岩石学报  2020, Vol. 36 Issue (1): 23-34, doi: 10.18654/1000-0569/2020.01.04   PDF    
锡的地球化学性质与华南晚白垩世锡矿成因
隋清霖1,2,3,4, 祝红丽1,2, 孙赛军1,2, 陈登辉4, 赵晓健4, 王钊飞4     
1. 中国科学院海洋研究所, 深海极端环境与生命过程研究中心, 青岛 266071;
2. 青岛海洋科学与技术试点国家实验室, 海洋矿床资源评价与探测技术功能实验室, 青岛 266237;
3. 中国科学院大学, 北京 100049;
4. 中国地质调查局西安地质调查中心, 中国地质调查局造山带地质研究中心, 西安 710054
摘要: 锡在地质过程中表现出亲氧、亲硫和亲铁三重特性。在地幔岩浆过程中,锡是一种中等不相容的金属元素。锡成矿主要与酸性岩浆活动有关,其地球化学性质决定了其成矿主要受源区性质、氧逸度以及挥发分含量、岩浆结晶分异等因素控制。高度结晶分异可使锡在岩浆中进一步富集,是锡成矿相关花岗岩的普遍特征;锡为变价元素,岩浆体系氧逸度影响源区中锡的迁移能力和分离结晶过程中锡的元素行为,还原性岩浆体系有利于锡富集成矿。富含F、Cl和B等挥发组分对锡元素的迁移和富集起积极的作用。全球锡矿床分布与俯冲带关系密切,特提斯和环太平洋构造域是主要蕴藏区。重要的锡成矿事件表现出区域性和阶段性的特征。结合锡的地球化学特性以及锡矿分布特征,我们认为最有利锡成矿的动力学机制是俯冲板片后撤机制。俯冲板片后撤引发深部软流圈地幔上涌,导致强烈的壳幔相互作用,形成低氧逸度、富F、Cl和B等花岗岩,有利于锡成矿。对于华南晚白垩世锡成矿事件,新特提斯洋俯冲板片发生后撤是其成矿地球动力学背景。
关键词: 锡矿    氧逸度    卤族元素    岩浆分异    板片后撤    
The geochemical behavior of tin and Late Cretaceous tin mineralization in South China
SUI QingLin1,2,3,4, ZHU HongLi1,2, SUN SaiJun1,2, CHEN DengHui4, ZHAO XiaoJian4, WANG ZhaoFei4     
1. Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. Xi'an Center of Geological Survey, Centre for Orogenic Belt Geology, China Geological Survey, Xi'an 710054, China
Abstract: Tin shows triple characteristics of chalcophile, lithophile and siderophile affinities in geological processes. It is a moderately incompatible element during mantle magmatism. Tin mineralization is mainly related to felsic magmatic activities. The geochemical properties of tin determine that its mineralization is mainly controlled by magmatic differentiation, source region properties, oxygen fugacity and volatile components. The high degree of crystallization differentiation can further enrich tin in magma, which is a common feature of granites related to tin mineralization. Whether tin mineralized granites are derived from enriched source rocks or not, however, remains controversial, the presence of tin-rich protoliths may increases the scale of tin mineralization. The decomposition of tin minerals in the source region is one of the key factors to control whether the magmatic melt is enriched in tin, hence high temperature melting is the basic condition for tin migration from source region. Tin is sensitive to oxygen fugacity. A reducing magma system is beneficial to tin mineralization, whereas volatile components, such as F, Cl, and B, play an active role in the migration and enrichment of tin. The distribution of tin deposits in the world is closely related to subduction zones, e.g., the Tethys and the circum-Pacific tectonic domains have the main tin reserves of the world. Important tin mineralization events show regional and phased characteristics. Combined with the geochemical characteristics of tin and the distribution characteristics of tin deposits, we propose that the most favorable dynamic mechanism for tin mineralization is the roll-back of subducting slab, which triggers deep asthenosphere mantle upwelling, results in strong crust-mantle interaction, and forms granite rich in F, Cl, and B with low oxygen fugacity, which is favorable for tin mineralization. For example, the Late Cretaceous tin mineralization event in South China was controlled by the roll-back of the subduction plate of the New Tethys Ocean.
Key words: Tin deposit    Oxygen fugacity    volatile components    Magma differentiation    Slab roll-back    

锡(Sn)是人类最早发现和使用的金属之一,是青铜时代重要的矿产资源(Sun et al., 2016a; Kamilli et al., 2017)。锡具有质软、化学性质稳定、易熔和摩擦系数小等特性,在现代工业、国防、科技和人类生活中具有广泛的应用(陈骏等, 2000)。

世界上锡矿资源主要分布在中国华南、东南亚、南美洲、澳大利亚、俄罗斯远东及欧洲等地区(Taylor, 1979)。特提斯构造域及环太平洋地区是锡矿的主要蕴藏区(Taylor, 1979; Lehmann, 1990; Wang et al., 2011; Romer and Kroner, 2016; 毛景文等, 2018),其锡金属储量占世界总储量超过85%(Kamilli et al., 2017)。我国锡金属储量为110万吨,占世界锡金属储量的24%(Kamilli et al., 2017),主要分布于云南、湖南、广西、内蒙古和广东5省,占我国锡资源总量的95%(曹华文, 2015)。

世界上重要的锡成矿事件表现出区域性和阶段性的特征(Lehmann, 2004; Mao et al., 2013; 曹华文, 2015; Romer and Kroner, 2016; 毛景文等, 2018),以东南亚和我国华南地区锡成矿事件为代表(Cheng et al., 2013a; Feng et al., 2013; Wang et al., 2014; Zhang et al., 2017b, 2018; Guo et al., 2018a, b)。例如,晚白垩时期中国华南西南部的右江盆地形成了大厂、个旧以及都龙等一系列世界级大型-超大型锡多金属矿床(Cheng et al., 2013a; Xu et al., 2015; Guo et al., 2018a, b)。前人对上述区域的典型矿床进行了大量的研究,但锡矿的成因机制及其成矿动力学背景仍然存在争议,如锡成矿相关岩浆演化程度与岩浆源区锡的初始富集对锡成矿的影响如何?锡成矿与氧逸度的关系以及有利于锡成矿的动力学机制是什么?对这些问题的探讨,可以加深我们对锡矿成因机制的理解,也可为锡矿找矿工作提供一些启示。

为此,本文尝试通过分析锡的地球化学性质和元素行为,进一步理解其富集机制和成矿过程,讨论锡成矿的动力学机制,并结合已有资料探讨华南地区晚白垩世大规模锡成矿事件的地球动力学背景。

1 锡矿床分布特征

锡矿床在世界上分布很不均匀,主要分布于特提斯和环太平洋构造域(图 1)。Taylor(1979)提出世界上八大锡矿成矿带,即北美锡矿带、南美锡矿带、澳大利亚东部锡矿带、东南亚锡矿带、中国华南锡矿带、俄罗斯远东锡矿带、非洲锡矿带以及欧洲锡矿带,其中3条锡矿带位于或穿过我国境内。我国锡矿床分布受大地构造控制明显,矿床(点)往往沿特定的大地构造部位呈带状集中分布,其中大型锡矿床主要分布于扬子陆块南缘和东南缘,尤以云南个旧和广西大厂最为著名(Cheng et al., 2013a; Guo et al., 2018a)。根据我国锡矿床分布特点,曹华文等(2014)将中国锡矿划分为八大锡矿矿集区,即华南地区的右江盆地地区、南岭地区、东南沿海地区、川西地区、滇西地区、东昆仑-柴北地区、东准噶尔地区以及大兴安岭南段地区(图 2)。

图 1 世界大中型锡矿分布图(底图据Sinclair et al., 2011修改) Fig. 1 Distribution map of large- and medium-sized tin deposits in the world (modified after Sinclair et al., 2011)

图 2 中国主要锡矿床分布图(据曹华文, 2015潘桂棠等, 2009修改) Fig. 2 Distribution map of major tin deposits in China (modified after Cao, 2015; Pan et al., 2009)

我国锡成矿时代从新元古代到新生代均有分布,其中侏罗纪-白垩纪是主成矿期,并在晚白垩世达到成矿顶峰,期间形成的锡资源量占我国锡总资源量的90%以上(Mao et al., 2013; 曹华文, 2015)。根据前人大量的年代学研究发现锡成矿作用主要集中在160~140Ma和100~80Ma两个阶段(Shu et al., 2011; Hu and Zhou, 2012; Cheng et al., 2013a, b, 2016; Mao et al., 2013; Xu et al., 2015; Li et al., 2016; Zhang et al., 2017b, c, 2018; Guo et al., 2018a, b)。侏罗纪锡矿床主要分布在南岭地区,其中代表性矿床有芙蓉、姑婆山、大顶锡田等(毛景文等, 2004; 李建康等, 2007; 付建明等, 2012; Mao et al., 2013; He et al., 2018)。白垩纪锡矿床分布广泛,包括中国东北大兴安岭(Wang et al., 2001; Zeng et al., 2011)、华南南岭地区(邱检生等, 2006; Liu et al., 2014)、阳春盆地(Zhang et al., 2017b, 2018)、右江盆地(Feng et al., 2013; 曹华文等, 2014; Guo et al., 2018a, b)、东南沿海(刘鹏,2018)和滇西腾冲-保山(Chen et al., 2015, 2018)等地,主要大型矿床有内蒙古黄岗、江西密坑山、广西大厂和云南个旧、都龙等锡多金属矿床(Wang et al., 2001; 邱检生等, 2006; Cheng et al., 2013a; Xu et al., 2015; Guo et al., 2018a, b)。

