岩石学报  2020, Vol. 36 Issue (1): 68-76, doi: 10.18654/1000-0569/2020.01.08   PDF    
钛的地球化学性质与成矿
孙赛军1,2, 廖仁强1,2, 丛亚楠3, 隋清霖1,2, 李爱4     
1. 中国科学院海洋研究所, 深海研究中心, 青岛 266071;
2. 青岛海洋科学与技术试点国家实验室, 海洋地质过程与环境功能实验室, 青岛 266237;
3. 内蒙古自治区矿产实验研究所, 呼和浩特 010031;
4. 青岛大学数据科学与软件工程学院, 青岛 266071
摘要: 钛由于其高强度和抗腐蚀性特征,在航空航天、医药、手机等领域得到越来越广泛的应用,是二十世纪的战略金属元素。在自然界中,钛铁矿、钛磁铁矿和金红石是最具经济价值的含钛矿物。钛最初被认为是变质过程中最不活泼的金属元素之一,随着越来越多的证据显示钛可以在特定条件下进入变质热液流体中发生活动迁移。高压变质脉体中金红石和磷灰石作为共生矿物存在,这可能为富F溶液对钛迁移富集的影响,当氟磷灰石从富F流体中结晶沉淀时K2TiF6络合物分解,钛在其中的溶解度降低进而结晶沉淀出金红石,而这一富集迁移沉淀机制很可能是变质型金红石矿床变质富集的机制。在岩浆矿床中,钛常作为伴生元素赋存于磁铁矿床中。一般认为部分熔融程度、挥发分含量和成矿岩浆温度等决定了含钛矿或高钛岩体的形成,本文认为富金红石的再循环洋壳或者富钛沉积矿床重熔是岩浆型钛矿床的重要成矿物质来源。沉积型钛矿床的形成与区域地质、地理和水动力学有关,它们常在被动大陆边缘,以高风化、高品位钛源岩为后盾通过风化、剥蚀和海侵等主要形成在沿海岸带特别是南北纬30°低纬度地区。总之富钛源区、起源深度、部分熔融温度和程度、陆壳混染程度、挥发分、流体成分、风化剥蚀能力等决定了钛矿化成功与否。
关键词: 钛矿床    钛磁铁矿    金红石    钛活动性    钛富集与成矿    
Geochemistry and mineralization of titanium
SUN SaiJun1,2, LIAO RenQiang1,2, CONG YaNan3, SUI QingLin1,2, LI Ai4     
1. Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3. Inner Mongolia Minerals Experiment Research Institute, Hohhot 010031, China;
4. School of Data Science and Software Engineering, Qingdao University, Qingdao 266071, China
Abstract: Titanium, because of its high strength and corrosion resistance, has been widely used in aerospace, medicine, mobile phone and other fields. It is a strategic metallic element in the 20th century. In nature, ilmenite, titanomagnetite and rutile are the most economical titaniferous minerals. Titanium was initially considered to be an inactive metallic element, however, more and more evidences support that it can migrate into metamorphic hydrothermal fluids in certain conditions. The presence of rutile and apatite as paragenetic minerals in high-pressure metamorphic veins may be due to the influence of F-rich fluids on the migration and enrichment of Ti. When fluorapatite precipitates from the F-rich fluids, the K2TiF6 complex will decompose, therefor the solubility of Ti will decrease and rutile will crystallize, which is probably the mechanism of metamorphism and enrichment of the metamorphic rutile deposit. In the magmatic deposits, titanium is often associated with magnetite deposits. It is generally believed that the degree of partial melting, volatile content and the temperature of ore-forming magma determine the formation Ti-bearing deposits or high Ti intrusions. This paper considers that the remelting of recycling rutile-rich oceanic crust or Ti-rich sedimentary deposits is the important source of ore-forming materials for magmatic-type titanium deposits. The formation of sedimentary titanium deposits are related to regional geology, physiography and hydrodynamics. They are often located on the passive continental margin, with high weathering, high-grade titanium sources through weathering, denudation and transgression, and are mainly formed along the costal zone, especially between the low latitudes of 30°N and 30°S. In conclusion, the successful mineralization of Ti is determined by the Ti-rich sources, the depth of provenance, the temperature and degree of partial melting, the degree of contamination of the continental crust, volatile content, the ability of weathering and denudation, etc.
Key words: Titanium deposits    Titanomagnetite    Rutile    Titanium activity    Titanium enrichment and mineralization    

钛在地壳中的含量达4200×10-6,在10km厚的地球表面,钛含量高达6‰,是铜含量的62倍(Rudnick and Gao, 2003; Sun and McDonough, 1989)。作为钛的主要赋存矿物,钛铁矿、金红石、钛磁铁矿和榍石等广泛分布于火成岩、变质岩和沉积岩等不同岩石类型中,在不同的构造环境中,如岩石圈地幔、俯冲板片、岛弧和大陆地壳等亦分布存在(Ding et al., 2009, 2013; Liang et al., 2009; Meinhold, 2010; Sun et al., 2018, 2019; Xiao et al., 2006; 肖益林等, 2011)。具有经济价值可开采的钛金属矿资源主要为钛铁矿、金红石矿和钛磁铁矿等。这些矿物耐风化,其相应的矿床既有原生的(岩矿),也有次生的(风化残坡积及沉积砂矿)。

据美国地质调查局(USGS, 2015)公布的数据表明全球有三十多个国家拥有钛资源,钛金属估计全球远景储量在20亿吨以上,探明储量~7.8亿吨,主要来源于钛铁矿(~94%),其次为金红石和白钛石。但是钛资源在全球分布是不均匀的,主要分布在澳大利亚、南非、中国、加拿大和印度等国家。其中,加拿大、中国和印度主要是岩矿,澳大利亚和美国主要是砂矿,而南非的岩矿和砂矿都十分丰富(图 1)。从目前已产出的钛储量看,世界~90%钛主要产于钛铁矿中,其次为金红石矿,其中钛铁矿中~46%的钛产出于南非、澳大利亚和中国的钛铁矿床中(USGS, 2015)。

图 1 全球典型含钛矿床分布示意图(底图据USGS, 2017夏学惠等, 2007修改) 橙色虚线指示30°N和30°S纬度线,沉积型钛矿床主要位于30°N和30°S之间 Fig. 1 Schematic map of the global distribution of typical titanium-bearing deposits (modified after USGS, 2017; Xia et al., 2007) Orange dotted lines indicate the dimensional lines of 30°N and 30°S, and the sedimentary titanium deposits are mainly located between 30°N and 30°S

