龄特征(a、b)及其U-Pb年龄谐和图与其加权平均年龄(c、d) Fig. 6 Zircon CL images and 206Pb/238U age characteristics (a, b) and U-Pb age concordia diagrams and weighted average ages (c, d) of dacitic breccia-bearing fused tuff and dacitic breccia lava |
在野外岩石定名和室内岩矿鉴定的基础上,对所采集样品使用TAS火山岩分类命名图解进行判别,样品点投点落在亚碱性区域的安山岩、英安岩或者粗面英安岩范围内(图 7a)。安山岩类SiO2含量为58.05%,Na2O为3.92%,K2O为0.71%;英安岩类SiO2含量在63.87%~71.53 %之间,Na2O为4.08%~8.11%,K2O为0.97%~1.36 %。在(Na2O+K2O-CaO)-SiO2图解中,多数投点投在钙碱性范围内,少数为钙性或碱钙性(图 7b)。牛圈子地区墩墩山群的岩石类型以流纹岩类为主,少量的英安岩类及安山岩类(图 7a);岩浆系列多为钙碱性-碱钙性,少量为碱性系列或钙性系列(图 7b)。
|
图 7 晚泥盆世墩墩山组火山岩TAS图解(a,据Le Maitre et al., 1989)和(Na2O+K2O-CaO)-SiO2图解(b,据Frost et al., 2001) Fig. 7 TAS diagram (a, after Le Maitre et al., 1989) and (Na2O+K2O-CaO) vs. SiO2 diagram (b, after Frost et al., 2001) of the volcanic rocks of Late Devonian Dundunshan Formation |
墩墩山组火山岩微量元素蛛网图显示,所有样品曲线型式总体显示Nb、Ta、P、Ti亏损的弧岩浆岩特征(图 8a)。大致可以分为两类:一类具有Sr负异常,K、Rb正异常,显示了源区具有明显的陆壳成分(图 8a);另一类具有K、Rb负异常,Sr正异常,与洋壳熔融的特征相似(图 8a)。
|
图 8 晚泥盆世墩墩山组火山岩原始地幔标准化微量元素蛛网图(a)及球粒陨石标准化稀土元素配分曲线(b)(标准化值据Sun and McDonough, 1989) Fig. 8 Primitive mantle-normalized trace element spidergrams (a) and chondrite-normalized REE patterns (b) for the volcanic rocks of Late Devonian Dundunshan Formation (b, normalization values after Sun and McDonough, 1989) |
稀土元素配分曲线显示一类为轻稀土富集、重稀土平坦、轻重稀土分馏一般、Eu负异常中等的配分曲线(图 8b);另一类显示轻稀土富集、重稀土亏损、轻重稀土分馏较强、Eu异常不明显的配分曲线(图 8b)。
3.4 Hf同位素特征本次工作对英安质含角砾熔结凝灰岩、英安质角砾熔岩进行了锆石Hf同位素分析,凝灰岩锆石εHf(t)值为+4.6~+13.1,锆石tDM2为534~1073Ma;角砾熔岩锆石εHf(t)值为+3.0~+7.8,锆石tDM2为865~1172Ma,总体显示了源区以中-新元古代地壳熔融为主、具有幔源属性的特点。
4 讨论 4.1 火山岩岩石组合及区域对比沿着洗肠井-白云山-牛圈子-红柳河这一蛇绿混杂岩带,在牛圈子地区发育上泥盆统墩墩山群。对比肃北县墩墩山一带墩墩山群层型剖面(图 9)(杨雨,1997),底部的巨砾岩可以对比,与下覆三个井组呈不整合接触;中部的英安岩、英安质角砾熔岩、英安质含角砾晶屑凝灰岩与层型剖面下-中部的英安岩、英安质火山角砾岩、英安质角砾凝灰岩、英安质凝灰岩、安山质火山角砾岩、安山质角砾凝灰岩、安山质凝灰岩可以对比,白云山蛇绿岩带北侧可见安山岩零星出露(图 5a,b);上部的英安岩与层型剖面上部的流纹岩、英安岩、流纹斑岩、英安斑岩可以对比,缺少流纹质火山岩。从西到东,底砾岩普遍发育,火山岩厚度变化大,在墩墩山一带岩性较复杂,岩石组合由安山岩-英安岩-流纹岩及相应的火山碎屑岩组成,白云山南岩石组合由安山岩-英安岩及相应的火山碎屑岩组成,以英安质火山岩为主。近年来一些学者对墩墩山一带墩墩山群做了大量的研究工作,李向民等(2011)认为墩墩山群主要由一套英安斑岩、英安熔岩角砾岩、流纹斑岩、流纹质凝灰角砾岩组成,其底部为一层中基性凝灰巨砾岩,测得火山岩的锆石206Pb/U238加权平均年龄为367±10Ma;Guo et al.(2014, 2017)报道了墩墩山组火山岩岩石组合包括安山质凝灰岩、安山岩、英安质凝灰岩、流纹岩及流纹斑岩、流纹质凝灰角砾岩等,测得火山岩的锆石206Pb/238U加权平均年龄为368.8±3.1Ma~370.9±1.3Ma。本次工作在白云山地区厘定的墩墩山组火山岩主要为安山岩、英安岩、英安质含角砾熔结凝灰岩、英安质角砾熔岩,获得的火山岩锆石206Pb/238U加权平均年龄为368.1±1.8Ma~363.5±2.5Ma。
|
图 9 白云山南与墩墩山一带上泥盆统墩墩山组柱状图对比 Fig. 9 Comparison of stratigraphic columns of the Devonian Dundushan Formation between south of Baiyunshan and the area of Dundun Mountain |
由此可见,本次工作填绘的墩墩山组与墩墩山一带墩墩山群的岩石组合及年代学特征一致,结合两者产出的大地构造位置相同,因此,北山造山带中部上泥盆统墩墩山组火山岩的岩石组合为安山岩、英安岩、流纹岩及相应的火山碎屑岩、潜火山岩,具有陆缘弧火山岩的岩石组合特征。
4.2 火山岩岩石成因及陆壳增生机制北山造山带中部发育大面积的晚泥盆世花岗岩类及零星的酸性火山岩,其εHf(t)为明显的正值(图 10),反映了显著的陆壳增生事件。对于晚古生代陆壳增生机制,主要由两种认识:(1)伸展背景下的年轻地壳(Yuan et al., 2018);(2)俯冲背景下的复杂弧增生物(Şengör et al., 1993;Guo et al., 2014, 2017;Xiao and Santosh, 2014),不同的认识反映了不同的洋陆转化过程。本次工作将通过锆石Hf同位素及岩石地球化学对晚泥盆世火山岩的岩石成因进行研究,结合前期发表的花岗岩类锆石Hf同位素数据,探讨晚泥盆世陆壳增生事件。
|
