2. 安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009;
3. Centre of Ore Deposit and Earth Science (CODES), University of Tasmania, Private Bag 79, Hobart;
4. 安徽省地质矿产勘查局327地质队, 合肥 230011
2. Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei 230009, China;
3. Centre of Ore Deposit and Earth Science(CODES), University of Tasmania, Private Bag 79, Hobart, Australia;
4. No. 327 Geological Party, Anhui Bureau of Geology and Mineral Resources, Hefei 230011, China
酸性蚀变岩帽是深成岩浆作用产生的极酸性气液在浅部岩石中形成的水平或近水平面状分布的硅化(多孔状石英和块状石英)和高级泥化蚀变带(Sillitoe, 1995),主要矿物组成包括明矾石、石英+粘土(高岭石、地开石、叶蜡石等)、黄铁矿,少量的伊利石、蒙脱石(Arribas et al., 1995; Hedenquist et al., 2000; 徐庆生等, 2010)。酸性蚀变岩帽通常是斑岩-浅成低温热液矿床在浅部的直接表现,是该类矿床的找矿标志(张德全等, 1991; Arribas et al., 1995; Hedenquist et al., 1998, 2000; Rye, 2005; Sillitoe, 2010; Chang et al., 2011; Hedenquist and Taran, 2013; Jiang et al., 2013; Cooke et al., 2014; 陈静等, 2015; Chen et al., 2019)。明矾石是酸性蚀变岩帽中的主要代表矿物,而明矾石的形成有表生和热液两种成因(Rye et al., 1992)。在确定不同成因的明矾石基础上,有助于厘定酸性蚀变岩帽的准确形成时间,而酸性蚀变岩帽的年代学研究能够限定潜在成矿系统的形成时代及其与区域内成矿系统的关系。
酸性蚀变岩帽中明矾石[KAl3(SO4)2(OH)6]广泛分布,金红石(TiO2)也可在局部集中产出(Rainbow et al., 2005; 徐庆生等, 2010),这两种矿物的存在为研究酸性蚀变岩帽的形成时间提供了理想对象。前人对明矾石定年进行了大量的研究工作(Vasconcelos et al., 1994; Sillitoe and McKee, 1996; Marsh et al., 1997; Mote et al., 2001; Bouzari and Clark, 2002; Quang et al., 2003, 2005; Arancibia et al., 2006),激光40Ar-39Ar阶段加热法定年不仅可以得到矿物中Ar的保存历史,还可以检测样品中过剩和继承Ar,能够精确厘定矿物年代。金红石结构单一,富含放射性母体元素U,是比较理想的同位素测年矿物,能够测得比较准确的U-Pb同位素年龄,通过金红石原位微区LA-ICPMS U-Pb定年可以获得较为可靠的定年结果(Richards et al., 1988; 梁金龙等, 2007; Zack et al., 2011; Bracciali et al., 2013; Skublov et al., 2013; 周红英等, 2013)。
庐枞盆地位于长江中下游中段,发育玢岩型铁矿床和热液脉型铜、铅、锌矿床,盆地北部矾山地区发育以明矾石矿床为中心的大范围酸性蚀变岩帽,明矾石资源储量居全国第二(宣之强, 1998; 李钟模, 1999; 王晓琳等, 2010),是我国明矾石成矿的一级远景区,探明明矾石矿石储量5866万吨,平均品位为40.39%(安徽省地质矿产勘察局327地质队, 1962①)。前人对该地区酸性蚀变岩帽中的明矾石矿床进行了地质特征和地球化学研究(唐敏惠, 2008; 范裕等, 2010; 张乐骏, 2011; 李旋旋等, 2017),然而其年代学研究仍未开展详细的工作。因热液明矾石含量较多、颗粒粗大,而表生明矾石颗粒极细小、受干扰因素较多,热液明矾石可作为40Ar-39Ar定年的研究对象,同时,与热液明矾石共生的金红石颗粒细小,而与表生明矾石共生的金红石含量多、呈团块状,可作为表生阶段形成时间的研究对象。因此,本文主要通过明矾石40Ar-39Ar定年和金红石原位U-Pb定年两种方法,厘定酸性蚀变岩帽的形成时代,并结合其地质特征,从年代学方面进一步确定该区明矾石具有岩浆热液和表生成因两种。在排除表生明矾石影响的条件下,岩浆热液明矾石可为该区下一步找矿工作提供可靠的矿物依据和指示。
① 安徽省地质矿产勘察局327地质队. 1962.安徽大矾山地区明矾石矿床地质勘查总结报告
1 区域地质特征长江中下游成矿带位于中国东部,自西向东分布有鄂东南、九瑞、安庆-贵池、庐枞、铜陵、宁芜、宁镇七个矿集区,主要成矿系列包括(层控)矽卡岩型、斑岩型(玢岩型)和热液脉型矿床为主组成的内生铜、铁、金成矿系列(周涛发等, 2008a),其中,庐枞盆地属于断坳区,主要发育玢岩型铁矿床,是中国东部成岩成矿特色明显的陆相火山岩盆地(常印佛等, 1991; 任启江等, 1991a; 翟裕生等,1992)。
庐枞盆地位于扬子陆块东缘,紧邻华北陆块和大别造山带,受四组深大断裂的控制。区内出露的沉积地层主要为中侏罗统罗岭组,与火山岩系呈不整合接触。白垩系在盆地内由早到晚、由外向内发育龙门院组(134.8±1.8Ma)、砖桥组(134.1±1.6Ma)、双庙组(130.5±0.8Ma)、浮山组(127.1±1.2Ma)火山岩(周涛发等, 2008b),呈同心圆状分布(图 1),均为喷发不整合接触(任启江等, 1991a; 周涛发等, 2008b)。四组火山岩呈粗玄岩-玄武粗安岩-粗面岩组合,属富碱岩系(袁峰等, 2008)。砖桥组火山岩构成了盆地的主体部分,可大致划分为两个岩性段,分别是下段的沉凝灰岩、沉角砾凝灰岩、粗安质角砾岩,上段的辉石粗安岩,也见有角砾凝灰岩、凝灰岩、沉积凝灰岩。
|
图 1 庐枞盆地地质矿产简图(据周涛发等, 2010) Fig. 1 Geological and deposits map of Luzong volcanic basin (after Zhou et al., 2010) |
庐枞盆地内部有大量侵入岩分布(范裕等, 2008; 周涛发等, 2007, 2010),按时间及岩性可分为早期的分布于盆地北部二长岩和闪长岩类(134~130Ma)、晚期分布于盆地南部的正长岩(129~123Ma)和分布于盆地东南缘的A型花岗岩(126~123Ma)(周涛发等, 2010)(图 1)。盆地内主要的玢岩型铁矿和脉状铜矿化与砖桥组火山活动(吴明安等, 2007)及砖桥旋回形成的二长岩(周涛发等, 2010)密切相关。除金属矿床外,庐枞盆地还发育众多的非金属矿床,如大矾山明矾石矿床等。
2 酸性蚀变岩帽特征 2.1 地质特征庐枞盆地内的酸性蚀变岩帽主要产于在盆地北部的矾山地区(称之为矾山酸性蚀变岩帽),区内主要出露下白垩统砖桥组火山熔岩、火山碎屑岩,西南部零星出露有双庙组火山岩。酸性蚀变岩帽主要产于砖桥组火山岩中(图 2),该区出露的地层可分为上、下两段:下段以凝灰岩为主,主要由灰色、灰紫色沉火山碎屑岩夹紫褐色中斑辉石粗安岩和紫红色凝灰岩、凝灰质粉砂岩与沉角砾凝灰岩组成;上段以粗安岩为主,主要发育灰紫色、深灰色中细斑粗安岩和紫红色凝灰岩、凝灰质粉砂岩。火山岩发生强烈的蚀变作用,特别是硅化和明矾石矿化,在大矾山地区的整个火山岩地层中蚀变明显。双庙组火山岩主要分布在矿区西南部,呈喷发不整合覆盖在砖桥组不同层位之上,可分为上、下两段:下段为火山碎屑岩及向沉积岩过渡的火山碎屑岩,紫红色凝灰质粉砂岩、沉凝灰岩夹沉火山角砾岩;上段以熔岩为主,发育互层的灰紫色、灰黑色杏仁状中细斑辉石粗安岩和紫红色、灰绿色凝灰质粉砂岩。该组火山岩蚀变较弱,未见明矾石矿化,覆盖在明矾石化砖桥组火山岩之上。
|