前人研究表明钛矿床的经济价值和开采潜力很大程度上取决于其矿物学性质特征,而不是钛的总体含量,尽管全球钛铁矿和金红石的资源储量很大,但高品位、高品质的钛铁矿和金红石矿床在全球极其缺乏(Korneliussen et al., 2000),矿物组合、晶粒大小、形貌、结构、及所含微量元素的种类和数量等都影响着矿床的经济潜力。如:离散状钛铁矿晶体的存在与否是决定多数岩浆氧化物矿床经济价值的关键因素。在岩浆钛铁矿床中,如挪威Tellnes矿床,钛铁矿分选自矿床废石,这类矿床的矿石品级一般很高(Korneliussen et al., 2000)。但是那些含非常规钛矿类型的矿床(富含钙钛矿)如Iron Hill矿床,和巴西的深熔矿床(Catala、Salitre和Tapira矿床)等,目前还不具钛开采价值。前人研究多集中于钛伴生的Fe等其他金属元素,对于钛在不同类型钛矿床中的富集机制少有探讨,故本文在前人研究基础上重点关注钛在矿床中的富集机制。

1 钛的地球化学性质

钛是一种银白色的具金属光泽的过渡金属,表现为重量轻、强度高、耐湿氯气腐蚀特征。钛在自然界中存在分散并难于提取,因此曾被认为是一种稀有金属。但钛并不是稀有金属,它在金属世界排行第七,在所有元素中居第九位,占地壳总质量的0.7%,是铜、镍、铅、锌总量的16倍(Rudnick and Fountain, 1995)。钛价态主要有+2、+3和+4,在较高温度下,可与多种元素和化合物发生化学反应。在地球和宇宙化学研究中,钛是一个重要的元素,钛同位素组成的变化可为揭示地质作用过程、判别生物或非生物作用引起的质量分馏提供判别依据(Zhu et al., 2002)。由于钛是高熔点元素、为早期形成太阳系物质的主要元素,对陨石等进行钛同位素研究能较好地反映太阳系早期演化过程的信息等(Trinquier et al., 2009; Zhang et al., 2011)。

钛是亲石元素,在地壳中常形成含钛氧化物或者硅酸盐,并且这些富钛矿物常强烈富集高场强元素Nb、Ta、Zr和Hf等(Brenan et al., 1994; Xiao et al., 2006)。通常认为钛在板块俯冲过程中是不活动元素(Pearce and Peate, 1995),但是随着室内实验和野外证据的报道,发现钛在特定条件下能够进入变质热液流体中并发生迁移富集(Ayers and Watson, 1993; Ding et al., 2009, 2013, 2018; Keppler, 1996; Liang et al., 2009; Xiao et al., 2006; Xiong et al., 2005; Xiong, 2006)。那么了解钛在岩浆热液程中的活动性对于了解钛矿床富集机制以及高场强元素运移能力具有重要意义。前人研究金红石在硅酸盐熔体中TiO2的溶解度,发现金红石作为残留相存在于俯冲板块之中(Gaetani et al., 2008)。但是随后的高温高压实验发现,热液流体中大量的CO2、Cl、F、Na、K、Si、Al均能对钛的迁移能力造成显著影响(Keppler, 1996; Manning, 2004)。如:CO2的加入会显著降低金红石的溶解度;而碱金属(Na、K)、铝硅酸盐(Si、Al)和卤素(Cl、F)的加入会显著升高金红石在热液中的溶解度(Antignano and Manning, 2008; Ayers and Watson, 1993; Manning et al., 2008; Rapp et al., 2010; Hayden and Manning, 2011; Tanis et al., 2015, 2016),其中F的影响最为显著,随着NaF浓度的增加,钛在流体中的迁移浓度可从100n×10-6升至10000n×10-6 (Rapp et al., 2010; Tanis et al., 2015, 2016; 何俊杰等, 2015a, b)。

变质作用过程中钛的地球化学行为主要取决于不同变质阶段和不同岩性中的含钛矿物(Goldsmith and Force, 1978; Schuiling and Vink, 1967; Van Baalen, 1993)。榍石一般是低变质阶段最主要的钛载体矿物(Force, 1991),而在绿片岩阶段则是黑云母,其TiO2含量约1%或者更多,当岩石中镁质高时,可形成钛铁矿,甚至在一些高氧化泥质岩石中出现金红石(Goldsmith and Force, 1978; Schuiling and Vink, 1967; Van Baalen, 1993; 刘源骏, 2016; 张翊钧, 1988)。在角闪岩相阶段,镁铁岩石中角闪石和辉石为主要含钛矿物,钛含量可达1%或更高。当处于变质增温阶段时,钛从角闪石、辉石中释放出来与Fe形成钛铁矿(TiO2+磁铁矿=钛铁矿+赤铁矿)(Goldsmith and Force, 1978; Van Baalen, 1993; 刘源骏, 1966; 张翊钧, 1988)。当变质作用继续加深时,大量金红石产生在进变质作用的晚期阶段,而榍石多在退变质作用阶段沿钛铁矿和金红石边缘交代出现(图 2)(Goldsmith and Force, 1978; Van Baalen, 1993; 刘源骏, 1991)。当岩石处于增温过程或者在高氧逸度环境下,可见到榍石变为钛铁矿(图 2)(Force, 1991)。在麻粒岩相阶段,辉石、闪石和黑云母等是主要的含钛矿物。其中钛含量高时形成钛辉石,在黑云母和闪石中TiO2最高可达6%和4%(Goldsmith and Force, 1978)。在此岩相中榍石较少,主要以含钛铁矿和金红石为主。在变质程度最高级别的榴辉岩相中,金红石是主要的含钛矿物(图 2),含量可达5%以上(Cortesogno et al., 1977; Goldsmith and Force, 1978; Van Baalen, 1993)。除此之外TiO2在更高的温度或压力条件下会转化为高压同质多象变体如TiO2Ⅱ等(图 2)。

图 2 金红石-锐钛矿(板钛矿)-TiO2Ⅱ-MⅠ-榍石-钛铁矿相转变图(据Akaogi et al., 1992; Dachille et al., 1968; Liou et al., 1998; Meinhold, 2010; Olsen et al., 1999; Tang and Endo, 1994; Withers et al., 2003; 肖益林等, 2011) Fig. 2 Phase transition diagram of rutile-anatase (brookite)-TiO2Ⅱ-MⅠ-titanite-ilmenite (after Akaogi et al., 1992; Dachille et al., 1968; Liou et al., 1998; Meinhold, 2010; Olsen et al., 1999; Tang and Endo, 1994; Withers et al., 2003; Xiao et al., 2011)

除了变质级别因素外,原岩也影响着矿物TiO2含量。如原岩为基-超基性岩的黑云母、角闪石、辉石比副变质岩和中酸性岩中的同种矿物含钛量高。总之,金红石主矿物相主要形成于进变质作用阶段,而在退变质作用阶段则以钛铁矿和榍石为主(表 1)。

表 1 进变质、退变质过程中含钛矿物的演化(据刘源骏, 2016) Table 1 Evolution of titanium-bearing minerals during prograde and retrograde metamorphism (after Liu, 2016)
2 钛矿床类型及其富集机制

