2. 成都理工大学自然资源部构造成矿成藏重点实验室, 成都 610059
2. Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation of Ministry of Natural Resources, Chengdu University of Technology, Chengdu 610059, China
岩脉不仅是地球深部过程的信息载体,也是地球动力学背景的重要指示标志,往往代表地球深部存在多期岩浆活动,指示拉伸、扩张的构造背景,其数量、类型及其性质往往代表着重要的岩浆演化、构造-热事件。目前有关岩脉的研究已积累了大量资料,不同类型与时代岩脉的发育代表了不同构造背景与深部地质过程重要地质事件的岩浆响应,岩脉的就位机制、形成及演化规律与造山过程关系密切(刘宝珺等,1982;刘增乾等,1990;翟明国和卞爱国,2000;廖超林,2003;Chung et al., 2005;聂凤军等,2005;王冉等,2006;夏祥标等,2011;刘立文等,2012;董铭淳等,2015;Wei et al., 2017;崔玉良等,2017;裴英茹等,2017)。藏南特提斯喜马拉雅构造带发育大量近东西向展布的晚侏罗世-早白垩世基性侵入岩和喷出岩,前人对藏南特提斯喜马拉雅构造带的晚侏罗世晚期-早白垩世早期基性岩脉、岩墙等的研究主要集中于绒布-古堆断裂南侧的洛扎、措美一带,该地区的基性岩浆活动主要集中在140~150Ma及130~136Ma两个时间段,基性岩出现了OIB、N-MORB及过渡型三种类型,但均形成于冈瓦纳大陆北部大陆边缘岩石圈减薄的拉伸环境下(Zhu et al., 2007, 2008a, b;童劲松等,2007;夏瑛等,2012;朱弟成等,2013;任冲等,2014;杨超等2014;王亚莹等,2016;侯晨阳,2017)。而在绒布-古堆断裂北侧绒布地区也发育大量的基性岩脉(侯增谦等,2003;许志琴等,2006;张进江,2007;高健,2014;Wei et al., 2017),目前对其岩石类型、岩浆来源、岩石成因的研究则相对缺乏。本文以西藏南部绒布地区近NW-SE向展布的基性岩脉为研究对象,通过野外地质调查和样品采集,结合室内显微镜下岩石学特征分析、岩石地球化学和年代学研究,总结了研究区基性岩脉的岩石学特征、地化特征及其形成时代,探讨了本区基性岩脉的岩浆来源、构造背景及岩石成因等问题,这对特提斯喜马拉雅带构造-岩浆演化作用及其深部动力学等问题的研究具有一定的科学意义。
1 研究区地质背景研究区位于西藏南部特提斯喜马拉雅构造域中段北缘,介于雅鲁藏布江缝合带(IYZSZ)与藏南拆离系(STDS)之间的狭长地带。该区域经历了晚三叠世-晚白垩世新特提斯洋南侧海相沉积,早白垩世(130~135Ma)大规模岩浆活动以及冈瓦纳大陆裂解,是中生代以来冈瓦纳大陆北东部与新特提斯洋南部一系列地质作用记录最完整的区域(图 1a)(Searle et al., 1987;潘桂棠等,1997;王成善等,2000;聂风军等,2005;黄小东,2011;许志琴等, 2011, 2016;高利娥,2014;Wang et al., 2017;Song et al., 2018;宋扬等,2019)。在地层分区上,本区属特提斯喜马拉雅地层区的康马-隆子地层分区,受研究区北侧邛多江断裂和紧邻南侧的绒布-古堆断裂控制,发育大量的阿尔卑斯型褶皱、断层和岩脉(夏代祥和刘世坤,1997;江思宏等,2007;童劲松等,2007;Zhu et al., 2008a;杨超等,2014;王一伟,2015;Liu et al., 2016)。区内广泛发育中生界地层,以侏罗系、白垩系最为发育,整体走向受区域断层、褶皱控制明显,大致呈近北西-南东向带状展布,由早至晚分别为:下-中侏罗统陆热组(J1-2l),为一套灰白色灰岩、泥灰岩与钙质泥岩、页岩互层的组合;中侏罗统遮拉组(J2z),主要岩性为杂色、灰黑色砂、页岩夹火山碎屑岩、灰岩块体;上侏罗统维美组(J3w),为一套中-粗碎屑岩夹少量泥质岩为主的岩性组合;上侏罗统-下白垩统桑秀组(J3-K1s),发育大量火山岩、泥质岩与少量碎屑岩,为一套火山-沉积地层;下白垩统甲不拉组(K1j),以灰黑色、灰绿色薄层泥质岩为主,偶夹薄层砂岩及灰岩条带,地层之间均为整合接触关系。区内构造活动强烈,发育有多条北西-南东走向的断层及褶皱构造,总体构成呈叠瓦状向南逆冲的堆叠构造带,构造线方向总体表现为北西-南东向,延伸较远,通常在数十千米以上,对地层控制作用明显。区内岩浆活动强烈,火山岩主要产出于遮拉组、桑秀组中,岩性以玄武岩、安山岩及英安岩为主,在桑秀组中最为发育,侵入岩在研究区内多以岩体、岩脉的形式侵入于侏罗系、白垩系中,岩体主要为花岗岩,脉岩在研究区分布较多,其类型主要为基性岩脉(βμ),岩石类型以辉绿玢岩、辉长辉绿岩、辉长岩为主(图 1b1-b3)。辉绿玢岩脉主要分布在西部羊卓雍错附近,辉长岩脉主要分布在图幅东北部,脉体大小规模中等,东西断续延伸近1~2.2km;辉长辉绿岩脉主要分布在图幅南部,较大者一般具有明显分带性,由中心向两侧脉壁粒度逐渐变细,石英含量逐渐变少,中心位置偶见方解石脉充填。
![]() |
图 1 西藏南部绒布地区大地构造位置图(a,据Zhu et al., 2013)及区域地质简图(b1-b3) Fig. 1 The tectonic location map (a, modified from Zhu et al., 2013) and simplified regional geological maps (b1-b3) of Rongbu area, southern Tibet |
区内的基性岩脉多呈脉状、透镜状、扁豆状侵入于地层之中,在研究区广泛集群分布,集中于研究区南部、北东部,西部也有部分分布,主要呈北西-南东向展布,其空间展布与构造线方向较为一致(图 1b1-b3),与围岩界线清晰明显,多见冷凝边及烘烤现象,规模大小不一,长数十米至数千米,露头宽度在数十厘米上百米不等(图 2)。
![]() |
图 2 绒布地区基性岩脉宏观照片 (a)岩脉产出状态;(b)脉体与地层接触界线;(c、d)辉绿玢岩脉与围岩接触特征 Fig. 2 Macroscopical photos of basic dykes of Rongbu area (a) occurrence of dykes; (b) contact boundaries between the dykes and the stratum; (c, d) contact characteristics of dykes and wall rocks |
辉绿玢岩:新鲜面为多灰绿色,风化面为灰黄色、灰绿色(图 3a-c),具斑状结构、辉绿结构,局部可见嵌晶含长结构,总体为块状构造。斑晶主要为辉石和斜长石,含量分别在50%和30%左右。其中,斜长石多呈半自形-自形长板状,粒度在1.75~2.5mm,具完全解理,可见卡式双晶、聚片双晶,偶见环带结构,部分颗粒表面因绢云母化、绿泥石化而显浑浊;辉石呈他形粒状、短柱状,粒度1~3.5mm,内部可见嵌晶含长结构和溶蚀孔,可见绿泥石化、蛇纹石化。基质主要由斜长石、辉石、黑云母等矿物微晶组成,含量约60%,斜长石自形较好,呈条状,辉石较差,多为他形粒状或短柱状,黑云母多见针状,具明显多色性。次要矿物主要为少量角闪石、石英等,次生矿物主要为绿泥石,主要副矿物为磁铁矿和磷灰石(图 3d,e)。
![]() |
图 3 绒布地区基性岩脉手标本(a-c)及辉绿玢岩(d、e)、辉长辉绿岩(f、g)及辉长岩(h、i)样品镜下特征 Pl-斜长石;Bt-黑云母;Chl-绿泥石;Aug-普通辉石;Mt-磁铁矿;Cal-方解石 Fig. 3 Hand specimen (a-c) and microphotographs of allgovite (d, e), gabbro-diabase (f, g) and gabbro (h, i) samples from Rongbu area Pl-plagioclase; Bt-biotite; Chl-chlorite; Aug-augite; Mt-magnetite; Cal-calcite |
辉长辉绿岩:新鲜面为深青灰色,风化面红褐色(图 3a-c),总体具辉长辉绿结构、块状构造,局部可见嵌晶含长结构,主要矿物包括斜长石和辉石,含量分别在55%和35%左右,呈半自形-自形长柱状,粒度大小约为0.5~3mm,可见聚片双晶、卡式双晶,绿泥石化、绢云母化严重,另可见一些粒度均匀的细粒状斜长石微晶,无序散布,粒径较小,自形程度较差,依稀可观察到双晶,不同程度的蚀变,普通辉石粒度大小相差较大,约在0.1~0.5mm,呈他形粒状或短柱状。次要矿物多见橄榄石、绿泥石、钠长石等,副矿物为磁铁矿和磷灰石(图 3f,g)。
辉长岩:风化面为褐黄色,新鲜面灰黑色(图 3a-c),总体具辉长结构、块状构造。主要矿物为斜长石和辉石,其中主要矿物斜长石(约45%)呈半自形-半自形长柱状,粒度大小约为1~3.5mm,可见聚片双晶、卡式双晶,少数边缘绿泥石化呈环带结构;普通辉石(约35%):约在0.7~1.5mm左右,呈半自形-他形粒状或者短柱状充填在斜长石间。次要矿物包括半自形-他形粒状的方解石(5%),粒度大小约为0.35~0.75mm,次生矿物可见蛇纹石(10%),以辉石假象出现,呈波状消光;副矿物主要为磁铁矿(约5%),少部分为含钛磁铁矿,少量有褐铁矿化或有局部的分解(图 3h,i)。
3 样品采集与分析本文样品均采自绒布地区侵位于不同地层内的基性岩脉。为保证测试结果能如实反映研究区脉岩的结晶年龄、地球化学特征、岩浆源区性质,选择岩脉露头好、无蚀变和无变质的部位采集新鲜且具有代表性的样品。共采集8件基性岩脉地球化学样,其中2件同时为LA-ICP-MS年龄样(PM106-2,SG03)。主量、微量及稀土元素分析均由西南冶金地质测试所完成,常量元素采用AxiosX荧光仪测定(依据GB/T14506.28-2010、DZG20-02),稀土元素采用NexLON 300x ICP-MS测定(依据DZG20-06),微量元素采用Axios X荧光仪、iCAP6300全谱仪,NexLON 300x ICP-MS(依据DZG20-05、DZG20-06)。环境条件温度23℃,湿度59%。主量、微量及稀土元素测试结果及相关参数见表 1、表 2。
![]() |
表 1 绒布地区基性岩脉主量元素含量(wt%)及相关参数 Table 1 Whole-rock major elements data (wt%) and parameters of the basic dyke samples in Rongbu area |
![]() |
表 2 绒布地区基性岩脉微量及稀土元素含量(×10-6)及相关参数 Table 2 Whole-rock trace elements, rare earth elements data (×10-6) and parameters of the basic dyke samples in Rongbu area |
锆石的挑选、制靶由河北廊坊诚信地质服务有限公司完成,阴极发光(CL图像)及透反射显微照相由北京锆石领航科技有限公司完成,制备过程参考参考宋彪等(2002)。测定过程中,选择晶体干净,内部结构完整且无裂纹和包裹体的完整锆石颗粒,CL图像可以清晰显示锆石颗粒的内部结构和振荡环带,以供选择合适的点位进行测试。LA-ICP-MS锆石U-Pb同位素定年在武汉上谱分析科技有限责任公司实验室完成,激光剥蚀系统采用GeoLas 2005,ICP-MS为Agilent 7500a,分析激光束直径30μm。锆石U-Pb定年中选取哈佛大学国际标准锆石91500(1064Ma)作为外标进行同位素分馏校正,每剥蚀5个样品点,分析2次91500标样(Wiedenbeck et al., 1995;Liu et al., 2010)。样品数据利用软件ICP MS Data Cal进行处理,样品锆石年龄谐和图、加权平均年龄直方图利用Isoplot 3.00软件完成(Ludwig,2003),年龄数据见表 3。
![]() |
表 3 绒布地区基性岩脉样品锆石LA-ICP-MS U-Pb分析结果 Table 3 LA-ICP-MS zircon U-Pb dating analytical data of basic dyke samples from Rongbu area |
西藏南部绒布地区基性岩脉样品主量元素含量见表 1。辉绿玢岩的SiO2含量平均为47.84%,在TAS图解中投入了玄武岩、粗面玄武岩区域(图 4a),Al2O3含量平均18.44%。辉绿玢岩脉TiO2含量平均1.38%,P2O5为0.15%,FeOT平均质量分数为8.81%,接近于洋中脊玄武岩MORB的含量(分别为1.22%、0.15%、8.85%或8.65%),Al2O3含量均大于Na2O+K2O+CaO总值,A/CNK介于1.39~1.44,表明样品为弱过铝质,碱度率AR较为稳定,介于1.41~1.54,里特曼指数σ介于4.73~4.75,在AR-SiO2图解中落入碱性区域(图 4b),表明样品整体表现为碱性,MgO含量平均4.27%,镁铁指数Mg#值在45.5~47.1之间,远低于原生玄武岩浆Mg#值(68~78),分异指数DI介于39.41~45.81,固结指数SI介于22.74~23.65。从辉绿玢岩的主量元素特征来看,普遍显示低TiO2、P2O5含量,表现碱性、过铝质的特征,一些元素含量接近MORB型玄武岩,SI、DI、Mg#则相对接近一般玄武质岩浆的水平,指示了岩浆经历的结晶分异程度低(Rittmann,1957;Thornton and Tuttle, 1960;Pearce, 1976;Frey et al., 1978;Hess,1992;任冲,2015;吴丰,2017)。