图 2 庐枞盆地矾山酸性蚀变岩帽地质简图及蚀变矿物分带 白色五角星为定年样品位置.自大矾山明矾石矿区向西南方向,蚀变矿物组合逐渐由多孔状石英-热液明矾石蚀变过渡为石英-高岭石-地开石组合,多孔状石英在大矾山矿区较为发育,表生明矾石在两种矿物组合之间稀疏分布.牛头山地区主要发育砖桥组凝灰岩,经酸性蚀变后仅留下SiO2形成致密块状石英.从距大矾山明矾石矿区南约2km开始,结晶较差的高岭石和伊利石/蒙脱石混层逐渐发育 Fig. 2 Geological and alteration zoning map of Fanshan Lithocap in Luzong Basin The white star is the location of the dating sample. From the Dafanshan alunite mining area to the southwest, the alteration mineral assemblages gradually vary from vuggy quartz-hydrothermal alunite alteration to quartz-kaolinite-dickite alteration, among which vuggy quartz is mainly distributed in Dafanshan mine, while the supergene alunite is sparsely distributed between the two mineral assemblages. Niutoushan area mainly distributes tuff of Zhuanqiao Formation, and dense massive quartz are formed because of only SiO2 being left after alteration. Starting from about 2km south of the Dafanshan alunite mining area, poor crystalline kaolinite and illite/smectite mixed layers assemblages gradually develop |
该区主要控矿构造为单斜构造,由上述的火山熔岩和火山碎屑岩构成。近南北走向的正断层(图 2)破坏酸性蚀变岩帽中的明矾石矿体,因早期矾山破火山口的存在,边部环状断裂裂隙构造活动频繁(潘国强和董恩耀, 1983),为大矾山矿区明矾石成矿提供构造条件和成矿空间。小矾山矿区断裂构造较为复杂,存在多条成矿后断层,成矿前构造裂隙也为流体提供通道(唐敏惠, 2008)。矿区岩浆岩除白垩系中酸性火山熔岩、火山碎屑岩之外,喷出有正长斑岩侵入岩(129.6±1.1Ma,任启江等, 1991b),以小的岩株或岩墙侵位,脉状穿插砖桥组火山岩并破坏明矾石矿体,明显晚于明矾石矿床形成时代,为成矿后的侵入体。
2.2 矿化蚀变特征矾山地区的砖桥组粗安岩和凝灰岩均遭受强烈的蚀变作用,主要矿化为明矾石化,蚀变包括硅化、高岭石化、地开石化、白云母化、黄铁矿化、叶腊石化、赤铁矿化、伊利石/蒙脱石混层等(李旋旋等, 2017),其中明矾石含量高者即构成矿体,主要赋存在凝灰岩中(安徽省地质矿产勘察局327地质队, 1962)。
大矾山明矾石矿区内主要发育硅化、明矾石化、黄铁矿化、赤铁矿化,弱白云母化、叶蜡石化。石英呈多孔状和隐晶质集合体,多孔状石英是由酸性流体对粗安岩或火山碎屑岩中的淋滤作用而成(Stoffregen, 1987),主要分布在大矾山矿区的粗安岩中,部分多孔状石英的基质中充填明矾石和石英集合体(图 3a),远离矿区与热液明矾石共生的石英主要为粒状或隐晶质石英。明矾石呈浅红色集合体广泛分布在围岩基质中或交代长石斑晶,可见到部分浅紫色叶片状明矾石集合体明显地充填在石英孔洞中(图 3b),均为热液成因明矾石(Li et al., 未发表)。黄铁矿主要呈细粒状与面状蚀变的明矾石共生,黄铁矿大多氧化成赤铁矿。在明矾石矿区可见到少量叶蜡石充填在裂隙面中(图 3e)。
|
图 3 庐枞盆地矾山酸性蚀变岩帽矿化蚀变矿物特征 (a)原粗安岩或火山碎屑岩中长石类矿物经酸性淋滤留下孔洞形成多孔状石英,基质中充填有石英和明矾石;(b)开放空间充填的叶片状明矾石集合体,主要充填在多孔状石英中,基质主要为石英和明矾石;(c)长石斑晶被高岭石和地开石交代的粗安岩,基质中长石类矿物也多已发生蚀变;(d)结晶较好的地开石集合体保留长石斑晶晶型,后期地开石脉穿切早期的高岭石化和地开石化脉;(e)叶蜡石沿着裂隙面呈面状分布;(f)低温环境下形成的玉髓,岩石的化学成分主要是二氧化硅. ⅠA-Alu-热液早阶段明矾石;ⅠB-Alu-热液晚阶段明矾石; vuggy Q-多孔状石英;Kao-高岭石;Dic-地开石;Prl-叶蜡石;Chal-玉髓 Fig. 3 Characteristics of altered minerals of Fanshan lithocap in Luzong Basin (a) the feldspar minerals in the original trachyandesite or pyroclastic rocks are leached and leave pores to form vuggy quartz, and the matrix is filled with quartz and alunite; (b) foliated alunite aggregates are filled in open space, mainly in quartz porous; (c) trachyandesite that feldspar phenocrysts are replaced by kaolinite and dickite, feldspar minerals in matrix are mostly altered; (d) well crystallized dickite aggregates preserve the crystal structures of feldspar phenocrysts, earlier kaolinite and dickite alterations are cut by later dickite veins; (e) pyrophyllite alteration as planar distributes along the fissure surface; (f) chalcedony formed in low temperature is mainly composed by silica. ⅠA-Alu-hydrothermal early stage alunite; ⅠB-Alu-hydrothermal later stage alunite; vuggy Q-vuggy quartz; Kao-kaolinite; Dic-dickite; Prl-pyrophyllite; Chal-chalcedony |
从大矾山向小矾山明矾石矿区,矿化蚀变特征与大矾山相似,发育硅化、明矾石化、赤铁矿化,多孔状和黄铁矿较少,在大矾山和小矾山矿区之间发育少量的热液明矾石交代长石斑晶和基质,石英主要以粒状或隐晶质集合体与其密切共生,两个矿区同属于一个酸性蚀变岩帽系统。逐渐向外围,明矾石矿化减弱,蚀变类型主要变为高岭石化和地开石化(图 2)。岩石呈灰白色、浅白色,高岭石和地开石含量逐渐增加,主要呈面型分布,两者以集合体的形态交代钾长石斑晶和基质中的长英质矿物(图 3c)。地开石也可单独以集合体形式交代长石斑晶或呈脉状产出(图 3d)。明矾石主要以少量的隐晶质集合体形式与高岭石或地开石一同呈面状蚀变(图 3d)或沿着裂隙分布,为表生成因明矾石(Li et al., unpublished)。
大矾山明矾石矿床西南方向约2km处的牛头山地区主要发育硅化,伴随有高岭石化、地开石化和极少量的明矾石矿化。因凝灰岩岩性的控制,当酸性已减弱的流体流经该区时,较难形成明矾石和多孔状石英,以致密块状石英、高岭石、地开石为主(Stoffregen, 1987),在牛头山地区出露致密块状石英,周围被石英-高岭石-地开石矿物组合所包围(图 2)。石英呈隐晶质致密块状集合体,可见到少量以玉髓状形式产出(图 3f)。在洪家院附近主要发育高岭石化、伊利石/蒙脱石混层(图 2),岩石呈土状集合体,伊利石/蒙脱石混层多来自粗安岩中钾长石和绢云母的蚀变。
根据蚀变带空间分布、脉体穿插关系和矿物共生组合,可以将矿化蚀变分为二期:热液期和表生期(图 4),热液期又由早、晚两个阶段组成,其具体特征如下。
|
图 4 庐枞盆地矾山酸性蚀变岩帽矿化蚀变期次表 Fig. 4 The formation stages of mineralization and alteration in Fanshan lithocap, Luzong Basin |
热液期早阶段该阶段主要由酸性淋滤形成的多孔状石英、面型蚀变的明矾石(ⅠA型)、黄铁矿、沿裂隙发育的叶蜡石以及少量结晶较好的高岭石、地开石组成。多孔状石英的岩石基质主要由石英和少量明矾石组成。明矾石在该阶段较发育,交代蚀变长石斑晶和长英质矿物,见少量金红石、黄铁矿颗粒与其共生,在部分明矾石矿物内部存在APS矿物(铝-磷酸盐-硫酸盐,aluminum-phosphate-sulphate),主要产于硅化、明矾石化带,该阶段的明矾石(ⅠA型)含量最多,粒径0.2~1mm不等,,主要分布在大矾山明矾石矿区,在小矾山和两个地区之间少量分布(图 2)。高岭石、地开石交代长石斑晶,该阶段由于多孔状石英和明矾石分布区域酸性较强,高岭石和地开石发育较少。
热液期晚阶段片状明矾石集合体(ⅠB型)充填在早阶段形成的开放空间中,特别是多孔状石英孔洞中,相对于ⅠA型明矾石,ⅠB型明矾石含量显著降低,但颗粒显著增大,粒径可达5mm,分布较为局限,主要在大矾山明矾石矿区分布(图 2)。相较于热液期早阶段,高岭石、地开石进一步发育呈面型蚀变,交代围岩中的长英质物质。