图 10 晚泥盆世墩墩山组火山岩及花岗岩类Hf同位素特征(底图据Guo et al., 2017) Fig. 10 Hf isotopic characteristics of the volcanic rocks and granitoids of Late Devonian Dundunshan Formation (base map after Guo et al., 2017) |
εHf(t)-t图显示(图 10),墩墩山组酸性火山岩的锆石εHf(t)值分布在+1.4~+16.4之间,显示了幔源物质的贡献;tDM2分布在520~1280Ma之间,反映了中-新元古代地壳熔融的特点。然而,不同样品的εHf(t)值变化范围较大(图 10),部分接近亏损地幔演化线,部分接近原始地幔演化线,可能反映了不同的源区属性。墩墩山组火山岩微量元素蛛网图及稀土元素配分曲线明显的分类性也反映了源区可能具有不同属性。
Sr/Y-Y图解显示了部分样品具有埃达克岩的特征,可能源于石榴石子角闪岩的部分熔融(图 11a),主量元素特征表现为富Na2O(3.92%~8.11 %)、低K2O(0.08%~1.43%)、高Na2O/K2O(3.70~97.8),与俯冲洋壳形成的埃达克岩特征一致(Defant and Drummond, 1990;Defant et al., 2002),而区别于增厚的下地壳熔融形成的埃达克岩所具有的富K2O、富Na2O+K2O的特点(Peacock et al., 1994;张旗等,2001);强烈亏损高场强元素(Nb和Ta)、Sr正异常、重稀土亏损、不明显的Eu异常等特征,表明源区斜长石消失及石榴子石作为残留相,这与俯冲洋壳形成埃达克岩的源区特征一致(Rapp and Watson, 1995;续海金和马昌前,2003;熊小林等,2005);MgO-SiO2图解(图 11b)同样显示部分样品投点落在源区为俯冲洋壳的范围内;较高的Mg#(59.7~62.5)及Cr含量(42.8×10-6~82.7×10-6)显示了与地幔的相互作用(Sen and Dumn, 1994),多为岩浆上升过程中受到地幔楔橄榄岩的混染(Rapp et al., 1999;Defant et al., 2002)。
|
图 11
墩墩山组火山岩岩石成因系列判别图解
(a)Sr/Y-Y图解(据Defant and Drummond, 1990);(b)MgO-SiO2图解(据Defant and Drummond, 1990;Rapp et al., 1999);(c)La/Yb-Yb图解和(d) Tb/Yb-Yb图解(据Allègre and Minster, 1978).样品图例同图 10]]>
|
Sr/Y-Y图解显示另一部分样品具典型岛弧岩石的特点,其稀土元素显示Nb、Ta、P、Ti,显示了弧岩浆岩的源区特征,Sr亏损及重稀土平坦的稀土配分曲线与埃达克岩的特征明显不同(Defant and Drummond, 1990);MgO-SiO2图解显示典型岛弧岩石主要为变质玄武岩(1~4GPa)的熔融,实验研究表明,在1~4GPa的压力条件下,玄武质源岩部分熔融形成的岩石Mg# < 45(Rapp and Watson, 1995),然而,当熔体被地幔混染后其Mg #迅速增加,可大于50 (Peacock et al., 1994),多数落在典型岛弧岩石范围内的样品Mg# < 45,但个别样品Mg#偏高(46.6~52.8),反映了熔体受到了幔源岩浆的混染,即发生了壳幔混合作用,这与蛇绿岩带北侧晚泥盆世花岗闪长岩中广泛发育闪长质包体的特征相符,考虑其具有弧岩浆岩的微量元素地球化学特征,推测其源区应为复杂的弧增生物。La/Yb-Yb及Tb/Yb-Yb图解反映了源区物质的不均一性(图 11c,d),投点落在典型岛弧岩石范围内的安山岩-英安岩-流纹岩系列岩石中(图 11a),分离结晶作用在岩浆演化中具有重要的作用(图 11c,d)。
由此可见,北山造山带中部晚泥盆世酸性火山岩的源区包括了俯冲洋壳+地幔楔、弧增生物(变质玄武岩为主),这与陆缘弧复杂的源区特征一致。另外,北山造山带中部晚泥盆世花岗岩类的锆石εHf(t)值分布在+2.0~+11.6之间,tDM2分布在632~1239Ma之间,反映了与本次研究的酸性火山岩相似的Hf同位素特点。由此可见,俯冲洋壳及弧增生物的部分熔融为晚泥盆世陆壳增生的方式之一。
4.3 构造背景及区域构造演化泥盆纪岩浆作用对于认识中亚造山带南缘古亚洲洋的演化过程具有重要的意义(Wang et al., 2018;Yuan et al., 2018)。对于测区晚泥盆世的构造背景,存在小黄山蛇绿岩向南俯冲(Zhang et al., 2012)、牛圈子-洗肠井蛇绿岩向北俯冲(Song et al., 2015)、柳园蛇绿岩向北俯冲(Mao et al., 2012a;Zheng et al., 2013;Guo et al., 2014, 2017)及造山后伸展(李向民等,2011;Yu et al., 2016;Niu et al., 2018)等多种认识。
从本文研究的火山岩及牛圈子地区的火山岩岩石组合来看,其岩石组合以英安岩类+流纹岩类为主,少量的安山岩类,反映了大陆边缘弧的岩石组合特征;岩石地球化学特征显示了俯冲洋壳+地幔楔及弧增生物(变质玄武岩为主)的源区属性,这与陆缘弧复杂的源区特征相吻合;微量元素蛛网图中Nb-Ta负异常多与弧岩浆岩有关(Hacker et al., 2011;Castro et al., 2013);Th/Yb-Nb/Yb构造判别图解显示了所有样品落在弧演化线上,且落在大陆边缘弧的范围内(图 12),因此,墩墩山组火山岩的形成可能与岩浆弧的构造背景有关。这一认识得到了区域地质资料的支持,在柳园蛇绿岩带北侧发育372Ma的富Nb玄武岩及埃达克岩(Mao et al., 2012a);石板井-小黄山地区发育近东西向带状展布的晚泥盆世花岗岩及埃达克岩(Zhang et al., 2012;Song et al., 2013b;Wang et al., 2018),其正的εHf(t)值与本次研究的墩墩山组火山岩亏损的锆石Hf同位素特征一致(图 10);另外,越来越多的研究表明,北山造山带中南部存在中-新元古代的前寒武纪基底(Kuznetsov et al., 2010;叶晓峰等,2013;姜洪颖等,2013;贺振宇等, 2015),即发育古老陆块,由此可见,北山造山带中部晚泥盆世处于陆缘弧的构造背景。
|