![]() |
图 4 藏南绒布地区基性岩脉TAS判别图(a, 据Middlemost,1994)及AR-SiO2判别图解(b, 据Wright,1969) Fig. 4 The TAS (a, after Middlemost, 1994) and AR vs. SiO2 (b, after Wright, 1969) diagrams for basic dyke samples from Rongbu area, southern Tibet |
辉长辉绿岩及辉长岩Si2O含量平均53.68%,在TAS图解中落入玄武质粗面安山岩区域(图 4a),Al2O3为13.68%,P2O5平均含量0.63%。FeOT与TiO2含量稳定,平均10.46%和3.38%,与OIB型玄武岩(分别为10.86%、2.87%)相似。Na2O、K2O含量稳定,平均为4.14%和1.92%,碱度率AR平均为2.0,全碱质量分数(ALK=Na2O+K2O)平均6.06%,接近OIB玄武岩(5.28%)值,在在AR-SiO2图解中同样落入碱性区域,表现出碱性特征(图 4b)。样品Al2O3含量均大于Na2O+K2O+CaO总值,A/CNK介于1.12~1.40,表现出弱过铝质特征,里特曼指数σ介于2.81~4.13,平均3.15,Mg#值在29.8~39.1之间,平均35.18,同样远低于原生玄武岩浆Mg#值(68~78),分异指数DI介于48.30~57.32,固结指数SI介于13.15~18.35。与浅成侵入的辉绿玢岩相比,本区辉长辉绿岩、辉长岩样品同样表现为弱过铝质、碱性,且SI、DI、Mg#也反映出较低的结晶分异,不同的是,此类基性岩脉明显出现较高的TiO2、P2O5含量,部分元素明显接近OIB型玄武岩(Rittmann,1957;Thornton and Tuttle, 1960;Wright,1969;朱弟成等, 2005a, 2006)。
4.2 全岩微量、稀土元素特征基性岩脉样品的微量元素及稀土元素含量见表 2。辉绿玢岩大离子亲石元素(LILE)Ba、K、Sr等富集,P、Th、U等高场强元素(HFSE)相对亏损(图 5a, b)。部分不相容元素如Ce/Zr、Zr/Nb、Zr/Y与Th/Yb平均比值分别为0.18、13.67、4.64和0.15,与MORB型玄武岩(分别为0.10、34、4.86、0.1)较为接近(Pearce,1982;王一伟,2015)。辉绿玢岩样品稀土元素总量较低,平均55.1×10-6,LREE/HREE、(La/Yb)N平均为3.42、2.90,表现为轻稀土富集,δEu值平均为1.32,具有明显正Eu异常,暗示原始岩浆未经历明显的斜长石结晶分异,辉绿玢岩的球粒陨石标准化配分曲线具E-MORB型玄武岩特征(图 5c, d),其LREE富集、(La/Sm)N值明显大于1的特点也与Sun and McDonough (1989)、Gale et al.(2013)、王金荣等(2017)等学者统计的全球范围内的E-MORB型玄武岩的稀土元素特征相当接近(Pearce,1982;Perk et al., 2007;Kelley et al., 2013)。
![]() |
图 5 藏南绒布地区基性岩脉原始地幔标准化微量元素蛛网图(a、b)及球粒陨石标准化稀土配分模式图(c、d)(标准化值据Sun and McDonough, 1989) 标准OIB、MORB数据据Sun and McDonough, 1989;Kerguelen地幔柱相关的碱性OIB基性岩数据据Zhu et al.(2007).多却乡玄武岩数据来自Zhu et al., 2007;绒布地区桑秀组玄武岩数据来自西藏绒布1:5万区调未刊数据 Fig. 5 The primitive mantle-normalized trace element patterns (a, b) and chondrite-normalized REE patterns (c, d) for basic dykes from Rongbu area, southern Tibet (normalization values after Sun and McDonough, 1989) |
辉长辉绿岩和辉长岩样品稀土、微量元素特征相对辉绿玢岩样品出现明显的差异,其大离子亲石元素Rb、Ba、K等富集,Sr强烈亏损,高场强元素Hf、Ti和P等相对亏损(图 5a, b)。Sr的明显亏损可能与斜长石分离结晶后残余岩浆继续分异演化有关。部分不相容元素如Ce/Zr、Zr/Nb、Zr/Y与Th/Yb比值分别为0.28~0.31、9.16~14.48、9.10~11.64和0.95~3.58,平均值为0.30、11.70、10.21与2.16,与OIB玄武岩明显相似(分别为0.3、5.8、9.7和1.9)(Pearce,1982;王一伟,2015)。从稀土元素特征来看,∑REE为246.6×10-6~410.1×10-6,平均值为324.6×10-6,LREE/HREE、(La/Yb)N变化范围在18.26~9.74、9.25~15.6之间,其轻稀土富集程度,轻重稀土分馏程度更为明显,δEu值为0.86~0.97,平均约为0.9,显示微弱负Eu异常,球粒陨石标准配分曲线呈斜率较大的右倾型,稀土元素特征和配分曲线明显与典型的OIB型洋岛玄武岩配分曲线相似(图 5c, d)(Sun and McDonough, 1989;陈万峰等,2017)。不仅如此,本区辉长辉绿岩、辉长岩样品与同样显示OIB特征的桑秀组玄武岩以及代表Kerguelen地幔柱成因的众多OIB型基性岩浆岩的稀土配分模式具有明显的高相似性(图 5c, d)(Zhu et al., 2007),暗示着他们可能具有非常相似的岩浆来源和岩石成因。
5 LA-ICP-MS锆石定年锆石阴极发光(CL)图像显示,样品锆石粒度较小,长约60~150μm,宽50~80μm,长宽比介于1:1~2:1。大多呈半自形-自形结构、短柱状,边界清晰。多数锆石核-边结构不明显,由于岩浆温度高,震荡环带较宽,部分锆石颗粒可见不规则振荡条带或均一化灰白区域,多见圆形的熔蚀边,显示典型岩浆锆石的特征(图 6)。样品锆石的Th、U含量较高(表 3),其中PM106-2样品分别介于938×10-6~2512×10-6和1265×10-6~4780×10-6,SG03样品为452×10-6~884×10-6和648×10-6~1455×10-6,样品锆石的Th/U比值分别为1.35~1.90和1.24~1.69,均>0.5,且其Th、U含量呈较为明显的正相关关系,与岩浆成因锆石特征(Hanchar and Miller, 1993;Hoskin and Black, 2000;Möller et al., 2003;Xie et al., 2019a, b;Lin et al., 2019)一致。从分析结果来看,本次样品的锆石谐和年龄具有较高的谐和度,其有效测点的谐和度介于91%~99%,2件样品的加权平均年龄分别为137.3±1.6Ma(MSWD=0.54)及147.3±3.6Ma(MSWD=1.3)(图 7)。
![]() |
图 6 藏南绒布地区基性岩脉样品(SG03、PM106-2)锆石阴极发光图像及测点位置 Fig. 6 Cathodoluminescence images and analyzed points in basic dyke samples (SG03, PM106-2) from Rongbu area, southern Tibet |
![]() |
图 7 藏南绒布地区基性岩脉样品(SG03、PM106-2)谐和年龄图 Fig. 7 U-Pb concordia diagrams of zircon in the basic dyke samples (SG03, PM106-2) from Rongbu area, southern Tibet |
本文对西藏南部绒布地区两件基性侵入岩样品的LA-ICP-MS锆石U-Pb定年取得了可信的年龄结果,其中本区OIB型辉长辉绿岩样品(SG03)的结晶年龄为147±3.6Ma,而显示E-MORB特征的辉绿玢岩样品(PM106-2)的结晶年龄则为137.3±1.6Ma。如前文所述,此二类基性岩脉样品显示出不同的地球化学特征和岩石结晶年龄,期间相差近10Ma,暗示二者可能具有不同的成岩岩浆来源、演化过程和岩石成因。
前人研究认为,特提斯喜马拉雅带的晚侏罗世-早白垩世基性岩浆活动可能集中于两个时段,第一个为150~140Ma,第二个为130~136Ma(Zhu et al., 2008a;唐菊兴等, 2010, 2016;Zeng et al., 2012;Lang et al., 2014, 2019;Tang et al., 2014)。本区辉绿玢岩样品(PM106-2)的结晶年龄为137.3±1.6Ma,与任冲(2015)在古堆地区及杨超等(2014)在扎西康地区对基性岩脉所得的SHRIMP U-Pb年龄(133~140.9Ma)和LA-ICP-MS锆石U-Pb年龄(132.9±2.4Ma)较为一致,同时也与区域上年获得的基性岩脉年龄均与特提斯喜马拉雅构造带晚侏罗世-早白垩世岩浆大规模爆发的集中时代(130~142Ma)较为吻合(朱弟成等,2005b;Jiang et al., 2006;童劲松等,2007;Zhu et al., 2009;裘碧波,2011;董随亮等,2018)。而本区辉长辉绿岩、辉长岩岩脉(SG03)结晶年龄为147.3±3.6Ma,与特提斯喜马拉雅南部拉康组火山岩和部分OIB型辉绿岩墙结晶年龄一致(Zhu et al., 2008a;侯晨阳,2017)。因此,从本区的基性岩脉年龄数据来看,可能为两次主要的岩浆活动的产物,辉长辉绿岩、辉绿岩为第一期活动的产物,辉绿玢岩则可能为第二期Kerguelen地幔柱活动时期的产物。
6.2 地壳混染辉绿玢岩样品La/Ta均值17.03,La/Sm均值2.17,显示未遭受岩石圈地幔与地壳混染(Lassiter and DePaolo, 1997;张招崇等,2004);不仅如此,样品Zr/Hf均值34.7,Th/Ta均值0.63,均明显远离地壳值(Sun and McDonough, 1989;Weaver,1991)。在La/Sm-La/Nb图解(图 8a)中,辉绿玢岩样品明显远离地壳物质混染趋势线,在(Th/Ta)PM-(La/Nb)PM图解(图 8b)中。投点明显靠近原始地幔、远离地壳。这些特征表明本区辉绿玢岩未遭受岩石圈地幔与地壳混染。
![]() |
图 8 判别地壳混染的La/Sm vs. La/Nb(a)和(Th/Ta)PM vs. (La/Nb)PM(b)图解(据Zhu et al., 2007) 数据来源:上地壳、中部地壳、下地壳据Rudnick and Gao (2003);原始地幔据Taylor and McLennan (1985);岩石圈地幔据McDonough (1990);与Kerguelen有关的OIB火成岩据Zhu et al.(2007) Fig. 8 La/Sm vs. La/Nb (a) and (Th/Ta)PM vs. (La/Nb)PM (b) discrimination diagrams for crustal contamination (after Zhu et al., 2007) |
而辉长辉绿岩及辉长岩样品La/Ta均值24.92,La/Sm均值3.00,暗示其岩浆在上升过程中受到了岩石圈地幔混染;Zr/Hf均值39.8,Th/Ta均值3.97,同样远离地壳值,显示未遭受地壳混染。在La/Sm-La/Nb图解(图 8a)中,辉长辉绿岩及辉长岩样品同样未表现出正相关关系且多数远离地壳混染趋势线,在(Th/Ta)PM-(La/Nb)PM图解(图 8b)中,部分样品落入与Kerguelen地幔柱有关的OIB型火成岩区域,未遭受地壳混染,另一部分样品远离中、上地壳,接近下地壳,这可能是源区靠近下地壳而带有部分下地壳的物质。
6.3 岩浆源区与构造背景本区辉绿玢岩样品Zr/Nb、La/Nb、Rb/Nb等值(均值分别为13.7、1.1、1.4)接近Ⅰ型富集地幔(分别为4.2~11.5、0.86~1.19、0.88~1.17);在La-La/Nb与Nb-Nb/Th(图 9a,b)图解中,2件辉绿玢岩样品主要落入洋脊玄武岩与洋岛玄武岩叠合的位置;在Zr/Nb-Y/Nb和Ta/Nb-Th/Nb图解中(图 9c,d),2件辉绿玢岩表现出从亏损向富集地幔演化过渡的趋势。这与普遍认为的E-MORB是N-MORB与OIB不同程度混合产物的观点一致,在地化特征上表现为介于二者之间,E-MORB型玄武岩的形成与洋中脊具有密切关联(Pearce et al., 1984;Choe et al., 2007;Niu et al., 2015;王亚莹等,2016;王金荣等,2017),本区辉绿玢岩的岩浆显示复杂的组分特征,其成分可能来自于富集地幔源区,而同时又带有一定的亏损地幔物质。