2 锡的地球化学性质

锡的原子序数为50,原子量是118.71,位于元素周期表第5周期ⅣA族,离子半径:Sn2+为0.93×10-10m(配位数=6),Sn4+为0.69×10-10m(配位数=6)、0.81×10-10m(配位数=8)(Shannon and Prewitt, 1969, 1970)。

锡在球粒陨石中的平均丰度为1.63×10-6(Lodders et al., 2009; Palme et al., 2014)。在没有金属和硫化物相存在时,锡表现为中等不相容的亲石元素,在硅酸盐地球发生分异时,锡在地幔中亏损,而在陆壳中富集。锡在原始地幔的丰度为0.12×10-6(Jochum et al., 1993),在地壳中的丰度为1.7×10-6,其中在上地壳、中地壳和下地壳中的元素丰度分别为2.1×10-6、1.3×10-6和1.7×10-6(Rudnick and Gao, 2003)。

锡具有亲氧、亲硫和亲铁三重特性,在不同物理化学条件下,显示出不同的化学亲合力:在氧化环境中,锡呈亲氧性优先形成氧化物(锡石)或进入硅酸盐矿物的晶格;在高硫的还原环境中,锡显示亲硫性形成黝锡矿、硫锡矿等;在具有还原性的基性和超基性岩浆中,锡与铂族元素形成金属互化物锡铂矿、锡钯矿,表现为亲铁性(陈骏等, 2000)。在岩浆体系中,锡一般表现为强的亲氧性(刘英俊等, 1984)。

锡的电子结构型决定了锡具有Sn2+和Sn4+两种存在形式。由于离子半径、电负性相近,Sn2+可与Ca2+、Cd2+、In2+、Te2+等类质同象置换;而Sn4+则与Ti4+、Fe3+、Mg2+、Ta3+、Nb5+等类质同象置换(Shannon and Prewitt, 1969, 1970)。因此,锡除了以独立矿物形式存在,还可以通过置换其他元素,以微量元素的形式存在于许多矿物中,这些矿物可以是造岩矿物,也可以是一些重要的副矿物。在自然界中,锡与其他元素之间的置换主要分为四个系列:锡-钛系列、锡-铁系列、锡-铌系列和锡-铝系列(刘英俊等, 1984; 陈骏等, 2000)。锡-钛系列中,由于Sn4+和Ti4+具有非常相似的晶体化学性质,锡在钛矿物中可以与钛发生元素置换,自然界中主要的钛矿物有金红石、铌铁(钽铁)金红石、钛铁矿和榍石(Chen et al., 1992; Tindle et al., 1998);锡-铁系列中,Sn4+可以置换磁铁矿和石榴子石中的Fe3+,为保持电价平衡,在锡置换三价铁时可能同时有二价铁置换三价铁(Durasova et al., 1986; Chen et al., 1992);锡-铌、钽系列中,锡除了形成铌、钽酸盐矿物外,还经常以微量元素的形式进入其他铌钽矿物中,如铌钽铁矿、重钽铁矿、烧绿石等(Chen et al., 1992);锡-铝系列中,和磁铁矿中类似,锡可以置换尖晶石中Al3+(陈骏等, 2000)。

岩浆演化过程中,当岩浆系统为氧化性,锡主要以分散状态分配于云母、角闪石、钛铁矿、磁铁矿以及榍石等矿物中,或以锡石副矿物产出(Wang et al., 2013)。当岩浆系统为还原性,锡主要分配于岩浆熔体中。热液作用阶段,根据热液体系的氧逸度、pH值以及成分等控制因素,锡在水溶液中可以呈Sn2+和Sn4+两种形式存在,可与热液中不同的配位体形成多种配合物,常见的配位体有OH-、F-、Cl-、Br-、I-、HS-、SO24-等(樊文苓等, 1997; 胡晓燕等, 2007)。变质作用中,锡发生不同程度的活化,许多变质矿物均有较高的锡含量,重要的含锡变质矿物有符山石、钙铁榴石、绿帘石、阳起石等(刘英俊等, 1984)。表生条件下,当岩石或者矿床遭受风化,赋存其中的锡石或者含锡矿物从中分离富集,形成砂锡矿,锡石在自然界极稳定。

目前已知的含锡矿物超过30种,根据阴离子团性质和键性大致可分为:自然锡、金属互化物、氧化物、硫化物以及硫酸盐、硅酸盐、硼酸盐、钽酸盐(刘英俊等, 1984)。其中具有工业价值的主要矿物为:锡石、黄锡矿、硫锡铅矿和钽锡矿等,有时水锡石、水镁锡矿等也可以相对富集,具有工业价值。

3 花岗岩相关锡矿的主要控制因素

世界上有工业价值的锡矿床类型主要为花岗岩相关原生锡矿和风化富集的砂锡矿(Kamilli et al., 2017)。由于砂锡矿床母岩也主要为花岗岩,所以超过99%的锡矿床直接或者间接与花岗岩(包括同成分的火山岩和次火山岩)有关,而且大型原生矿床均产于花岗岩体的内外接触带上(Lehmann, 1990)。原生锡矿成因分类较复杂,其中有工业价值的矿床类型主要有矽卡岩型、锡石-硫化物型、锡石-石英脉型和斑岩型等(Lehmann, 1990; 蒋少涌等, 2006; Mao et al., 2013; Kamilli et al., 2017)。

锡成矿相关花岗岩岩性主要为黑云母花岗岩、二云母花岗岩和钾长花岗岩,也包括含黄玉花岗岩(Haapala, 1997; Zhu et al., 2001)、含电气石花岗岩(Mao, 1995)和含萤石花岗岩等(赵葵东等, 2005)。以往观点多认为锡成矿相关的花岗岩主要为S型花岗岩(Chen et al., 1992; Blevin and Chappell, 1995; Schwartz et al., 1995),但随着研究的深入,发现部分早期被认为是S型的花岗岩实际为A型花岗岩(朱金初等, 2008; Chen et al., 2016),且报道与A型花岗岩具有密切成因联系的锡矿床数量越来越多(Jiang et al., 2006; Shu et al., 2011; Yao et al., 2014; Chen et al., 2015, 2018; Li et al., 2018a, b; Liu et al., 2018; Yan et al., 2018)。例如,南岭地区柿竹园钨锡矿相关花岗岩,先前的研究将这些花岗岩归为起源于中下地壳高分异的I型或S型花岗岩(Mao and Li, 1995),但是最近研究认为其可能为壳-幔相互作用形成的A型花岗岩(Jiang et al., 2006; Chen et al., 2016)。与此同时,在世界其他地区也发现大量与A型花岗岩有关的锡多金属矿床,如巴西Pitinga超大型Sn-Zr-Nb-Y-REE矿床(Bastos Neto et al., 2009)以及芬兰、捷克和德国等地一系列重要的Sn-Be-W-Zn多金属矿床(Haapala, 1997; Webster et al., 2004; Breiter, 2012)。近些年,有些研究者进一步认为锡成矿和与俯冲相关的A2型花岗岩关系密切,并可能有部分地幔物质参入了成矿(Chen et al., 2015, 2016, 2018; Zhang et al., 2017b, 2018; Li et al., 2018a, b; Liu et al., 2018; Yan et al., 2018)。由于与锡成矿有关的花岗岩普遍经历了高度的岩浆演化,而高演化的I型和S型岩浆与A型花岗岩具有相似的地球化学特征,并且常缺乏特征矿物,导致锡成矿相关花岗岩类型判别仍存在不少争议。

矿床的形成是成矿元素不断富集的过程,对于岩浆岩有关的锡矿床,从岩浆形成到最终沉淀成矿,成矿元素在各个阶段不断的发生富集。锡成矿富集过程主要受控于源区性质、氧化还原状态及挥发分含量、结晶分异作用等因素(Ishihara, 1977, 1981; Lehmann, 1990; Linnen et al., 1995, 1996; Sato et al., 2002; 蒋少涌等, 2006; Mao et al., 2013; 曹华文, 2015; Romer and Kroner, 2016; 毛景文等, 2018),但目前对于这些成矿控制因素的认识仍然存在一些争议。

