岩石学报  2020, Vol. 36 Issue (1): 279-296, doi: 10.18654/1000-0569/2020.01.22   PDF    
胶东早白垩世高镁闪长岩类的发现及其构造背景
宋明春1,2, 李杰3, 周建波4, 宋英昕2, 李世勇5, 王斌1, 丁正江6, 张照录7     
1. 山东省地质矿产勘查开发局第六地质大队, 威海 264209;
2. 自然资源部金矿成矿过程与资源利用重点实验室, 济南 250013;
3. 河北地质大学资源学院, 石家庄 050031;
4. 吉林大学地球科学学院, 长春 130061;
5. 山东省物化探勘查院, 济南 250013;
6. 山东省地质矿产勘查开发局, 济南 250013;
7. 山东理工大学资源与环境工程学院, 淄博 255000
摘要: 胶东地区发育大规模早白垩世壳幔混合源花岗岩类,但一直未发现与花岗岩类相关的独立的幔源侵入体,给深入理解早白垩世壳幔演化带来了困惑。胶东的柳林庄和夏河城岩体以往被认为是三叠纪闪长岩类,本文在详细的野外地质工作基础上,通过年代学、岩石地球化学、同位素地球化学分析,发现这2个岩体为早白垩世高镁闪长岩。样品的SiO2含量在53.29%~62.54%之间,MgO含量为3.60%~8.10%,Mg#主要介于0.47~0.68之间;富集Ba、Rb、K等大离子亲石元素,亏损Nb、Ta、Zr等高场强元素;初始87Sr/86Sr值为0.7082~0.7083,与地幔平均值接近;εNdt=113Ma)值很低(-20.5~-16.8),与胶东地区的基性脉岩同位素组成一致。2个岩体相比而言,柳林庄岩体富K2O、Fe2O3T,REE、LILE、HFSE含量较高,而MgO、Ni和Cr含量偏低。3件样品的锆石LA-ICP-MS U-Pb同位素加权平均年龄值分别为120.1±1.6Ma、118.3±1.7Ma和122.3±4.0Ma,与壳幔混合源的伟德山型花岗岩及胶东金矿的成岩、成矿时代一致,指示他们形成于统一的地球动力学背景。高镁闪长岩的地球化学特征介于高镁埃达克岩与赞岐岩及埃达克岩与Piip型高镁安山岩之间,指示其形成于古太平洋板块俯冲的地幔楔环境,为富集岩石圈地幔部分熔融的产物。夏河城岩体的岩浆直接来源于含角闪石的富集岩石圈地幔源区,而柳林庄岩体岩浆源区为含金云母的岩石圈地幔并且在岩浆上侵过程中混染了部分地壳物质。
关键词: 高镁闪长岩    早白垩世    幔源侵入岩    锆石U-Pb年龄    胶东    
The discovery and tectonic setting of the Early Cretaceous high-Mg diorites in the Jiaodong Peninsula
SONG MingChun1,2, LI Jie3, ZHOU JianBo4, SONG YingXin2, LI ShiYong5, WANG Bin1, DING ZhengJiang6, ZHANG ZhaoLu7     
1. Shandong Provincial No.6 Exploration Institute of Geology and Mineral Resources, Weihai 264209, China;
2. Key Laboratory of Gold Mineralization Processes and Resources Utilization Subordinated to the Ministry of Nature and Resources, Jinan 250013, China;
3. School of Resources, Hebei GEO University, Shijiazhuang 050031, China;
4. College of Earth Sciences, Jilin University, Changchun 130061, China;
5. Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China;
6. Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250013, China;
7. College of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China
Abstract: A large number of Early Crataceous granitoids with crust-mantle mixed source were reported in the Jiaodong Peninsula, however, mantle-derived plutons have not been reported so far. In this paper, we present new data from the Liulinzhuang and Xiahecheng plutons in the Jiaodong area. These two plutons were previously taken as Triassic diorites, however, based on detailed field work, lithogeochemistry together with geochronology and isotopic geochemistry analyses, we proposed that they were formed in the Early Cretaceous with high-Mg diorite affinity. The SiO2 contents of the collected samples vary from 53.29% to 62.54%, MgO from 3.60% to 8.10%, and Mg# mainly between 0.47 and 0.68. They are characterized by enrichments of Ba, Rb and K, and depletions of Nb, Ta and Zr, together with the initial 87Sr/86Sr values of 0.7082~0.7083, which are similar to the values of the mantle. Their εNd (t=113Ma) values are very low (-20.5~-16.8), which is similar to mafic dykes in the Jiaodong Peninsula. Compared with the Xiahecheng pluton, samples from the Liulinzhuang pluton are rich in K2O, Fe2O3T, REE, LILE and HFSE, but low in MgO, Ni and Cr. LA-ICPMS U-Pb zircon data from three samples yield weighted mean ages of 120.1±1.6Ma, 118.3±1.7Ma and 122.3±4.0Ma, respectively. These ages are similar to that of the Weideshan type granitoid and the ages of gold deposits in Jiaodong Peninsula. Therefore, we propose that they were formed in a unified geodynamic setting. In addition, geochemical characteristics of the high-Mg diorites in the Jiaodong Peninsula are similar to the high-Mg adakitic and sanukite, closer to Piip type high-Mg andesite, indicating that the high-Mg diorites are most likely formed in a mantle wedge due to the subduction of the Pacific Plate. So, the primary magma of the high-Mg diorites in the Jiaodong Peninsula was derived from partial melting of the enriched lithospheric mantle. In details, the Xiahecheng pluton was formed as the amphibole-rich enriched mantle, whereas the Liulinzhuang pluton was most likely formed as phlogopite-rich mantle and modified by the ancient lower crustal materials.
Key words: High-Mg diorites    The Early Cretaceous    Mantle-derived pluton    Zircon U-Pb age    Jiaodong Peninsula    

古太平洋板块对我国东部大陆边缘的控制作用和过程,历来是我国地学研究的焦点和重大地质问题。由于古太平洋板块的俯冲,欧亚大陆边缘发生了由被动大陆边缘向安第斯大陆边缘转换、安第斯大陆边缘向现今的西太平洋沟-弧-盆体系过渡的重大地质事件,同时也产生了诸如华北克拉通破坏、华南大陆再造、中国东部油气盆地与大规模金属成矿等一系列重大科学问题。为此,国际地质科学联合会设立了“Pre-Jurassic Evolution of Eastern Asia, IGCP224(1985~1990)”等国际地质对比项目,我国国家自然科学基金委员会启动了“华北克拉通破坏(2007~2017)”重大研究计划等。华北克拉通自18亿年固结以来,经历了长期稳定演化阶段(路凤香等,2005Sun et al., 2007杨进辉等,2007Yang et al., 2008Zhu et al. 2011Wu et al., 2017)。然而自中生代以来,由于受到古太平洋板块俯冲的影响,导致了华北东部地区岩石圈的巨量减薄,并发生了标志性的岩浆活动、构造变形、盆地沉积和爆发式金成矿作用(朱日祥和徐义刚,2019)。针对中生代幔源岩浆活动开展专项研究,不仅有助于深入了解华北岩石圈地幔的性质,同时对华北东部地区爆发式金成矿作用机制也具有重要的理论意义。

山东省中生代幔源岩浆活动较为广泛,具体包括鲁西地区高镁闪长岩和辉长岩(杨承海等,2006杨浩田等,2018)、鲁西和胶东的中生代玄武岩(裴福萍等,2004杨岳衡等,2006匡永生等,2012),以及胶东变质基底及中生代花岗岩出露区的基性脉岩等(Yang et al., 2004谭俊等,2006等),前人对其开展的大量研究为中生代岩石圈地幔性质和克拉通减薄机制提供了重要制约。胶东地区广泛发育侏罗-白垩纪花岗岩类侵入岩(Zhao and Zheng, 2009),其中侏罗纪的玲珑型花岗岩为地壳重熔型花岗岩(苗来成等,1998张华锋等,2004罗贤冬等,2014),而早白垩世的郭家岭和伟德山型花岗岩具有壳幔混合特征(Wang et al., 1998Goss et al., 2010罗贤冬等,2014),它们对揭示华北东部地区爆发式金成矿作用的构造背景与时代具有重要的指示意义。虽然前人在郭家岭和伟德山型花岗岩中发现了较多具有幔源特征的闪长质包体(宋明春和严庆利,2000Goss et al., 2010王中亮等,2014),但在胶东地区一直未发现独立分布的早白垩世幔源侵入岩体,给深入理解早白垩世的壳幔演化带来了困惑。需要指出的是,胶东东北部的柳林庄岩体和胶东南部的夏河城岩体主要由闪长岩、石英闪长岩和石英二长岩等组成,前人称其为柳林庄超单元(序列)或柳林庄型闪长岩,并根据K-Ar和单颗粒锆石U-Pb同位素年龄(195~236.4Ma),将其厘定为晚三叠世闪长岩(宋明春和韩景敏,2006张增奇等,2014)。本文研究发现,柳林庄型闪长岩实际是形成于早白垩世的幔源高镁闪长岩,这为胶东早白垩世壳幔相互作用及岩浆演化研究提供了重要依据。同时,由于胶东高镁闪长岩与伟德山型花岗岩及金矿床的形成时代一致,幔源闪长岩的发现和进一步研究也为我们开启了研究区域大规模成矿作用的新思路。