![]() |
图 9 绒布地区基性岩脉的La/Nb-La(a)、Na/Th-Nb(b)、Zr/Nb-Y/Nb(c)和Ta/Nb-Th/Nb(d)图解(a,b,底图据李曙光,1993;c,d,底图据Wilson,1989) Fig. 9 TheLa/Nb vs. La (a), Na/Th vs. Nb (b), Zr/Nb vs. Y/Nb (c) and Ta/Nb vs. Th/Nb (d) diagrams for basic dyke samples from Rongbu area (a, b after, Li, 1993; c, d, after Wilson, 1989) |
本区辉长辉绿岩、辉长岩样品在Zr/Nb、Ba/Nb、Ba/Th、La/Nb(分别为11.7、15.8、92.0、1.50)等多项参数上均接近于Ⅰ型富集地幔,在Th/La、Ba/La(分别为15.0、10.3)等少部分参数上接近Ⅱ型富集地幔(Weaver, 1991)。样品的地球化学特征趋于均一和稳定,在La-La/Nb与Nb-Nb/Th(图 9a,b)图解中则主要落入OIB型玄武岩区域,在Zr/Nb-Y/Nb和Ta/Nb-Th/Nb图解中(图 9c,d)均落入富集地幔一侧,其岩浆具有富集地幔的特征,这与藏南多处OIB型基性岩墙群特征一致(江思宏等,2007;裘碧波,2011;任冲等,2014;吴丰,2017)。
本区辉绿玢岩样品较为集中,在Zr/Y-Zr微量元素判别图解中全部落入板内玄武岩区域,同时靠近洋中脊玄武岩区域(图 10a);在Zr-Ti图解(图 10b)中,均落入洋中脊玄武岩与火山弧玄武岩的分界处;在Th/Hf-Ta/Hf图解(图 10c)中落入大洋板内(洋岛、海山及T-MORB和E-MORB)玄武岩区域,在Nb/Y-Ti/Y图解(图 10d)中均落入洋中脊玄武岩且靠近板内玄武岩区域。与前文岩浆源区分析相对应的是,辉绿玢岩样品在来源上呈现出较为复杂的性质,构造背景的判别结果同样表明这类样品主要形成于大洋板内环境,受洋中脊源区的影响明显,本区的辉绿玢岩的岩石成因可能较为复杂(Meschede,1986)。
![]() |
图 10 西藏绒布地区基性岩脉Zr/Y-Zr图解(a,底图据Pearce and Norry, 1979)、Zr-Ti图解(b,底图据Pearce, 1982)、Th/Hf-Ta/Hf构造环境图解(c,底图据汪云亮等, 2001)及Nb/Y-Ti/Y构造环境判别图解(d,底图据Pearce, 1982) Fig. 10 Zr/Y vs. Zr diagram (a, after Pearce and Norry, 1979), Zr vs. Ti diagram (b, after Pearce, 1982), Th/Hf vs. Ta/Hf diagram (c, after Wang et al., 2001) and Nb/Y vs. Ti/Y tectonic setting discrimination diagram (d, after Pearce, 1982) for basic dykes from Rongbu area, southern Tibet |
本区辉绿辉长岩、辉长岩样品的投图结果同样趋于稳定,在图 10c中落入大陆裂谷相关的区域,在另外三个构造背景判别图解(图 10a, b, d)中均主要落入或靠近板内玄武岩区域,这类基性岩脉总体显示板内碱性玄武岩的特征。与前人研究结果对比来看,本区OIB型辉绿辉长岩、辉长岩与特提斯喜马拉雅带桑秀组玄武岩具有非常相似的地球化学特征,二者应具有相同的岩浆来源和构造背景,结合晚侏罗世-早白垩世研究区海相沉积以及同时代桑秀组中未见灰岩、硅质岩等岩性组合来看,辉长辉绿岩、辉长岩岩脉应形成于强烈拉伸的大陆边缘裂谷环境。
6.4 岩脉成因前人曾通过将特提斯喜马拉雅措美大火成岩省的火山岩、基性岩脉、岩墙群样品与澳大利亚南西部Bunbury玄武岩、印度北东部Rajmahal玄武岩以及Kerguelen地幔柱头部来源的玄武岩等进行对比,它们在地球化学、Sr-Nd同位素、Hf同位素特征以及成岩时代上均具有相似性,这些岩浆岩被认为是与Kergulen地幔柱的活动密切相关(朱弟成等, 2004, 2005a, b,2009;Zhu et al., 2008a, b;夏瑛等,2012;王亚莹等,2016),不仅如此,大印度和澳大利亚之间Cape山破碎带和Wallaby-Zenith破碎带最古老的海底磁异常以及Kerguelen地幔柱南移的古地磁数据也在地球物理方面为此观点提供了支持(Antretter et al., 2002; Heine and Müller, 2005)。本区岩脉与特提斯喜马拉雅带多处基性岩脉、岩墙群具有非常接近的结晶年龄和分布位置,因而其岩石成因可能同样与地幔柱相关。
绒布地区发育大量晚侏罗世-早白垩世基性岩脉,出现OIB与MORB型基性岩脉共存的现象,结合当时的大地构造环境来看,研究区在当时处于冈瓦纳大陆北东部的被动大陆边缘,紧邻新特提斯洋,此时由于新特提斯洋的快速扩张,中脊以南形成强烈拉伸、岩石圈减薄的构造背景,特提斯喜马拉雅被动陆缘形成拉张作用产生的裂谷环境。
从本文的研究结果来看,其中深成的辉长岩、辉长辉绿岩脉结晶年龄为147.3±3.6Ma,样品与措美大火成岩省中同时代的桑秀组玄武岩具有接近结晶年龄,且同样显示OIB的地球化学特性,具有岩石圈地幔物质混染的痕迹,二者应为同源异相的产物。OIB的成因通常被认为是与地幔柱或热点作用的产物(朱弟成等,2005a;杨高学等,2015;陈万峰等,2017),因此本区OIB型辉长岩、辉长辉绿岩与桑秀组玄武岩一样,应是大陆边缘裂谷背景下地幔柱或热点与岩石圈地幔相互作用的产物(Kent et al., 2002;Gaina et al., 2003; O’Neill et al., 2003;朱弟成等,2005a)。
浅成侵入的辉绿玢岩结晶年龄大致为137.3±1.6Ma,对其地球化学研究显示E-MORB的特征、未遭受岩石圈地幔或地壳混染、岩浆可能源于富集地幔源区同时又带有亏损地幔物质。特提斯喜马拉雅带目前发现的E-MORB型基性岩脉主要形成于~90Ma,与新生的印度洋中脊下的软流圈地幔有关(王亚莹等,2016),由于本区辉绿玢岩形成时印度洋尚未出现,显然二者在成因上是不同的,另一部分成岩时代相近的E-MORB型玄武岩则是在雅江缝合带发现,其成因与新特提斯洋脊有关,在晚侏罗世-早白垩世新特提斯洋脊地幔源区与地幔柱相互作用下,软流圈在上涌过程中极有可能吸取和捕获了大量来自地幔柱的岩浆物质,在临近扩张洋脊的地区形成大量的热点,形成了这类E-MORB型玄武岩(朱弟成等,2008)。由于研究区处于被动陆缘地区,且印度洋尚未出现,不可能具有大洋中脊的构造环境,由此推论,本区的E-MORB型辉绿玢岩极有可能是新特提斯洋南部靠近大陆边缘的热点以下地幔柱与软流圈地幔相互作用的产物,一部分E-MORB型岩浆顺热点火山喷出形成了如今雅江缝合带发现的E-MORB型玄武岩,而另一部分岩浆顺区域上的深大断裂运移至被动陆缘侵入地层,形成了研究区E-MORB型辉绿玢岩,本区基性岩脉顺构造线方向侵位的特点也佐证了这一推论。
6.5 地质意义措美大火成岩省内发现大量OIB型基性火山岩和侵入岩,前人在其南部的错那-谷觉等地区和西部江孜-康马地区发现结晶年龄在140~144Ma左右的基性侵入岩和喷出岩(拉康组),明显早于特提斯喜马拉雅北部地区的桑秀组玄武岩131~135Ma的结晶年龄。但就本次研究获得的年龄来看,绒布地区辉长辉绿岩、辉长岩更接近措美大火成岩省南部和西部OIB型火成岩的年龄,较Kerguelen地幔柱引发岩浆活动的峰期(132Ma)早约15Ma,因此研究区OIB型辉长辉绿岩、辉绿岩脉可能是Kerguelen地幔柱早期活动的产物(Zhu et al., 2008a, 2009;Ma et al., 2016;侯晨阳,2017)。
前人对于西藏南部分布的E-MORB型火成岩的研究显示,这些E-MORB型火成岩主要分为两类,一类是形成于约90Ma,与新生的印度洋洋脊有关的E-MORB型基性火成岩;而另一类则是主要分布于雅江缝合带晚侏罗世-早白垩世E-MORB玄武岩,这类玄武岩的形成被认为是与地幔柱与洋脊地幔源区相互作用有关(朱弟成等,2008;王亚莹等,2016)。而目前在措美大火成岩省内发现的MORB火成岩则主要为N-MORB型(Zhu et al., 2008a;王亚莹等,2016;侯晨阳,2017),分布在研究区E-MORB型辉绿玢岩脉可作为目前对于措美大火成岩省基性岩脉类型的补充,对认识措美大火成岩省具有一定的新意义,这种类型的基性侵入岩的存在也表明研究区在当时可能位于特提斯喜马拉雅被动陆缘非常靠近新特提洋的位置。
7 结论本文通过对藏南绒布地区广泛分布的基性岩脉的岩石学、地球化学以及锆石U-Pb年代学等方面进行研究,进而对其形成时代、源区性质、岩脉成因及其地质意义问题进行探讨,主要得出以下结论:
(1) 研究区浅成侵入的辉绿玢岩结晶年龄大致为137.3±1.6Ma,地球化学特征显示其为E-MORB型基性侵入岩,未遭受岩石圈地幔或地壳混染,可能源自富集地幔,同时带有部分亏损地幔物质,主要形成于大洋板内环境,受洋中脊源区的影响明显;深成的辉长岩、辉长辉绿岩结晶年龄为147.3±3.6Ma,具有典型OIB的地球化学特征,带有岩石圈地幔物质混染的痕迹,源自富集地幔,形成于强烈拉伸的大陆边缘裂谷环境。
(2) 研究区OIB型辉长辉绿岩、辉绿岩脉与措美大火成岩省中桑秀组玄武岩为代表的诸多OIB型基性火成岩具有相同的岩石成因,是大陆裂谷背景下Kerguelen地幔柱与岩石圈地幔相互作用的产物;而E-MORB型辉绿玢岩则可能是靠近大陆边缘的热点以下地幔柱与软流圈地幔相互作用的产生的岩浆沿区域深大断裂运移至大陆边缘侵位的结果。
(3) 本区OIB型辉长辉绿岩、辉长岩的结晶年龄明显早于同地区的桑秀组玄武岩,而与措美大火成岩省南部、西部地区部分OIB型火成岩接近,成岩时代较Kerguelen地幔柱活动的峰期(132Ma)明显早,可能是地幔柱早期活动的产物;E-MORB型辉绿玢岩的存在可作为目前对于措美大火成岩省基性岩脉类型的补充,对认识措美大火成岩省具有一定的新意义。
致谢 感谢中国地质调查局成都地质调查中心王立全、李光明研究员、张林奎高工,西藏地勘局曾庆高、胡敬仁、黄炜、郭建慈、毛国正等几位高工在野外提出的宝贵意见以及成都理工大学绒布区域地质调查项目组成员的通力协作;特别感谢中国地质科学院唐菊兴老师为本文提出的建设性指导和宝贵建议;最后感谢各位审稿专家和《岩石学报》编辑部对完善本文所付出的辛勤劳动。
Antretter M, Steinberger B, Heider F and Soffel H. 2002. Paleolatitudes of the Kerguelen hotspot:New paleomagnetic results and dynamic modeling. Earth and Planetary Science Letters, 203(2): 635-650 DOI:10.1016/S0012-821X(02)00841-5 |
Chen WF, Wang JR, Zhang Q, Liu YX, Ma L and Jiao ST. 2017. Data mining of ocean island basalt and ocean plateau basalt:Geochemical characteristics and comparison with MORB. Acta Geologica Sinica, 91(11): 2443-2455 (in Chinese with English abstract) |
Choe WH, Lee JI, Lee MJ, Do Hur S and Jin YK. 2007. Origin of E-MORB in a fossil spreading center:The Antarctic-Phoenix Ridge, Drake Passage, Antarctica. Geosciences Journal, 11(3): 185-199 |
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196 |
Cui YL, Wang GH and Liang X. 2017. Geochemical characteristics and tectonic implications of gabbro in Mayigangri area, Tibet. Geoscience, 31(2): 258-266 (in Chinese with English abstract) |
Dong MC, Zhao ZD, Zhu DC, Liu D, Dong GC, Mo XX, Hu ZC, Liu YS and Zou ZH. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou Basin, southern Tibet. Acta Petrologica Sinica, 31(5): 1268-1284 (in Chinese with English abstract) |