3.1 岩浆演化与源区初始富集

使用Rb/Sr比值作为岩浆分异程度的参数,Lehmann(1987, 1990)论证了极端结晶分异作用会使Sn含量明显升高,最终富集成矿。因为在岩浆结晶分异过程中,锡具有中等不相容性质(Sun and McDonough, 1989),尤其是在还原性岩浆中,锡的晶体-熔体分配系数小于1,易富集于晚期熔体中。并且,随着岩浆的分异演化,熔体中利于成矿的F、B、Cl和H2O等挥发分也迅速增加(Audat et al., 2000)。所以,在富挥发分的促进作用和金属元素自身不相容性质的影响下,岩浆分异作用越强烈,岩浆中成矿元素越富集。并且随着岩浆演化,岩浆体积越来越小,使成矿元素进一步富集,最终在高分异岩浆低温残留体中富集成矿(Breiter et al., 2005; Breiter et al., 2007)。世界大部分锡成矿相关花岗岩都显示出高分异特征,所以岩浆强烈的结晶分异作用是形成锡矿化的重要条件被普遍接受(Groves and McCarthy, 1978; Lehmann, 1990; Breiter et al., 2005; Webster et al., 2004; Romer and Kroner, 2016; Zhang et al., 2017b, d; Liu et al., 2018)。

虽然元素模拟的结果表明不需要初始富集就可以形成锡矿化(Lehmann, 1987, 1990),但是关于富锡花岗岩是否存在初始富集的源区一直存在争论(Groves and McCarthy, 1978; Lehmann, 1987, 1990; Mao, 1989; 毛景文等, 1991; Williamson et al., 2010; Romer and Kroner, 2016)。因为这个模型并不能解释为什么高分异的花岗岩并不总是显示出锡矿化富集(Romer and Kroner, 2016)以及部分锡矿相关酸性岩并未显示出高分异特征(Lehmann, 2004)。

一种观点认为,相比于原始地幔和平均地壳,锡矿带地区地层和岩体中常常显示出锡丰度明显正异常(Mao, 1989; 刘义茂等, 1998; Romer and Kroner, 2016),例如,我国华南地区火山岩、地层和花岗岩中Sn含量分别为6.5×10-6~22×10-6、3×10-6~12×10-6和12.4×10-6~71×10-6(曹华文, 2015),这样高的成矿区背景值暗示富锡成矿带中的锡矿化可能受到区域高锡背景影响。华南地区锡含量较高的前寒武-泥盆纪地层被学者认为可能是大规模锡成矿作用的矿源层(陈骏, 1988)。同样在南美洲、澳大利亚、印度尼西亚存在锡矿化与早古生代强烈风化富锡沉积岩之间的空间耦合关系(Bhatia, 1983, 1984; Zimmermann, 2005; Romer and Kroner, 2015)。锡在源区中初始富集可能通过海底喷气作用、沉积物强烈风化再富集、源区为富锡花岗岩以及古砂锡矿的再造等方式实现(毛景文等, 1991; Williamson et al., 2010; Romer and Kroner, 2016; Wolf et al., 2018)。

另一种观点认为,富锡花岗岩可能是通过极端结晶分异(不需要初始富集的源岩)形成的(Lehmann, 1987, 1990)。但是,锡是一个中度不相容元素,在岩浆演化过程中的富集程度不高,因此一些高分异岩浆带没有显示锡矿化(Romer and Kroner, 2016)。相比之下,存在锡富集的源区需要更少的热量输入以及更小程度的部分熔融和岩浆演化就可以形成富锡岩浆(Romer and Kroner, 2015; Wolf et al., 2018)。锡的初始富集可以影响锡矿化的水平和规模,可能是形成超大型矿床的基本条件之一,这也有助于我们理解为什么南岭地区的面积仅占全球陆地面积的0.7%,但占世界锡矿储量超过20%(陈骏等, 2000; Sun et al., 2012)。

3.2 氧逸度

锡成矿相关花岗岩普遍经历了高度结晶分异作用,但锡是一种中等不相容的元素,为什么锡矿床伴生的高度不相容的元素不一定成矿?这可能与锡成矿过程对氧逸度非常敏感的特性有关(Liu et al., 2019)。氧逸度是影响锡矿化富集的一个关键因素(Ishihara, 1977; Linnen et al., 1995)。Ishihara(1977)首次区分钛铁矿系列(还原性)和磁铁矿系列(氧化性)花岗岩,提出锡矿化主要与钛铁矿花岗岩有关,而钼、铜和金矿化主要与磁铁矿花岗岩有关(Sun et al., 2015, 2016b)(图 3)。花岗岩的氧化还原状态与矿化类型之间的密切关系被地质学家广泛认可(Lehmann et al., 1990; Sato et al., 2002; Lehmann, 2004; Romer and Kroner, 2016)。

岩浆氧化还原状态对锡元素富集影响表现在控制源区中锡的迁移能力和分离结晶过程中锡的元素行为两个方面。如果源区主要的含锡矿物相(如黑云母、榍石、磁铁矿等)在熔融过程中保持稳定,锡将主要赋存在残留矿物中(Lehmann, 1990)。氧逸度的升高可以增加黑云母、榍石、磁铁矿等矿物稳定性,致使锡元素主要赋存在源区的残留矿物中,而在熔体中亏损(Romer and Kroner, 2016)。此外,岩浆体系氧逸度较高,锡在岩浆中主要以Sn4+形式存在(成网离子)(Linnen et al., 1995, 1996)。由于Sn4+与Ti4+等离子半径较为相近,Sn容易以类质同象的方式进入到早期结晶的铁镁矿物(如角闪石、黑云母、磁铁矿、钛铁矿等)中,因此在晚期熔体或者流体中并不明显的富集;但如果岩浆体系氧逸度较低,则岩浆中Sn主要以Sn2+形式(变网离子)存在。由于Sn2+离子半径较大,不易进入到早期铁镁矿物晶格中,所以倾向于在结晶分异晚期的熔体和流体中富集(Štemprok, 1990; Linnen et al., 1995, 1996; 蒋少涌等, 2006)。Linnen et al.(1995)对恒温恒压条件下水饱和人造花岗岩熔体中锡石溶解度与氧逸度之间的关系实验研究表明,在850℃、2×108Pa条件下,还原环境SnO2溶解度是氧化条件下溶解度的35倍,可达28000×10-6

氧逸度也是控制锡热液过程行为的重要因素,还原条件有利于锡在热液中的运移。锡在岩浆热液体系中可以呈Sn2+和Sn4+两种变价形式存在,在成矿过程中,相比于Li、Be等高度不相容的元素对氧逸度更加敏感(刘英俊等, 1984),还原性的岩浆热液体系有利于锡元素富集和运移,最终沉淀成矿(Ishihara, 1977; Linnen et al., 1995)。500℃条件下,氧逸度在QFM缓冲线附近的还原流体中载锡能力是在接近HM缓冲的氧化流体中载锡能力的1000倍,可高达100×10-6(Eugster et al., 1986; 陈骏等, 2000)。世界上绝大多数锡矿床都是跟高度分异的钛铁矿系列(一般低于NNO体系)花岗岩有关,一般不含钙质硅酸盐矿物(Heinrich, 1990; 蒋少涌等, 2006; Zhang et al., 2017b)。

3.3 挥发分

F、Cl和B等矿化剂元素是锡成矿另一个重要控制因素。锡成矿相关花岗岩大多富集F、Cl和B等元素(Pollard et al., 1987; Mao, 1995; Haapala, 1997; Zhu et al., 2001; Webster et al., 2004),常含黄玉(Haapala, 1997; Zhu et al., 2001)、电气石(Mao, 1995)和萤石(赵葵东等, 2005)等副矿物。

先前研究表明,F、Cl和B等矿化剂元素对Sn、W等成矿元素的迁移、富集起着积极的作用(Keppler, 1993; Webster, 1997; Sherman et al., 2000; Bhalla et al., 2005; Thomas et al., 2005; 胡晓燕等, 2007)。在源区部分熔融的过程中,F、Cl和B等元素可以降低含锡矿物的固相线温度(Manning, 1981; Webster, 1990; 熊小林等, 1998),有利于含锡矿物相部分熔融,促使Sn进入熔体相。在岩浆演化过程中,B的富集可以增加岩浆体系中水的溶解度,提高流体含量(Pollard et al., 1987),F可以破坏熔体网络中的桥氧键,而Cl易与变网离子形成盐类,三者可以使熔体聚合度的减小、粘度降低,在一定程度上增加成矿元素在熔体中扩散性能,从而使成矿元素在熔体中的溶解度增大,有利于锡进入熔体相中(Dingwell et al., 1985; Dingwell and Webb, 1992)。高F含量还会降低熔体的密度,加速熔体重力分馏过程(Dingwell et al., 1993),也可以与成矿元素形成稳定络合物有利于成矿元素迁移(Thomas et al., 2005),促进岩浆的演化和成矿元素富集。从岩浆晚期(硅酸盐熔体)到热液成矿早期(水溶液流体)的演化过程中,熔体-流体中Sn、W等成矿元素的富集和分离结晶受岩浆熔体中F、Cl、B和H2O浓度的控制(Heinrich et al., 1999; Audat et al., 2000)。岩浆热液中Cl是影响锡分配进入流体相中的重要因素,因为Cl极易于分配进入流体相中(Sun et al., 2007aHu et al., 2016),热液中锡主要与Cl形成相应的络合物搬运迁移(胡晓燕等, 2007)。硼氟酸及其含羟基衍生物是热液阶段锡元素重要的溶解剂,形成稳定络合物(如[Sn(BF4)2]),为锡在热液中溶解运移提供了一种有效的机理(Thomas et al., 2005)。当含锡热液温度降低、压力瞬态变化、挥发分逃逸、pH值以及氧逸度升高,锡在热液中的饱和溶解度降低,从而主要以SnO2的形式直接析出(Heinrich, 1990; 张德会, 1997; 胡晓燕等, 2007; Korges et al., 2017)。其中,HCl浓度变化可能是影响锡石沉淀的最重要因素(Schmidt et al., 2018)。