1 地质背景与样品 1.1 区域地质概况

胶东地区位于华北克拉通东南缘与苏鲁造山带构造接合部位,其东南部的威海-日照地块属大别-苏鲁造山带,以含超高压变质榴辉岩的花岗质片麻岩为代表(郭敬辉等,2005宋明春和韩景敏,2006薛怀民等,2007);其西北部的胶北地块属华北克拉通东南缘,主要由新太古代花岗岩-绿岩带和古元古代孔兹岩系组成(Zhang et al., 2003Li et al., 2012);中部地区主要为叠加于克拉通与造山带之上的白垩纪胶莱盆地,由陆相火山-沉积岩系组成。在威海-日照地块及胶北地块中有较多的中生代花岗岩类侵入体(Zhao and Zheng, 2009Goss et al., 2010; 图 1)。

图 1 胶东中生代侵入岩体分布简图 (a)柳林庄地区地质图及采样位置; (b)夏河城地区地质图及采样位置 Fig. 1 Geological sketch map of Mesozoic intrusions in the Jiaodong Peninsula (a) detailed geological map of the Liulinzhuang area showing sample locations; (b) detailed geological map of the Xiahecheng area showing sample locations

本文分别对胶东地区的柳林庄岩体和夏河城岩体进行了调查研究。其中,柳林庄岩体位于胶东东部,呈近南北向椭圆状侵入到玲珑型花岗岩中,出露面积约13.28km2,由中粒含角闪黑云石英二长闪长岩、含斑中粒含黑云角闪石英二长岩、中粒含角闪黑云石英二长岩组成(图 1a);而夏河城岩体位于胶东南部,大致呈NW向椭圆状侵入到基底变质岩系中,出露面积约33.98km2,主要由斑杂状中细粒含辉石黑云角闪闪长岩、细粒含黑云角闪闪长岩、细粒含辉石黑云闪长岩、中细粒角闪石英闪长岩等侵入体组成(宋明春和韩景敏,2006)(图 1b)。

1.2 采样位置和样品岩相学特征

野外共采集岩石样品12件,其中7件样品采自柳林庄岩体,岩性为中细粒黑云角闪二长岩和中粒含角闪黑云石英二长闪长岩,年代学测试样品(SD30和SD31)的GPS位置分别为37°12′58″N、121°48′35″E和37°12′55″N、121°48′43″E(图 1a);另外5件样品采自夏河城岩体,岩性为细粒黑云石英二长岩和中细粒角闪闪长岩,其中年代学测试样品(SD50)的GPS位置为35°42′05″N、119°48′44″E(图 1b)。

柳林庄岩体年代学测试样品(SD30、SD31)为中-细粒黑云角闪二长岩,岩石呈中细粒半自形柱粒状结构、块状构造,主要由钾长石(40%)、斜长石(35%)、普通角闪石(13%)和黑云母(10%)组成,少量石英(2%)(图 2a, b)。其中,钾长石呈自形-半自形板状,粒径介于0.4~4mm之间;斜长石呈自形-半自形板状,聚片双晶发育,粒径介于0.3~4mm之间;普通角闪石呈长柱状,深绿-暗褐色多色性,粒径介于0.2~2mm之间;黑云母呈片状,深褐色-淡黄褐色多色性,粒径介于0.3~3mm之间。该岩体同时采集的地球化学样品还包括中粒含角闪黑云石英二长闪长岩,为中粒半自形粒状结构,块状构造,主要由斜长石(48.44%)和钾长石(26.85%)组成,少量黑云母(7.57%)、石英(7.39%)、普通角闪石(5.33%)和普通辉石(2.35%),主要矿物粒径2~5mm。其中,斜长石呈半自形板状,具聚片双晶及环带结构,An=32;钾长石也为半自形板状,内有斜长石和铁镁矿物嵌晶,属微斜长石;石英呈他形粒状,分布于长石间隙,黑云母呈片状,具棕褐色-褐黄色多色性;辉石呈半自形粒状,淡绿色,具角闪石反应边。

图 2 胶东黑云角闪二长岩(a、b)和黑云石英二长岩(c、d)的野外和显微照片 Bt-黑云母;Hb-角闪石;Kf-钾长石;Pl-斜长石;Qz-石英 Fig. 2 Field photographs and photomicrographs of analyzed samples in the Jiaodong Peninsula (a, b) biotite and hornblende-bearing monzonite; (c, d) biotite-bearing quartz monzonite. Abbreviations: Bt-biotite; Hb-hornblende; Kf-K-feldsper; Pl-plagioclase; Qz-quartz

夏河城岩体年代学样品(SD50)为细粒黑云石英二长岩,岩石具有细粒半自形柱粒状结构、块状构造,主要由斜长石(40%)、钾长石(35%)、石英(10%)和黑云母(10%)组成,少量普通角闪石(5%)(图 2cd)。其中,斜长石呈半自形板柱状,具绢云母化,粒径介于0.2~2mm之间;钾长石具高岭土化,粒径介于0.2~2mm之间;石英呈他形粒状,分布不均匀,部分颗粒具有波状消光,粒径介于0.1~1mm之间;黑云母呈长条片状,深褐色-淡黄褐色多色性,微定向排列,粒径介于0.2~0.5mm之间。该岩体还发育有中细粒角闪闪长岩,为中细粒半自形粒状结构,因角闪石不均匀聚集而显示斑杂状结构,主要由斜长石(61.4%)和普通角闪石(24.3%)组成,少量黑云母(5.7%)、钾长石(4.2%)和石英(2.8%),矿物粒径1.5~3mm。其中,斜长石呈板条状自形晶(An=27),钾长石呈他形粒状,角闪石为普通角闪石(核部常有钛闪石)。

2 测试方法 2.1 全岩主、微量元素和Sr-Nd同位素测试

样品的全岩主、微量元素和Sr-Nd同位素测试均在核工业北京地质研究院分析测试研究中心完成,样品分析包括前处理和上机测试。主量元素采用硅酸盐岩石化学分析X射线荧光光谱法(XFR)测定,前处理包括溶样和烧失量测试,溶样包括称量、烧熔、溶样、定容等步骤;烧失量测量包括称量、灼烧和再称量等步骤,分析精度和准确度精度优于5%。微量和稀土元素采用ELEMENTI电感耦合等离子体质谱仪测定,分析精度和准确度精度优于5%。Sr-Nd同位素分析采用HF+HNO3混合酸解液,用阳离子交换技术进行分离,使用仪器为Phoenix热表面电离质谱仪和ISOPROBE-T热表面电离质谱仪,分析精度优于0.002%,测试方法和程序详见Gao et al. (2004)。Sr、Sm、Nd同位素组成分别采用86Sr/88Sr=0.119400、149Sm/152Sm=0.516858、146Nd/144Nd=0.721900进行了标准化。

2.2 锆石U-Pb定年

挑选柳林庄岩体的2件样品(SD30和SD31)和夏河城岩体的1件样品(SD50)进行了锆石U-Pb年龄测试。同位素定年样品处理及分析测试流程主要包括:碎样获取锆石颗粒、锆石制靶、根据透反射及CL图像挑选可用于定年的锆石颗粒、上机测试获取U-Pb同位素数据及数据处理等。锆石分选在河北廊坊市宏信地质勘查技术服务有限公司完成。野外采集样品5kg左右,首先将岩石粉碎,然后采用淘选与电磁选方法进行锆石分选。将挑选出的锆石用双面胶粘在载玻片上并套上靶环。注入环氧树脂后,冷却和打磨并露出锆石表面,在此基础上对锆石进行透射光、反射光和阴极发光(CL)图像采集。锆石U-Pb定年在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,等离子质谱仪为Agilent7500a,激光剥蚀系统为GeoLas 2005,激光能量70mJ,频谱8Hz,激光束斑直径32μm。激光剥蚀过程中采用氦气作为载气,氩气作为补偿气以调节灵敏度。U-Pb定年中采用标准锆石91500作为外标进行同位素分馏校正。样品的U-Th-Pb同位素比值和年龄处理均采用ICPMSDataCal软件完成。详细的实验条件和数据处理方法见Liu et al.(2008, 2010)和Lin et al.(2016)

3 分析结果 3.1 岩石地球化学 3.1.1 主量元素

研究区岩石样品的主、微量元素分析结果见表 1。柳林庄和夏河城岩体样品的元素质量分数分别为:SiO2含量为53.29%~67.06%和54.26%~62.54%;Al2O3含量为13.36%~16.71%和14.05%~14.31%,具有高铝质特点;Na2O含量为2.78%~3.83%和2.74%~3.72%,K2O含量为3.98%~5.02%和1.65%~2.49%,Na2O/K2O为0.57~0.93和1.27~2.70,属于钾质型;岩石富钙、铁、镁,CaO含量分别为4.97%~5.72%和2.26%~5.87%,Fe2O3T为6.83%~11.15%和5.62%~8.08%,MgO为3.60%~5.37%和5.58%~8.10%。2个岩体样品比较而言,柳林庄岩体相对富钾和铁,但略贫镁。

表 1 胶东高镁闪长岩的主量(wt%)、稀土和微量(×10-6)元素化学成分 Table 1 Major (wt%), trace (×10-6) elements compositions of the high-Mg diorites in the Jiaodong Peninsula