表生期热液期形成的石英蚀变成低温玉髓,高岭石、地开石、绢云母进一步蚀变成伊利石/蒙脱石混层。明矾石矿区早阶段的黄铁矿发生氧化形成赤铁矿、针铁矿、黄钾铁矾等矿物,并形成极细粒的隐晶质明矾石集合体(Ⅱ型),粒度仅0.001~0.01mm,Ⅱ型明矾石在矾山非明矾石矿区分布较广、较分散,但含量较少(图 2)。
3 样品特征及测试方法 3.1 样品特征用于本次研究工作的明矾石样品采自大矾山明矾石矿区,利用光学显微镜等手段进行详细的岩相学、矿物学和矿物共生等多方面的研究,获得纯净的大颗粒明矾石矿物样品,对其进行40Ar-39Ar定年。Ⅱ型明矾石含量较少、呈隐晶质难以挑选,且存在表生风化作用不彻底会有原生矿物的混染等因素的影响(杨静等, 2013),明矾石定年结果误差较大,因此未对Ⅱ型明矾石进行明矾石40Ar-39Ar定年。与ⅠA型明矾石共生的金红石颗粒极小、星散状分布,与Ⅱ型明矾石共生的金红石较富集且颗粒较大,本次工作利用金红石原位U-Pb定年厘定Ⅱ型明矾石形成时间。
主要选取热液期的ⅠA型明矾石,样品手标本呈紫红色或浅红色,致密坚硬,可见到玻璃光泽的明矾石颗粒,手标本中ⅠA型明矾石含量约80%,主要与石英、黄铁矿共生,含少量赤铁矿(图 5)。明矾石呈放射状、纤维状集合体(图 5a, b),自形-半自形,粒径400μm~3mm不等,明矾石被石英胶结,为原生矿物,未经风化和再蚀变作用。
|
图 5 庐枞盆地矾山酸性蚀变岩帽中定年矿物特征 (a)放射状、纤维状明矾石集合体,少量赤铁矿,视域下明矾石含量分别约为50%(反射光);(b)纤维状明矾石集合体,被石英和少量高岭石所胶结,视域下明矾石含量约50%(反射光);(c、d)矾山酸性蚀变岩帽中粒状金红石集合体,金红石矿物成分均一,被石英和少量隐晶质明矾石(Ⅱ)集合体所胶结(BSE):(c)团块状分布的金红石颗粒,部分呈自形-半自形四边形;(d)粒状金红石集合体,部分具有自形六边形结构. H-Alu-热液明矾石(ⅠA);Hem-赤铁矿;Q-石英;Rt-金红石 Fig. 5 Characteristics of dating minerals in Fanshan lithocap, Luzong Basin (a) radial and thready alunite aggregates, a small amount of hematite, the content of alunite is about 50% from the field of view (reflected light); (b) thready alunite aggregates, cemented by quartz and a small amount of kaolinite, containing about 50% alunite from the field of view (reflected light); (c, d) fine-grained rutile in Fanshan lithocap, the composition of dating rutile is uniform, rutile is cemented by quartz and minor powdery alunite (BSE): (c) rutile grains distribute in clumps, some of which are subhedral and euhedral; (d) granular rutile aggregate, part of which has euhedral hexagon structure. H-Alu-hydrothermal alunite (ⅠA); Hem-hematite; Q-quartz; Rt-rutile |
矾山酸性蚀变岩帽中用于定年的金红石主要选自与石英和少量Ⅱ型明矾石共生的样品(图 3b),进行金红石原位制靶。金红石呈粒状集合体,自形-半自形,见到部分四边形和六边形,粒径10~60μm,金红石颗粒较为干净,化学成份均匀,呈稀疏浸染状分布,局部稠密分布(图 5c, d)。少量金红石集合体边部含有微量的赤铁矿,是早期钛铁矿在富氧的环境中转变而成的(FeTiO3+1/2O2=Fe2O3+2TiO2, Williams and Cesbron, 1977)。共生矿物较为简单,主要是石英、表生明矾石和高岭石等。
3.2 分析测试方法用于明矾石年代学测试的样品经粉碎过筛,对碎样样品进行水漂、磁选和重液分离等步骤,分选出60~80目粒度的明矾石样品,最后在双目镜下手工挑选大颗粒明矾石200mg,样品纯度达到99.9%以上后送实验室进行测试。选纯的明矾石用超声波清洗。超声清洗过程中要注意清洗液的选择和严格控制时间。一般先用经过两次亚沸蒸馏净化的纯水清洗3次,每次3分钟,在此过程中矿物表面和解理缝中在天然状态下和碎样过程中吸附的粉末和杂质被清除。然后在丙酮中清洗两次,每次3分钟,在此过程中,矿物表面吸附的油污等有机物质被清除。清洗后的样品被封进石英瓶中送核反应接受中子照射。使用H8孔道,中子流密度约为6.0×1012n·cm-2·S-1。照射总时间为3000分钟,积分中子通量为1.13×1018n·cm-2。样品的阶段升温加热使用电子轰击炉,每一个阶段加热30分钟,净化30分钟。所有的数据在回归到时间零点值后再进行质量歧视校正、大气氩校正、空白校正和干扰元素同位素校正。系统空白水平:m/e=40、39、37、36分别小于6×10-15mol、4×10-16mol、8×10-17mol和2×10-17mol。中子照射过程中所产生的干扰同位素校正系数通过分析照射过的K2SO4和CaF2来获得,其值为:(36Ar/37Aro)Ca=0.0002389,(40Ar/39Ar)K=0.004782,(39Ar/37Aro)Ca=0.000806。37Ar经过放射性衰变校正;40K衰变常数λ=5.531×10-10y-1(Steiger and Jäger, 1977)。用ISOPLOT程序计算坪年龄和等时线年龄(Ludwig, 2003),坪年龄误差以2σ给出。中子照射、样品处理和仪器测试均用国内标样黑云母(ZBH-25标准年龄为132.7Ma,K含量为7.6%)(王松山, 1983)做监控。详细实验流程见有关文章(陈文等, 2006)。
金红石微区原位LA-ICP-MS U-Pb定年是在塔斯马尼亚大学国家优秀矿床研究中心(CODES, Center of Ore Deposits and Earth Sciences)分析实验室完成。将金红石矿物靶放在真空干燥器中过夜以除去大气中的水分(Thompson et al., 2018)。使用带有Coherent Compex Pro 110 Ar-F准分子激光器的ASI RESOLution S-155消融系统在193nm波长和20ns的脉冲宽度下进行操作。激光系统与Agilent 7900四极杆ICP-MS耦合。每次分析包括30秒的空白背景值测量和激光开始后30秒的样品分析。使用19μm的激光束斑大小,5Hz的激发频率和约2J/cm2的激光能量进行分析。每次分析金红石前都进行2次激光单点预剥蚀,以消除表面污染。He为载气。测量的元素分别为49Ti、51V、53Cr、55Mn、56Fe、91Zr、93Nb、178Hf、182W、202Hg、204Pb、206Pb、207Pb、208Pb、232Th、235U和238U。使用的R10金红石(Luvizotto et al., 2009)分析计算Pb/U比的分馏、仪器漂移和质量偏差校正因子。使用NIST610玻璃样的Pb同位素分析计算207Pb/206Pb比(年龄)的仪器漂移和质量偏差校正因子。49Ti作为内标元素,NIST610玻璃样校准金红石的微量元素丰度。使用BCR-2g和GSD-1g参考玻璃样对数据进行二次标准校正,然后将金红石组分中元素标准化为100%的氧化物。整个分析过程中,在开始、结束和每30分钟均分析R10金红石和NIST610玻璃样各两次。在整个分析过程中将R19金红石(Zack et al., 2011)和TB-1金红石(内部金红石标样)作为未知样进行分析,用来监测标样R10的准确度。
4 测试结果 4.1 明矾石40Ar-39Ar定年明矾石阶段加热的40Ar-39Ar过程及同位素定年分析结果见表 1和表 2。对明矾石样品进行了8个阶段的激光加热分析,选取8个有效数据计算坪年龄(39Ar占总析出量的95%以上),其有效的坪年龄值为131.2±6.6Ma(表 2、图 6a),等时线年龄为141.1±10.2Ma,反等时线年龄为130.9±7.3Ma(表 2、图 7),全熔融视年龄为139.2±12.3Ma,等时线上40Ar/36Ar初始值为305.8±35.9,反等时线的40Ar/36Ar初始值为313.0±17.9(表 2)。在明矾石的年龄图谱上,坪台阶基本在一条直线上,没有出现较大异常(图 6a),样品的有效坪年龄、全熔融视年龄、等时线年龄、反等时线年龄在误差范围内基本一致,反等时线的40Ar/36Ar初始值(313.0±17.9)在误差范围内和现在大气氩比值(295.5±5)在误差范围内一致,表明本次测试的明矾石样品中不含过剩氩。
|
|