图 12 Th/Yb-Nb/Yb构造判别图解(据Pearce,2008) 大洋岛弧、陆缘弧、大火成岩省长英质岩石范围据Condie and Kröner (2013)和Draut et al. (2009) Fig. 12 /Yb vs. Nb/Yb diagrams for the Devonian volcanic rocks (after Pearce, 2008) fields for continental and oceanic arcs and LIP (large igneous province) are from Condie and Kröner (2013) and Draut et al. (2009) |
那么,该陆缘弧是怎么形成的呢?首先,白云山蛇绿岩的向北俯冲从奥陶纪一直持续到中志留世(Song et al.2015; Yuan et al., 2018),显示了陆缘弧的构造背景。由此可见,白云山蛇绿岩就位在中志留世之后,通过详细的1:5万区域地质调查发现,蛇绿混杂岩在北侧的弧前盆地及增生杂岩中均有出露,然而,在泥盆纪三个井组及墩墩山组之中均未发育,显示了白云山蛇绿岩在泥盆纪之前已经就位,很可能在晚志留世就位;另外,白云山蛇绿岩带两侧均发育晚泥盆世花岗岩类及墩墩山组,因此,该期岩浆作用为牛圈子-洗肠井蛇绿岩向北俯冲的认识不符合地质事实。其次,最新的研究表明,芨芨台子-小黄山-东七一山蛇绿岩的锆石U-Pb同位素年龄为356~321Ma(Wu et al., 2011;Zhang et al., 2012;李向民等,2012),而晚泥盆世岩浆岩年龄集中在384~354Ma(Zhang et al., 2012;杨岳清等,2013;Yu et al., 2016;Wang et al., 2018),因此,该岩浆岩带的形成与小黄山蛇绿岩无关。那么,该岩浆弧的形成是否与南侧的柳园蛇绿岩有关呢?柳园蛇绿岩北侧中-晚奥陶世榴辉岩、富Nb玄武岩类显示了岛弧的构造背景(Liu et al., 2011;Mao et al., 2012a),而且,越来越多的研究发现早泥盆世北山造山带中南部存在柳园洋的向北俯冲(Guo et al., 2014, 2017;Zhu et al., 2016),零星报道的A型花岗岩(李舢等,2009)反映了局部伸展作用。晚泥盆世则主要为一套花岗闪长岩(英安岩)、二长花岗岩(流纹岩)为主的岩石组合,显示了典型的陆缘弧岩石组合特征。重要的是,在柳园蛇绿岩带中获得辉长岩岩块的年龄为446Ma(余吉远等,2012),反映了洋盆在早古生代已经存在,Mao et al.(2012b)对柳园蛇绿混杂岩的研究表明柳园蛇绿岩的演化持续到石炭纪;在账房山蛇绿岩带中获得斜长花岗岩岩块的年龄为350.6±2.0Ma(未发表数据)及辉长岩岩块的年龄为362Ma(余吉远等,2012),反映了洋盆闭合时间在351Ma之后,由此可见,柳园洋的演化持续到早石炭世之后。因此,笔者认为,北山造山带中部晚泥盆世陆缘弧的形成与柳园洋的向北俯冲有关。
综上所述,中亚造山带南缘北山造山带中部经历了多阶段的俯冲增生过程(图 13):白云山-洗肠井洋在奥陶纪-中志留世向北俯冲,晚志留世蛇绿混杂岩就位;南侧的柳园洋在晚奥陶世-泥盆纪向北俯冲,早泥盆世总体为俯冲挤压的弧演化阶段,晚泥盆世则主要为一套花岗闪长岩(英安岩)、二长花岗岩(流纹岩)为主的陆缘弧岩石组合,柳园洋的俯冲作用持续到早石炭世。
|
图 13 北山造山带中部奥陶纪-晚泥盆世地质演化史及晚泥盆世岩浆成因示意图 Fig. 13 Geological evolution history in Ordovician-Late Devonian and Late Devonian magma genesis of the central Beishan orogenic belt |
(1) 白云山地区墩墩山组岩石类型为安山岩、英安岩、英安质角砾熔岩及英安质凝灰岩,火山岩206Pb/238U加权平均年龄为368.1±1.8Ma~363.5±2.5Ma。
(2) 北山造山带中部墩墩山组火山岩形成于陆缘弧构造背景,与柳园洋的向北俯冲有关。
(3) 俯冲洋壳、弧增生物的部分熔融是北山造山带中部晚泥盆世陆壳增生的方式之一。
致谢 感谢两位匿名审稿人及本刊编辑提出的宝贵意见及建议。在野外调查及写作过程中与中国地质调查局天津地质调查中心王惠初、李承东研究员进行了深入的讨论,受益匪浅。
Allègre CJ and Minster JF. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1-25 DOI:10.1016/0012-821X(78)90123-1 |
Allen MB, Windley BF and Zhang C. 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115 DOI:10.1016/0040-1951(93)90225-9 |
Allen MB, Engör AMC and Natal' in BA. 1995. Junggar, Turfan and Alakol basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia. Journal of the Geological Society, 152(2): 327-338 DOI:10.1144/gsjgs.152.2.0327 |
Castro A, Vogt K and Gerya T. 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs:A test of Taylor's andesite model. Gondwana Research, 23(4): 1554-1566 DOI:10.1016/j.gr.2012.07.004 |
Coleman RG. 1989. Continental growth of Northwest China. Tectonics, 8(3): 621-635 DOI:10.1029/TC008i003p00621 |
Condie KC and Kröner A. 2013. The building blocks of continental crust:Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research, 23(2): 394-402 DOI:10.1016/j.gr.2011.09.011 |
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0 |
Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q and Xiao L. 2002. Adakites:Some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142 (in Chinese with English abstract) |