全球钛矿床类型按产状可分为原生矿和次生矿,从成矿时代来看,原生钛矿主要形成于古生代,钛砂矿则形成于新生代,根据岩体类型又可分为岩浆型、变质型和沉积型钛矿床(图 1)(USGS, 2017)。以上矿床类型间尽管存在不同,但又具有紧密联系,如含铁钛硅酸盐和氧化物岩浆岩通过变质作用可形成变质型金红石矿床,它们通过风化作用又可进一步沉淀在风化带中,经由风、水搬运分选沉淀形成沉积型钛砂矿床,当这些富钛沉积层经历俯冲再循环熔融作用又可形成岩浆型钛铁矿床。从目前已产出的钛储量看,世界~90%钛主要产于岩浆型钛铁矿和沉积型钛砂矿中,其次为变质型金红石矿床(USGS, 2015)。

2.1 岩浆型钛铁矿床

岩浆型钛铁矿多以钛铁矿和(钒)钛磁铁矿为主,不整合或者层状赋存于岩体中。赋存岩浆型钛铁矿矿床的岩体主要为两类:一类为斜长岩套,如挪威Tellnes铁钛矿床以及我国河北大庙钒钛磁铁矿床中;另一类为镁铁-超镁铁层状岩体,如南非~2.05Ga的Bushveld岩体和我国攀西地区~260Ma的岩体中(Klemm et al., 1985; Reynolds, 1985; Wilmart et al., 1989; Zhong and Zhu, 2006; Zhou et al., 2002; 王关玉, 1979)。在我国最典型的岩浆型钛磁铁矿床分布在攀西地区,其内赋存不同规模的钒钛磁铁矿床并发育一系列镁铁-超镁铁质层状岩体,主要包括攀枝花、太和、红格、白马和新街等(Song et al., 2013; Wang and Zhou, 2013; Wang et al., 2018, 2012; Xing and Wang, 2017; Xing et al., 2017; Zhong et al., 2002; Zhou et al., 2008; 张云湘等, 1988)。与世界上其它钒钛磁铁矿不同的是(如南非Bushveld矿床),攀枝花矿床中岩体相对较小,但钒钛磁铁矿层占整个岩体的比例却相对较大(岩体平均厚度只有约2000m,但块状矿石层最厚可达60m),并且主要赋矿层位位于岩体下部(Dong et al., 2013; Namur et al., 2010; Tegner et al., 2006; Wang et al., 2018; Wang and Zhou, 2013; Zhong et al., 2002; 张云湘等, 1988)。

前人对于岩浆型钒钛磁铁矿富集机制的研究一直存在争议。从最初的分离结晶和堆晶作用过程中结晶的磁铁矿及钛铁矿由于重力分异堆积到岩浆下部和底部的模型(Bai et al., 2012; Hou et al., 2012; Pang et al., 2007; Song et al., 2013; Zhang et al., 2009);类似于铜镍硫化物矿床形成机制的矿浆侵入模型(McBirney and Noyes, 1979; Zhou et al., 2005, 2013);到新补充的基性岩浆与残余岩浆混合使得原始熔体Ti、Mg和Fe等金属元素进入氧化物中从而形成富矿层的岩浆混合作用模型(Moncrieff, 2000; Song et al., 2013; Tegner et al., 2006);以及近几年越来越多的高温高压实验数据和自然样品中熔体包裹体和显微结构证据显示,岩浆不混溶作用模型是钒钛磁铁矿富集机制的主要原因(Charlier et al., 2011; Dong et al., 2013; Jakobsen et al., 2005; Tollari et al., 2006; Veksler et al., 2007; Wang et al., 2018)。

但是对于钒钛磁铁矿床中成矿元素钛的富集机制,前人少有研究和报道。尽管大规模的含钛磁铁矿一般出现在大火成岩省内(徐义刚等, 2013),但并不是所有的大火成岩省内都发育含钛磁铁矿床。钛能否作为经济矿床伴生于磁铁矿床中主要取决于成矿母岩钛含量以及钛迁移富集机制。

前人对峨眉山大火成岩省内低、中和高钛玄武岩、苦橄岩以及其中的橄榄石和斜长石熔体包裹体研究发现,高钛玄武岩和低钛玄武岩是在不同深度、不同程度部分熔融形成,并且源区为再循环的EM1古老洋壳、少量沉积物和类似FOZO下地幔的橄榄岩组份混合后经历固相反应的辉石岩源区(Bai et al., 2014; Ren et al., 2017; Zhong et al., 2011; 徐义刚和钟孙霖, 2001)。由于钛在部分熔融过程中是不相容元素(Kogiso et al., 1998, 2004; Ren et al., 2017; Walter, 1998),在部分熔融的初始阶段即低程度部分熔融,易与Fe和P优先进入熔体从而达到富集形成矿床(Sang et al., 2005; Zhang et al., 2009)。但是成矿岩浆的温度和挥发分含量同时决定了岩浆中Fe和Ti是形成钛铁矿床还是形成富钛深成岩体(骆文娟, 2014; 徐义刚等, 2013)。因此,岩浆型钛矿床形成的前提是需要有富钛的源区(如富钛洋壳再循环或者富钛沉积矿床)参与熔融作用。

由于地幔柱多与再循环的俯冲洋壳有关(Hofmann and White, 1982; Sun et al., 2011),而在俯冲过程中钛可以再迁移并在俯冲板片内局部富集(Ding et al., 2009, 2013; Liang et al., 2009; Sun, 2018; Xiao et al., 2006),因此,富钛地幔柱可能与俯冲板片富钛区域的再循环有关。

2.2 变质型金红石矿床

此类矿床主要包括榴辉岩型、角闪岩型、变质(粉)砂岩型和变质铝硅酸盐岩型四种(Mancini et al., 1979; Schmidt, 1985; 程振香, 1990; 沈永和和张铁林, 1986; 赵一鸣, 2008)。在榴辉岩型矿床中金红石作为TiO2的主要矿物相,常与石榴子石、碱质角闪石或绿辉石以及绿帘石共生(Force, 1991)。当岩体中具铁质辉长岩成分时,金红石的含量可超过5%(Cortesogno et al., 1977)。而角闪岩型金红石矿床多由基性或镁铁质岩变质而成,主要产于中国东秦岭和晋北地区(赵一鸣, 2008)。变质粉砂岩型主要为锐钛矿为主的新类型钛矿床。变质铝硅酸盐型矿床大多由火山成因的母岩经变质或变质热液作用而形成,在美国变质型矿床中的重要性仅次于变质榴辉岩型(Marsh and Sheridan, 1976; Schmidt, 1985)。

① 沈永和, 张铁林. 1986.山西省地质矿产资源.太原:山西省地质勘查局, 1-896

前人研究认为此类矿床中共生矿物组合和含铝硅酸盐矿物中TiO2含量的高低主要受控于变质级别和变质原岩成分(Xiao et al., 2006; 赵一鸣, 2008)。在进变质的(超)高压、高级变质的榴辉岩中主要以金红石形式存在,只有在退变质过程中才可能出现少量钛铁矿;而在中(低)级变质的角闪片岩和变质(粉)砂岩中,金红石常与钛铁矿等密切共生,个别矿床甚至出现较多的低压相锐钛矿(如河南八庙和内蒙古羊蹄子山-魔石山矿床)(赵一鸣, 2008)。并且随着变质程度的增高,同种矿物中的TiO2含量也相应增加。