表 1 庐枞盆地矾山酸性蚀变岩帽中明矾石40Ar-39Ar阶段加热结果 Table 1 The summary of alunite 40Ar-39Ar incremental heating in Fanshan lithocap, Luzong Basin |
|
|
表 2 庐枞盆地矾山酸性蚀变岩帽中明矾石40Ar-39Ar年龄测试结果 Table 2 The results of alunite 40Ar-39Ar dating in Fanshan lithocap, Luzong Basin |
|
图 6 庐枞盆地矾山酸性蚀变岩帽明矾石40Ar-39Ar坪年龄图(a)和金红石原位LA-ICP MS U-Pb谐和年龄图(b) Fig. 6 The 40Ar-39Ar plateau age of alunite (a) and the Tera-Wasserburg concordia diagram of rutile U-Pb dating (b) in Fanshan lithocap, Luzong Basin |
|
图 7 庐枞盆地矾山酸性蚀变岩帽中明矾石40Ar-39Ar反等时线年龄 Fig. 7 The 40Ar-39Ar inverse isochron age of alunite in Fanshan lithocap, Luzong Basin |
一般认为,至少需要三个相邻阶段的年龄一致,且这些阶段释放出的39Ar之和应该占有明显的比例,也能够产生很好的等时线,才能定义为年龄坪(邱华宁和彭良, 1997)。矾山明矾石的坪年龄(131.2±6.6Ma)和反等时线年龄(130.9±7.3Ma)在误差范围内基本一致,具有很好的对应性,因此本次所测的结果是可靠的,明矾石所给出的坪年龄具有地质意义,可以代表了明矾石形成时的冷却年龄。
4.2 金红石U-Pb定年矾山酸性蚀变岩帽中金红石的定年分析结果见表 3,金红石中U含量较高,为7.4×10-6 ~200.8×10-6。大多数238U/206Pb比值高于10,可以用来进行定年研究。同一样品多个金红石的238U/206Pb比值和207Pb/206Pb比值的差异为构造等时线创造了条件,在未校正普通Pb数据的Tera-Wasserburg图解中,这些数据点的回归线下交点年龄为32.7±4Ma(图 6b),代表了矾山酸性蚀变岩帽中金红石的年龄。
|
|
表 3 庐枞盆地酸性蚀变岩帽中金红石的U-Pb同位素分析结果 Table 3 The results of rutile LA-ICP MS U-Pb dating in Fanshan lithocap, Luzong Basin |
以往的地质年代学研究表明,明矾石40Ar-39Ar测年在许多情况下是高硫型浅成低温热液矿床最实用的精确测年方法(Masterman et al., 2004; Deyell et al., 2005; Bendezú et al., 2008; Holley et al., 2016)。然而,Arribas et al.(2011)在对早白垩世Pueblo Viejo矿床的明矾石40Ar-39Ar定年时,详细阐述了定年结果失败的主要原因是封闭温度相对较低(一般小于300℃,Love et al., 1998),这使得它很容易受到后期热干扰的影响。因此,在进一步解释酸性蚀变岩帽形成时代之前,必须对明矾石40Ar-39Ar定年结果的可靠性进行分析。
根据硫同位素地质温度计,矾山酸性蚀变岩帽主要热液活动期间形成热液明矾石的温度约200℃(Li et al., unpublished),低于约280℃的明矾石封闭温度(Love et al., 1998),这表明在热液蚀变过程中热扰动的可能性很小(Pan et al., 2019)。此外,本次定年的明矾石显示出未受干扰的坪(图 6a),表明封闭的Ar系统没有受到随后的热扰动影响(Pan et al., 2019)。从地质角度看,明矾石赋存在134.1Ma的砖桥组火山岩(周涛发等, 2008b)中,矿体被129Ma的正长斑岩(任启江等, 1991b)破坏,佐证了131Ma的40Ar-39Ar定年结果准确性。
明矾石为热液蚀变的矿物,在进行40Ar-39Ar法定年时会受到原生矿物的混染,造成明矾石中存在过剩40Ar,使反等时线年龄与坪年龄不一致,反等时线的40Ar/36Ar初始值比现代大气中的40Ar/36Ar值(约295.5)高得多(Vasconcelos, 1999b; Vasconcelos and Conroy, 2003)。未受混染的明矾石通常在高温阶段的年龄会比低温阶段的年龄高很多(Vasconcelos, 1999a)。实际上,本次定年的明矾石不含过剩氩,且明矾石的年龄坪上高温阶段年龄为200~300Ma,最高可达到2074Ma,比低温阶段的年龄(约130Ma)高很多(表 1),说明本次实验的明矾石矿物未遭受原生矿物的混染,所测得的年龄可信度很高。
5.2 矾山酸性蚀变岩帽的形成时代矾山酸性蚀变岩帽中热液早阶段呈自形-半自形与浸染状黄铁矿共生的明矾石、含有APS矿物的明矾石和热液晚阶段呈自形充填在多孔状石英中的叶片状明矾石,均是岩浆热液环境下典型的矿物组合及矿物特征(Rye et al., 1992; Deyell et al., 2005; Rainbow et al., 2005; Martinez et al., 2006),而表生期沿裂隙分布的粉末状明矾石及矿物组合特征是表生环境下典型产物(Rye et al., 1992)。Li et al.(unpublished)详细研究了明矾石同位素特征,结果表明该区明矾石主要有岩浆热液成因和表生成因两种。从野外地质特征可以看出,矾山酸性蚀变岩帽主要产于砖桥组火山岩中,在空间上与砖桥组火山-次火山岩及火山作用密切相关(唐敏惠, 2008; 范裕等, 2010; 张乐骏, 2011),明矾石矿体主要赋存在砖桥组火山岩中(134.1±1.6Ma,周涛发等, 2008b),并受正长斑岩侵入体(129.6±1.1Ma,任启江等, 1991b)的破坏,两个火成岩对明矾石矿体赋存和破坏的地质现象以及形成年龄限定了酸性蚀变岩帽的形成时代在129~134Ma之间。用于定年的ⅠA型明矾石颗粒较大,且可见到明矾石-黄铁矿组合,是典型的岩浆热液成因(Rye et al., 1992; Arribas, 1995; 范裕等, 2010),可代表热液事件和矿床的形成时间。本次明矾石40Ar-39Ar定年结果的可靠性证实了岩浆热液明矾石的形成期,即矾山酸性蚀变岩帽的形成时间为131Ma。
金红石的成因主要有岩浆热液型、变质型、沉积型和风化型几种(徐少康, 2001a, b; 夏学惠等, 2007; 蔡剑辉等, 2008; 赵一鸣, 2008),本次工作中对矾山酸性蚀变岩帽中金红石的定年结果显示在33Ma左右,纵观庐枞盆地甚至整个长江中下游地区的岩浆活动热事件,主要形成时间在149~98Ma之间(Zhou et al., 2015; 聂利青等, 2016; 周涛发等, 2016),金红石定年结果显示该区在33Ma经历了一次流体活动。定年金红石呈团块状集合体和铁氧化物交生,与风化型金红石(赵一鸣, 2008)特征相似,因该金红石与Ⅱ型明矾石集合体共生,33Ma即为Ⅱ型明矾石的形成时间。两种矿物的两个定年结果与矾山酸性蚀变岩帽中明矾石具有岩浆热液和表生两种成因(Li et al., unpublished)相对应,即岩浆热液成因明矾石形成于131Ma,表生成因明矾石形成于33Ma。综上,矾山酸性蚀变岩帽的形成期是131Ma,在33Ma时经受了一次表生风化作用。
5.3 明矾石找矿指示作用酸性蚀变岩帽通常与斑岩-浅成低温热液成矿系统密切相关(Arribas et al., 1995; Hedenquist et al., 2000; Sillitoe, 2010; Chang et al., 2011; Hedenquist and Taran, 2013; Cooke et al., 2014),明矾石是酸性蚀变岩帽中的标志性矿物之一(Cooke et al., 2017; 张乐骏和周涛发, 2017)。形成明矾石的H2SO4主要来自四种不同作用的成因机制,表生环境中硫化物的大气氧化作用、蒸汽加热环境下深部沸腾流体释放的H2S在潜水面的大气氧化作用、岩浆蒸汽环境下富SO2的岩浆在高温低压下的快速释放和岩浆热液环境下SO2的歧化反应(Rye et al., 1992)。四种成因的明矾石具有不同的指示意义,特别是岩浆热液明矾石,主要形成于高硫型矿床和斑岩铜金矿床上部(西班牙Rodalquilar金-明矾石矿床,Arribas et al., 1995;菲律宾Lepanto高硫型铜金矿床,Chang et al., 2011;科罗拉多Summitville高硫型铜金银矿床,Stoffregen, 1987)。诸多研究成果和勘探实例表明,酸性蚀变岩帽中岩浆热液明矾石对寻找斑岩-浅成低温热液矿床具有直接的指示意义(Aoki et al., 1993; Rye, 2005),且取得了一些成功的成果,例如Chang et al. (2011)在研究菲律宾Mankayan地区Lepanto酸性蚀变岩帽时发现,岩浆热液明矾石的短波红外光谱特征、原位微量元素成分特征相对于侵入体位置有系统性的变化规律,利用Lepanto岩浆热液明矾石寻找到与其相关的远东南(Far Southeast)矿床斑岩成矿系统中心。又如中国福建紫金山地区发育在高硫型浅成低温热液矿床之上的酸性蚀变岩帽,Chen et al. (2019)对该区岩浆热液明矾石的光谱特征和微量元素特征研究表明,该区存在一个巨型的斑岩成矿系统并有潜在铜金矿床的产出。