Draut AE, Clift PD, Amato JM, Blusztajn J and Schouten H. 2009. Arc-continent collision and the formation of continental crust:A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland. Journal of the Geological Society, 166(3): 485-500 DOI:10.1144/0016-76492008-102 |
Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048 DOI:10.1093/petrology/42.11.2033 |
Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9 |
Guo QQ, Xiao WJ, Hou QL, Windley BF, Han CM, Tian ZH and Song DF. 2014. Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt. Lithos, 184-187: 361-378 DOI:10.1016/j.lithos.2013.11.007 |
Guo QQ, Chun SL, Xiao WJ, Hou QL and Li S. 2017. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China:Geochemical and Nd-Sr-Hf isotopic constraints. Lithos, 278-281: 84-96 DOI:10.1016/j.lithos.2017.01.017 |
Hacker BR, Kelemen PB and Behn MD. 2011. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307(3-4): 501-516 DOI:10.1016/j.epsl.2011.05.024 |
He ZY, Sun LX, Mao LJ, Zong KQ and Zhang ZM. 2015. Zircon U-Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage:Mesoproterozoic magmatism and crustal growth. Science Bulletin, 60(4): 389-399 (in Chinese) |
Hou QY, Wang Z, Liu JB, Wang J and Li DP. 2012. Geochemistry characteristics and SHRIMP dating of Yueyashan ophiolite in Beishan Orogen. Geoscience, 26(5): 1008-1018 (in Chinese with English abstract) |
Hu XZ, Zhao GC, Hu XY, Liao YF and Cheng HF. 2015. Geological characteristics, formation epoch and geotectonic significance of the Yueyashan ophiolitic tectonic mélange in Beishan area, Inner Mongolia. Geological Bulletin of China, 34(2-3): 425-436 (in Chinese with English abstract) |
Jahn BM, Wu FY and Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193 DOI:10.1017/S0263593300007367 |
Jiang HY, He ZY, Zong KQ, Zhang ZM and Zhao ZD. 2013. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt. Acta Petrologica Sinica, 29(11): 3949-3967 (in Chinese with English abstract) |
Kuznetsov NB, Natapov LM, Belousova EA, O'Reilly SY and Griffin WL. 2010. Geochronological, geochemical and isotopic study of detrital zircon suites from Late Neoproterozoic clastic strata along the NE margin of the East European Craton:Implications for plate tectonic models. Gondwana Research, 17(2-3): 583-601 DOI:10.1016/j.gr.2009.08.005 |
Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre P, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR and Zanettin B. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell
|
Li HK, Geng JZ, Hao S, Zhang YQ and Li HM. 2009. Study on the using LA-MC-ICPMS to date the U-Pb isotopic age of zircons. Acta Mineralogica Sinica, 29(Suppl.): 600-601 (in Chinese) |
Li S, Wang T, Tong Y, Hong DW and Ouyang ZX. 2009. Identification of the Early Devonian Shuangfengshan A-type granites in Liuyuan area of Beishan and its implications to tectonic evolution. Acta Petrologica et Mineralogica, 28(5): 407-422 (in Chinese with English abstract) |