测试样品主量元素变异图显示(图 3),岩石化学成分投点于碱性和亚碱性系列之间(图 3a),其中柳林庄岩体样品位于碱性区域。结合图 3b, c判别结果,本区岩石主要属钾质的高钾钙碱性系列和橄榄粗玄岩系列,但柳林庄岩体的钾质含量高于夏河城岩体。测试样品的A/CNK=0.67~1.19,A/NK=1.37~2.0(表 1),主要属于准铝质岩石(图 3d)。样品最明显特点是MgO含量高,除2个样品外,其余均大于4%,Mg#[Mg#=Mg/(Mg+Fe2+)]介于0.47~0.68之间,均大于0.45(表 1图 3e, f)。一般认为,SiO2范围在53%~60%之间、MgO含量大于4%、Mg#大于0.45的闪长岩为高Mg闪长岩(张旗等,2001)。因此,柳林庄和夏河城岩体均属于高镁闪长岩类型。

图 3 胶东高镁闪长岩的主量元素变异图 俯冲环境的高镁安山岩数据引自Wood and Turner, 2009Tatsumi and Ishizaka, 1982 Fig. 3 The major element variograms of the high-Mg diorites in the Jiaodong Peninsula Data of high-Mg andsites of the subduction affinity from Wood and Turner, 2009; Tatsumi and Ishizaka, 1982
3.1.2 微量元素

柳林庄岩体和夏河城岩体具有类似的球粒陨石标准化稀土元素配分型式和原始地幔标准化微量元素蛛网图特征(图 4)。二者的稀土总量分别是374.4×10-6~695.6×10-6和125.9×10-6~174.8×10-6,具轻稀土元素(LREE)中等程度富集、重稀土元素(HREE)亏损的特征;轻、重稀土分异明显,LREE/HREE分别为14.9~18.2和9.45~11.3,(La/Yb)N分别是23.4~31.7和11.7~16.2(表 1),稀土配分曲线略向右倾(图 4a)。相比而言,柳林庄岩体稀土总量较高,轻、重稀土分异较明显;柳林庄岩体略显负铕异常,夏河城岩体负铕异常不明显,二者的δEu分别是0.33~0.71和0.76~0.95。本文两个岩体的稀土配分特征与山东鲁西高镁闪长岩(巫祥阳等,2003)和胶东郭城地区早白垩世脉岩(谭俊等,2006)相似,其中夏河城岩体的稀土元素配分型式与鲁西高镁闪长岩更接近,而柳林庄岩体与郭城地区脉岩更接近(图 4a)。

图 4 胶东高镁闪长岩的球粒陨石标准化稀土元素配分图(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b, 标准化值据Sun and McDonough, 1989) 鲁西高镁闪长岩据巫祥阳等,2003; 胶东郭城地区脉岩据谭俊等,2006 Fig. 4 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams (b, normalization values after Sun and McDonough, 1989) for the high-Mg diorites from the Jiaodong Peninsula The values of the Luxi high-Mg diorites from Wu et al., 2003; the values of Guocheng dyke from Tan et al., 2006

原始地幔标准化微量元素蛛网图显示(图 4b),本文样品为大离子亲石元素富集型,曲线略右倾,富集Ba、Rb、K等大离子亲石元素,亏损Nb、Ta、Zr等高场强元素。两者对比显示,柳林庄岩体的大离子亲石元素和高场强元素含量均高于夏河城岩体。研究区样品的微量元素蛛网图特征与鲁西高镁闪长岩、胶东郭城地区脉岩及大陆弧钙碱性玄武岩相似(图 4b)。与MORB相比(Pearce,1982),其Rb、Ba、Sr、Th、Nb和Ta元素含量明显偏高(MORB分别为2×10-6、20×10-6、120×10-6、0.2×10-6、3.5×10-6和0.18×10-6,本文样品分别为32.90×10-6~213×10-6、1231×10-6~3062×10-6、564×10-6~1093×10-6、1.58×10-6~32.70×10-6、6.56×10-6~28.9×10-6和0.39×10-6~1.29×10-6),而Zr、Hf元素含量较低(MORB分别为90×10-6和2.4×10-6,本文样品为11.00×10-6~51.90×10-6和0.61×10-6~1.85×10-6),Zr元素的贫化符合上地幔起源岩浆岩的特征。岩石具有高Ba(1231×10-6~3062×10-6)、Sr(564×10-6~1093×10-6)含量和高Sr/Y值(12.10~54.28),Cr、Ni、Co、Sc含量相对较高(分别为47.70×10-6~398.00×10-6、18.80×10-6~165×10-6、18.60×10-6~39.4×10-6和15.30×10-6~24.4×10-6)。

3.2 Sr-Nd同位素

测试样品的Sr、Nd同位素组成见表 2。初始87Sr / 86Sr比值为0.7082~0.7083,显著低于大陆地壳平均值(0.717;Faure,1986),与胶东地区的基性脉岩(0.7094~0.7114;Yang et al., 2004)和地幔平均值(0.709;Faure,1986)接近,位于鲁西高镁闪长岩数值范围内(0.7062~0.7090;巫祥阳等,2003)。147Sm/ 144Nd比值为0.0842~0.1151,143Nd/144Nd=0.5114~0.5117,εNd(t=113Ma)值很低(-20. 5~-16.8),略低于胶东地区高镁的基性脉岩(-17~-10.1;Yang et al., 2004)和鲁西高镁闪长岩(-15.7~-8.6;巫祥阳等,2003)。

表 2 胶东高镁闪长岩的Rb-Sr和Sm-Nd同位素分析结果 Table 2 Rb-Sr and Sm-Nd isotopic data of the high-Mg diorites in the Jiaodong Peninsula
3.3 锆石U-Pb年代学 3.3.1 柳林庄岩体

样品SD30(中细粒黑云角闪二长岩)分选出大量的锆石,这些锆石多呈短柱状、宽板状,粒径在50~400μm,大多为~200μm,长短轴之比在1:1~3:1之间。完整晶型的锆石较少,常为锆石碎块,部分锆石具熔蚀现象。锆石具有清晰的板条状、扇状韵律环带(图 5a),呈现出典型基性岩的锆石特征。测试结果显示(表 3),锆石的U含量变化大,在237.2×10-6~1048×10-6之间,大多集中在440.9×10-6~847.5×10-6之间,Th/U比值在1.1~1.80,均大于0.6,显示了岩浆锆石特点。20颗锆石206Pb/238U年龄分布在117.2~131Ma之间,其中11颗谐和度高的锆石加权平均年龄为120.1±1.6Ma(MSWD=1.40,图 5b),代表了该岩石的成岩年龄。

图 5 胶东高镁闪长岩的锆石CL图和U-Pb年龄谐和图 锆石CL图中的红色圈示分析点位置 Fig. 5 Representative cathodoluminescence (CL) images of analyzed zircons and U-Pb concordia diagrams for the high-Mg diorites in the Jiaodong Peninsula The red circles in CL show the analyzed spots

表 3 胶东高镁闪长岩锆石LA-ICP-MS U-Pb分析结果 Table 3 Zircon LA-ICP-MS U-Pb analytical data of the high-Mg diorites in the Jiaodong Peninsula

样品SD31(中细粒黑云角闪二长岩)的锆石多呈短柱状-长柱状,粒径在50~500μm,多在~200μm,长短轴之比在1:1~5:1之间,部分锆石有熔蚀现象。CL图像中多数锆石不发育环带(图 5c),而呈板条状图案,也是基性岩锆石的典型特征。测试结果显示(表 3),锆石的U含量在114.6×10-6~695.6×10-6之间,Th/U比值在0.8~1.5之间,显示了岩浆锆石特点。20颗锆石206Pb/238U年龄集中分布在111.4~124.9Ma之间,加权平均年龄为118.3±1.7Ma(MSWD = 1.70,图 5d),代表了该岩体的成岩年龄。

3.3.2 夏河城岩体

用于测年的SD50样品岩性为细粒黑云石英二长岩,锆石晶体呈等轴粒状-短柱状,粒径在35~230μm,多在~70μm,长短轴之比在1:1~4:1之间。锆石晶型完好,多数锆石发育清晰的岩浆生长震荡环带(图 5e)。测试结果显示(表 3),锆石的U含量在34.8×10-6~166.8×10-6之间,Th/U比值除1个点为0.4外,其余在0.8~2.0之间,显示了岩浆锆石特点。19颗锆石206Pb/238U年龄分布在83.9~137.6Ma之间,其中15颗谐和度高的锆石加权平均年龄为122.3±4.0Ma(MSWD=0.57,图 5f),代表了该岩体的就位时代。