4 锡成矿地球动力学机制

与斑岩型铜矿类似,绝大多数锡矿床与俯冲带关系密切。但相较斑岩型铜矿,锡矿分布位置更远离俯冲汇聚边缘(Lehmann et al., 1990; Mlynarczyk and Williams-Jones, 2005; Wang et al., 2011; Sun et al., 2017; 毛景文等, 2018)。从俯冲带向内陆存在氧化型铁矿、斑岩铜矿、铅锌矿到钨-锡矿过渡的成矿序列(Mlynarczyk and Williams-Jones, 2005; Wang et al., 2011)。这样的序列被解释为随着远离俯冲带方向氧逸度逐渐降低(Linnen et al., 1995)以及成矿元素和矿化剂元素活动性差异造成的(Bebout et al., 1999; Bebout, 2007)(图 3)。

图 3 氧逸度、岩浆演化与成矿图(据Thompson et al., 1999; Liu et al., 2019修改) Fig. 3 Correlation diagrams of oxygen fugacity, magmatic evolution and mineralization (after Thompson et al., 1999; Liu et al., 2019)

如前文所述,锡成矿主要与低于NNO体系的还原性熔体有关,而锡的活动性则受控于部分熔融过程中含锡矿物(黑云母、磁铁矿、榍石以及金红石等)在源区的稳定性(Romer and Kroner, 2016; Wolf et al., 2018)。所以,源区含锡矿物是否分解是控制岩浆熔体是否富锡的关键因素之一。在低温熔融(~750℃)过程中,含锡矿物保持稳定,除Sr、Bi和Pb等元素外,其他微量元素倾向于保存在熔融残留中。而高温熔融(>800℃)过程中,含锡矿物发生分解,Sn、Ga、Y、Cd等元素倾向进入熔体中,并在演化中进一步富集(Wolf et al., 2018)。因此,高温熔融是锡从源区迁移的基本条件。造山加厚地壳的内部增温最终可能只会造成源区发生低温熔融,含锡稳定矿物的分解需要来自地幔的热量输入(和/或挥发性元素参与)(Romer and Kroner, 2016)。所以,区域上大规模的钨锡成矿作用,对应着一次重要的构造热事件。根据锡矿床与俯冲带的分布关系,这样的构造热事件最有可能与俯冲作用相关。

同样,俯冲带中F、Cl等锡成矿矿化剂的元素活动性受洋壳俯冲深度的影响。俯冲早期阶段,位于地幔浅部的俯冲洋壳中Cl比F具有更高的迁移率,在脱水过程中,迁移到浅部地幔(Lassiter et al., 2002; Sun et al., 2007a)。然而,主要含F矿物多硅白云母和硬柱石可随俯冲板片到达地幔深部,正常地温梯度条件下分别在300km和280km以浅深度保持稳定(Schmidt and Poli, 1998)。这两种矿物的分解可以释放富F的熔体(Churikova et al., 2007),而矿物的分解主要取决于温度(Schmidt and Poli, 1998),俯冲过程中最有利其分解的动力学机制是俯冲板片后撤(Li et al., 2012; Chen et al., 2016)。当板片后撤时,软流圈物质上涌,俯冲板片的表面温度从约600℃突然升高至约1300℃(Peacock et al., 1994; Peacock, 1996; Davies, 1999),俯冲板片中的多硅白云母由于温度升高而分解释放出大量F。板片后撤引起地幔热梯度异常,导致强烈的壳幔相互作用,形成低氧逸度而高F、Cl等元素含量花岗岩,有利于锡成矿(Zhang et al., 2017b, 2018)。俯冲板片角度变化诱发成矿事件也在其他区域的研究中得到了论证,例如,Lehmann(2004)提出智利新生代斑岩铜矿床和玻利维亚锡矿带的形成受到板块俯冲角变化的影响,正常角度俯冲和平板俯冲有利于斑岩铜矿的形成,而平板俯冲向正常角度俯冲的过渡导致软流圈上涌和地壳深熔形成含锡花岗岩。

通常俯冲作用持续了较长时间,而锡矿化事件表现出明显的区域性和阶段性,俯冲板片角度变化诱发成矿事件是一个合理的模型(Lehmann, 2004; Zhang et al., 2017b, 2018; Li et al., 2018b; Yan et al., 2018)。

5 华南晚白垩世锡成矿地球动力学背景探讨

华南晚白垩世锡成矿事件是中国锡成矿事件的顶峰,形成了云南个旧和都龙、广西大厂、广东锡山和鹦鹉岭等一系列世界级大型-超大型锡多金属矿床,在华南地块南缘构成一条东西向钨锡成矿带(Zhang et al., 2017b)。晚白垩世期间,该区域位于太平洋构造域和特提斯构造域之间的接合区(Zhou et al., 2008),因此,强烈的岩浆活动和锡成矿事件受控于太平洋板块还是特提斯洋板块的俯冲作用仍然存在争议(Mao et al., 2013; Yang, 2013; Cheng et al., 2016; Sun, 2016; Zhang et al., 2017a, b, 2018)。因为特提斯洋俯冲海沟现在远离华南地块,先前研究多强调古太平洋俯冲的影响(Feng et al., 2013; Yang, 2013; Cheng et al., 2016)。最近,Zhang et al.(2017a)通过对东南亚地区的板片重建发现新特提斯的俯冲带在白垩纪时离华南较近,其俯冲完全可以影响到华南地区。后来通过海南岛和西藏地区的相关的白垩纪岩浆岩研究也证实这一推断(Sun et al., 2018a, b)。重要的是,通过统计华南白垩纪的锡钨矿床分布发现,它们构成一条东西向分布的W-Sn成矿带,与晚白垩世新特提斯洋壳的俯冲契合(Zhang et al., 2017b, 2019),而悖于太平洋板块的俯冲作用方向(Sun et al., 2007b),因此,这一晚白垩世钨锡成矿带更可能与新特提斯洋板片俯冲相关。研究表明,这些与锡钨矿化有关的岩浆岩很多表现出是A2型花岗岩的特征,此外,在这一阶段华南地块南缘还发育一系列双峰式火山岩以及变质核杂岩,暗示该区在这一时间岩石圈发生了强烈伸展(颜丹平等, 2005; Cheng et al., 2013b; Zhang et al., 2017b, 2018)。区域上伸展作用以及强烈的锡成矿事件可能是由于新特提斯洋俯冲板片后撤引起的(Sun, 2016; Zhang et al., 2017b, 2018; 孙卫东等, 2018)。俯冲板片后撤引发软流圈地幔上涌,产生较高的地热梯度,释放F、Cl等挥发性组分,诱发上覆富锡的地壳岩石部分熔融,最终导致花岗岩的形成和相关的锡矿化事件。

6 结论

锡是一种中等不相容的亲氧元素,具有亲氧、亲硫和亲铁三重特性,可以以独立矿物形式存在,也可以通过类质同象置换赋存在其他矿物中。

与岩浆相关的锡富集成矿主要受控于结晶分异、源区性质、氧逸度以及卤族元素含量因素,世界上绝大多数锡矿床都是跟高度分异钛铁矿系列富F、Cl的黑云母花岗岩有关。

锡矿分布与俯冲带关系密切,世界上大多数锡矿床分布于环太平洋及特提斯构造域,我国锡矿资源占全世界总量1/5以上,侏罗纪-白垩纪是我国锡矿主要成矿期。重要的锡成矿事件表现出区域性和阶段性的特征。