庐枞盆地矾山酸性蚀变岩帽的分布范围内尚未发现与其相关的侵入体,而岩浆热液明矾石的定年结果在长江中下游典型斑岩型矿化作用期间范围内(133~125Ma,周涛发等, 2016),且前人研究表明该区可能存在高硫型浅成低温热液矿床(范裕等, 2010)。该区存在岩浆热液明矾石的大规模发育为在该区的找矿勘探提供了一种明确的勘探指针。
6 结论(1) 庐枞盆地矾山酸性蚀变岩帽中热液早阶段明矾石的40Ar-39Ar定年结果为131.2±6.6Ma,金红石U-Pb定年结果为33Ma,分别对应了岩浆热液和表生成因明矾石的形成时代。矾山酸性蚀变岩帽形成于131Ma,在33Ma时经历了表生风化作用。
(2) 庐枞盆地矾山酸性蚀变岩帽形成于长江中下游典型斑岩型矿化期间,岩浆热液明矾石的发育为在该区斑岩-浅成低温热液型铜金矿床的找寻提供了一种明确的勘探指针。
谨以此文祝贺岳书仓教授八十八华诞!
致谢 范裕教授对该论文的进行了详细建议和指导;塔斯马尼亚大学优秀矿床研究中心(CODES)激光剥蚀等离子体质谱实验室工作人员James Tolley和Jay Thompson在金红石定年实验中给予了帮助;肖鑫博士在关于金红石定年实验方面提供了相关注意事项讲解;两位审稿人给予了建设性意见;本刊编辑对本文进行了认真而耐心的修改;在此一并表示衷心的感谢。
Aoki M, Comsti EC, Lazo FB and Matsuhisa Y. 1993. Advanced argillic alteration and geochemistry of alunite in an evolving hydrothermal system at Baguio, northern Luzon, Philippines. Resource Geology, 43(3): 155-164 |
Arancibia G, Matthews SJ and Pe'rez de Arce C. 2006. K-Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, northern Chile:Tectonic and climatic relations. Journal of the Geological Society, 163(1): 107-118 DOI:10.1144/0016-764904-161 |
Arribas Jr A. 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: Thompson JFH (ed.). Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada, 419-454
|
Arribas Jr A, Cunningham CG, Rytuba JJ, Rye RO, Kelly WC, Podwysocki MH, Mckee EH and Tosdal RM. 1995. Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Economic Geology, 90(4): 795-822 DOI:10.2113/gsecongeo.90.4.795 |
Arribas Jr A, Arribas I, Draper G, Hall C, Kesler SE, McEwan C and Muntean JL. 2011. 40Ar/39Ar dating of alunite from the Pueblo Viejo gold-silver district, Dominican Republic. Economic Geology, 106(6): 1059-1070 DOI:10.2113/econgeo.106.6.1059 |
Bendezú R, Page L, Spikings R, Pecskay Z and Fontboté L. 2008. New 40Ar/39Ar alunite ages from the Colquijirca district, Peru:Evidence of a long period of magmatic SO2 degassing during formation of epithermal Au-Ag and Cordilleran polymetallic ores. Mineralium Deposita, 43(7): 777-789 DOI:10.1007/s00126-008-0195-1 |
Bouzari F and Clark AH. 2002. Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit, I Regio'n, northern Chile. Economic Geology, 97(8): 1701-1740 DOI:10.2113/gsecongeo.97.8.1701 |
Bracciali L, Parrish RR, Horstwood MSA, Condon DJ and Najman Y. 2013. U-Pb LA-(MC)-ICP-MS dating of rutile:New reference materials and applications to sedimentary provenance. Chemical Geology, 347: 82-101 DOI:10.1016/j.chemgeo.2013.03.013 |
Cai JH, Wang LB and Li JP. 2008. Mineralogical features of rutiles of different modes of occurrence and genetic types and their research significance. Mineral Deposits, 27(4): 531-538 (in Chinese with English abstract) |
Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House, 1-312 (in Chinese with English abstract)
|
Chang ZS, Hedenquist JW, White NC, Cooke DR, Roach M, Deyell CL, Garcia Jr J, Gemmell BJ, McKnight S and Cuison AL. 2011. Exploration tools for linked porphyry and epithermal deposits:Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365-1398 DOI:10.2113/econgeo.106.8.1365 |
Chen J, Chen YJ, Zhong J, Sun Y, Qi JP and Li J. 2015. Geological and ore-fluid characteristics of Longjiangting Cu deposit in Zijinshan orefield, Fujian Province, and their genetic implications. Mineral Deposits, 34(1): 98-118 (in Chinese with English abstract) |
Chen J, Cooke DR, Piquer J, Selley D, Zhang LJ and White NC. 2019. Hydrothermal alteration, mineralization, and structural geology of the Zijinshan high-sulfidation Au-Cu deposit, Fujian Province, Southeast China. Economic Geology, 114(4): 639-666 DOI:10.5382/econgeo.4657 |
Chen W, Zhang Y, Zhang YQ, Jin GS and Wang QL. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan Plateau:Evidence from Ar-Ar thermochronology. Acta Petrologica Sinica, 22(4): 867-872 (in Chinese with English abstract) |