Dong SL, Zhang Z, Zhang LK, Li GM, Qing CS, Liang W, Fu JG, Cao HW, Li HP, Xu CH and Li ZP. 2018. Geochemistry, Hf-Sr-Nd isotopes and petrogenesis of acidic volcanic rocks in Quzhuomu region of Southern Tibet. Earth Science, 43(8): 2701-2714 (in Chinese with English abstract) |
Frey FA, Green DH and Roy SD. 1978. Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from Southeastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3): 463-513 DOI:10.1093/petrology/19.3.463 |
Gaina C, Müller RD, Brown BJ and Ishihara T. 2003. Microcontinent formation around Australia. In: Hillis RR and Müller RD (eds.). Evolution and Dynamics of the Australian Plate. Boulder Co: Special Paper of the Geological Society of America, 399-410
|
Gale A, Dalton CA, Langmuir CH, Su YJ and Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489-518 DOI:10.1029/2012GC004334 |
Gao J. 2014. The mineralogical and geochemical features of Zedang pyroxenites in Tibet. Master Degree Thesis. Kunming: Kunming University of Science and Technology (in Chinese with English summary)
|
Gao LE. 2014. Anatetic events along the Malashan-Gyirong rift, southern Tibet and their implication for the tectonic evolution of the Himalayan orogenic belt. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-365 (in Chinese with English summary)
|
Hanchar JM and Miller CF. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images:Implications for interpretation of complex crustal histories. Chemical Geology, 110(1-3): 1-13 DOI:10.1016/0009-2541(93)90244-D |
He ZH, Yang DM, Zheng CQ and Wang TW. 2006. Isotopic dating of the Mamba granitoid in the Gangdise tectonic belt and its constraint on the subduction time of the Neotethys. Geological Review, 52(1): 100-106 (in Chinese with English abstract) |
Heine C and Müller RD. 2005. Late Jurassic rifting along the Australian North West Shelf:Margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52(1): 27-39 DOI:10.1080/08120090500100077 |
Hess PC. 1992. Phase equilibria constraints on the origin of ocean floor basalts. In: Morgan JP, Blackman DK and Sinton JM (eds.). Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington: American Geophysical Union, 67-102 https: //www.researchgate.net/publication/284120569_Phase_equilibria_constraints_on_the_origin_of_ocean_floor_basalt
|
Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439 |
Hou CY. 2017. Zircon SHRIMP U-Pb age and geochemistry of the Lakang Formation volcanic rocks in the Tethyan Himalaya. Master Degree Thesis. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
|
Hou ZQ, Lv QT, Wang AJ, Li XB, Wang ZQ and Wang EQ. 2003. Continental collision and related metallogeny:A case study of mineralization in Tibetan orogen. Mineral Deposits, 22(4): 319-333 (in Chinese with English abstract) |
Huang XD. 2011. Study on metallogenic regularity and ore-prospecting direction of Gyantse-Lhunze gold-antimony metallogenic belt in the south Tibetan detachment system. Master Degree Thesis. Chengdu: Chengdu University of Technology (in Chinese with English summary)
|
Jiang SH, Nie FJ, Hu P and Liu Y. 2006. An important spreading event of the Neo-Tethys Ocean during the Late Jurassic and Early Cretaceous:Evidence from zircon U-Pb SHRIMP dating on diabase in Nagarzê, southern Tibet. Acta Geologica Sinica, 80(4): 522-527 |
Jiang SH, Nie FJ, Hu P, Liu Y and Lai XR. 2007. Geochemical characteristics of the mafic dyke swarms in South Tibet. Acta Geologica Sinica, 81(1): 60-71 (in Chinese with English abstract) |
Kelley KA, Kingsley R and Schilling JG. 2013. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochemistry, Geophysics, Geosystems, 14(1): 223-242 DOI:10.1002/ggge.20049 |
Kent RW, Pringle MS, Müller RD, Saunders AD and Ghose NC. 2002. 40Ar/39Ar Geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau. Journal of Petrology, 43(7): 1141-1153 DOI:10.1093/petrology/43.7.1141 |
Lang XH, Tang JX, Li ZJ, Huang Y, Ding F, Yang HH, Xie FW, Zhang L, Wang Q and Zhou Y. 2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622 DOI:10.1016/j.jseaes.2013.08.009 |
Lang XH, Liu D, Deng YL, Tang JX, Wang XH, Yang ZY, Cui ZW, Feng YX, Yin Q, Xie FW, Huang Y and Zhang JS. 2019. Detrital zircon geochronology and geochemistry of Jurassic sandstones in the Xiongcun district, southern Lhasa subterrane, Tibet, China:Implications for provenance and tectonic setting. Geological Magazine, 156(4): 683-701 DOI:10.1017/s0016756818000122 |
Lassiter JC and DePaolo DJ. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington: American Geophysical Union, 335-355
|
Li SG. 1993. Ba-Nb-Th-La diagrams used to identify tectonic environments of ophiolite. Acta Petrologica Sinica, 9(2): 146-157 (in Chinese with English abstract) |
Liao CL. 2003. The geochemical characteristics Paleoproterozoic mafic dykes from the southern Taihang Mountains: Petrogenesis and tectonic implications. Master Degree Thesis. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
|
Lin B, Tang JX, Chen YC, Baker M, Song Y, Yang HH, Wang Q, He W and Liu ZB. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet. Gondwana Research, 66: 168-182 DOI:10.1016/j.gr.2018.07.009 |
Liu BJ, Yu GM, Wang CS and Lan BL. 1982. Significance of discovery of the nertunic dikes in the Jurassic system in Nielamu County, southern Tibet. Journal of Mineralogy and Petrology, 2(3): 94-95 (in Chinese with English abstract) |
Liu CZ, Chung SL, Wu FY, Zhang C, Xu Y, Wang JG, Chen Y and Guo S. 2016. Tethyan suturing in Southeast Asia:Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 44(4): 311-314 DOI:10.1130/G37342.1 |
Liu LW, Li JF, Xia B, Qiu LB and Huang QT. 2012. Chronology and geochemical characteristics of Namuru island arc volcanics in Tibet. Bulletin of Mineralogy, Petrology and Geochemistry, 31(2): 114-120 (in Chinese with English abstract) |