Li XM, Yu JY, Wang GQ, Wu P and Zhou ZQ. 2011. LA-ICP-MS zircon U-Pb dating of Devonian Sangejing Formation and Dundunshan Group in Hongliuyuan, Beishan area, Gansu Province. Geological Bulletin of China, 30(10): 1501-1507 (in Chinese with English abstract) |
Li XM, Yu JY, Wang GQ and Wu P. 2012. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance. Geological Bulletin of China, 31(12): 2025-2031 (in Chinese with English abstract) |
Liu XC, Chen BL, Jahn BM, Wu GG and Liu YS. 2011. Early Paleozoic (ca. 465Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42(4): 715-731 DOI:10.1016/j.jseaes.2010.10.017 |
Ludwig KR. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center
|
Mao QG, Xiao WJ, Fang TH, Wang JB, Han CM, Sun M and Yuan C. 2012a. Late Ordovician to Early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China:Implications for Early Paleozoic slab-melting and crustal growth in the southern Altaids. Gondwana Research, 22(2): 534-553 DOI:10.1016/j.gr.2011.06.006 |
Mao QG, Xiao WJ, Windley BF, Han CM, Qu JF, Ao SJ, Zhang JE and Guo QQ. 2012b. The Liuyuan complex in the Beishan, NW China:A Carboniferous-Permian ophiolitic fore-arc sliver in the southern Altaids. Geological Magazine, 149(3): 483-506 DOI:10.1017/S0016756811000811 |
Niu YZ, Liu CY, Shi GR, Lu JC, Xu W and Shi JZ. 2018. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure. Journal of Asian Earth Sciences, 167: 11-32 DOI:10.1016/j.jseaes.2018.06.019 |
Peacock SM, Rushmer T and Thompson AB. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2): 227-244 DOI:10.1016/0012-821X(94)90042-6 |
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48 DOI:10.1016/j.lithos.2007.06.016 |
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931 DOI:10.1093/petrology/36.4.891 |
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3. 8GPa. Chemical Geology, 160(4): 335-356 DOI:10.1016/S0009-2541(99)00106-0 |
Sen C and Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1. 5GPa and 2.0GPa:Implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409 DOI:10.1007/BF00307273 |
Şengör AMC, Natal' in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 DOI:10.1038/364299a0 |
Song DF, Xiao WJ, Han CM, Li JL, Qu JF, Guo QQ, Lin LN and Wang ZM. 2013a. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids:Insights from zircon U-Pb and Hf isotopic data of high-grade complexes. Precambrian Research, 227: 368-388 DOI:10.1016/j.precamres.2012.06.011 |
Song DF, Xiao WJ, Han CM and Tian ZH. 2013b. Geochronological and geochemical study of gneiss-schist complexes and associated granitoids, Beishan Orogen, southern Altaids. International Geology Review, 55(14): 1705-1727 DOI:10.1080/00206814.2013.792515 |
Song DF, Xiao WJ, Han CM and Tian ZH. 2014. Polyphase deformation of a Paleozoic forearc-arc complex in the Beishan orogen, NW China. Tectonophysics, 632: 224-243 DOI:10.1016/j.tecto.2014.06.030 |