Cooke DR, Baker M, Hollings P, Sweet G, Chang ZS, Danyushevsky L, Gilbert S, Zhou TF, White N, Gemmell JB and Inglis S. 2014. New advances in detecting the distal geochemical footprints of porphyry systems: Epidote mineral chemistry as a tool for vectoring and fertility assessments. In: Kelley KD and Golden HC (eds.). Building Exploration Capability for the 21st Century. Boulder, CO: Society of Economic Geologists, 372-382
|
Cooke DR, Agnew P, Hollings P, Baker M, Chang Z, Wilkinson JJ, White NC, Zhang L, Thompson J, Gemmell JB, Fox N, Chen H and Wilkinson CC. 2017. Porphyry Indicator Minerals (PIMS) and Porphyry Vectoring and Fertility Tools (PVFTS): Indicators of mineralization styles and recorders of hypogene geochemical dispersion halos. In: Tschirhart V and Thomas MD (eds.). Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration. Toronto: AMIRA International Limited, 457-470
|
Deyell CL, Rye RO, Landis GP and Bissig T. 2005. Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, El Indio-Pascua belt, Chile. Chemical Geology, 215(1-4): 185-218 DOI:10.1016/j.chemgeo.2004.06.038 |
Fan Y, Zhou TF, Yuan F, Qian CC, Lu SM and Cooke D. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715-1724 (in Chinese with English abstract) |
Fan Y, Zhou TF, Yuan F, Tang MH, Zhang LJ, Ma L and Xie J. 2010. High sulfidation epithermal hydrothermal system in Lu-Zong volcanic basin:Evidence from geological characteristics and sulfur isotope data of Fanshan alunite deposit. Acta Petrologica Sinica, 26(12): 3657-3666 (in Chinese with English abstract) |
Hedenquist JW, Antonio A and Reynolds TJ. 1998. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373-404 DOI:10.2113/gsecongeo.93.4.373 |
Hedenquist JW, Antonio Arribas A and Gonzalez-Urien E. 2000. Exploration for epithermal gold deposits. In: Hagemann SG and Brown PE (eds.). Reviews in Economic Geology. Littleton: Society of Economic Geologists, 245-277
|
Hedenquist JW and Taran YA. 2013. Modeling the formation of advanced argillic lithocaps:Volcanic vapor condensation above porphyry intrusions. Economic Geology, 108(7): 1523-1540 DOI:10.2113/econgeo.108.7.1523 |
Holley EA, Bissig T and Monecke T. 2016. The veladero high-sulfidation epithermal gold deposit, El Indio-Pascua belt, Argentina:Geochronology of alunite and jarosite. Economic Geology, 111(2): 311-330 DOI:10.2113/econgeo.111.2.311 |
Jiang SH, Liang QL, Bagas L, Wang SH, Nie FJ and Liu YF. 2013. Geodynamic setting of the Zijinshan porphyry-epithermal Cu-Au-Mo-Ag ore system, SW Fujian Province, China:Constrains from the geochronology and geochemistry of the igneous rocks. Ore Geology Reviews, 53: 287-305 DOI:10.1016/j.oregeorev.2013.02.001 |
Li XX, Zhang LJ, Gao CS, Xie J and White NC. 2017. Geological and geochemical characteristics of lithocap in the Lu-Zong Basin, Anhui, China. Acta Petrologica Sinica, 33(11): 3545-3558 (in Chinese with English abstract) |
Li ZM. 1999. China alunite mineral resources. Industrial Minerals and Porocessing, (8): 35 (in Chinese)
|
Liang JL, Sun XM, Xu L, Zhai W, Tang Q and Liang YH. 2007. U-Pb dating and its constraints on genesis of rutiles from UHP metamorphic rocks from CCSD. Acta Petrologica Sinica, 23(12): 3275-3279 (in Chinese with English abstract) |
Love DA, Clark AH, Hodgson CJ, Mortensen JK, Archibald DA and Farrar E. 1998. The timing of adularia-sericite-type mineralization and alunite-kaolinite-type alteration, Mount Skukum epithermal gold deposit, Yukon Territory, Canada:40Ar-39Ar and U-Pb geochronology. Economic Geology, 93(4): 437-462 DOI:10.2113/gsecongeo.93.4.437 |
Ludwig KR. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-70
|
Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Münker C, Stockli DF, Prowatke S, Klemme S, Jacob DE and von Eynatten H. 2009. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chemical Geology, 261(3-4): 346-369 DOI:10.1016/j.chemgeo.2008.04.012 |