4 讨论 4.1 岩浆活动时代

本文测试的柳林庄岩体和夏河城岩体的岩浆锆石同位素年龄加权平均值分别为120.1±1.6Ma、118.3±1.7Ma和122.3±4.0Ma,这3个年龄均为岩浆侵位年龄,指示柳林庄岩体和夏河城岩体大致同时形成,其形成时代为早白垩世中晚期,而不是传统认为的晚三叠世。胶东地区早白垩世中晚期岩浆活动强烈,除本文研究的闪长岩外,大量发育花岗岩类侵入岩,也有中-基性火山岩和中-基性脉岩。其中,具壳幔混合和I型花岗岩性质的伟德山岩套(主要由二长花岗岩和石英二长岩组成)的20余件样品的锆石SHRIMP、LA-ICPMS和TIMS年龄值范围是126±3Ma~108±2Ma(周建波等,2003郭敬辉等,2005张田和张岳桥,2008Goss et al., 2010丁正江等,2013),以A型花岗岩为特征的崂山岩套(主要是正长花岗岩)5件样品的锆石SHRIMP和单矿物40Ar-39Ar同位素年龄值为120±2Ma~107±2Ma(Zhao et al., 1998Goss et al., 2010王世进等,2010),而9件中-基性脉岩样品的锆石SHRIMP、LA-ICPMS和40Ar-39Ar同位素年龄范围为121.6±1.7Ma~114±2Ma(Wang et al., 1998Zhang et al., 2003李俊建等,2005Tan et al., 2008邱连贵等,2008Ma et al., 2014a),17件青山群火山岩样品的同位素年龄为123.6±3.1Ma~98±1Ma(邱检生等,2001Ling et al., 2007张岳桥等,2008Liu et al., 2009)。这些岩浆岩的年龄值均集中分布于122~111Ma之间,与本文报道的胶东高镁闪长岩的成岩年龄在误差范围内一致。同时需要指出的是,胶东地区大规模金成矿作用的年龄也集中分布在这一区间(123~110Ma),具体包括2000年以来应用当代高精度测试技术得到的结果,如锆石SHRIMP、绢云母和石英Ar-Ar年龄、黄铁矿和矿石Rb-Sr年龄、流体包裹体Rb-Sr年龄等(Yang and Zhou, 20002001Zhang et al., 2003李厚民等,2003Hu et al., 2004)。这些事实表明,胶东地区在同一时间段内发生了深成岩浆与浅成岩浆及地表火山同时产生、幔源岩浆与壳源岩浆共同活动、大规模成矿与成岩共同迸发的地质景观,指示这些不同类型的岩浆岩及金成矿具有一定的成因联系和共同的区域地球动力学背景。

4.2 岩浆成因

胶东柳林庄岩体和夏河城岩体的就位时代一致,且具有相似的主微量、稀土元素和Sr-Nd同位素地球化学特征,表明其可能具有相似的源区和成因机制。2个岩体的样品均具有低硅、高镁和富钠特征,以及相对高的Cr、Ni、Co、Sc含量、Sr/Y值和明显贫化的Zr含量,指示原始岩浆具有地幔源区性质(Rapp and Watson, 1995)。比较发现,夏河城岩体具有更高的MgO含量、Mg#值和Cr、Ni、Co、Sc含量,指示其更接近于原始岩浆特征,而柳林庄岩体代表演化程度较高的岩浆。从样品富集LREE和LILE以及亏损HFSE等特征看,岩浆与富集地幔源区有关(Pearce,1982),而与来源于软流圈地幔的具有亏损LREE和LILE特征的MORB明显不同(Sun and McDonough, 1989)。样品均具有较为平坦的HREE配分模式(图 4a),Y/Yb值接近于10 (10.2~11.76),表明其源区残留相主要为角闪石(高永丰等,2003)。

胶东高镁闪长岩具富集地幔型Sr-Nd同位素组成特征,即高的87Sr/86Sr初始比值(0.7082~0.7083)、低的εNd(t=113Ma)值(-20.5~-16.8),指示岩浆起源于富集岩石圈地幔的部分熔融,明显不同于软流圈地幔的亏损Nd同位素组成(εNd(t)值>0)和低的87Sr / 86Sr初始比值。在εNd(t)-87Sr/86Sr图解上,样品投点于地幔演化趋势接近于EM2地幔的区域(图 6),与胶东地区同时代的崂山型花岗岩、伟德山型花岗岩和基性脉岩投点范围接近,暗示高镁闪长岩与这些岩浆岩具有一定的渊源关系;而与来源于由华北上地壳和扬子下地壳部分熔融的侏罗纪玲珑型花岗岩投点位置不同,也与来源于具有EM2地幔物质加入的壳源重熔型郭家岭型花岗岩投点位置不同。样品的tDM2模式年龄范围是2262.06~2614.52Ma(表 2),与胶东地区前寒武纪变质岩系的形成及变质年龄一致(Li et al., 2012),指示幔源岩浆上侵过程中混入了部分前寒武纪基底壳源物质。前人研究认为,胶东白垩纪基性脉岩的岩浆源区是富集的不均匀岩石圈地幔(Yang et al., 2004)或是弥散状角闪石相橄榄岩富集地幔部分熔融作用的产物(谭俊等,2006),鲁西中生代高镁闪长岩来源于上地幔橄榄岩的部分熔融(杨承海等,2006)。鉴于胶东高镁闪长岩的岩石地球化学及Sr-Nd同位素特征与胶东基性脉岩和鲁西高镁闪长岩具有明显的相似性,故认为这些同时代、同区域(或相邻区域)的幔源岩浆活动为相同大地构造环境的产物,其源区性质均是富集的不均匀岩石圈地幔。

图 6 胶东晚中生代岩浆岩的εNd(t)-(87Sr/86Sr)i图解(底图据Defant and Drummond, 1990) 数据来源:玲珑型和郭家岭型花岗岩类及基性岩脉据Yang et al.(2012);伟德山型花岗岩据黄洁等(2005)Song et al.(2019); 崂山型花岗岩据Zhao et al.(1997);鲁西高镁闪长岩据杨承海等(2006) Fig. 6 Plot of εNd(t) vs. (87Sr/86Sr)i of Late-Mesozoic magmaic rocks in the Jiaodong Peninsula(base map after Defant and Drummond, 1990) Data sources: the Linglong and Guojialing suites and mafic dikes from Yang et al. (2012); the Weideshan suite from Huang et al. (2005) and Song et al. (2019); the Laoshan suite from Zhao et al. (1998); the high-Mg diorites in the west Shandong from Yang et al. (2006)

胶东高镁闪长岩(尤其是夏河城岩体)与俯冲环境高镁安山岩具有相似的地球化学特征(图 3e)。实验研究表明,从玄武质岩石演化到高镁安山质岩石需要消耗残留体中的单斜辉石以增加SiO2和MgO含量(Wood and Turner, 2009)。因此,胶东高镁闪长岩形成过程中可能消耗了源区的单斜辉石,并残留有角闪石。从胶东高镁闪长岩的Al2O3/TiO2和Sr/Y比值与SiO2关系看,具有较好的正相关性(图 7ab),表明其形成于富含水的岩浆系统中,经历了消耗单斜辉石并在源区残留角闪石的含水岩浆演化过程(Loucks,2014)。同时,实验岩石学研究也证明了含水矿物金云母和角闪岩只能稳定存在于岩石圈地幔(Olafsson and Eggler, 1983)。含金云母源区的熔体具有低的Ba和Ba/Rb值(<20),而含角闪石源区的熔体具有较低的Rb/Sr值(<0.1)和高的Ba/Rb值(>10)(Furman and Graham, 1999)。胶东柳林庄和夏河城岩体的Rb/Sr值分别为0.12~0.36和0.04~0.05,Ba/Rb值分别为10.54~21.70和27.91~47.25,这说明柳林庄岩体来源于含金云母的岩石圈地幔区域,而夏河城岩体源于含角闪石的岩石圈地幔区域(图 7c)。

图 7 胶东高镁闪长岩地球化学关系图 (a)Al2O3/TiO2-SiO2; (b)Sr/Y-SiO2; (c)Rb/Sr-Ba/Sr(底图据Ma et al., 2014b); (d)Zr/Nb-Zr(底图据Geng et al., 2009) Fig. 7 Diagrams showing geochemistry compositions of the high-Mg diorites in the Jiaodong Peninsula (a) Al2O3/TiO2 vs. SiO2; (b) Sr/Y vs. SiO2; (c) Rb/Sr vs. Ba/Sr (after Ma et al., 2014b); (d) Zr/Nb vs. Zr (after Geng et al., 2009)

已有研究表明,高镁闪长岩具有与高镁安山岩相似的地球化学特征及形成背景(Kamei et al., 2004田伟等,2009Yin et al., 2010付长亮等,2010)。高镁安山岩(通常SiO2含量53%~60%,MgO含量>4%,Mg#>0.45)包括赞岐岩、高镁埃达克岩、Bajaitic HMA和玻安岩等4种岩性(Kamei et al., 2004),岩石由来源于地幔的原始岩浆形成,一般产于汇聚板块边缘(Kay,1978Jenner,1981),与年轻的或热的板片俯冲有关(Furukawa and Tatsumi, 1999)。胶东高镁闪长岩与典型的玻安岩相比,MgO含量较低(3.6%~8.1%,玻安岩MgO>8%),TiO2含量高(0.757%~1.67%,玻安岩TiO2 < 0.5%);与Bajaites相比,其Sr的含量偏低(564×10-6~1093×10-6,Bajaites的Sr>1000×10-6),因而不属于这二类岩石。在高镁安山岩分类图上(图 8a, b),胶东高镁闪长岩投点于高镁埃达克岩与赞岐岩之间。其中,夏河城岩体在高Mg#值、较高的Cr、Ni含量和HREE含量低(表 1)等方面更接近于赞岐岩(赞岐岩Mg#>0.6、Ni和Cr>100×10-6、HREE含量低)。在相关微量元素变异图上,胶东高镁闪长岩投点于埃达克质安山岩与正常安山岩之间(图 8c)及埃达克岩与Piip型高镁安山岩之间(图 8d)。其中,柳林庄岩体偏向于正常安山岩,夏河城岩体接近于由富集地幔楔橄榄岩部分熔融形成的Piip型高镁安山岩(Tatsumi and Ishizaka, 1982)。