结合锡的地球化学特性以及锡矿分布特征,我们认为最有利锡成矿的动力学机制是俯冲板片后撤机制,华南晚白垩世锡矿化事件与新特提斯洋俯冲板片后撤有关。

致谢      感谢王琨、张天羽、张丽鹏以及曹华文在论文写作过程中给予的帮助。

参考文献
Audat A, Gnther D and Heinrich CA. 2000. Magmatic-hydrothermal evolution in a fractionating granite:A microchemical study of the Sn-W-F-mineralized Mole Granite (Australia). Geochimica et Cosmochimica Acta, 64(19): 3373-3393 DOI:10.1016/S0016-7037(00)00428-2
Bastos Neto AC, Pereira VP, Ronchi LH, de Lima EF and Frantz JC. 2009. The world-class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas State, Brazil. The Canadian Mineralogist, 47(6): 1329-1357 DOI:10.3749/canmin.47.6.1329
Bebout GE, Ryan JG, Leeman WP and Bebout AE. 1999. Fractionation of trace elements by subduction-zone metamorphism:Effect of convergent-margin thermal evolution. Earth and Planetary Science Letters, 171(1): 63-81 DOI:10.1016/S0012-821X(99)00135-1
Bebout GE. 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260(3-4): 373-393 DOI:10.1016/j.epsl.2007.05.050
Bhalla P, Holtz F, Linnen R and Behrens H. 2005. Solubility of cassiterite in evolved granitic melts:Effect of T, fO2, and additional volatiles. Lithos, 80(1-4): 387-400 DOI:10.1016/j.lithos.2004.06.014
Bhatia MR. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611-627 DOI:10.1086/628815
Bhatia MR. 1984. Composition and classification of Paleozoic flysch mudrocks of eastern Australia:Implications in provenance and tectonic setting interpretation. Sedimentary Geology, 41(2-4): 249-268 DOI:10.1016/0037-0738(84)90065-4
Blevin PL and Chappell BW. 1995. Chemistry, origin, and evolution of mineralized granites in the Lachlan fold belt, Australia:The metallogeny of I-and S-type granites. Economic Geology, 90(6): 1604-1619 DOI:10.2113/gsecongeo.90.6.1604
Breiter K, Müller A, Leichmann J and Gabašová A. 2005. Textural and chemical evolution of a fractionated granitic system:The Podlesí stock, Czech Republic. Lithos, 80(1-4): 323-345 DOI:10.1016/j.lithos.2003.11.004
Breiter K, Škoda R and Uher P. 2007. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P-and F-rich granitic system evolution:Podlesí, Czech Republic. Mineralogy and Petrology, 91(3-4): 225-248 DOI:10.1007/s00710-007-0197-1
Breiter K. 2012. Nearly contemporaneous evolution of the A-and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos, 151: 105-121 DOI:10.1016/j.lithos.2011.09.022
Cao WH, Zhang ST, W JD, Lin JZ, Zhang W, Chen HJ and Zhang YH. 2014. 40Ar-39Ar dating of potash feldspar in Laoka granite and phlogopite in basalt-type copper deposits in Gejiu tin polymetallic ore district and its geological significance. Acta Mieralogica Sinica, 34(3): 312-320 (in Chinese with English abstract)
Cao WH. 2015. Research on Mesozoic-Cenozoic magmatic evolution and its relation with metallogeny in Tengchong-Lianghe tin ore belt, western Yunnan. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing): 1-349 (in Chinese with English summary)
Chen J. 1988. On the geological features and genetic mechanism of some strata-bound tin deposits in South China. Geological Review, 34(6): 524-532, 581 (in Chinese with English abstract)
Chen J, Halls C and Stanley CJ. 1992. Tin-bearing skarns of South China:Geological setting and mineralogy. Ore Geology Reviews, 7(3): 225-248 DOI:10.1016/0169-1368(92)90006-7
Chen J, Wang RC, Zhou JP and Ji JF. 2000. Geochemistry of Tin. Nanjing: Nanjing University Press, 116-154 (in Chinese)
Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH and Zhu JJ. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China:Evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes. Lithos, 212-215: 93-110 DOI:10.1016/j.lithos.2014.11.010
Chen XC, Zhao CH, Zhu JJ, Wang XS and Cui T. 2018. He, Ar, and S isotopic constraints on the relationship between A-type granites and tin mineralization:A case study of tin deposits in the Tengchong-Lianghe tin belt, Southwest China. Ore Geology Reviews, 92: 416-429 DOI:10.1016/j.oregeorev.2017.11.032
Chen YX, Li H, Sun WD, Ireland T, Tian XF, Hu YB, Yang WB, Chen C and Xu DR. 2016. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China:Implications for Shizhuyuan W-Sn mineralization and tectonic evolution. Lithos, 266-267: 435-452 DOI:10.1016/j.lithos.2016.10.010
Cheng YB, Mao JW, Chang ZS and Pirajno F. 2013a. The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China:Constraints from metal zoning characteristics and 40Ar-39Ar geochronology. Ore Geology Reviews, 53: 50-62 DOI:10.1016/j.oregeorev.2012.12.008
Cheng YB, Mao JW and Spandler C. 2013b. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China. Lithos, 175-176: 213-229 DOI:10.1016/j.lithos.2013.04.002
Cheng YB, Mao JW and Liu P. 2016. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam. Solid Earth Sciences, 1(3): 79-88 DOI:10.1016/j.sesci.2016.12.001
Churikova T, Wörner G, Mironov N and Kronz A. 2007. Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions:Implications for variable fluid sources across the Kamchatka arc. Contributions to Mineralogy and Petrology, 154(2): 217-239 DOI:10.1007/s00410-007-0190-z
Davies JH. 1999. Simple analytic model for subduction zone thermal structure. Geophysical Journal International, 139(3): 823-828 DOI:10.1046/j.1365-246x.1999.00991.x
Dingwell DB, Scarfe CM and Cronin DJ. 1985. The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2:Implications for phonolites, trachytes and rhyolites. American Mineralogist, 70(1-2): 80-87
Dingwell DB and Webb SL. 1992. The fluxing effect of fluorine at magmatic temperatures (600~800℃):A scanning calorimetric study. American Mineralogist, 77(1-2): 30-33
Dingwell DB, Knoche R and Webb SL. 1993. The effect of F on the density of haplogranite melt. American Mineralogist, 78(3-4): 325-330
Durasova NA, Ryabchikov ID and Barsukov VL. 1986. The redox potential and the behavior of tin in magmatic systems. International Geology Review, 28(3): 305-311 DOI:10.1080/00206818609466274
Eugster HP. 1986. Minerals in hot water. American Mineral, 71(5-6): 655-673
Fan WL, Chen ZX, Wang SY and Tian GF. 1997. Experimental calibration of Sn-SiO2 complexation in hydrothermal solutions. Bulletin of Mineralogy Petrology and Geochemistry, 16(3): 159-162 (in Chinese with English abstract)
Feng JR, Mao JW and Pei RF. 2013. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China:Implications for W-Sn polymetallic ore deposits. Mineralogy and Petrology, 107(4): 573-589 DOI:10.1007/s00710-012-0253-3
Fu JM, Cheng SB, Lu YY, Wu SC, Ma LY and Chen XQ. 2012. Geochronology of the greisen-quartz-vein type tungsten-tin deposit and its host granite in Xitian, Hunan Province. Geology and Exploration, 48(2): 313-320 (in Chinese with English abstract)
Groves DI and McCarthy TS. 1978. Fractional crystallization and the origin of tin deposits in granitoids. Mineralium Deposita, 13(1): 11-26
Guo J, Zhang RQ, Sun WD, Ling MX, Hu YB, Wu K, Luo M and Zhang LC. 2018a. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China:Insights from cassiterite U-Pb ages and trace element compositions. Ore Geology Reviews, 95: 863-879 DOI:10.1016/j.oregeorev.2018.03.023
Guo J, Zhang RQ, Li CY, Sun WD, Hu YB, Kang DM and Wu JD. 2018b. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China:Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627-642 DOI:10.1016/j.oregeorev.2017.11.033
Haapala I. 1997. Magmatic and postmagmatic processes in tin-mineralized granites:Topaz-bearing leucogranite in the Eurajoki rapakivi granite stock, Finland. Journal of Petrology, 38(12): 1645-1659 DOI:10.1093/petroj/38.12.1645