尽管不同变质矿床类型间存在不同差异,但是变质型金红石矿床的主要控矿因素总结为:富钛源岩(成矿物质来源)、俯冲造山-断裂褶皱(成矿物质运移通道)及区域变质作用(钛形成金红石的必要条件)。富钛源岩可以为岩浆型或者沉积型钛铁矿床,亦可为演化程度、陆壳混染低、富集地幔源区的富钛基性源岩(Force, 1991; Korneliussen et al., 2000; McLimans et al., 1999; 陈鑫等, 2018; 胡建等, 2006)。变质型金红石矿床多位于与俯冲造山/断裂褶皱系相关的构造环境中,俯冲过程中,含水流体携带多种阴离子通过断裂褶皱迁移成矿物质。变质作用是形成金红石的必要条件,在成矿流体达到一定稳压条件下结晶沉淀成矿。但是金红石矿能否保存下来还取决于后期退变质或者流体作用是否破坏已存的金红石矿(Chen et al., 2012; Force, 1991; Korneliussen et al., 2000; McLimans et al., 1999; 陈鑫等, 2018)。

在变质金红石矿床内变质富集过程中钛又是如何迁移富集沉淀成矿的?在通常情况下地幔或俯冲带流体中TiO2溶解度很低,但是有研究者发现富含Cl和F的溶液中金红石的溶解度异常高,尤其是富F溶液很大程度上决定了流体中钛的迁移富集能力(Rapp et al., 2010; 何俊杰等, 2015a, b; 肖益林等, 2011)。何俊杰等(2015a, b)通过高温高压实验发现富F溶液主要通过K2TiF6络合物来迁移富集钛。在高压变质脉体中常见金红石和磷灰石共生,可能的机制就是富F流体容纳富集钛并进行迁移,当富F磷灰石从富F流体中结晶沉淀时会导致K2TiF6络合物分解(Gao et al., 2007; John et al., 2008; Malaspina et al., 2006; 何俊杰等, 2015a, b),从而钛在其中的溶解度降低进而结晶沉淀出金红石。而这一K2TiF6络合物的富集迁移沉淀机制很可能是变质型金红石矿床变质富集的机制。

2.3 沉积型钛砂矿

沉积型钛砂矿床主要分为海洋沉积型、河流冲积沉积型和残积型砂矿(USGS, 2017; 姜雪薇, 2017)。与原生矿相比,具有脉石含量少、资源分散、品位低、结构松散、精矿品位高以及可选性好的优点。全球沉积型钛砂矿包括钛铁矿砂矿和金红石砂矿,钛铁矿砂矿主要分布在澳大利亚、美国、南非、印度半岛、乌克兰、斯里兰卡、巴西和中国等。澳大利亚钛铁矿砂矿主要为海洋沉积型砂矿,矿床结构松散,但是TiO2品位较高且储量大。储量约1.6亿吨,占全球的23%,主要分布在西海岸。南非钛铁矿资源储量约6300万吨,占世界9%。主要位于印度洋海岸线上,属于海滨砂矿。美国钛铁矿储量约5900万吨,主要位于大西洋西海岸线上,属于海滨砂矿型钛铁矿。印度的钛铁矿储量占全球比例的13%,约8500万吨,主要产于南部的喀拉拉邦地区,属于海滨沉积型。中国的钛铁砂矿资源主要分布在云南、海南、广西、广东等地区,储量约500万吨,主要包括海洋沉积、河流冲积或湖泊沉积型砂矿(邓国珠, 2002; 姜雪薇, 2017; 吴贤和张健, 2006)。

全球金红石砂矿主要分布在中国、澳大利亚、南非和塞拉利昂等。澳大利亚金红石砂矿有滨海型和离岸海滨型两种,主要在东西海岸分布,东海岸带的金红石砂矿主要来源于花岗岩,部分来自于玄武岩,属于海滨砂矿床。塞拉利昂是金红石储量大国,主要分在邦巴马矿群、Rotifunk矿、Sembehun矿群和坎比亚矿这四个矿区,总储量约6亿吨。中国金红石矿资源相对较少,目前报道的储量仅有200万吨,主要为海滨砂矿和残坡积风化壳型(邓国珠, 2002; 姜雪薇, 2017; 吴贤和张健, 2006)。

海洋沉积型钛砂矿的丰度和分布主要受矿床地区的地质、地理和沿海岸动力学影响。大多具高产的沉积钛砂矿省具有以下特征:1)矿床位于被动大陆边缘,以高风化、高品味变质或者镁铁质岩浆岩为后盾来提供沙砾碎屑;2)海岸线区域以海平面变化和相对较低的沉积速率为主;3)通过海侵、强浪或者漂流作用,沙砾不断被重新筛选改造;4)之前已存的堰洲岛和风成沙丘形成了现今的多个高地形的成矿砂体(Force, 1991; Hamilton, 1995; Hou et al., 2017; Pirkle et al., 2007; Roy, 1999)。

整体上全球钛砂矿主要分布于南北纬30°低纬度地区(图 1),多为热带-亚热带、降雨较多、风化严重地区,强烈的风化剥蚀作用以及河流搬运方式等形成了沉积型钛砂矿。

3 结语

钛作为自然界中最不活泼的金属元素之一,被越来越多的实验和野外证据证实可以在特定条件下发生迁移富集。其活动性受热液流体中F、CO2、Cl、Na、K、Si和Al等的不同影响,其中F对于提升钛在流体中的迁移能力最为显著。钛在变质作用过程中的地球化学行为主要取决于不同变质程度和不同岩性,低变质阶段主要赋存在榍石,而高变质阶段主要赋存在金红石矿物中。同时,岩浆型钛矿床成矿物质可能来源于金红石残留相的再循环洋壳或者富钛沉积源区的重熔作用。变质型金红石矿床形成可能与富F溶液对含钛流体的迁移富集沉淀有关。而沉积型钛矿床的形成主要与区域地质、地理和动力学有关,常通过风化、剥蚀和海侵等主要形成在沿海岸带地区。在钛矿床中,尽管不同类型间钛的富集机制存在差异,但是富钛成矿源岩、构造背景、变质作用和风化搬运沉淀等这几个影响因素参与程度的不同决定了不同的矿床类型。而起源深度、部分熔融温度和程度、陆壳混染程度、挥发分多少、流体成分、地形、降雨和风化能力等也决定了钛矿化成功与否。