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082 |
Liu ZQ, Xu X, Pan GT, Li TZ, Yu GM, Yu XJ, Jiang XZ, Wei GY and Wang CS. 1990. Tectonics, Geological Evolution and Genetic Mechanism of Qinghai-Xizang (Tibet) Plateau. Beijing: Geological Publishing House, 1-174 (in Chinese)
|
Ludwig KR. 2003. User's Manual for ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-50
|
Ma YM, Yang TS, Bian WW, Jin JJ, Zhang SH, Wu HC and Li HY. 2016. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya:Insights into the Neotethyan paleogeography and the India-Asia collision. Scientific Reports, 6: 21605 DOI:10.1038/srep21605 |
McDonough WF. 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters, 101(1): 1-18 DOI:10.1016/0012-821X(90)90119-I |
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218 DOI:10.1016/0009-2541(86)90004-5 |
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9 |
Möller A, O'Brien PJ, Kennedy A and Kröner A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: Vance D, Müller W and Villa IM (eds.). Geochronology: Linking the Isotopic Record with Petrology and Textures. Geological Society, London, Special Publications, 220(1): 65-81 https: //www.researchgate.net/publication/259558414_Linking_growth_episodes_of_zircon_and_metamorphic_textures_to_zircon_chemistry_an_example_from_the_ultrahigh-temperature_granulites_of_Rogaland_SW_Norway
|
Nie FJ, Hu P, Jiang SH, Li ZQ, Liu Y and Zhou YZ. 2005. Type and temporal-spatial distribution of gold and antimony deposits (prospects) in southern Tibet, China. Acta Geologica Sinica, 79(3): 373-385 (in Chinese with English abstract) |
Niu YL, Liu Y, Xue QQ, Shao FL, Chen S, Duan M, Guo PY, Gong HM, Hu Y, Hu ZX, Kong JJ, Li JY, Liu JJ, Sun P, Sun WL, Ye L, Xiao YY and Zhang Y. 2015. Exotic origin of the Chinese continental shelf:New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin, 60(18): 1598-1616 DOI:10.1007/s11434-015-0891-z |
O'Neill C, Müller D and Steinberger B. 2003. Geodynamic implications of moving Indian Ocean hotspots. Earth and Planetary Science Letters, 215(1-2): 151-168 DOI:10.1016/S0012-821X(03)00368-6 |
Pan GT, Chen ZL, Li XZ, Yan YJ, Xu XS, Xu Q, Jiang XS, Wu YL, Luo JN, Zhu TX and Peng YM. 1997. Formation and Evolution of the Eastern Tethyan Geological Structure. Beijing: Geological Publishing House, 1-218 (in Chinese)
|
Pearce JA. 1976. Statistical analysis of major element patterns in basalts. Journal of Petrology, 17(1): 15-43 DOI:10.1093/petrology/17.1.15 |
Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47 DOI:10.1007/BF00375192 |
Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Andesites: Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 528-548
|
Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP and Howells MF (eds.). Marginal Basin Geology. Geological Society, London, Special Publications, 16(1): 77-94 http://www.researchgate.net/publication/237966121_Characteristics_and_tectonic_significance_of_supra-subduction_zone_ophiolites?ev=auth_pub
|
Pei YR, Yang ZS, Zheng YC, Hou ZQ, Tian SH, Liu YC, Zhao XY and Zhou JS. 2017. The geochemical characteristics of the Pengcuolin adakitic dykes, southern Tibet:Petrogenesis and implications for regional metallogenesis. Acta Petrologica Sinica, 33(2): 515-528 (in Chinese with English abstract) |
Perk NW, Coogan LA, Karson JA, Klein EM and Hanna HD. 2007. Petrology and geochemistry of primitive lower oceanic crust from Pito Deep:Implications for the accretion of the lower crust at the Southern East Pacific Rise. Contributions to Mineralogy and Petrology, 154(5): 575-590 DOI:10.1007/s00410-007-0210-z |
Qiu BB. 2011. New evidence of Plume Origin for the Comei fragmented large igneous province in southeastern Tibet. Master Degree Thesis. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
|
Ren C, Liu S, Zhu LD, Pan JT and Gao WX. 2014. Geochemistry and zircon SHRIMP U-Pb dating and their tectonic significance for intermediate-basic dyke in the Gudui region, South Tibet. Acta Geologica Sichuan, 34(4): 496-500 (in Chinese with English abstract) |
Ren C. 2015. Geochemistry, geochronology and its geological significances of Early Cretaceous magmatic rocks of Comei district in Tibet. Master Degree Thesis. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
|
Rittmann A. 1957. On the serial character of igneous rocks. Egyptian Journal of Geology, 1(1): 23-48 |
Rudnick RL and Gao S. 2003. The composition of the continental crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry (Vol. 3): The Crust. Oxford: Elsevier, 1-64
|
Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Li TD, Xiao XC, Jan MQ, Thakur VC and Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98(6): 678-701 DOI:10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2 |
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26-30 (in Chinese with English abstract) |
Song Y, Yang C, Wei SG, Yang HH, Fang X and Lu HT. 2018. Tectonic control, reconstruction and preservation of the Tiegelongnan porphyry and epithermal overprinting Cu (Au) deposit, Central Tibet, China. Minerals, 8(9): 398 DOI:10.3390/min8090398 |
Song Y, Zeng QG, Liu HY, Liu ZB, Li HF and Dexi YZ. 2019. An innovative perspective for the evolution of Bangong-Nujiang Ocean:Also discussing the Paleo-and Neo-Tethys conversion. Acta Petrologica Sinica, 35(3): 625-641 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.03.02 |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
|