Song DF, Xiao WJ, Windley BF, Han CM and Tian ZH. 2015. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt. Lithos, 224-225: 195-213 DOI:10.1016/j.lithos.2015.03.005 |
Sun LX, Zhang JH, Ren BF, Niu WC, Ren YW and Zhang K. 2017. Geochemical characteristics, U-Pb age and geological implications of Baiyunshan ophiolite in southern Central Asian Orogenic Belt. Acta Petrologica et Mineralogica, 36(2): 131-147 (in Chinese with English abstract) |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19 |
Tian ZH, Xiao WJ, Windley BF, Lin LN, Han CM, Zhang JE, Wan B, Ao SJ, Song DF and Feng JY. 2014. Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids. Gondwana Research, 25(2): 820-841 DOI:10.1016/j.gr.2013.05.006 |
Wang GQ, Li XM, Xu XY, Yu JY and Wu P. 2014. Ziron U-Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance. Acta Petrologica Sinica, 30(6): 1685-1694 (in Chinese with English abstract) |
Wang XY, Yuan C, Zhang YY, Long XP, Sun M, Wang LX, Soldner J and Lin ZF. 2018. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids:Implications for the tectonic transition. Journal of Asian Earth Sciences, 153: 206-222 DOI:10.1016/j.jseaes.2017.07.037 |
Windley BF, Allen MB, Zhang C, Zhao ZY and Wang GR. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, Central Asia. Geology, 18(2): 128-131 DOI:10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2 |
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 DOI:10.1144/0016-76492006-022 |
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003 |
Wu TR, Zheng RG, Zhang W, Feng JC and Xu C. 2011. Tectonic framework of Beishan Mountain-Northern Alxa Area and the time constraints for the closing of the Paleo-Asian Ocean. In:Proceedings of the Fifth Workshop on 1/5000000 International Geological Map of Asia. Beijing: 95-98 |
Xiao WJ, Windley BF, Badarch G, Sun S, Li JL, Qin KZ and Wang ZH. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids:Implications for the growth of Central Asia. Journal of the Geological Society, 161(3): 339-342 DOI:10.1144/0016-764903-165 |
Xiao WJ, Mao QG, Windley BF, Han CM, Qu JF, Zhang JE, Ao SJ, Guo QQ, Cleven NR, Lin SF, Shan YH and Li JL. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science, 310: 1553-1594 DOI:10.2475/10.2010.12 |
Xiao WJ and Santosh M. 2014. The western Central Asian Orogenic Belt:A window to accretionary orogenesis and continental growth. Gondwana Research, 25(4): 1429-1444 DOI:10.1016/j.gr.2014.01.008 |
Xiong XL, Adam J, Green TH, Niu HC, Wu JH and Cai ZY. 2006. Trace element characteristics of partial melts produced by melting of metabasalts at high pressures:Constraints on the formation condition of adakitic melts. Science in China (Series D), 49(9): 915-925 DOI:10.1007/s11430-006-0915-2 |