图 8 胶东高镁闪长岩微量元素关系图解 (a)Sr/Y-Y(据Kamei et al., 2004); (b)(La/Yb)N-YbN(据Kamei et al., 2004); (c)Sr/Y-Y (据Smithies and Champion, 2000); (d)La/Yb-Yb (据Yogodzinski et al., 1995) Fig. 8 The discrimination diagrams showing trace element composition of high-Mg diorites in the Jiaodong Peninsula (a) Sr/Y vs. Y (after Kamei et al., 2004); (b) (La/Yb)N vs. YbN(after Kamei et al., 2004); (c) Sr/Y vs. Y (after Smithies and Champion, 2000); (d) La/Yb vs. Yb (after Yogodzinski et al., 1995)

胶东高镁闪长岩轻稀土元素中等程度富集(LREE/HREE=9.45~18.20;(La/Yb)N=11.72~31.73),表明它们经历了较高程度的部分熔融。夏河城岩体具有赞岐岩和Piip型高镁安山岩地球化学特点,岩石中高的Mg#(0.66~0.68)、Cr(>200×10-6)含量,指示其未经历显著的分异结晶,代表了较为原始的岩浆成分,可能由不均匀的富集地幔橄榄岩直接熔融形成。与夏河城岩体及赞岐岩相比,柳林庄岩体的MgO、Ni和Cr含量明显偏低,K2O和LILE值较高,指示岩浆中混染了部分地壳物质;岩石的Nb和Ta明显亏损、LILE和LREE富集、Ba/La(14.79~71.80)和Ba/Th(71.35~779.1)值高、Th/Yb(0.79~9.38)值小等特征,加之岩石中含有丰富的指示岩浆具有较高水逸度的角闪岩和黑云母,说明岩浆源区物质成分与消减洋壳板片的部分熔融有关,可能是由地幔橄榄岩与消减洋壳板片部分熔融产生的富Si质熔体平衡反应形成的,在岩浆上侵过程中混染了部分地壳物质。在Zr/Nb-Zr图解(图 7d)中,胶东高镁闪长岩样品总体显示出分离结晶趋势;样品的SiO2含量与Fe2O3T、MgO、P2O5和CaO含量呈负相关性(表 1),指示存在钛铁矿和橄榄石以及辉石等矿物的分离结晶;而弱的Eu负异常则暗示斜长石不是源区主要的残留相矿物。

4.3 构造背景

通常认为赞岐岩与年轻的或热的板片俯冲有关(Yogodzinski et al., 1995Furukawa and Tatsumi, 1999Kamei et al., 2004),形成于板块消减带上的地幔楔环境(Smithies and Champion, 1999, 2003)。胶东高镁闪长岩具有与赞岐岩及俯冲环境高镁安山岩相似的地球化学特征,指示其与板块俯冲有关。再者,胶东高镁闪长岩主要属高钾钙碱性系列和橄榄粗玄岩系列,亏损Nb、Ta等元素,在相关微量元素图解上投点于弧火山和火山弧玄武岩区附近(图 9),也说明其形成环境与板块俯冲有关。胶东地区位于华北克拉通东南缘及郯庐断裂带东侧。早白垩世,华北克拉通发生了大规模岩浆活动、盆地沉陷和断裂活动,指示了岩石圈强烈伸展的构造背景,被认为是华北克拉通破坏的峰期时间(Zhu et al., 2011朱日祥和徐义刚,2019)。克拉通破坏是陆壳受到大洋板块俯冲作用强烈影响的结果,早白垩世太平洋板块的俯冲使华北克拉通东部地幔对流系统失稳,导致了华北克拉通东部破坏(朱日祥和徐义刚,2019)。因此,认为胶东高镁闪长岩与太平洋板块的俯冲作用及地壳区域性伸展机制有关,形成于古太平洋板块俯冲的地幔楔环境。

图 9 胶东高镁闪长岩构造判别图 (a)Nb/Th-Nb (据Rollinson, 1993); (b)Ti-Zr (据Pearce, 1982) Fig. 9 The discrimination diagrams showing tectonic backgrounds of the high-Mg diorites in the Jiaodong Peninsula (a) Nb/Th vs. Nb (after Rollinson, 1993); (b) Ti vs. Zr (after Pearce, 1982)

胶东高镁闪长岩的形成时代(118.3±1.7Ma~122.3±4.0Ma),与华北克拉通东部广泛发育的早白垩世岩浆活动相一致,暗示它们具有共同的形成环境。胶东地区与高镁闪长岩同期的岩浆活动广泛而强烈,其中,伟德山型花岗岩被认为是幔源岩浆与地壳岩石混合成因(Goss et al., 2010),崂山型花岗岩为A型花岗岩(Zhao et al., 1998),二者均具有弧花岗岩特点(宋明春等,2015);而胶东的中-基性脉岩被认为形成于陆弧环境(谭俊等,2006)。这些岩浆活动均被认为形成于拉张背景。基性脉岩和青山群基性火山岩被认为是富集地幔部分熔融的产物(谭俊等,2006邱连贵等,2008匡永生等,2012),伟德山型花岗岩的岩浆来源则被认为是富集岩石圈地幔和地壳(张华锋等,2006张田和张岳桥,2008)。可见,胶东早白垩世晚期的岩浆活动形成于统一的大地构造背景,有着紧密的成因联系。晚中生代,中国东部表现出强烈的伸展、拉张和大陆裂解,华北克拉通破坏。早白垩世,太平洋板块向华北板块俯冲,由于俯冲板片断离和后撤,导致软流圈上涌、岩石圈拆沉和减薄、岩浆板底垫托、壳幔物质强烈交换(Fan and Hooper, 1991Menzies et al., 1993张旗等,2001邓晋福等,2003周新华,2006),形成热隆-伸展构造(宋明春等,2018),为巨量岩浆活动(Goss et al., 2010Yang and Santosh, 2015)提供了有利条件。来源于下地壳的酸性岩浆岩与来源于上地幔的中-基性岩浆岩同位素年龄的一致性,暗示了早白垩世下地壳拆沉及壳幔相互作用的存在。早白垩世,伴随太平洋板块向华北板块俯冲,软流圈由深部(>150km)向浅部上涌,引起减压熔融(Ma et al., 2014a),富集的岩石圈地幔部分熔融以及地幔橄榄岩与消减洋壳板片部分熔融产生基性岩浆。下地壳拆沉及热的基性岩浆上升到地壳底部发生底侵,引起了地壳底部岩石的部分熔融(邱连贵等,2008Goss et al., 2010),产生花岗质岩浆。在胶东地区,幔源岩浆上侵形成高镁闪长岩和基性脉岩,幔源和壳源岩浆混合及结晶分异形成伟德山型及崂山型花岗岩。

5 结论

(1) 胶东柳林庄和夏河城岩体样品的SiO2、MgO含量和Mg#值符合高镁闪长岩类特征,岩石中富集Ba、Rb、K,亏损Nb、Ta、Zr等元素,初始87Sr / 86Sr值与地幔平均值接近,εNd(t=113Ma)值与胶东地区的基性脉岩相似。岩体形成于118.3±1.7Ma~122.3±4.0Ma的早白垩世,与胶东地区壳幔混合源的伟德山型花岗岩及金矿床的成岩、成矿时代一致,指示他们形成于统一的地球动力学背景。

(2) 地球化学及Sr-Nd同位素特征指示,胶东高镁闪长岩具有富集岩石圈地幔源区性质,其地球化学成分投点位于高镁埃达克岩与赞岐岩及埃达克岩与Piip型高镁安山岩之间。其中,夏河城岩体具有赞岐岩和Piip型高镁安山岩地球化学特点,岩浆来源于含角闪石的岩石圈地幔源区;而柳林庄岩体岩浆源区为含金云母的岩石圈地幔,并且岩浆在上侵过程中混染了部分地壳物质。

(3) 根据胶东高镁闪长岩与赞岐岩及大陆弧钙碱性玄武岩相似的地球化学特征,结合其所处的大地构造位置,认为该区的早白垩世大规模岩浆活动与古太平洋板块俯冲有关,板块俯冲过程中富集的岩石圈地幔部分熔融以及地幔橄榄岩与消减洋壳板片部分熔融产生基性岩浆;下地壳拆沉及热的基性岩浆上升到地壳底部发生底侵,引起了地壳底部岩石的部分熔融,产生花岗质岩浆,并由此分别形成了胶东的高镁闪长岩和壳幔混合花岗岩。

致谢      本文是在胶东地区区域地质调查成果的基础上撰写的,感谢区调项目以及成果的完成者对本文的贡献。赵子福、苏本勋二位专家提出的宝贵的建设性修改意见对提高本文质量发挥了重要作用,谨表衷心感谢。