Tang JX, Li FJ, Li ZJ, Zhang L, Tang XQ, Deng Q, Lang XH, Huang Y, Yao XF and Wang Y. 2010. Time limit for formation of main geological bodies in Xiongcun copper-gold deposit, Xietongmen County, Tibet:Evidence from zircon U-Pb ages and Re-Os age of molybdenite. Mineral Deposits, 29(3): 461-475 (in Chinese with English abstract) |
Tang JX, Sun XG, Ding S, Wang Q, Wang YY, Yang C, Zhang Z, Song JL, Yang HH, Duan JL, Gao K, Fang X and Tan JY. 2014. The discovery of the Cu (Au-Ag) epithermal deposit in the Duolong ore concentrating area, northern Tibet. Acta Geologica Sinica, 88(Suppl.2): 1287-1289 |
Tang JX, Ding S, Meng Z, Hu GY, Gao YM, Xie FW, Li Z, Yuan M, Yang ZY, Chen GR, Li YH, Yang HY and Fu YG. 2016. The first discovery of the low sulfidation epithermal deposit in Linzizong volcanics, Tibet:A case study of the Sinongduo Ag polymetallic deposit. Acta Geoscientica Sinica, 37(4): 461-470 (in Chinese with English abstract) |
Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell Scientific Publication, 209-230
|
Thornton PC and Tuttle OF. 1960. Chemistry of igneous rocks 1, Differentiation index. American Journal of Science, 258(9): 664-684 DOI:10.2475/ajs.258.9.664 |
Tong JS, Liu J, Zhong HM, Xia J, Lu RK and Li YH. 2007. Zircon U-Pb dating and geochemistry of mafic dike swarms in the Lhozag area, southern Tibet, China, and their tectonic implications. Geological Bulletin of China, 26(12): 1654-1664 (in Chinese with English abstract) |
Wang CS, Li XH, Wan XQ and Tao R. 2000. The Cretaceous in Gyangze, southern Xizang (Tibet):Redefined. Acta Geologica Sinica, 74(2): 97-107 (in Chinese with English abstract) |
Wang JR, Chen WF, Zhang Q, Jiao ST, Yang J, Pan ZJ and Wang SH. 2017. Preliminary research on data mining of N-MORB and E-MORB:Discussion on method of the basalt discrimination diagrams and the character of MORB's mantle source. Acta Petrologica Sinica, 33(3): 993-1005 (in Chinese with English abstract) |
Wang R, Xia B, Hu JR, Zhou GQ, Wei DL and Wang Q. 2006. Geochemistry of oceanic island diabase from ophiolitic mélange zone in Renbu area:Implications for hotspot within Tethys in southern Xizang (Tibet). Geochimica, 35(1): 44-54 (in Chinese with English abstract) |
Wang WL, Cheng QM, Tang JX, Pubuciren, Song Y, Li YB and Liu ZB. 2017. Fractal/multifractal analysis in support of mineral exploration in the Duolong mineral district, Tibet, China. Geochemistry:Exploration, Environment, Analysis, 17(3): 261-276 DOI:10.1144/geochem2016-449 |
Wang YL, Zhang CJ and Xiu SZ. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract) |
Wang YW. 2015. Geochemistry of intrusive rocks in Jiangzi-Kangmar region, Tibet. Master Degree Thesis. Chengdu: Chengdu University of Technology (in Chinese with English summary)
|
Wang YY, Gao LE, Zeng LS, Chen FK, Hou KJ, Wang Q, Zhao LH and Gao JH. 2016. Multiple phases of cretaceous mafic magmatism in the Gyangze-Kangma area, Tethyan Himalaya, southern Tibet. Acta Petrologica Sinica, 32(12): 3572-3596 (in Chinese with English abstract) |
Weaver BL. 1991. The origin of ocean island basalt end-member compositions:Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397 DOI:10.1016/0012-821X(91)90217-6 |
Wei YS, Liang WX, Shang YM, Zhang BS and Pan WY. 2017. Petrogenesis and tectonic implications of ~130Ma diabase dikes in the western Tethyan Himalaya (western Tibet). Journal of Asian Earth Sciences, 143: 236-248 DOI:10.1016/j.jseaes.2017.04.008 |
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23 DOI:10.1111/j.1751-908X.1995.tb00147.x |
Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman, 1-466
|
Wright JB. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4): 370-384 DOI:10.1017/S0016756800058222 |
Wu F. 2017. Characteristics and geological significance of the volcanic rocks in Upper Jurassic-Lower Cretaceous Sangxiu Formation of the Zhegu area, South Tibet. Master Degree Thesis. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
|
Xia DX and Liu SK. 1997. Stratigraphy (Lithostratic) of Xizang Autonomous Region. Wuhan: China University of Geosciences Press, 1-303 (in Chinese)
|
Xia XB, Zheng LL, Li JM and Li ZH. 2011. Geological characteristics and genetic analysis of the iron-bearing tourmalite dikes in Bangnong area, Xaitongmoin County, Tibet. Mineral Deposits, 30(4): 742-748 (in Chinese with English abstract) |
Xia Y, Zhu DC, Zhao ZD, Wang Q, Yuan SH, Chen Y and Mo XX. 2012. Whole-rock geochemistry and zircon Hf isotope of the OIB-type mafic rocks from the Comei Large Igneous Province in southeastern Tibet. Acta Petrologica Sinica, 28(5): 1588-1602 (in Chinese with English abstract) |
Xie GQ, Mao JW, Li W, Fu B and Zhang ZY. 2019a. Granite-related Yangjiashan tungsten deposit, southern China. Mineralium Deposita, 54(1): 67-80 DOI:10.1007/s00126-018-0805-5 |
Xie GQ, Mao JW, Bagas L, Fu B and Zhang ZY. 2019b. Mineralogy and titanite geochronology of the Caojiaba W deposit, Xiangzhong metallogenic province, southern China:Implications for a distal reduced skarn W formation. Mineralium Deposita, 54(3): 459-472 DOI:10.1007/s00126-018-0816-2 |
Xu ZQ, Yang JS, Qi XX, Cui JW, Li HJ and Chen FY. 2006. India-Asia collision:A further discussion of N-S- and E-W-trending detachments and the orogenic mechanism of the modern Himalayas. Geological Bulletin of China, 25(1-2): 1-14 (in Chinese with English abstract) |
Xu ZQ, Yang JS, Li HB, Ji SC, Zhang ZM and Liu Y. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica, 85(1): 1-33 (in Chinese with English abstract) DOI:10.1111/j.1755-6724.2011.00375.x |
Xu ZQ, Yang JS, Hou ZQ, Zhang ZM, Zeng LS, Li HB, Zhang JX, Li ZH and Ma XX. 2016. The progress in the study of continental dynamics of the Tibetan Plateau. Geology in China, 43(1): 1-42 (in Chinese with English abstract) |