致谢      感谢李聪颖、张丽鹏、王坤和董欢在论文写作过程中给予的帮助。

参考文献
Akaogi M, Kusaba K, Susaki JI, Yagi T, Matsui M, Kikegawa T, Yusa H and Ito E. 1992. High-pressure high-temperature stability of αPbO2-type TiO2 and MgSiO3 majorite: Calorimetric and in situ X-ray diffraction studies. In: Syono Y and Manghnani MH (eds.). High-Pressure Research: Application to Earth and Planetary Sciences. Washington DC: AGU, 447-455 https://www.researchgate.net/publication/285081409_High-pressure_high-temperature_stability_of_aPbO2-type_TiO2_and_MgSiO3_majorite_Calorimetric_and_in_situ_X-ray_diffraction_studies
Antignano A and Manning CE. 2008. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0.7~2.0GPa and 700~1000℃:Implications for mobility of nominally insoluble elements. Chemical Geology, 255(1-2): 283-293 DOI:10.1016/j.chemgeo.2008.07.001
Ayers JC and Watson EB. 1993. Rutile solubility and mobility in supercritical aqueous fluids. Contributions to Mineralogy and Petrology, 114(3): 321-330 DOI:10.1007/BF01046535
Bai ZJ, Zhong H, Naldrett AJ, Zhu WG and Xu GW. 2012. Whole-rock and mineral composition constraints on the genesis of the giant Hongge Fe-Ti-V oxide deposit in the Emeishan Large Igneous Province, Southwest China. Economic Geology, 107(3): 507-524 DOI:10.2113/econgeo.107.3.507
Bai ZJ, Zhong H, Li CS, Zhu WG, He DF and Qi L. 2014. Contrasting parental magma compositions for the Hongge and Panzhihua magmatic Fe-Ti-V oxide deposits, Emeishan Large Igneous Province, SW China. Economic Geology, 109(6): 1763-1785 DOI:10.2113/econgeo.109.6.1763
Brenan JM, Shaw HF, Phinney DL and Ryerson FJ. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th:Implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128(3-4): 327-339 DOI:10.1016/0012-821X(94)90154-6
Charlier B, Namur O, Toplis MJ, Schiano P, Cluzel N, Higgins MD and Auwera JV. 2011. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology, 39(10): 907-910 DOI:10.1130/G32091.1
Chen DL, Liu L, Sun Y, Sun WD, Zhu XH, Liu XM and Guo CL. 2012. Felsic veins within UHP eclogite at Xitieshan in North Qaidam, NW China:Partial melting during exhumation. Lithos, 136-139: 187-200 DOI:10.1016/j.lithos.2011.11.006
Chen X, Zheng YY, Xu RK, Cai PJ, Lin CG, Bai J, Sun SH and Lu LH. 2018. Mineralogical, trace element composition of rutile and genesis of eclogite-type rutile deposit from the Yuka terrane, North Qaidam UHPM belt. Acta Petrologica Sinica, 34(6): 1685-1703 (in Chinese with English abstract)
Cheng ZX. 1990. Basic characteristics of the Donghai eclogite type rutile deposit in Jiangsu province. Mineral Deposits, 9(1): 86-90 (in Chinese with English abstract)
Cortesogno L, Ernst WG, Galli M, Messiga B, Pedemonte GM and Piccardo GB. 1977. Chemical petrology of eclogitic lenses in serpentinite, Gruppo di Voltri, Ligurian Alps. The Journal of Geology, 85(3): 255-277 DOI:10.1086/628298
Dachille F, Simons PY and Roy R. 1968. Pressure-temperature studies of anatase, brookite, rutile and TiO2-Ⅱ. The American Mineralogist, 53: 1929-1939
Deng GZ. 2002. Development and utilization of titanium resources in the word. Titanium Industry Progress, (5): 9-12 (in Chinese)
Ding X, Lundstrom C, Huang F, Li J, Zhang ZM, Sun XM, Liang JL and Sun WD. 2009. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation. International Geology Review, 51(6): 473-501 DOI:10.1080/00206810902759749
Ding X, Hu YH, Zhang H, Li CY, Ling MX and Sun WD. 2013. Major Nb/Ta fractionation recorded in garnet amphibolite facies metagabbro. The Journal of Geology, 121(3): 255-274 DOI:10.1086/669978
Ding X, Harlov DE, Chen B and Sun WD. 2018. Fluids, metals, and mineral/ore deposits. Geofluids, 2018: 1452409 DOI:10.1155/2018/1452409
Dong H, Xing CM and Wang CY. 2013. Textures and mineral compositions of the Xinjie layered intrusion, SW China:Implications for the origin of magnetite and fractionation process of Fe-Ti-rich basaltic magmas. Geoscience Frontiers, 4(5): 503-515 DOI:10.1016/j.gsf.2013.01.011
Force ER. 1991. Geology of Titanium-Mineral Deposits. Boulder: Geological Society of America, 1-102
Gaetani GA, Asimow PD and Stolper EM. 2008. A model for rutile saturation in silicate melts with applications to eclogite partial melting in subduction zones and mantle plumes. Earth and Planetary Science Letters, 272(3-4): 720-729 DOI:10.1016/j.epsl.2008.06.002
Gao J, John T, Klemd R and Xiong XM. 2007. Mobilization of Ti-Nb-Ta during subduction:Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71(20): 4974-4996 DOI:10.1016/j.gca.2007.07.027
Goldsmith R and Force ER. 1978. Distribution of rutile in metamorphic rocks and implications for placer deposits. Mineralium Deposita, 13(3): 329-343
Hamilton NTM. 1995. Controls on the global distribution of coastal titanium-zirconium placers. International Geology Review, 37(9): 755-779 DOI:10.1080/00206819509465426
Hayden LA and Manning CE. 2011. Rutile solubility in supercritical NaAlSi3O8-H2O fluids. Chemical Geology, 284(1-2): 74-81 DOI:10.1016/j.chemgeo.2011.02.008
He JJ, Ding X, Wang YR and Sun WD. 2015a. The effects of precipitation-aging-re-dissolution and pressure on hydrolysis of fluorine-rich titanium complexes in hydrothermal fluids and its geological implications. Acta Petrologica Sinica, 31(7): 1870-1878 (in Chinese with English abstract)
He JJ, Ding X, Wang YR, Sun WD and Fu B. 2015b. The effect of temperature and concentration on hydrolysis of fluorine-rich titanium complexes in hydrothermal fluids:Constraints on titanium mobility in deep geological processes. Acta Petrologica Sinica, 31(3): 802-810 (in Chinese with English abstract)
Hofmann AW and White WM. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57(2): 421-436 DOI:10.1016/0012-821X(82)90161-3