参考文献
Boynton WV. 1984. Cosmochemistry of the rare earth elements:Meteorite studies. Developments in Geochemistry, 2: 63-114 DOI:10.1016/B978-0-444-42148-7.50008-3
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665 DOI:10.1038/347662a0
Deng JF, Su SG, Zhao HL, Mo XX, Xiao QH, Zhou S, Liu C and Zhao GC. 2003. Deep processes of Mesozoic Yanshanian lithosphere thinning in North China. Earth Science Frontiers, 10(3): 41-50 (in Chinese with English abstract)
Ding ZJ, Sun FY, Liu FL, Liu JH, Liu DH, Zhang PJ, Du SX and Li B. 2013. U-Pb dating of zircons from the Weideshan molybdenum copper polymetallic deposits in Jiaodong Peninsula, China, and its geological significance. Acta Petrologica Sinica, 29(2): 607-618 (in Chinese with English abstract)
Fan QC and Hooper PR. 1991. The Cenozoic basaltic rocks of eastern China:Petrology and chemical composition. Journal of Petrology, 32(4): 765-810 DOI:10.1093/petrology/32.4.765
Faure G. 1986. Principles of Isotope Geology. 2nd Edition. New York: John Wiley and Sons, 183-199
Fu CL, Sun DY, Zhang XZ, Wei HY and Gou J. 2010. Discovery and geological significance of the Triassic high-Mg diorites in Hunchu area, Jilin Province. Acta Petrologica Sinica, 26(4): 1089-1102 (in Chinese with English abstract)
Furman T and Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system:Geochemical evidence from the Kivu volcanic province. Developments in Geotectonics, 24: 237-262 DOI:10.1016/S0419-0254(99)80014-7
Furukawa Y and Tatsumi Y. 1999. Melting of a subducting slab and production of high-Mg andesite magmas:Unusual magmatism in SW Japan at 13~15Ma. Geophysical Research Letters, 26(15): 2271-2274 DOI:10.1029/1999GL900512
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature, 432: 892-897 DOI:10.1038/nature03162
Gao YF, Hou ZQ and Wei RH. 2003. Neogene porphyries from Gangdese:Petrological, geochemical characteristics and geodynamic significances. Acta Petrologica Sinica, 19(3): 418-428 (in Chinese with English abstract)
Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K and Wu FY. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang:Implications for ridge subduction?. Chemical Geology, 266(3-4): 364-389 DOI:10.1016/j.chemgeo.2009.07.001
Goss CS, Wilde SA, Wu FY and Yang JH. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3-4): 309-326 DOI:10.1016/j.lithos.2010.08.019
Guo JH, Chen FK, Zhang XM, Siebel W and Zhai MG. 2005. Evolution of syn-to post-collisional magmatism from North Sulu UHP belt, eastern China:Zircon U-Pb geochronology. Acta Petrologica Sinica, 21(4): 1281-1301 (in Chinese with English abstract)
Hu FF, Fan HR, Yang JH, Wan YS, Liu DY, Zhai MG and Jin CW. 2004. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula:SHRIMP U-Pb dating on hydrothermal zircon. Chinese Science Bulletin, 49(15): 1629-1636 DOI:10.1007/BF03184134
Huang J, Zheng YF, Wu YB and Zhao ZF. 2005. Geochemistry of elements and isotopes in igneous rocks from the Wulian region in the Sulu orogen. Acta Petrologica Sinica, 21(3): 545-568 (in Chinese with English abstract)
Jenner GA. 1981. Geochemistry of high-Mg andesites from Cape Vogel, Papua New Guinea. Chemical Geology, 33(1-4): 307-332 DOI:10.1016/0009-2541(81)90106-6
Kamei A, Owada M, Nagao T and Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, Southwest Japan arc:Evidence from clinopyroxene and whole rock compositions. Lithos, 75(3-4): 359-371 DOI:10.1016/j.lithos.2004.03.006
Kay RW. 1978. Aleutian magnesian andesites:Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132 DOI:10.1016/0377-0273(78)90032-X
Kuang YS, Pang CJ, Luo ZY, Hong LB, Zhong YT, Qiu HN and Xu YG. 2012. 40Ar-39Ar geochronology and geochemistry of mafic rocks from Qingshan Group, Jiaodong area:Implications for the destruction of the North China Craton. Acta Petrologica Sinica, 28(4): 1073-1091 (in Chinese with English abstract)
Li HM, Mao JW, Shen YC, Liu TB and Zhang LC. 2003. Ar-Ar ages of K-feldspar and quartz from Dongji gold deposit, Northwest Jiaodong, and their significance. Mineral Deposits, 22(1): 72-77 (in Chinese with English abstract)
Li JJ, Luo ZK, Liu XY, Xu WD and Luo H. 2005. Geodynamic setting for formation of large-superlarge gold deposits and Mesozoic granites in Jiaodong area. Mineral Deposits, 24(4): 361-372 (in Chinese with English abstract)
Li SZ, Zhao GC, Santosh M, Liu X, Dai LM, Suo YH, Tam PY, Song MC and Wang PC. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200-203: 59-73 DOI:10.1016/j.precamres.2012.01.007
Lin J, Liu YS, Yang YH and Hu ZC. 2016. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sciences, 1: 1-23 DOI:10.1016/j.sesci.2016.06.001
Ling WL, Xie XJ, Liu XM and Cheng JP. 2007. Zircon U-Pb dating on the Mesozoic volcanic suite from the Qingshan Group stratotype section in eastern Shandong Province and its tectonic significance. Science in China (Series D), 50(6): 813-824 DOI:10.1007/s11430-007-2065-6
Liu S, Hu RZ, Gao S, Feng CX, Yu BB, Qi YQ, Wang T, Feng GY and Coulson IM. 2009. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, eastern China:Constraints on petrogenesis and implications. Journal of Asian Earth Sciences, 35(5): 445-458 DOI:10.1016/j.jseaes.2009.02.008
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Loucks RR. 2014. Distinctive composition of copper-ore-forming arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16 DOI:10.1080/08120099.2013.865676
Lu FX, Zheng JP, Zhang RS and Chen MH. 2005. Phanerozoic mantle secular evolution beneath the eastern North China Craton. Earth Science Frontiers, 12(1): 61-67 (in Chinese with English abstract)
Luo XD, Yang XY, Duan LA and Sun WD. 2014. Geochemical and geochronological study of the gold-related Guojialing pluton and Shangzhuang pluton in Jiaobei block. Acta Geologica Sinica, 88(10): 1874-1888 (in Chinese with English abstract)
Ma L, Jiang SY, Hou ML, Dai BZ, Jiang YH, Yang T, Zhao KD, Pu W, Zhu ZY and Xu B. 2014a. Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula:Implication for lithospheric evolution of the eastern North China Craton. Gondwana Research, 25(2): 859-872 DOI:10.1016/j.gr.2013.05.012
Ma L, Jiang SY, Hofman AW, Dai BZ, Hou ML, Zhao KD, Chen LH, Li JW and Jiang YH. 2014b. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula:A consequence of rapid lithospheric thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 124: 250-271 DOI:10.1016/j.gca.2013.09.035
Menzies MA, Fan WM and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean Craton, China. In: Prichard HM, Alabaster T, Harris NBW and Neary CR (eds.). Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publication, 71-81
Miao LC, Luo ZK, Guan K and Huang JZ. 1998. The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite, East Shandong Province. Acta Petrologica Sinica, 14(2): 198-206 (in Chinese with English abstract)
Olafsson M and Eggler DH. 1983. Phase relations of amphibole, amphibole-carbonate, and phlogopite-carbonate peridotite:Petrologic constraints on the asthenosphere. Earth and Planetary Science Letters, 64(2): 305-315 DOI:10.1016/0012-821X(83)90212-1
Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Andesites: Orogenic Andesites and Related Rocks. Chichester: John Wiley and Sons, 525-548
Pei FP, Xu WL, Wang QH, Wang DY and Lin JQ. 2004. Mesozoic basalt and mineral chemistry of the mantle-derived xenocrysts in Feixian, western Shandong, China:Constraints on nature of Mesozoic lithospheric mantle. Geological Journal of China Universities, 10(1): 88-97 (in Chinese with English abstract)