Marsh TM, Einaudi MT and McWilliams M. 1997. 40Ar/39Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos District, Chile. Economic Geology, 92(7-8): 784-806 DOI:10.2113/gsecongeo.92.7-8.784 |
Martinez JC, Dristas JA, Massonne HJ and Theye T. 2006. Alunite and REE rich APS minerals associated to the hydrothermal clay deposits in the barker area, Tandilia, Argentina. Clay Science, 12(2): 15-20 |
Masterman GJ, Cooke DR, Berry RF, Clark AH, Archibald DA, Mathur R, Walshe JL and Durán M. 2004. 40Ar/39Ar and Re-Os geochronology of porphyry copper-molybdenum deposits and related copper-silver veins in the Collahuasi district, northern Chile. Economic Geology, 99(4): 673-690 DOI:10.2113/gsecongeo.99.4.673 |
Mote TI, Becker TA, Renne P and Brimhall GH. 2001. Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Economic Geology, 96(2): 351-366 DOI:10.2113/gsecongeo.96.2.351 |
Nie LQ, Zhou TF, Fan Y, Zhang QM, Zhang M and Wang LH. 2016. LA-ICPMS U-Pb zircon age and molybdenite Re-Os dating of Donggushan, the first tungsten deposit found in the Luzong orefield, Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2): 303-318 (in Chinese with English abstract) |
Pan GQ and Dong EY. 1983. Volcanic structures in the Lujiang-Zongyang volcanic area and their ore-controlling effects. Regional Geology of China, (5): 37-37 (in Chinese with English abstract) |
Pan YP, Ni P, Chi Z, Wang WB, Zeng WC and Xue K. 2019. Alunite 40Ar/39Ar and zircon U-Pb constraints on the magmatic-hydrothermal history of the Zijinshan high-sulfidation epithermal cu-au deposit and the adjacent Luoboling porphyry Cu-Mo deposit, South China:Implications for their genetic association. Economic Geology, 114(4): 667-695 DOI:10.5382/econgeo.4658 |
Qiu HN and Peng L. 1997. 40Ar-39Ar Chronology and Fluid Inclusions Dating. Hefei: University of Science and Technology of China Publishing House, 1-242 (in Chinese with English abstract)
|
Quang CX, Clark AH, Lee JKW and Guille'n BJ. 2003. 40Ar-39Ar ages of hypogene and supergene mineralization in the Cerro Verde-Santa Rosa porphyry Cu-Mo cluster, Arequipa, Peru. Economic Geology, 98(8): 1683-1696 DOI:10.2113/gsecongeo.98.8.1683 |
Quang CX, Clark AH, Lee JKW and Hawkes N. 2005. Response of supergene processes to episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry copper province of southern Peru'. Economic Geology, 100(1): 87-114 DOI:10.2113/100.1.0087 |
Rainbow A, Clark AH, Kyser TK, Gaboury F and Hodgson CJ. 2005. The Pierina epithermal Au-Ag deposit, Ancash, Peru:Paragenetic relationships, alunite textures, and stable-isotope geochemistry. Chemical Geology, 215(1-4): 235-252 DOI:10.1016/j.chemgeo.2004.06.050 |
Ren QJ, Liu XS and Xu ZW. 1991a. Mesozoic Volcano-Tectonic Depression and Its Mineralizing Process in Lujiang-Zongyang Area, Anhui Province. Beijing: Geological Publishing House, 1-206 (in Chinese with English abstract)
|
Ren QJ, Wang DZ, Liu XS, Yang RY, Sun YD and Qiu JS. 1991b. Age and source materials of Bajiatan and Fanshan-Shimatan intrusive rocks in Lujiang-Zongyang district, Anhui Province. Chinese Science Bulletin, 36(10): 771-773 (in Chinese) DOI:10.1360/csb1991-36-10-771 |
Richards JP, Krogh TE and Spooner ETC. 1988. Fluid inclusion characteristics and U-Pb rutile age of late hydrothermal alteration and veining at the Musoshi stratiform copper deposit, central African copper belt, Zaire. Economic Geology, 83(1): 118-139 DOI:10.2113/gsecongeo.83.1.118 |
Rye RO, Bethke PM and Wasserman MD. 1992. The stable isotope geochemistry of acid sulfate alteration. Economic Geology, 87(2): 225-262 DOI:10.2113/gsecongeo.87.2.225 |
Rye RO. 2005. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology, 215(1-4): 5-36 DOI:10.1016/j.chemgeo.2004.06.034 |
Sillitoe RH. 1995. Exploration of porphyry copper lithocaps. In: Proceedings of PACRIM Congress 1995. Auckland, New Zealand: Australasian Institute of Mining and Metallurgy, 527-532
|
Sillitoe RH and McKee BH. 1996. Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Economic Geology, 91(1): 164-179 DOI:10.2113/gsecongeo.91.1.164 |