He M, Hou QL, Liu Q, Zhang JH, Sun JF, Wu SC and Zhu HF. 2018. Timing and structural controls on skarn-type and vein-type mineralization at the Xitian tin-polymetallic deposit, Hunan Province, SE China. Acta Geochimica, 37(2): 295-309 DOI:10.1007/s11631-017-0215-x
Heinrich CA. 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Economic Geology, 85(3): 457-481 DOI:10.2113/gsecongeo.85.3.457
Heinrich CA, Günther D, Aude'tat A, Ulrich T and Frischknecht R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27(8): 755-758 DOI:10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
Hu RZ and Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita, 47(6): 579-588 DOI:10.1007/s00126-012-0431-6
Hu XY, Bi XW, Hu RZ, Shang LB and Fan WL. 2007. Advances in tin distribution between granitic melts and coexisting aqueous fluids and a review of tin in fluids and melts. Advances in Earth Science, 22(3): 281-289 (in Chinese with English abstract)
Hu XY, Bi XW, Hu RC, Cai GS and Chen YW. 2016. Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province, China. Acta Geochimica, 35(2): 138-147 DOI:10.1007/s11631-016-0091-9
Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27(145): 293-305
Ishihara S. 1981. The granitoid series and mineralization. In: Skinner BJ (ed.). Economic Geology Publishing Company Seventy-Fifth Anniversary Volume. London: Society of Economic Geologists, 458-484
Jiang SY, Zhao KD, Jiang YH, Ling HF and Ni P. 2006. New type of tin mineralization related to granite in South China:Evidence from mineral chemistry, element and isotope geochemistry. Acta Petrologica Sinica, 22(10): 2509-2516 (in Chinese with English abstract)
Jiang YH, Jiang SY, Zhao KD and Ling HF. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China:Implications for a back-arc extension setting. Geological Magazine, 143(4): 457-474 DOI:10.1017/S0016756805001652
Jochum KP, Hofmann AW and Seufert HM. 1993. Tin in mantle-derived rocks:Constraints on Earth evolution. Geochimica et Cosmochimica Acta, 57(15): 3585-3595 DOI:10.1016/0016-7037(93)90141-I
Kamilli RJ, Kimball BE and Carlin JF Jr. 2017. Tin. In: Schulz KJ, DeYoung JH Jr, Seal RR and Bradley DC (eds.). Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. US: USGS, S1-S53
Keppler H. 1993. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114(4): 479-488 DOI:10.1007/BF00321752
Korges M, Weis P, Lüders V and Laurent O. 2017. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology, 46(1): 75-78 DOI:10.1130/G39601.1
Lassiter JC, Hauri EH, Nikogosian IK and Barsczus HG. 2002. Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands:Constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth and Planetary Science Letters, 202(3-4): 525-540 DOI:10.1016/S0012-821X(02)00826-9
Lehmann B. 1987. Tin granites, geochemical heritage, magmatic differentiation. Geologische Rundschau, 76(1): 177-185 DOI:10.1007/BF01820581
Lehmann B. 1990. Metallogeny of Tin. Berlin: Springer, 1-210
Lehmann B, Ishihara S, Michel H, Miller J, Rapela CW, Sanchez A, Tistl M and Winkelmann L. 1990. The Bolivian tin province and regional tin distribution in the Central Andes:A reassessment. Economic Geology, 85(5): 1044-1058 DOI:10.2113/gsecongeo.85.5.1044
Lehmann B. 2004. Metallogeny of the Central Andes: Geotectonic framework and geochemical evolution of porphyry systems in Bolivia and Chile during the last 40 million years. In: Khanchuk AI, Gonevchuk GA, Mitrokhin AN, Simanenko LF, Cook N and Seltmann R (eds.). Metallogeny of the Pacific Northwest: Tectonics, Magmatism and Metallogeny of Active Continental Margins. Vladivostok, Dalnauka, 118-122
Li CY, Zhang H, Wang FY, Liu JQ, Sun YL, Hao XL, Li YL and Sun WD. 2012. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos, 150: 101-110 DOI:10.1016/j.lithos.2012.04.001
Li CY, Zhang RQ, Ding X, Ling MX, Fan WM and Sun WD. 2016. Dating cassiterite using laser ablation ICP-MS. Ore Geology Reviews, 72: 313-322 DOI:10.1016/j.oregeorev.2015.07.016
Li H, Palinkas LA, Watanabe K and Xi XS. 2018a. Petrogenesis of Jurassic A-type granites associated with Cu-Mo and W-Sn deposits in the central Nanling region, South China:Relation to mantle upwelling and intra-continental extension. Ore Geology Reviews, 92: 449-462 DOI:10.1016/j.oregeorev.2017.11.029
Li JK, Liu SB, Wang DH and Fu XF. 2007. Metallogenic epoch of Xubaoding W-Sn-Be deposit in Northwest Sichuan and its tectonic tracing significance. Mineral Deposits, 26(5): 557-562 (in Chinese with English abstract)
Li Q, Zhao KD, Lai PC, Jiang SY and Chen W. 2018b. Petrogenesis of Cretaceous volcanic-intrusive complex from the giant Yanbei tin deposit, South China:Implication for multiple magma sources, tin mineralization, and geodynamic setting. Lithos, 296-299: 163-180 DOI:10.1016/j.lithos.2017.11.006
Linnen RL, Pichavant M, Holtz F and Burgess S. 1995. The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2kbar. Geochimica et Cosmochimica Acta, 59(8): 1579-1588 DOI:10.1016/0016-7037(95)00064-7
Linnen RL, Pichavant M and Holtz F. 1996. The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60(24): 4965-4976 DOI:10.1016/S0016-7037(96)00295-5
Liu H, Liao RQ, Zhang LP, Li CY and Sun WD. 2019. Plate subduction, oxygen fugacity, and mineralization. Journal of Oceanology and Limnology: 1-11 DOI:10.1007/s00343-019-8339-y
Liu L, Xu XS and Xia Y. 2014. Cretaceous Pacific plate movement beneath SE China:Evidence from episodic volcanism and related intrusions. Tectonophysics, 614: 170-184 DOI:10.1016/j.tecto.2013.12.007
Liu P. 2018. The W-Sn metallogeny and its geodynamic setting, eastern Guangdong Province, Southeast Coast. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-456 (in Chinese with English summary)
Liu P, Mao JW, Santosh M, Bao ZA, Zeng XJ and Jia LH. 2018. Geochronology and petrogenesis of the Early Cretaceous A-type granite from the Feie'shan W-Sn deposit in the eastern Guangdong Province, SE China:Implications for W-Sn mineralization and geodynamic setting. Lithos, 300-301: 330-347
Liu YJ, Cao LM, Li ZL, Wang HN, Chu TQ and Zhang JR. 1984. Elemental Geochemistry. Beijing: Science Press, 252-264 (in Chinese)
Liu YM, Wang CL, Xu YZ, Lu HZ, Kang WQ and Zeng T. 1998. Metallogenic condition and model of the giant Shizhuyuan tungsten polymetallic deposit. Science in China (Series D), 28(Suppl.2): 49-56 (in Chinese)
Lodders K, Palme H and Gail HP. 2009. Abundances of the elements in the Solar System. In: Trumper JE (ed.). Astronomy and Astrophysics, Landolt-Bornstein, New Series. Berlin: Springer, 712-770
Manning DAC. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1kb. Contributions to Mineralogy and Petrology, 76(2): 206-215 DOI:10.1007/BF00371960
Mao JW. 1989. The igneous rock series and tin polymetallic minerogenetic series in the Tengchong area, Yunnan. Acta Geologica Sinica, 2(2): 175-187
Mao JW, Lehmann B and Schneider HJ. 1991. Preliminary enrichment of tin in the Earth and its relationship to metallogenesis of tin deposits. Journal of Hebei College of Geology, 14(1): 46-60 (in Chinese with English abstract)
Mao JW. 1995. Tourmalinite from northern Guangxi, China. Mineralium Deposita, 30(3-4): 235-245 DOI:10.1007/BF00196359
Mao JW and Li HF. 1995. Evolution of the Qianlishan granite stock and its relation to the Shizhuyuan polymetallic tungsten deposit. International Geology Review, 37(1): 63-80 DOI:10.1080/00206819509465393
Mao JW, Li XF, Lehmann B, Chen W, Lan XM and Wei SL. 2004. 40Ar-39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance. Mineral Deposits, 23(2): 164-175 (in Chinese with English abstract)