Hou BH, Keeling J and Van Gosen BS. 2017. Geological and exploration models of beach placer deposits, integrated from case-studies of southern Australia. Ore Geology Reviews, 80: 437-459 DOI:10.1016/j.oregeorev.2016.07.016
Hou T, Zhang ZC, Encarnacion J and Santosh M. 2012. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti-oxide ores in the Panxi district, Emeishan Large Igneous Province, Southwest China. Ore Geology Reviews, 49: 109-127 DOI:10.1016/j.oregeorev.2012.09.004
Hu J, Qiu JS, Wang RC, Li CX, Ni P and Zhang XL. 2006. Geochemical constraints on titanium mineralization of eclogites. Geology and Prospecting, 42(4): 57-61 (in Chinese with English abstract)
Jakobsen JK, Veksler IV, Tegner C and Brooks CK. 2005. Immiscible iron-and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology, 33(11): 885-888 DOI:10.1130/G21724.1
Jiang XW. 2017. Distribution and characteristics of global titanium. Shanxi Agricultural Economy, (10): 50-51 (in Chinese with English abstract)
John T, Klemd R, Gao J and Garbe-Schönberg CD. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction:Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos, 103(1-2): 1-24 DOI:10.1016/j.lithos.2007.09.005
Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380(6571): 237-240 DOI:10.1038/380237a0
Klemm DD, Henckel J, Dehm RM and Von Gruenewaldt G. 1985. The geochemistry of titanomagnetite in magnetite layers and their host rocks of the eastern Bushveld Complex. Economic Geology, 80(4): 1075-1088 DOI:10.2113/gsecongeo.80.4.1075
Kogiso T, Hirose K and Takahashi E. 1998. Melting experiments on homogeneous mixtures of peridotite and basalt:Application to the genesis of ocean island basalts. Earth and Planetary Science Letters, 162(1-4): 45-61 DOI:10.1016/S0012-821X(98)00156-3
Kogiso T, Hirschmann MM and Pertermann M. 2004. High-pressure partial melting of mafic lithologies in the mantle. Journal of Petrology, 45(12): 2407-2422 DOI:10.1093/petrology/egh057
Korneliussen A, McEnroe SA, Nilsson LP, Schiellerup H, Gautneb H, Meyer GB and Størseth LR. 2000. An overview of titanium deposits in Norway. Norges Geologiske Undersokelse Bulletin, 436: 27-38
Liang JL, Ding X, Sun XM, Zhang ZM, Zhang H and Sun WD. 2009. Nb/Ta fractionation observed in eclogites from the Chinese continental scientific drilling project. Chemical Geology, 268(1-2): 27-40 DOI:10.1016/j.chemgeo.2009.07.006
Liou JG, Zhang RY, Ernst WG, Rumble D and Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Reviews in Mineralogy and Geochemistry, 37(1): 33-96
Liu YJ. 1966. A study on a rutile-bearing "garnet-amphibolite". Acta Geologica Sinica, 46(2): 224-231 (in Chinese with English abstract)
Liu YJ. 1991. Some ideas on Dafushan massif of Hubei. Resources Environment & Engineering, (2): 42-54 (in Chinese)
Liu YJ. 2016. Metamorphism and rutile mineralization. Resources Environment & Engineering, 30(Suppl.1): 71-75 (in Chinese)
Luo WJ. 2014. Magmatic Cu-Ni-PGE sulfide and Fe-Ti-V oxide deposits and their relationship to Emeishan basalt in Permian Emeishan Large Igneous Province, SW China:A review. Earth Science (Journal of China University of Geosciences), 39(10): 1343-1354 (in Chinese with English abstract) DOI:10.3799/dqkx.2014.126
Malaspina N, Hermann J, Scambelluri M and Compagnoni R. 2006. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China). Lithos, 90(1-2): 19-42 DOI:10.1016/j.lithos.2006.01.002
Mancini A, Mancini R and Martinotti G. 1979. Valorization of new titanium resource: Titaniferous eclogites. In: Mineral Economics. The Tenth Word Mining Congress, Turkey, 4: 1-19
Manning CE. 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223(1-2): 1-16 DOI:10.1016/j.epsl.2004.04.030
Manning CE, Wilke M, Schmidt C and Cauzid J. 2008. Rutile solubility in albite-H2O and Na2Si3O7-H2O at high temperatures and pressures by in-situ synchrotron radiation micro-XRF. Earth and Planetary Science Letters, 272(3-4): 730-737 DOI:10.1016/j.epsl.2008.06.004
Marsh SP and Sheridan DM. 1976. Rutile in Precambrian sillimanite-quartz gneiss and related rocks, east-central Front Range, Colorado (No.959-G). US Govt. Print. Off., 1-959
McBirney AR and Noyes RM. 1979. Crystallization and layering of the Skaergaard intrusion. Journal of Petrology, 20(3): 487-554 DOI:10.1093/petrology/20.3.487
McLimans RK, Rogers WT, Korneliussen A, Garson M, Arenberg E and Stanley CJ. 1999. Norwegian eclogite: An ore of titanium. In Mineral Deposits: Processes to Processing. In: Proceedings of the 5th Biennial SGA Meeting and the Tenth Quadrennial IAGOD Symposium. London, UK: 22-25
Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews, 102(1-2): 1-28 DOI:10.1016/j.earscirev.2010.06.001
Moncrieff DHS. 2000. Sulphur solubility behaviour in evolved magmas: An experimental study. Ph. D. Dissertation. Bristol: University of Bristol https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310682
Namur O, Charlier B, Toplis MJ, Higgins MD, Liégeois JP and Vander Auwera J. 2010. Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. Journal of Petrology, 51(6): 1203-1236 DOI:10.1093/petrology/egq016
Olsen JS, Gerward L and Jiang JZ. 1999. On the rutile/α-PbO2-type phase boundary of TiO2. Journal of Physics and Chemistry of Solids, 60(2): 229-233
Pang KN, Zhou MF, Lindsley D, Zhao DG and Malpas J. 2007. Origin of Fe-Ti oxide ores in mafic intrusions:Evidence from the Panzhihua intrusion, SW China. Journal of Petrology, 49(2): 295-313 DOI:10.1093/petrology/egm082
Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285 DOI:10.1146/annurev.ea.23.050195.001343
Pirkle FL, Pirkle WA and Pirkle EC. 2007. Heavy-mineral sands of the Atlantic and Gulf coastal plains, USA. Developments in Sedimentology, 58: 1144-1232 DOI:10.1016/S0070-4571(07)58045-3
Rapp JF, Klemme S, Butler IB and Harley SL. 2010. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids:An experimental investigation. Geology, 38(4): 323-326 DOI:10.1130/G30753.1