Xu HJ and Ma CQ. 2003. Constraints of experimental petrology on the origin of adakites, and petrogenesis of Mesozoic K-rich and high Sr/Y ratio granitoids in eastern China. Earth Science Frontiers, 10(4): 417-427 (in Chinese with English abstract) |
Yang HQ, Li Y, Zhao GB, Li WY, Wang XH, Jiang HB, Tan WJ and Sun NY. 2010. Character and structural attribute of the Beishan ophiolite. Northwestern Geology, 43(1): 26-36 (in Chinese with English abstract) |
Yang Y. 1997. Lithostratigraphy of Gansu Province. Wuhan: China University of Geosciences Press (in Chinese)
|
Yang YQ, Lü B, Meng GX, Yan JY, Zhao JH, Wang SG, Jia LL and Han JG. 2013. Geochemistry, SHRIMP zircon U-Pb dating and formation environment of Dongqiyishan granite, Inner Mongolia. Acta Geoscientica Sinica, 34(2): 163-175 (in Chinese with English abstract) |
Ye XF, Zong KQ, Zhang ZM, He ZY, Liu YS, Hu ZC and Wang W. 2013. Geochemistry of Neoproterozoic granite in Liuyuan area of southern Beishan orogenic belt and its geological significance. Geological Bulletin of China, 32(2-3): 307-317 (in Chinese with English abstract) |
Yu FS, Li JB and Wang T. 2006. The U-Pb isotopic age of zircon from Hongliuhe ophiolites in East Tianshan Mountains, Northwest China. Acta Geoscientia Sinica, 27(3): 213-216 (in Chinese with English abstract) |
Yu JY, Li XG, Wang GQ, Wu P and Yan QJ. 2012. Zircon U-Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu-Inner Mongolia border area and their significance. Geological Bulletin of China, 31(12): 2038-2045 (in Chinese with English abstract) |
Yu JY, Guo L, Li JX, Li YG, Smithies RH, Wingate MTD, Meng Y and Chen SF. 2016. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China. Lithos, 256-257: 250-268 DOI:10.1016/j.lithos.2016.04.003 |
Yuan Y, Zong KQ, He ZY, Klemd R, Jiang HY, Zhang W, Liu YS, Hu ZC and Zhang ZM. 2018. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt. Lithos, 302-303: 189-202 DOI:10.1016/j.lithos.2017.12.026 |
Zhang Q, Wang Y, Qian Q, Yang JH, Wang YL, Zhao TP and Guo GJ. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan Period from eastern China. Acta Petrologica Sinica, 17(2): 236-244 (in Chinese with English abstract) |
Zhang W, Pease V, Wu TR, Zheng RG, Feng JC, He YK, Luo HL and Xu C. 2012. Discovery of an adakite-like pluton near Dongqiyishan (Beishan, NW China):its age and tectonic significance. Lithos, 142-143: 148-160 DOI:10.1016/j.lithos.2012.02.021 |
Zhang YY and Guo ZJ. 2008. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu provinces and its tectonic implication. Acta Petrologica Sinica, 24(4): 803-809 (in Chinese with English abstract) |
Zheng RG, Wu TR, Zhang W, Xu C and Meng QP. 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt:Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt. Journal of Asian Earth Sciences, 62: 463-475 DOI:10.1016/j.jseaes.2012.10.033 |
Zheng RG, Xiao WJ, Li JY, Wu TR and Zhang W. 2018. A Silurian-Early Devonian slab window in the southern Central Asian Orogenic Belt:Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China. Journal of Asian Earth Sciences, 153: 75-99 DOI:10.1016/j.jseaes.2016.12.008 |