Mao JW, Cheng YB, Chen MH and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294 DOI:10.1007/s00126-012-0446-z
Mao JW, Xie GQ, Yuan SD, Liu P, Meng XY, Zhou ZH and Zheng W. 2018. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrologica Sinica, 34(9): 2501-2517
Mlynarczyk MSJ and Williams-Jones AE. 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth and Planetary Science Letters, 240(3-4): 656-667 DOI:10.1016/j.epsl.2005.09.047
Pan GT, Xiao QH, Lu SN, Deng JF, Feng YM, Zhang KX, Zhang ZY, Wang FG, Xing GF, Hao GJ and Feng YF. 2019. Subdivision of tectonic units in China. Geology in China, 36(1): 1-28 (in Chinese with English abstract)
Peacock SM, Rushmer T and Thompson AB. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2): 227-244 DOI:10.1016/0012-821X(94)90042-6
Peacock SM. 1996. Thermal and petrologic structure of subduction zones. In: Bebout GE, Scholl DW, Kirby SH and Platt JP (eds.). Subduction: Top to Bottom. Washington: American Geophysical Union, 119-133
Pollard PJ, Pichavant M and Charoy B. 1987. Contrasting evolution of fluorine-and boron-rich tin systems. Mineralium Deposita, 22(4): 315-321
Qiu JS, Jiang SY, Hu J and Ling HF. 2006. Isotopic dating of the Mikengshan tin ore-field in Huichang County, Jiangxi Province, and its implications to metallogenesis. Acta Petrologica Sinica, 22(10): 2444-2450 (in Chinese with English abstract)
Romer RL and Kroner U. 2015. Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization. Mineralium Deposita, 50(3): 327-338 DOI:10.1007/s00126-014-0540-5
Romer RL and Kroner U. 2016. Phanerozoic tin and tungsten mineralization:Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60-95 DOI:10.1016/j.gr.2015.11.002
Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
Sato K, Vrublevsky AA, Rodionov SM, Romanovsky NP and Nedachi M. 2002. Mid-cretaceous episodic Magmatism and tin mineralization in Khingan-Okhotsk volcano-plutonic belt, Far East Russia. Resource Geology, 52(1): 1-14
Schmidt C. 2018. Formation of hydrothermal tin deposits:Raman spectroscopic evidence for an important role of aqueous Sn(Ⅳ) species. Geochimica et Cosmochimica Acta, 220: 499-519 DOI:10.1016/j.gca.2017.10.011
Schmidt MW and Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1-4): 361-379 DOI:10.1016/S0012-821X(98)00142-3
Schwartz MO, Rajah SS, Askury AK, Putthapiban P and Djaswadi S. 1995. The southeast Asian tin belt. Earth-Science Reviews, 38(2-4): 95-293 DOI:10.1016/0012-8252(95)00004-T
Shannon RD and Prewitt CT. 1969. Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B, 25(5): 925-946 DOI:10.1107/S0567740869003220
Shannon RD and Prewitt CT. 1970. Revised values of effective ionic radii. Acta Crystallographica Section B, 26(7): 1046-1048 DOI:10.1107/S0567740870003576
Sherman DM, Ragnarsdottir KV, Oelkers EH and Collins CR. 2000. Speciation of tin (Sn2+ and Sn4+) in aqueous Cl solutions from 25℃ to 350℃:An in situ EXAFS study. Chemical Geology, 167(1-2): 169-176 DOI:10.1016/S0009-2541(99)00208-9
Shu XJ, Wang XL, Sun T, Xu XS and Dai MN. 2011. Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China:Implications for petrogenesis and W-Sn mineralization. Lithos, 127(3-4): 468-482 DOI:10.1016/j.lithos.2011.09.019
Sinclair WD, Gonevchuk GA, Korostelev PG, Semenyak BL, Rodionov S, Seltmann R, and Stemprok M. 2011. World distribution of tin and tungsten deposits. Geological Survey of Canada, Open File 5482, scale 1/35000000, doi: 10.4095/287906
Štemprok M. 1990. Solubility of tin, tungsten and molybdenum oxides in felsic magmas. Mineralium Deposita, 25(3): 205-212 DOI:10.1007/BF00190382
Sun SJ, Zhang LP, Zhang RQ, Ding X, Zhu HL, Zhang ZF and Sun WD. 2018a. Mid-Late Cretaceous igneous activity in South China:The Qianjia example, Hainan Island. International Geology Review, 60(11-14): 1665-1683 DOI:10.1080/00206814.2017.1402379
Sun SS and McDonough WS. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sun WD, Binns RA, Fan AC, Kamenetsky VS, Wysoczanski R, Wei GJ, Hu YH and Arculus RJ. 2007a. Chlorine in submarine volcanic glasses from the eastern manus basin. Geochimica et Cosmochimica Acta, 71(6): 1542-1552 DOI:10.1016/j.gca.2006.12.003
Sun WD, Ding X, Hu YH and Li XH. 2007b. The golden transformation of the Cretaceous plate subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542 DOI:10.1016/j.epsl.2007.08.021
Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE and Ling MX. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97-131 DOI:10.1016/j.oregeorev.2014.09.004
Sun WD. 2016. Initiation and evolution of the South China Sea:An overview. Acta Geochimica, 35(3): 215-225 DOI:10.1007/s11631-016-0110-x
Sun WD, Zhang LP, Guo J, Li CY, Jiang YH, Zartman RE and Zhang ZF. 2016a. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes. Scientific Reports, 6(1): 23304 DOI:10.1038/srep23304
Sun WD, Li CY, Hao XL, Ling MX, Ireland T, Ding X and Fan WM. 2016b. Oceanic anoxic events:Subduction style and molybdenum mineralization. Solid Earth Sciences, 1(2): 64-73 DOI:10.1016/j.sesci.2015.11.001
Sun WD, Wang JT, Zhang LP, Zhang CC, Li H, Ling MX, Ding X, Li CY and Liang HY. 2017. The formation of porphyry copper deposits. Acta Geochimica, 36(1): 9-15 DOI:10.1007/s11631-016-0132-4
Sun WD, Liu LJ, Hu YB, Ding W, Liu JQ, Ling MX, Ding X, Zhang ZF, Sun XL, Li CY, Li H and Fan WM. 2018b. Post-ridge-subduction acceleration of the Indian plate induced by slab rollback. Solid Earth Sciences, 3(1): 1-7
Sun WD, Lin QT, Zhang LP, Liao RQ and Li CY. 2018. The formation of the South China Sea resulted from the closure of the Neo-Tethys:A perspective from regional geology. Acta Petrologica Sinica, 34(12): 3467-3478 (in Chinese with English abstract)
Taylor RG. 1979. Geology of Tin Deposits:Developments in Economic Geology, 11. Amsterdam: Elsevier, 1-556
Thomas R, Förster HJ, Rickers K and Webster JD. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas:A melt/fluid-inclusion study. Contributions to Mineralogy and Petrology, 148(5): 582-601 DOI:10.1007/s00410-004-0624-9
Thompson JFH, Sillitoe RH, Baker T, Lang JR and Mortensen JK. 1999. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34(4): 323-334 DOI:10.1007/s001260050207
Tindle AG, Breaks FW and Webb PC. 1998. Wodginite-group minerals from the separation rapids rare-element granitic pegmatite group, northwestern Ontario. The Canadian Mineralogist, 36(2): 637-658
Wang CM, Deng J, Carranza EJM and Santosh M. 2014. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature, deposit types, and tectonic setting. Gondwana Research, 26(2): 576-593 DOI:10.1016/j.gr.2013.05.005
Wang FY, Ling MX, Ding X, Hu YH, Zhou JB, Yang XY, Liang HY, Fan WM and Sun WD. 2011. Mesozoic large magmatic events and mineralization in SE China:Oblique subduction of the Pacific plate. International Geology Review, 53(5-6): 704-726 DOI:10.1080/00206814.2010.503736
Wang JB, Wang YW, Wang LJ and Uemoto T. 2001. Tin-polymetallic mineralization in the southern part of the Da Hinggan Mountains, China. Resource Geology, 51(4): 283-291 DOI:10.1111/j.1751-3928.2001.tb00102.x
Wang RC, Xie L, Chen J, Yu AP, Wang LB, Lu JJ and Zhu JC. 2013. Tin-carrier minerals in metaluminous granites of the western Nanling Range (southern China):Constraints on processes of tin mineralization in oxidized granites. Journal of Asian Earth Sciences, 74: 361-372 DOI:10.1016/j.jseaes.2012.11.029
Webster J, Thomas R, Förster HJ, Seltmann R and Tappen C. 2004. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39(4): 452-472