Qiu JS, Wang DZ, Luo QH and Liu H. 2001. 40Ar-39Ar dating for volcanic rocks of Qingshan Formation in Jiaolai basin, eastern Shandong Province:A case study of the Fenlingshan volcanic apparatus in Wulian County. Geological Journal of China Universities, 7(3): 351-355 (in Chinese with English abstract)
Qiu LG, Ren FL, Cao ZX and Zhang YQ. 2008. Late Mesozoic magmatic activities and their constraints on geotectonics of Jiaodong region. Geotectonica et Metallogenia, 32(1): 117-123 (in Chinese with English abstract)
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931 DOI:10.1093/petrology/36.4.891
Rollinson RH. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Harlow, United Kingdom: Longman Scientific Technical, 1-275
Smithies RH and Champion DC. 1999. Archaean high-Mg diorite (sanukitoid) suite, Pilbala Craton, Western Australia. In: Barbarin B (ed.). The Origin of Granites and Related Rocks: Fourth Hutton Symposium Abstracts. Clemont Ferrand, France, 190
Smithies RH and Champion DC. 2000. The Archaean high-Mg diorite suite:Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth. Journal of Petrology, 41(12): 1653-1671 DOI:10.1093/petrology/41.12.1653
Smithies RH and Champion DC. 2003. Adakite, TTG and Archaean crustal evolution. Geophysical Research Abstracts, 5: 01630
Song MC and Yan QL. 2000. Characteristics of dioritic inclusions in Weideshan superunit and its magma origin in Jiaonan area. Geology of Shandong, 16(4): 16-21 (in Chinese with English abstract)
Song MC and Han JM. 2006. The age of Xiahecheng intrusive body in the northern Sulu UHP metamorphic belt and its geological implication. Geological Review, 52(5): 601-608 (in Chinese with English abstract)
Song MC, Zhang JJ, Zhang PJ, Yang LQ, Liu DH, Ding ZJ and Song YX. 2015. Discovery and tectonic-magmatic background of superlarge gold deposit in offshore of northern Sanshandao, Shandong Peninsula, China. Acta Geologica Sinica, 89(2): 365-383 (in Chinese with English abstract)
Song MC, Li J, Li SY, Ding ZJ, Tan XF, Zhang ZL and Wang SJ. 2018. Late Mesozoic thermal upwelling-extension structure and its dynamics background in eastern Shandong Province. Journal of Jilin University (Earth Science Edition), 48(4): 941-964 (in Chinese with English abstract)
Song MC, Zhou JB, Song YX, Wang B, Li SY, Li J and Wang SS. 2019. Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula, China. Geological Journal, doi.org/10.1002/gj.3607
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. London: Geological Society, London, Special Publication, 313-345
Sun WD, Ding X, Hu YH and Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542 DOI:10.1016/j.epsl.2007.08.021
Tan J, Wei JH, Yang CF, Feng B, Tan WJ and Guo DZ. 2006. Geochemistry and tectonic setting of dikes in the Guocheng area, Jiaodong Peninsula. Acta Geologica Sinica, 80(8): 1177-1188 (in Chinese with English abstract)
Tan J, Wei JH, Guo LL, Zhang KQ, Yao CL, Lu JP and Li HM. 2008. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula:Implications for North China Craton lithosphere evolution. Science in China (Series D), 51(10): 1483-1500 DOI:10.1007/s11430-008-0079-3
Tatsumi Y and Ishizaka K. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, Ⅰ. Petrographical and chemical characteristics. Earth and Planetary Science Letters, 60(2): 293-304 DOI:10.1016/0012-821X(82)90008-5
Tian W, Dong SB, Chen MM and Zhu WP. 2009. "Mantle signature" on the Indosinian granitoid belt in South Qinling, Central China. Earth Science Frontiers, 16(2): 119-128 (in Chinese with English abstract)
Wang LG, Qiu YM, McNaughton NJ, Groves DI, Luo ZK, Huang JZ, Miao LC and Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 13(1-5): 275-291 DOI:10.1016/S0169-1368(97)00022-X
Wang SJ, Wan YS, Wang W, Song ZY, Wang JG, Dong CY, Xie HQ and Liu QD. 2010. Forming ages of granites in Laoshan area of Shandong Province:Zircon SHRIMP U-Pb dating. Shandong Land and Resources, 26(10): 1-6 (in Chinese with English abstract)
Wang ZL, Zhao RX, Zhan Q, Lu HW, Li JL and Cheng W. 2014. Magma mixing for the high Ba-Sr Guojialing-type granitoids in northwest Jiaodong Peninsula:Constraints from petrogeochemistry and Sr-Nd isotopes. Acta Petrologica Sinica, 30(9): 2595-2608 (in Chinese with English abstract)
Wood BJ and Turner SP. 2009. Origin of primitive high-Mg andesite:Constraints from natural examples and experiments. Earth and Planetary Science Letters, 283(1-4): 59-66 DOI:10.1016/j.epsl.2009.03.032
Wu K, Ling MX, Sun WD, Guo J and Zhang CC. 2017. Major transition of continental basalts in the Early Cretaceous:Implications for the destruction of the North China Craton. Chemical Geology, 470: 93-106 DOI:10.1016/j.chemgeo.2017.08.025
Wu XY, Xu YG, Ma JL, Xu JF and Wang Q. 2003. Geochemistry and petrogenesis of the Mesozoic high Mg diorites from western Shandong. Geotectonica et Metallogenia, 27(3): 228-236 (in Chinese with English abstract)
Xue HM, Liu FL and Meng FC. 2007. Geochemical and Nd isotopic evidence for the genesis of the gneisses from the southern Shandong Peninsula, Sulu orogen. Acta Petrologica Sinica, 23(12): 3239-3248 (in Chinese with English abstract)
Yang CH, Xu WL, Yang DB, Liu CC, Liu XM and Hu ZC. 2006. Petrogenesis of the Mesozoic high-Mg diorites in west Shandong:Evidence from chronology and petro-geochemistry. Earth Science (Journal of China University of Geosciences), 31(1): 81-92 (in Chinese with English abstract)
Yang HT, Yang DB, Shi JP, Xu WL, Wang F and Chen Y. 2018. Nature of the Early Cretaceous lithospheric mantle in western Shangdong:Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic data of Dakunlun gabbros and diabases. Acta Petrologica Sinica, 34(11): 3327-3340 (in Chinese with English abstract)
Yang JH and Zhou XH. 2000. The Rb-Sr isochron of ore and pyrite sub-samples from Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance. Chinese Science Bulletin, 45(24): 2272-2277 DOI:10.1007/BF02886367
Yang JH and Zhou XH. 2001. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite:Implications for the age and genesis of lode gold deposits. Geology, 29(8): 711-714 DOI:10.1130/0091-7613(2001)029<0711:RSSNAP>2.0.CO;2
Yang JH, Chung SL, Zhai MG and Zhou XH. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4): 145-160 DOI:10.1016/j.lithos.2003.12.003
Yang JH, Wu FY, Wilde SA and Liu XM. 2007. Genesis of late Triassic granitoid and its mafic inclusions in the Liaodong Peninsula: Evidence of lithospheric thinning of post-collisional North China Craton. In: Proceedings of the 11th Anniversary Conference Abstract of Association of Mineralogy, Petrology and Geochemistry, China. Beijing, 4-27 (in Chinese)
Yang JH, Wu FY, Wilde SA, Belousova E and Griffin WL. 2008. Mesozoic decratonization of the North China Block. Geology, 36(6): 467-470 DOI:10.1130/G24518A.1
Yang QY and Santosh M. 2015. Early Cretaceous magma flare-up and its implications on gold mineralization in the Jiaodong Peninsula, China. Ore Geology Reviews, 65: 626-642 DOI:10.1016/j.oregeorev.2014.01.004
Yang YH, Zhang HF, Xie LW, Liu Y, Qi CS and Tu XL. 2006. Petrogenesis of typical Mesozoic and Cenozoic volcanic rocks from the North China Craton:New evidence from Hf isotopic studies. Acta Petrologica Sinica, 22(6): 1665-1671 (in Chinese with English abstract)
Yin JY, Yuan C, Sun M, Long XP, Zhao GC, Wong KP, Geng HY and Cai KD. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China:Geochemical features, petrogenesis and tectonic implications. Gondwana Research, 17(1): 145-152 DOI:10.1016/j.gr.2009.05.011
Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV and Kay SM. 1995. Magnesian andesite in the western Aleutian Komandorsky region:Implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 107(5): 505-519 DOI:10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
Zhang HF, Zhai MG, He ZF, Peng P and Xu BL. 2004. Petrogenesis and implications of the sodium-rich granites from the Kunyushan complex, eastern Shandong Province. Acta Petrologica Sinica, 20(3): 369-380 (in Chinese with English abstract)
Zhang HF, Zhai MG, Tong Y, Peng P, Xu BL and Guo JH. 2006. Petrogenesis of the Sanfoshan high-Ba-Sr granite, Jiaodong Peninsula, eastern China. Geological Review, 52(1): 43-53 (in Chinese with English abstract)
Zhang LC, Shen YC, Liu TB, Zeng QD, Li GM and Li HM. 2003. 40Ar/39Ar and Rb-Sr isochron dating of the gold deposits on northern margin of the Jiaolai Basin, Shandong, China. Science in China (Series D), 46(7): 708-718 DOI:10.1360/03yd9062
Zhang Q, Qian Q, Wang EQ, Wang Y, Zhao TP, Hao J and Guo GJ. 2001. An East China plateau in Mid-Late Yanshanian Period:Implication from adakites. Chinese Journal of Geology, 36(2): 248-255 (in Chinese with English abstract)
Zhang T and Zhang YQ. 2008. Late Mesozoic tectono-magmatic evolution history of the Jiaobei uplift, Shandong Peninsula. Acta Geologica Sinica, 82(9): 1210-1228 (in Chinese with English abstract)
Zhang XO, Cawood PA, Wilde SA, Liu RQ, Song HL, Li W and Snee LW. 2003. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Mineralium Deposita, 38(2): 141-153 DOI:10.1007/s00126-002-0290-7
Zhang YQ, Li JL, Zhang T, Dong SW and Yuan JY. 2008. Cretaceous to Paleocene tectono-sedimentary evolution of the Jiaolai basin and the contiguous areas of the Shandong Peninsula (North China) and its geodynamic implications. Acta Geologica Sinica, 82(9): 1229-1257 (in Chinese with English abstract)
Zhang ZQ, Zhang CJ, Wang SJ, Liu SC, Wang LM, Du SX, Song ZY, Zhang SK, Yang EX, Cheng GS, Liu FC, Chen J and Chen C. 2014. Views on classification and contrast of tectonic units in strata in Shandong Province. Shandong Land and Resources, 30(3): 1-23 (in Chinese with English abstract)
Zhao GT, Wang DZ, Cao QC and Yu LS. 1998. Thermal evolution and its significance of I-A type granitoid complex:The Laoshan granitoid as an example. Science in China (Series D), 41(5): 529-536 DOI:10.1007/BF02877744
Zhao ZF and Zheng YF. 2009. Remelting of subducted continental lithosphere:Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Science in China (Series D), 52(9): 1295-1318 DOI:10.1007/s11430-009-0134-8
Zhou JB, Zheng YF and Zhao ZF. 2003. Zircon U-Pb dating on Mesozoic granitoids at Wulian, Shandong Province. Geological Journal of China Universities, 9(2): 185-194 (in Chinese with English abstract)
Zhou XH. 2006. Major transformation of subcontinental lithosphere beneath eastern China in the Cenozoic-Mesozoic:Review and prospect. Earth Science Frontiers, 13(2): 50-64 (in Chinese with English abstract)
Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China (Earth Sciences), 54(6): 789-797 DOI:10.1007/s11430-011-4203-4
Zhu R and Xu YG. 2019. The subduction of the West Pacific plate and the destruction of the North China Craton. Science China (Earth Sciences), 62(9): 1340-1350 DOI:10.1007/s11430-018-9356-y
邓晋福, 苏尚国, 赵海玲, 莫宣学, 肖庆辉, 周肃, 刘翠, 赵国春. 2003. 华北地区燕山期岩石圈减薄的深部过程. 地学前缘, 10(3): 41-50. DOI:10.3321/j.issn:1005-2321.2003.03.003
丁正江, 孙丰月, 刘福来, 刘建辉, 刘殿浩, 张丕建, 杜圣贤, 李兵. 2013. 胶东伟德山地区铜钼多金属矿锆石U-Pb法测年及其地质意义. 岩石学报, 29(2): 607-618.
付长亮, 孙德有, 张兴洲, 魏红艳, 苟军. 2010. 吉林珲春三叠纪高镁闪长岩的发现及地质意义. 岩石学报, 26(4): 1089-1102.
高永丰, 侯增谦, 魏瑞华. 2003. 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义. 岩石学报, 19(3): 418-428.
郭敬辉, 陈福坤, 张晓曼, Siebel W, 翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学. 岩石学报, 21(4): 1281-1301.
黄洁, 郑永飞, 吴元保, 赵子福. 2005. 苏鲁造山带五莲地区岩浆岩元素和同位素地球化学研究. 岩石学报, 21(3): 545-568.
匡永生, 庞崇进, 罗震宇, 洪路兵, 钟玉婷, 邱华宁, 徐义刚. 2012. 胶东青山群基性火山岩的Ar-Ar年代学和地球化学特征:对华北克拉通破坏过程的启示. 岩石学报, 28(4): 1073-1091.
李厚民, 毛景文, 沈远超, 刘铁兵, 张连昌. 2003. 胶西北东季金矿床钾长石和石英的Ar-Ar年龄及其意义. 矿床地质, 22(1): 72-77. DOI:10.3969/j.issn.0258-7106.2003.01.008
李俊建, 罗镇宽, 刘晓阳, 徐卫东, 骆辉. 2005. 胶东中生代花岗岩及大型-超大型金矿床形成的地球动力学环境. 矿床地质, 24(4): 361-372. DOI:10.3969/j.issn.0258-7106.2005.04.002
路凤香, 郑建平, 张瑞生, 陈美华. 2005. 华北克拉通东部显生宙地幔演化. 地学前缘, 12(1): 61-67. DOI:10.3321/j.issn:1005-2321.2005.01.009
罗贤冬, 杨晓勇, 段留安, 孙卫东. 2014. 胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究. 地质学报, 88(10): 1874-1888.
苗来成, 罗镇宽, 关康, 黄佳展. 1998. 玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义. 岩石学报, 14(2): 198-206.
裴福萍, 许文良, 王清海, 王冬艳, 林景仟. 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97. DOI:10.3969/j.issn.1006-7493.2004.01.008
邱检生, 王德滋, 罗清华, 刘洪. 2001. 鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年——以五莲分岭山火山机构为例. 高校地质学报, 7(3): 351-355. DOI:10.3969/j.issn.1006-7493.2001.03.011
邱连贵, 任凤楼, 曹忠祥, 张岳桥. 2008. 胶东地区晚中生代岩浆活动及对大地构造的制约. 大地构造与成矿学, 32(1): 117-123. DOI:10.3969/j.issn.1001-1552.2008.01.015
宋明春, 严庆利. 2000. 胶南地区伟德山超单元中闪长质包体的特征及岩浆成因. 山东地质, 16(4): 16-21.
宋明春, 韩景敏. 2006. 苏鲁超高压带北段夏河城岩体的形成时代及其意义. 地质论评, 52(5): 601-608. DOI:10.3321/j.issn:0371-5736.2006.05.011
宋明春, 张军进, 张丕建, 杨立强, 刘殿浩, 丁正江, 宋英昕. 2015. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景. 地质学报, 89(2): 365-383.
宋明春, 李杰, 李世勇, 丁正江, 谭现锋, 张照录, 王世进. 2018. 鲁东晚中生代热隆-伸展构造及其动力学背景. 吉林大学学报(地球科学版), 48(4): 941-964.
谭俊, 魏俊浩, 杨春福, 冯波, 谭文娟, 郭大招. 2006. 胶东郭城地区脉岩类岩石地球化学特征及成岩构造背景. 地质学报, 80(8): 1177-1188. DOI:10.3321/j.issn:0001-5717.2006.08.011
田伟, 董申保, 陈咪咪, 朱文萍. 2009. 南秦岭印支期花岗岩带的"地幔印记". 地学前缘, 16(2): 119-128. DOI:10.3321/j.issn:1005-2321.2009.02.008
王世进, 万渝生, 王伟, 宋志勇, 王金光, 董春艳, 颉颃强, 刘清德. 2010. 山东崂山花岗岩形成时代——锆石SHRIMP U-Pb定年. 山东国土资源, 26(10): 1-6. DOI:10.3969/j.issn.1672-6979.2010.10.001
王中亮, 赵荣新, 张庆, 鲁辉武, 李京濂, 程蔚. 2014. 胶西北高Ba-Sr郭家岭型花岗岩岩浆混合成因:岩石地球化学与Sr-Nd同位素约束. 岩石学报, 30(9): 2595-2608.
巫祥阳, 徐义刚, 马金龙, 许继峰, 王强. 2003. 鲁西中生代高镁闪长岩的地球化学特征及其成因探讨. 大地构造与成矿学, 27(3): 228-236. DOI:10.3969/j.issn.1001-1552.2003.03.004
薛怀民, 刘福来, 孟繁聪. 2007. 苏鲁造山带胶南区段片麻岩原岩的成因:地球化学及Nd同位素证据. 岩石学报, 23(12): 3239-3248. DOI:10.3969/j.issn.1000-0569.2007.12.016
杨承海, 许文良, 杨德彬, 刘长春, 柳小明, 胡兆初. 2006. 鲁西中生代高Mg闪长岩的成因:年代学与岩石地球化学证据. 地球科学(中国地质大学学报), 31(1): 81-92.
杨浩田, 杨德彬, 师江朋, 许文良, 王枫, 谌瑛. 2018. 鲁西早白垩世岩石圈地幔的属性——大昆仑辉长岩和辉绿岩年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素制约. 岩石学报, 34(11): 3327-3340.
杨进辉, 吴福元, Wilde SA, 柳小明. 2007.辽东半岛晚三叠世花岗岩及镁铁质包体的成因: 华北克拉通碰撞后岩石圈减薄的证据.见: 中国矿物岩石地球化学学会第11届学术年会论文集.北京: 中国矿物岩石地球化学学会, 4-27
杨岳衡, 张宏福, 谢烈文, 刘颖, 祁昌实, 涂湘林. 2006. 华北克拉通中、新生代典型火山岩的岩石成因:Hf同位素新证据. 岩石学报, 22(6): 1665-1671.
张华锋, 翟明国, 何中甫, 彭澎, 许保良. 2004. 胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义. 岩石学报, 20(3): 369-380.
张华锋, 翟明国, 童英, 彭澎, 许保良, 郭敬辉. 2006. 胶东半岛三佛山高Ba-Sr花岗岩成因. 地质论评, 52(1): 43-53. DOI:10.3321/j.issn:0371-5736.2006.01.007
张旗, 钱青, 王二七, 王焰, 赵太平, 郝杰, 郭光军. 2001. 燕山中晚期的中国东部高原:埃达克岩的启示. 地质科学, 36(2): 248-255. DOI:10.3321/j.issn:0563-5020.2001.02.014
张田, 张岳桥. 2008. 胶北隆起晚中生代构造-岩浆演化历史. 地质学报, 82(9): 1210-1228. DOI:10.3321/j.issn:0001-5717.2008.09.006
张岳桥, 李金良, 张田, 董树文, 袁嘉音. 2008. 胶莱盆地及其邻区白垩纪-古新世沉积构造演化历史及其区域动力学意义. 地质学报, 82(9): 1229-1257. DOI:10.3321/j.issn:0001-5717.2008.09.007
张增奇, 张成基, 王世进, 刘书才, 王来明, 杜圣贤, 宋志勇, 张尚坤, 杨恩秀, 程光锁, 刘凤臣, 陈军, 陈诚. 2014. 山东省地层侵入岩构造单元划分对比意见. 山东国土资源, 30(3): 1-23. DOI:10.3969/j.issn.1672-6979.2014.03.001
周建波, 郑永飞, 赵子福. 2003. 山东五莲中生代岩浆岩的锆石U-Pb年龄. 高校地质学报, 9(2): 185-194. DOI:10.3969/j.issn.1006-7493.2003.02.004
周新华. 2006. 中国东部中、新生代岩石圈转型与减薄研究若干问题. 地学前缘, 13(2): 50-64. DOI:10.3321/j.issn:1005-2321.2006.02.004
朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学(地球科学), 49(9): 1346-1356.