Yang C, Tang JX, Zheng WB, Lin B, Wang LQ, Duan JL and Kang HR. 2014. Study on zircon U-Pb geochronology and petrogeochemistry of diabase in Zhaxikang Zn-polymetallic deposit, southern Tibet. Nonferrous Metals (Mining Section), 66(6): 30-37 (in Chinese with English abstract) |
Yang GX, Li YJ, Tong LL, Yang BK, Zhang SL, Shen R and Duan FH. 2015. New advance in oceanic island basalts of ophiolitic mélange from the West Junggar. Acta Geologica Sinica, 89(2): 392-405 (in Chinese with English abstract) |
Zeng LS, Gao LE, He KJ, Tang SH and Guo CL. 2012. Multiple mafic magmatic events along the Tethyan Himalaya:Tracing the life-time of the Neo-Tethyan ocean. Acta Geoscientica Sinica, 33(Suppl.1): 72-73 |
Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.1): 219-232 |
Zhang JJ. 2007. A review on the extensional structures in the northern Himalaya and southern Tibet. Geological Bulletin of China, 26(6): 639-649 (in Chinese with English abstract) |
Zhang ZC, Wang FS, Hao YL and Mahoney JJ. 2004. Geochemistry of the picrites and associated basalts from the Emeishan large igneous basalt province and constraints on their source region. Acta Geologica Sinica, 78(2): 171-180 (in Chinese with English abstract) |
Zhu DC, Wang LQ, Pan GT, Mo XX, Liao ZL, Jiang XS and Zhao ZD. 2004. Discrimination of OIB-type magma and its significances of basalts from Middle Jurassic Zhela Formation in the central belt of Tethyan Himalayas, South Tibet. Geological Science and Technology Information, 23(3): 15-24 (in Chinese with English abstract) |
Zhu DC, Pan GT, Mo XX, Liao ZL, Jiang XS, Wang LQ and Zhao ZD. 2005a. Geochemistry and petrogenesis of the Sangxiu Formation basalts in the central segment of Tethyan Himalaya. Geochimica, 34(1): 7-19 (in Chinese with English abstract) |
Zhu DC, Pan GT, Mo XX, Wang LQ, Liao ZL, Jiang XS and Geng QR. 2005b. SHRIMP U-Pb zircon dating for the dacite of the Sangxiu Formation in the central segment of Tethyan Himalaya and its implications. Chinese Science Bulletin, 50(6): 563-568 DOI:10.1007/BF02897481 |
Zhu DC, Pan GT, Mo XX, Zhao ZD, Liao ZL, Wang LQ and Jiang XS. 2006. Geochemistry and petrogenesis of the Triassic volcanic rocks in the east-central segment of Tethyan Himalaya. Acta Petrologica Sinica, 22(4): 804-816 (in Chinese with English abstract) |
Zhu DC, Pan GT, Mo XX, Liao ZL, Jiang XS, Wang LQ and Zhao ZD. 2007. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya:A probable example of plume-lithosphere interaction. Journal of Asian Earth Sciences, 29(2-3): 320-335 DOI:10.1016/j.jseaes.2005.12.004 |
Zhu DC, Mo XX, Pan GT, Zhao ZD, Dong GC, Shi YR, Liao ZL, Wang LQ and Zhou CY. 2008a. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in South Tibet:Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?. Lithos, 100(1-4): 147-173 DOI:10.1016/j.lithos.2007.06.024 |
Zhu DC, Mo XX, Zhao ZD, Niu YL and Chung SL. 2008b. Whole-rock elemental and zircon Hf isotopic geochemistry of mafic and ultramafic rocks from the Early Cretaceous Comei large igneous province in SE Tibet:Constraints on mantle source characteristics and petrogenesis. Himalayan Journal of Sciences, 5(7): 178-180 |
Zhu DC, Mo XX, Wang LQ, Zhao ZD and Liao ZL. 2008. Hotspot-ridge interaction for the evolution of Neo-Tethys:Insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet. Acta Petrologica Sinica, 24(2): 225-237 (in Chinese with English abstract) |
Zhu DC, Chung SL, Mo XX, Zhao ZD, Niu YL, Song B and Yang YH. 2009. The 132Ma Comei-Bunbury large igneous province:Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 37(7): 583-586 DOI:10.1130/G30001A.1 |
Zhu DC, Mo XX, Zhao ZD, Niu YL, Pan GT, Wang LQ and Liao ZL. 2009. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution:New perspective. Earth Science Frontiers, 16(2): 1-20 (in Chinese with English abstract) |
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002 |
Zhu DC, Xia Y, Qiu BB, Wang Q and Zhao ZD. 2013. Why do we need to propose the Early Cretaceous Comei large igneous province in southeastern Tibet?. Acta Petrologica Sinica, 29(11): 3659-3670 (in Chinese with English abstract) |
陈万峰, 王金荣, 张旗, 刘懿馨, 马骊, 焦守涛. 2017. 洋岛和洋底高原玄武岩数据挖掘:地球化学特征及其与MORB的对比. 地质学报, 91(11): 2443-2455. DOI:10.3969/j.issn.0001-5717.2017.11.005 |
崔玉良, 王根厚, 梁晓. 2017. 西藏玛依岗日地区辉长岩地球化学特征及其构造意义. 现代地质, 31(2): 258-266. DOI:10.3969/j.issn.1000-8527.2017.02.005 |
董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘勇胜, 邹子昊. 2015. 西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因. 岩石学报, 31(5): 1268-1284. |
董随亮, 张志, 张林奎, 李光明, 卿成实, 梁维, 付健刚, 曹华文, 李海平, 许昌辉, 李智鹏. 2018. 藏南曲卓木地区酸性火山岩地球化学、Hf-Sr-Nd同位素特征及其成因. 地球科学, 43(8): 2701-2714. |
高健. 2014.西藏泽当辉石岩矿物学及地球化学特征.硕士学位论文.昆明: 昆明理工大学 http://cdmd.cnki.com.cn/Article/CDMD-10674-1017221204.htm
|
高利娥. 2014.藏南马拉山-吉隆裂谷带深熔事件及其构造动力学意义.博士学位论文.北京: 中国地质科学院, 1-365 http://cdmd.cnki.com.cn/Article/CDMD-82501-1014269105.htm
|
侯晨阳. 2017.特提斯喜马拉雅带拉康组火山岩锆石年代学、地球化学特征及地质意义.硕士学位论文.北京: 中国地质大学(北京) http://cdmd.cnki.com.cn/Article/CDMD-11415-1017055881.htm
|
侯增谦, 吕庆田, 王安建, 李晓波, 王宗起, 王二七. 2003. 初论陆-陆碰撞与成矿作用——以青藏高原造山带为例. 矿床地质, 22(4): 319-333. DOI:10.3969/j.issn.0258-7106.2003.04.001 |
黄小东. 2011.藏南拆离系江孜-隆子金-锑成矿带成矿规律与找矿方向研究.硕士学位论文.成都: 成都理工大学 http://cdmd.cnki.com.cn/Article/CDMD-10616-1011235396.htm
|
江思宏, 聂凤军, 胡朋, 刘妍, 赖新荣. 2007. 藏南基性岩墙群的地球化学特征. 地质学报, 81(1): 60-71. |
李曙光. 1993. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图. 岩石学报, 9(2): 146-157. DOI:10.3321/j.issn:1000-0569.1993.02.005 |
廖超林. 2003.南太行山早元古代基性岩脉的地球化学特征及其构造意义.硕士学位论文.广州: 中国科学院广州地球化学研究所 http://cdmd.cnki.com.cn/Article/CDMD-80165-2003092530.htm
|
刘宝珺, 余光明, 王成善, 兰伯龙. 1982. 西藏南部聂拉木县侏罗纪水成岩脉的发现及其意义. 矿物岩石, 2(3): 94-95. |
刘立文, 李建峰, 夏斌, 邱亮斌, 黄强太. 2012. 西藏那木如辉绿岩岩脉的年代学和地球化学特征. 矿物岩石地球化学通报, 31(2): 114-120. DOI:10.3969/j.issn.1007-2802.2012.02.003 |
刘增乾, 徐宪, 潘桂棠, 李泰钊, 余光明, 余希静, 蒋兴治, 卫管一, 王成善. 1990. 青藏高原大地构造与形成演化. 北京: 地质出版社, 1-174.