Webster JD. 1990. Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt:Implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems. Contributions to Mineralogy and Petrology, 104(4): 424-438 DOI:10.1007/BF01575620
Webster JD. 1997. Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochimica et Cosmochimica Acta, 61(5): 1017-1029 DOI:10.1016/S0016-7037(96)00395-X
Williamson BJ, Müller A and Shail RK. 2010. Source and partitioning of B and Sn in the Cornubian batholith of southwest England. Ore Geology Reviews, 38(1-2): 1-8 DOI:10.1016/j.oregeorev.2010.05.002
Wolf M, Romer RL, Franz L and López-Moro FJ. 2018. Tin in granitic melts:The role of melting temperature and protolith composition. Lithos, 310-311: 20-30 DOI:10.1016/j.lithos.2018.04.004
Xiong XL, Zhao ZH, Zhu JC, Rao B and Lai MY. 1998. Experiment on the fluid/melt partition of fluorine in the system albite granite-H2O-HF. Geochimica, 27(1): 66-73 (in Chinese with English abstract)
Xu B, Jiang SY, Wang R, Ma L, Zhao KD and Yan X. 2015. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China:Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos, 218-219: 54-72 DOI:10.1016/j.lithos.2015.01.004
Yan DP, Zhou MF, Wang Y, Wang CL and Zhao TP. 2005. Structural styles and chronological evidences from Dulong-Song Chay tectonic dome:Earlier spreading of South China Sea basin due to Late Mesozoic to Early Cenozoic extension of South China block. Earth Science (Journal of China University of Geosciences), 30(4): 402-412
Yan QH, Wang H, Qiu ZW, Wei XP, Li P, Dong R, Zhang XY and Zhou KL. 2018. Origin of Early Cretaceous A-type granite and related Sn mineralization in the Sanjiaowo deposit, eastern Guangdong, SE China and its tectonic implication. Ore Geology Reviews, 93: 60-80 DOI:10.1016/j.oregeorev.2017.12.014
Yang YT. 2013. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific. Earth-Science Reviews, 126: 96-115 DOI:10.1016/j.earscirev.2013.07.010
Yao Y, Chen J, Lu JJ, Wang RC and Zhang RQ. 2014. Geology and genesis of the Hehuaping magnesian skarn-type cassiterite-sulfide deposit, Hunan Province, southern China. Ore Geology Reviews, 58: 163-184 DOI:10.1016/j.oregeorev.2013.10.012
Zeng QD, Liu JM, Yu CM, Ye J and Liu HT. 2011. Metal deposits in the Da Hinggan Mountains, NE China:Styles, characteristics, and exploration potential. International Geology Review, 53(7): 846-878 DOI:10.1080/00206810903211492
Zhang DH. 1997. Overview of research on the ore depositional mechanisms in ore-forming fluid. Geological Science and Technology Information, 16(3): 53-58 (in Chinese with English abstract)
Zhang LP, Hu YB, Liang JL, Ireland T, Chen YL, Zhang RQ, Sun SJ and Sun WD. 2017a. Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications. Acta Geochimica, 36(2): 132-150 DOI:10.1007/s11631-017-0146-6
Zhang LP, Zhang RQ, Hu YB, Liang JL, Ouyang ZX, He JJ, Chen YX, Guo J and Sun WD. 2017b. The formation of the Late Cretaceous Xishan Sn-W deposit, South China:Geochronological and geochemical perspectives. Lithos, 290-291: 253-268 DOI:10.1016/j.lithos.2017.08.013
Zhang LP, Zhang RQ, Wu K, Chen YX, Li CY, Hu YB, He JJ, Liang JL and Sun WD. 2018. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China:Constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry. Ore Geology Reviews, 96: 115-129 DOI:10.1016/j.oregeorev.2018.04.012
Zhang LP, Zhang RQ, Chen YX, Sun SJ, Liang JL and Sun WD. 2019. Geochronology and geochemistry of the Late Cretaceous Xinpeng granitic intrusion, South China:Implication for Sn-W mineralization. Ore Geology Reviews, 113: 103075 DOI:10.1016/j.oregeorev.2019.103075
Zhang RQ, Lu JJ, Lehmann B, Li CY, Li GL, Zhang LP, Guo J and Sun WD. 2017c. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geology Reviews, 82: 268-284 DOI:10.1016/j.oregeorev.2016.10.039
Zhang RQ, Lehmann B, Seltmann R, Sun WD and Li CY. 2017d. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems:The classic Erzgebirge tin province (Saxony and Bohemia). Geology, 45(12): 1095-1098 DOI:10.1130/G39634.1
Zhao KD, Jiang SY, Jiang YH and Ling HF. 2005. Sr-Nd isotopic geochemistry of fluorites from the Furong tin deposit in Hunan Province. Acta Geoscientica Sinica, 26(Suppl.1): 171-173 (in Chinese)
Zhou D, Sun Z, Chen HZ, Xu HH, Wang WY, Pang X, Cai DS and Hu DK. 2008. Mesozoic paleogeography and tectonic evolution of South China Sea and adjacent areas in the context of Tethyan and Paleo-Pacific interconnections. Island Arc, 17(2): 186-207 DOI:10.1111/j.1440-1738.2008.00611.x
Zhu JC, Li RK, Li FC, Xiong XL, Zhou FY and Huang XL. 2001. Topaz-albite granites and rare-metal mineralization in the Limu district, Guangxi Province, Southeast China. Mineralium Deposita, 36(5): 393-405 DOI:10.1007/s001260100160
Zhu JC, Chen J, Wang RC, Lu JJ and Xie L. 2008. Early Yanshanian Ne trending Sn/W-bearing A-type granites in the western-middle part of the Nanling Mts region. Geological Journal of China Universities, 14(4): 474-484 (in Chinese with English abstract)
Zimmermann U. 2005. Provenance studies of very low-to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. Geological Society, London, Special Publications, 246: 381-416 DOI:10.1144/GSL.SP.2005.246.01.16
曹华文, 张寿庭, 武俊德, 林进展, 张伟, 陈慧军, 张云辉. 2014. 云南个旧老卡岩体钾长石与"玄武岩型"铜矿金云母40Ar-39Ar年龄及其地质意义. 矿物学报, 34(3): 312-320.
曹华文. 2015.滇西腾-梁锡矿带中-新生代岩浆岩演化与成矿关系研究.博士学位论文.北京: 中国地质大学(北京), 1-349 http://cdmd.cnki.com.cn/Article/CDMD-11415-1015385637.htm
陈骏. 1988. 论华南层控锡矿的地质特征与形成机制. 地质论评, 34(6): 524-532, 581. DOI:10.3321/j.issn:0371-5736.1988.06.005
陈骏, 王汝成, 周建平, 季峻峰. 2000. 锡的地球化学. 南京: 南京大学出版社, 116-154.
樊文苓, 陈紫新, 王声远, 田弋夫. 1997. 热液中二氧化硅与成矿元素锡络合作用的实验标定. 矿物岩石地球化学通报, 16(3): 159-162.
付建明, 程顺波, 卢友月, 伍式崇, 马丽艳, 陈希清. 2012. 湖南锡田云英岩-石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石SHRIMP U-Pb定年. 地质与勘探, 48(2): 313-320.
胡晓燕, 毕献武, 胡瑞忠, 尚林波, 樊文苓. 2007. 锡在花岗质熔体和流体中的性质及分配行为研究进展. 地球科学进展, 22(3): 281-289. DOI:10.3321/j.issn:1001-8166.2007.03.008
蒋少涌, 赵葵东, 姜耀辉, 凌洪飞, 倪培. 2006. 华南与花岗岩有关的一种新类型的锡成矿作用:矿物化学、元素和同位素地球化学证据. 岩石学报, 22(10): 2509-2516.
李建康, 刘善宝, 王登红, 付小方. 2007. 川西北雪宝顶钨锡铍矿床的成矿年代及其构造示踪意义. 矿床地质, 26(5): 557-562. DOI:10.3969/j.issn.0258-7106.2007.05.008
刘鹏. 2018.东南沿海粤东地区钨锡成矿作用与成矿动力学背景.博士学位论文.北京: 中国地质大学(北京), 1-456 http://cdmd.cnki.com.cn/Article/CDMD-11415-1018017541.htm
刘义茂, 王昌烈, 胥友志, 卢焕章, 康卫清, 曾提. 1998. 柿竹园超大型钨多金属矿床的成矿条件与成矿模式. 中国科学(D辑), 28(增2): 49-56.
刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社, 252-264.
毛景文, Lehmann B, Schneider HJ. 1991. 锡在地球中初始富集与锡矿床成矿关系. 河北地质学院学报, 14(1): 46-60.
毛景文, 李晓峰, Lehmann B, 陈文, 蓝晓明, 魏绍六. 2004. 湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义. 矿床地质, 23(2): 164-175. DOI:10.3969/j.issn.0258-7106.2004.02.005
毛景文, 谢桂青, 袁顺达, 刘鹏, 孟旭阳, 周振华, 郑伟. 2018. 环太平洋成矿带斑岩-矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望. 岩石学报, 34(9): 2501-2517.
潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28.
邱检生, 蒋少涌, 胡建, 凌洪飞. 2006. 同位素年代学研究对江西会昌密坑山锡矿田成矿作用的启示. 岩石学报, 22(10): 2444-2450.
孙卫东, 林秋婷, 张丽鹏, 廖仁强, 李聪颖. 2018. 跳出南海看南海——新特提斯洋闭合与南海的形成演化. 岩石学报, 34(12): 3467-3478.
熊小林, 赵振华, 朱金初, 饶冰, 赖鸣远. 1998. 钠长花岗岩-H2O-HF体系中流体/熔体间氟的分配实验研究. 地球化学, 27(1): 66-73. DOI:10.3321/j.issn:0379-1726.1998.01.008
颜丹平, 周美夫, 王焰, 汪昌亮, 赵太平. 2005. 都龙-Song Chay变质穹隆体变形与构造年代:南海盆地北缘早期扩张作用始于华南地块张裂的证据. 地球科学, 30(4): 402-412. DOI:10.3321/j.issn:1000-2383.2005.04.002
张德会. 1997. 成矿流体中金属沉淀机制研究综述. 地质科技情报, 16(3): 53-58.
赵葵东, 蒋少涌, 姜耀辉, 凌洪飞. 2005. 湖南芙蓉锡矿床中萤石的Sr-Nd同位素研究. 地球学报, 26(增1): 171-173.
朱金初, 陈骏, 王汝成, 陆建军, 谢磊. 2008. 南岭中西段燕山早期北东向含锡钨A型花岗岩带. 高校地质学报, 14(4): 474-484. DOI:10.3969/j.issn.1006-7493.2008.04.002