Ren ZY, Wu YD, Zhang L, Nichols ARL, Hong LB, Zhang YH, Zhang Y, Liu JQ and Xu YG. 2017. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions. Geochimica et Cosmochimica Acta, 208: 63-85 DOI:10.1016/j.gca.2017.01.054
Reynolds IM. 1985. The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld Complex:A review and synthesis. Economic Geology, 80(4): 1089-1108 DOI:10.2113/gsecongeo.80.4.1089
Roy PS. 1999. Heavy mineral beach placers in southeastern Australia:Their nature and genesis. Economic Geology, 94(4): 567-588 DOI:10.2113/gsecongeo.94.4.567
Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust:A lower crustal perspective. Reviews of Geophysics, 33(3): 267-309 DOI:10.1029/95RG01302
Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
Sang ZN, Xia B, Zhou YS and Jin ZM. 2005. Experimental study of ore gabbro liquid immiscibility. Science in China (Series D), 48(4): 496-505 DOI:10.1360/02yd0034
Schmidt RG. 1985. High-alumina hydrothermal systems in volcanic rocks and their significance to mineral prospecting in the Carolina Slate Belt (No.1562). U. S. G. P. O., 1-68 https://pubs.er.usgs.gov/publication/b1562
Schuiling RD and Vink BW. 1967. Stability relations of some titanium-minerals (sphene, perovskite, rutile, anatase). Geochimica et Cosmochimica Acta, 31(12): 2399-2411 DOI:10.1016/0016-7037(67)90011-7
Song XY, Qi HW, Hu RZ, Chen LM, Yu SY and Zhang JF. 2013. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma:Evidence from the Panzhihua intrusion, SW China. Geochemistry, Geophysics, Geosystems, 14(3): 712-732 DOI:10.1002/ggge.20068
Sun SJ, Zhang LP, Zhang RQ, Ding X, Zhu HL, Zhang ZF and Sun WD. 2018. Mid-Late Cretaceous igneous activity in South China:The Qianjia example, Hainan Island. International Geology Review, 60(11-14): 1665-1683 DOI:10.1080/00206814.2017.1402379
Sun SJ, Yang XY, Wang GJ, Sun WD, Zhang H, Li CY and Ding X. 2019. In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton:Implications for petrogenesis and metallogeny. Chemical Geology, 510: 200-214 DOI:10.1016/j.chemgeo.2019.02.010
Sun SS and McDonough WS. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345 https://www.researchgate.net/publication/231575101_Chemical_and_isotopic_systematics_of_oceanic_basalts_Implications_for_mantle_composition_and_processes
Sun WD, Ding X, Hu YH, Zartman RE, Arculus RJ, Kamenetsky VS and Chen M. 2011. The fate of subducted oceanic crust:A mineral segregation model. International Geology Review, 53(8): 879-893 DOI:10.1080/00206810903211930
Sun WD. 2018. The formation of the continental crust. Solid Earth Sciences, 3(2): 31-32 DOI:10.1016/j.sesci.2018.03.003
Tang J and Endo S. 1994. X-ray study of the transitions among the rutile, α-PbO2 and baddeleyite phases of TiO2 at high pressure and high temperature. AIP Conference Proceedings, 309(1): 367-370
Tanis EA, Simon A, Tschauner O, Chow P, Xiao YM, Burnley P, Cline Ⅱ CJ, Hanchar JM, Pettke T, Shen GY and Zhao Y. 2015. The mobility of Nb in rutile-saturated NaCl-and NaF-bearing aqueous fluids from 1~6.5GPa and 300~800℃. American Mineralogist, 100(7): 1600-1609 DOI:10.2138/am-2015-5031
Tanis EA, Simon A, Zhang YX, Chow P, Xiao YM, Hanchar JM, Tschauner O and Shen GY. 2016. Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5~2.79GPa and 250~650℃. Geochimica et Cosmochimica Acta, 177: 170-181 DOI:10.1016/j.gca.2016.01.003
Tegner C, Cawthorn RG and Kruger FJ. 2006. Cyclicity in the main and upper zones of the Bushveld Complex, South Africa:Crystallization from a zoned magma sheet. Journal of Petrology, 47(11): 2257-2279 DOI:10.1093/petrology/egl043
Tollari N, Toplis MJ and Barnes SJ. 2006. Predicting phosphate saturation in silicate magmas:An experimental study of the effects of melt composition and temperature. Geochimica et Cosmochimica Acta, 70(6): 1518-1536 DOI:10.1016/j.gca.2005.11.024
Trinquier A, Elliott T, Ulfbeck D, Coath C, Krot AN and Bizzarro M. 2009. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324(5925): 374-376 DOI:10.1126/science.1168221
United States Geological Survey (USGS). 2015. Commodity Statistics and Information. USGS
United States Geological Survey (USGS). 2017. Titanium (No.1802-T). Reston, VA: US Geological Survey, 1-202
Van Baalen MR. 1993. Titanium mobility in metamorphic systems:A review. Chemical Geology, 110(1-3): 233-249 DOI:10.1016/0009-2541(93)90256-I
Veksler IV, Dorfman AM, Borisov AA, Wirth R and Dingwell DB. 2007. Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology, 48(11): 2187-2210 DOI:10.1093/petrology/egm056
Walter MJ. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29-60 DOI:10.1093/petroj/39.1.29
Wang CY, Zhou MF, Sun YL and Arndt NT. 2012. Differentiation, crustal contamination and emplacement of magmas in the formation of the Nantianwan mafic intrusion of the~260Ma Emeishan large igneous province, SW China. Contributions to Mineralogy and Petrology, 164(2): 281-301 DOI:10.1007/s00410-012-0738-4
Wang CY and Zhou MF. 2013. New textural and mineralogical constraints on the origin of the Hongge Fe-Ti-V oxide deposit, SW China. Mineralium Deposita, 48(6): 787-798 DOI:10.1007/s00126-013-0457-4
Wang GY. 1979. The features of rocks and ore deposit in Chengde massif-anothosite in Hebei Province. Hebei Geological Information, (4): 1-28 (in Chinese)
Wang K, Wang CY and Ren ZY. 2018. Apatite-hosted melt inclusions from the Panzhihua gabbroic-layered intrusion associated with a giant Fe-Ti oxide deposit in SW China:Insights for magma unmixing within a crystal mush. Contributions to Mineralogy and Petrology, 173(7): 59 DOI:10.1007/s00410-018-1484-z
Wilmart E, Demaiffe D and Duchesne JC. 1989. Geochemical constraints on the genesis of the Tellnes ilmenite deposit, Southwest Norway. Economic Geology, 84(5): 1047-1056 DOI:10.2113/gsecongeo.84.5.1047