|
聂凤军, 胡朋, 江思宏, 李振清, 刘妍, 周永章. 2005. 藏南地区金和锑矿床(点)类型及其时空分布特征. 地质学报, 79(3): 373-385. DOI:10.3321/j.issn:0001-5717.2005.03.009 |
潘桂棠, 陈智梁, 李兴振, 颜仰基, 许效松, 徐强, 江新胜, 吴应林, 罗建宁, 朱同兴, 彭勇民. 1997. 东特提斯地质构造形成演化. 北京: 地质出版社, 1-218.
|
裴英茹, 杨竹森, 郑远川, 侯增谦, 田世洪, 刘英超, 赵晓燕, 周金胜. 2017. 藏南彭措林埃达克质岩脉的岩石成因及对区域成矿作用的启示. 岩石学报, 33(2): 515-528. |
裘碧波. 2011.藏东南措美残余大火成岩省地幔柱成因新证据.硕士学位论文.北京: 中国地质大学(北京) http://cdmd.cnki.com.cn/article/cdmd-11415-1011077810.htm
|
任冲, 刘顺, 朱利东, 潘江涛, 高伟先. 2014. 藏南古堆地区中基性脉岩SHRIMP锆石U-Pb定年、地球化学特征及构造意义. 四川地质学报, 34(4): 496-500. DOI:10.3969/j.issn.1006-0995.2014.04.004 |
任冲. 2015.西藏措美地区早白垩世岩浆岩地质年代学、地球化学及地质意义.硕士学位论文.北京: 中国地质大学(北京) http://cdmd.cnki.com.cn/Article/CDMD-11415-1015391394.htm
|
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增): 26-30. |
宋扬, 曾庆高, 刘海永, 刘治博, 李海峰, 德西央宗. 2019. 班公湖-怒江洋形成演化新视角:兼论西藏中部古-新特提斯转换. 岩石学报, 35(3): 625-641. |
唐菊兴, 黎风佶, 李志军, 张丽, 唐晓倩, 邓起, 郎兴海, 黄勇, 姚晓峰, 王友. 2010. 西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据. 矿床地质, 29(3): 461-475. DOI:10.3969/j.issn.0258-7106.2010.03.008 |
唐菊兴, 丁帅, 孟展, 胡古月, 高一鸣, 谢富伟, 李壮, 袁梅, 杨宗耀, 陈国荣, 李于海, 杨宏钰, 付燕刚. 2016. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例. 地球学报, 37(4): 461-470. DOI:10.3975/cagsb.2016.04.08 |
童劲松, 刘俊, 钟华明, 夏军, 鲁如魁, 李运怀. 2007. 藏南洛扎地区基性岩墙群锆石U-Pb定年、地球化学特征及构造意义. 地质通报, 26(12): 1654-1664. DOI:10.3969/j.issn.1671-2552.2007.12.019 |
王成善, 李祥辉, 万晓樵, 陶然. 2000. 西藏南部江孜地区白垩系的厘定. 地质学报, 74(2): 97-107. DOI:10.3321/j.issn:0001-5717.2000.02.001 |
王金荣, 陈万峰, 张旗, 焦守涛, 杨婧, 潘振杰, 王淑华. 2017. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论. 岩石学报, 33(3): 993-1005. |
王冉, 夏斌, 胡敬仁, 周国庆, 韦栋梁, 王茜. 2006. 仁布蛇绿混杂带洋岛型辉绿岩地球化学:藏南特提斯洋内热点. 地球化学, 35(1): 44-54. DOI:10.3969/j.issn.1672-9250.2006.01.008 |
王一伟. 2015.西藏江孜-康马地区侵入岩地球化学特征.硕士学位论文.成都: 成都理工大学 http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312383.htm
|
汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421. |
王亚莹, 高利娥, 曾令森, 陈福坤, 侯可军, 王倩, 赵令浩, 高家昊. 2016. 藏南特提斯喜马拉雅带内江孜-康马地区白垩纪多期基性岩浆作用. 岩石学报, 32(12): 3572-3596. |
吴丰. 2017.藏南哲古地区上侏罗统-下白垩统桑秀组火山岩特征及其地质意义.硕士学位论文.北京: 中国地质大学(北京) http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126629.htm
|
夏代祥, 刘世坤. 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社, 1-303.
|
夏祥标, 郑来林, 李军敏, 李再会. 2011. 西藏谢通门县邦弄含铁电英岩脉的地质特征及成因分析. 矿床地质, 30(4): 742-748. DOI:10.3969/j.issn.0258-7106.2011.04.013 |
夏瑛, 朱弟成, 赵志丹, 王青, 袁四化, 陈越, 莫宣学. 2012. 藏东南措美大火成岩省中OIB型镁铁质岩的全岩地球化学和锆石Hf同位素. 岩石学报, 28(5): 1588-1602. |
许志琴, 杨经绥, 戚学祥, 崔军文, 李海兵, 陈方远. 2006. 印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论. 地质通报, 25(1-2): 1-14. |
许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1-33. |
许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展. 中国地质, 43(1): 1-42. |
杨超, 唐菊兴, 郑文宝, 林彬, 王立强, 段吉琳, 康浩然. 2014. 藏南扎西康锌多金属矿床辉绿岩锆石U-Pb年代学、岩石地球化学特征研究. 有色金属(矿山部分), 66(6): 30-37. DOI:10.3969/j.issn.1671-4172.2014.06.008 |
杨高学, 李永军, 佟丽莉, 杨宝凯, 张胜龙, 沈锐, 段丰浩. 2015. 西准噶尔蛇绿混杂岩中洋岛玄武岩研究新进展. 地质学报, 89(2): 392-405. |
张进江. 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649. DOI:10.3969/j.issn.1671-2552.2007.06.003 |
翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(增1): 129-137. |
张招崇, 王福生, 郝艳丽, Mahoney JJ. 2004. 峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束. 地质学报, 78(2): 171-180. |
朱弟成, 王立全, 潘桂棠, 莫宣学, 廖忠礼, 江新胜, 赵志丹. 2004. 藏南特提斯喜马拉雅带中段中侏罗统遮拉组OIB型玄武岩浆的识别及其意义. 地质科技情报, 23(3): 15-24. |
朱弟成, 潘桂棠, 莫宣学, 廖忠礼, 江新胜, 王立全, 赵志丹. 2005a. 特提斯喜马拉雅带中段桑秀组玄武岩的地球化学和岩石成因. 地球化学, 34(1): 7-19. |
朱弟成, 潘桂棠, 莫宣学, 王立全, 廖忠礼, 江新胜, 耿全如. 2005b. 特提斯喜马拉雅桑秀组英安岩锆石SHRIMP年龄及其意义. 科学通报, 50(4): 375-379. |
朱弟成, 潘桂棠, 莫宣学, 赵志丹, 廖忠礼, 王立全, 江新胜. 2006. 特提斯喜马拉雅带中段东部三叠纪火山岩的地球化学和岩石成因. 岩石学报, 22(4): 804-816. |
朱弟成, 莫宣学, 王立全, 赵志丹, 廖忠礼. 2008. 新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论. 岩石学报, 24(2): 225-237. |
朱弟成, 莫宣学, 赵志丹, 牛耀龄, 潘桂棠, 王立全, 廖忠礼. 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点. 地学前缘, 16(2): 1-20. DOI:10.3321/j.issn:1005-2321.2009.02.001 |
朱弟成, 夏瑛, 裘碧波, 王青, 赵志丹. 2013. 为什么要提出西藏东南部早白垩世措美大火成岩省. 岩石学报, 29(11): 3659-3670. |