Zhu J, Lv XB and Peng SG. 2016. U-Pb zircon geochronology, geochemistry and tectonic implications of the Early Devonian granitoids in the Liuyuan area, Beishan, NW China. Geosciences Journal, 20(5): 609-625 DOI:10.1007/s12303-016-0004-2 |
Zuo GC, Zhang SL, He GQ and Zhang Y. 1991. Plate tectonic characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian border region, China. Tectonophysics, 188(3-4): 385-392 DOI:10.1016/0040-1951(91)90466-6 |
贺振宇, 孙立新, 毛玲娟, 宗克清, 张泽明. 2015. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb定年和Hf同位素:中元古代的岩浆作用与地壳生长. 科学通报, 60(4): 389-399. DOI:10.1360/N972014-00898 |
侯青叶, 王忠, 刘金宝, 王瑾, 李大鹏. 2012. 北山月牙山蛇绿岩地球化学特征及SHRIMP定年. 现代地质, 26(5): 174-184. |
胡新茁, 赵国春, 胡新悦, 廖云峰, 程海峰. 2015. 内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义. 地质通报, 34(2-3): 205-216. |
姜洪颖, 贺振宇, 宗克清, 张泽明, 赵志丹. 2013. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究. 岩石学报, 29(11): 3949-3967. |
李怀坤, 耿建珍, 郝爽, 张永清, 李惠民. 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究. 矿物学报, 29(增): 600-601. |
李舢, 王涛, 童英, 洪大卫, 欧阳志侠. 2009. 北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义. 岩石矿物学杂志, 28(5): 407-422. DOI:10.3969/j.issn.1000-6524.2009.05.001 |
李向民, 余吉远, 王国强, 武鹏, 周志强. 2011. 甘肃北山红柳园地区泥盆系三个井组和墩墩山群LA-ICP-MS锆石U-Pb测年及其意义. 地质通报, 30(10): 1501-1507. DOI:10.3969/j.issn.1671-2552.2011.10.003 |
李向民, 余吉远, 王国强, 武鹏. 2012. 甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 31(12): 2025-2031. DOI:10.3969/j.issn.1671-2552.2012.12.011 |
孙立新, 张家辉, 任邦方, 牛文超, 任云伟, 张阔. 2017. 北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义. 岩石矿物学杂志, 36(2): 131-147. DOI:10.3969/j.issn.1000-6524.2017.02.001 |
王国强, 李向民, 徐学义, 余吉远, 武鹏. 2014. 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义. 岩石学报, 30(6): 1685-1694. |
熊小林, Adam J, Green TH, 牛贺才, 吴金花, 蔡志勇. 2005. 变质玄武岩部分熔体微量元素特征及埃达克熔体产生条件. 中国科学(D辑), 35(9): 837-846. |
续海金, 马昌前. 2003. 实验岩石学对埃达克岩成因的限定——兼论中国东部富钾高Sr/Y比值花岗岩类. 地学前缘, 10(4): 417-427. DOI:10.3321/j.issn:1005-2321.2003.04.010 |
杨合群, 李英, 赵国斌, 李文渊, 王小红, 姜寒冰, 谭文娟, 孙南. 2010. 北山蛇绿岩特征及构造属性. 西北地质, 43(1): 26-36. DOI:10.3969/j.issn.1009-6248.2010.01.002 |
杨雨. 1997. 甘肃省岩石地层. 武汉: 中国地质大学出版社.
|
杨岳清, 吕博, 孟贵祥, 严加永, 赵金花, 王守光, 贾玲珑, 韩建刚. 2013. 内蒙古东七一山花岗岩地球化学、锆石SHRIMP U-Pb年龄及岩体形成环境探讨. 地球学报, 34(2): 163-175. |
叶晓峰, 宗克清, 张泽明, 贺振宇, 刘勇胜, 胡兆初, 王伟. 2013. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义. 地质通报, 32(2-3): 307-317. |
于福生, 李金宝, 王涛. 2006. 东天山红柳河地区蛇绿岩U-Pb同位素年龄. 地球学报, 27(3): 213-216. DOI:10.3321/j.issn:1006-3021.2006.03.004 |
余吉远, 李向民, 王国强, 武鹏, 闫巧娟. 2012. 甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义. 地质通报, 31(12): 2038-2045. DOI:10.3969/j.issn.1671-2552.2012.12.013 |
张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244. |
张元元, 郭召杰. 2008. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义. 岩石学报, 24(4): 804-809. |
2020, Vol. 36