Withers AC, Essene EJ and Zhang YX. 2003. Rutile/TiO2II phase equilibria. Contributions to Mineralogy and Petrology, 145(2): 199-204 DOI:10.1007/s00410-003-0445-2
Wu X and Zhang J. 2006. Geographical distribution and characteristics of titanium resources in China. Titanium Industry Progress, 23(6): 8-12 (in Chinese with English abstract)
Xia XH, Zhao YH and Yan F. 2007. The mimeralizing geological conditions and its prospective land of rutile deposits in China. Geology of Chemical Minerals, 29(3): 178-184 (in Chinese with English abstract)
Xiao YL, Sun WD, Hoefs J, Simon K, Zhang ZM, Li SG and Hofmann AW. 2006. Making continental crust through slab melting:Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochimica et Cosmochimica Acta, 70(18): 4770-4782 DOI:10.1016/j.gca.2006.07.010
Xiao YL, Huang J, Liu L and Li DY. 2011. Rutile:An important "reservoir" for geochemical information. Acta Petrologica Sinica, 27(2): 398-416 (in Chinese with English abstract)
Xing CM and Wang CY. 2017. Cathodoluminescence images and trace element compositions of fluorapatite from the Hongge layered intrusion in SW China:A record of prolonged crystallization and overprinted fluid metasomatism. American Mineralogist, 102(7): 1390-1401 DOI:10.2138/am-2017-6028
Xing CM, Wang CY and Tan W. 2017. Disequilibrium growth of olivine in mafic magmas revealed by phosphorus zoning patterns of olivine from mafic-ultramafic intrusions. Earth and Planetary Science Letters, 479: 108-119 DOI:10.1016/j.epsl.2017.09.005
Xiong XL, Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359 DOI:10.1016/j.chemgeo.2005.01.014
Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34(11): 945-948 DOI:10.1130/G22711A.1
Xu YG and Chung SL. 2001. The Emeishan Large Igneous Province:Evidence for mantle plume activity and melting conditions. Geochimica, 30(1): 1-9 (in Chinese with English abstract)
Xu YG, Wang Y, Wei X and He B. 2013. Mantle plume-related mineralization and their principal controlling factors. Acta Petrologica Sinica, 29(10): 3307-3322 (in Chinese with English abstract)
Zhang JJ, Dauphas N, Davis AM and Pourmand A. 2011. A new method for MC-ICPMS measurement of titanium isotopic composition:Identification of correlated isotope anomalies in meteorites. Journal of Analytical Atomic Spectrometry, 26(11): 2197-2205 DOI:10.1039/c1ja10181a
Zhang YX, Luo YN and Yang CX. 1988. Panxi Rift Valley. Beijing: Geological Publishing House (in Chinese)
Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y and Zhao L. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos, 113(3-4): 369-392 DOI:10.1016/j.lithos.2009.04.023
Zhao YM. 2008. Genetic types, distribution, and main geological characteristics of rutile deposits. Mineral Deposits, 27(4): 520-530 (in Chinese with English abstract)
Zhong H, Zhou XH, Zhou MF, Sun M and Liu BG. 2002. Platinum-group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan-Xi area, southwestern China. Mineralium Deposita, 37(2): 226-239 DOI:10.1007/s00126-001-0220-0
Zhong H and Zhu WG. 2006. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. Mineralium Deposita, 41(6): 599-606 DOI:10.1007/s00126-006-0081-7
Zhong H, Qi L, Hu RZ, Zhou MF, Gou TZ, Zhu WG, Liu BG and Chu ZY. 2011. Rhenium-osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China:Implications for source mantle composition, mantle evolution, PGE fractionation and mineralization. Geochimica et Cosmochimica Acta, 75(6): 1621-1641 DOI:10.1016/j.gca.2011.01.009
Zhou MF, Malpas J, Song XY, Robinson PT, Sun M, Kennedy AK, Michael Lesher C and Keays RR. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters, 196(3-4): 113-122 DOI:10.1016/S0012-821X(01)00608-2
Zhou MF, Robinson PT, Lesher CM, Keays RR, Zhang CJ and Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280 DOI:10.1093/petrology/egi054
Zhou MF, Arndt NT, Malpas J, Wang CY and Kennedy AK. 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos, 103(3-4): 352-368 DOI:10.1016/j.lithos.2007.10.006
Zhou MF, Chen WT, Wang CY, Prevec SA, Liu PP and Howarth GH. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geoscience Frontiers, 4(5): 481-502 DOI:10.1016/j.gsf.2013.04.006
Zhu XK, Makishima A, Guo Y, Belshaw NS and O'Nions RK. 2002. High precision measurement of titanium isotope ratios by plasma source mass spectrometry. International Journal of Mass Spectrometry, 220(1): 21-29 DOI:10.1016/S1387-3806(02)00767-4
陈鑫, 郑有业, 许荣科, 蔡鹏捷, 林成贵, 白杰, 孙述海, 鲁立辉. 2018. 柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因. 岩石学报, 34(6): 1685-1703.
程振香. 1990. 江苏东海榴辉岩型金红石矿床基本特征. 矿床地质, 9(1): 86-90.
邓国珠. 2002. 世界钛资源及其开发利用现状. 钛工业进展, (5): 9-12. DOI:10.3969/j.issn.1009-9964.2002.05.003
何俊杰, 丁兴, 王玉荣, 孙卫东. 2015a. 沉淀-陈化-返溶作用和压力对热液中氟钛络合物高温水解的影响及地质意义. 岩石学报, 31(7): 1870-1878.
何俊杰, 丁兴, 王玉荣, 孙卫东, 傅斌. 2015b. 温度、浓度对流体中氟钛络合物水解的影响:对深部地质过程中钛元素活动的制约. 岩石学报, 31(3): 802-810.
胡建, 邱检生, 王汝成, 李晨曦, 倪培, 张晓琳. 2006. 榴辉岩型钛矿化的地球化学制约. 地质与勘探, 42(4): 57-61.
姜雪薇. 2017. 全球钛砂矿分布及特点. 山西农经, (10): 50-51.
刘源骏. 1966. 一种含金红石"石榴子石角闪石岩"的初步研究. 地质学报, 46(2): 224-231.
刘源骏. 1991. 对湖北大阜山岩体几点认识. 湖北地质, (2): 45-54.
刘源骏. 2016. 变质作用与金红石成矿. 资源环境与工程, 30(增1): 71-75.
骆文娟. 2014. 岩浆Cu-Ni-PGE矿床和Fe-Ti-V矿床的关键控矿因素评述:兼论与峨眉山玄武岩的关系. 地球科学(中国地质大学学报), 39(10): 1343-1354.
王关玉. 1979. 河北承德地区斜长岩体的岩石及矿床成矿特征. 河北地质情报, (4): 1-28.
吴贤, 张健. 2006. 中国的钛资源分布及特点. 钛工业进展, 23(6): 8-12. DOI:10.3969/j.issn.1009-9964.2006.06.004
夏学惠, 赵玉海, 闫飞. 2007. 中国金红石矿床成矿地质条件及成矿远景. 化工矿产地质, 29(3): 178-184. DOI:10.3969/j.issn.1006-5296.2007.03.008
肖益林, 黄建, 刘磊, 李东永. 2011. 金红石:重要的地球化学"信息库". 岩石学报, 27(2): 398-416.
徐义刚, 钟孙霖. 2001. 峨眉山大火成岩省:地幔柱活动的证据及其熔融条件. 地球化学, 30(1): 1-9.
徐义刚, 王焰, 位荀, 何斌. 2013. 与地幔柱有关的成矿作用及其主控因素. 岩石学报, 29(10): 3307-3322.
张翊钧. 1988. 酸性岩的变质相. 中国地质科学院院报: 105-115.
张云湘, 骆耀南, 杨崇喜. 1988. 攀西裂谷. 北京: 地质出版社.
赵一鸣. 2008. 金红石矿床的类型、分布及其主要地质特征. 矿床地质, 27(4): 520-530. DOI:10.3969/j.issn.0258-7106.2008.04.009