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41 DOI:10.2113/gsecongeo.105.1.3 |
Skublov SG, Zack T, Berezin AV, Mel'nik AE and Rizvanova NG. 2013. In situ LA-ICP-MS investigation of the geochemistry and U-Pb age of rutile from the rocks of the Belomorian mobile belt. Geochemistry International, 51(2): 164-171 DOI:10.1134/S0016702912120051 |
Steiger RH and Jäger E. 1977. Subcommission on geochronology:Convention on the use of decay constants in geo-and cosmo-chronology. Earth and Planetary Science Letters, 36(3): 359-362 DOI:10.1016/0012-821X(77)90060-7 |
Stoffregen RE. 1987. Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Economic Geology, 82(6): 1575-1591 DOI:10.2113/gsecongeo.82.6.1575 |
Tang MH. 2008. Study on geological characteristics and ore genesis of Dafanshan alunite deposit in Luzong Basin, Anhui. Master Degree Thesis. Hefei: Hefei University of Technology, 1-108 (in Chinese with English summary)
|
Thompson JM, Meffre S and Danyushevsky L. 2018. Impact of air, laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS. Journal of Analytical Atomic Spectrometry, 33(2): 221-230 DOI:10.1039/C7JA00357A |
Vasconcelos PM, Brimhall GH, Becker TA and Renne PR. 1994. 40Ar/39Ar analysis of supergene jarosite and alunite:Implications to the paleoweathering history of the western USA and West Africa. Geochimica et Cosmochimica Acta, 58(1): 401-420 DOI:10.1016/0016-7037(94)90473-1 |
Vasconcelos PM. 1999a. 40Ar/39Ar geochronology of supergene processes in ore deposits. In: Lambert D and Ruiz J (eds.). Reviews in Economic Geology. Chelsea, Michigan, USA: Society of Economic Geologists, 73-113
|
Vasconcelos PM. 1999b. K-Ar and 40Ar/39Ar geochronology of weathering processes. Annual Review of Earth and Planetary Sciences, 27: 183-229 DOI:10.1146/annurev.earth.27.1.183 |
Vasconcelos PM and Conroy M. 2003. Geochronology of weathering and landscape evolution, Dugald River valley, NW Queensland, Australia. Geochimica et Cosmochimica Acta, 67(16): 2913-2930 DOI:10.1016/S0016-7037(02)01372-8 |
Wang SS. 1983. Age determinations of 40Ar-40K, 40Ar-39Ar and radiogenic 40Ar released characteristics on K-Ar geostandards of China. Scientia Geologica Sinica, (4): 315-323 (in Chinese with English abstract)
|
Wang XL, Ji CS and Ren HB. 2010. A study of present situation of comprehensive utilization and development prospect of alunite in China. China Mining Magazine, 19(4): 15-17, 21 (in Chinese with English abstract) |
Williams SA and Cesbron FP. 1977. Rutile and apatite:Useful prospecting guides for porphyry copper deposits. Mineralogical Magazine, 41(318): 288-292 DOI:10.1180/minmag.1977.041.318.18 |
Wu MA, Hou MJ and Zhao WG. 2007. Mineralization regularity and exploration direction in Luzong area, Anhui. Resources Survey & Environment, 28(4): 269-277 (in Chinese with English abstract) |
Xia XH, Yan F and Zhao YH. 2007. Genetic type and its deposit characters of rutile minerals in China. Geology of Chemical Minerals, 29(3): 185-192 (in Chinese with English abstract) |
Xu QS, Qin F, Liu Y, Yuan B, Sun H, Chen XF, Zheng J and Niu XL. 2010. Lithocaps:Geological characteristics and implication to exploration of epithermal and porphyry-style deposits. Geology and Exploration, 46(1): 20-23 (in Chinese with English abstract) |
Xu SK. 2001a. Genetic types of mineralizing provinces of rutile deposits in China. Geology of Chemical Minerals, 23(1): 11-18 (in Chinese with English abstract) |
Xu SK. 2001b. Occurrence and granularity of natural rutile from main rutile deposits in China. Geology of Chemical Minerals, 23(2): 101-103, 108 (in Chinese with English abstract) |
Xuan ZQ. 1998. Resources and tapping of alunite in China. Geology of Chemical Minerals, 20(4): 279-286 (in Chinese with English abstract) |
Yang J, Zheng DW and Wu Y. 2013. 40Ar/39Ar geochronology of supergene alunite-group minerals. Seismology and Geology, 35(1): 177-187 (in Chinese with English abstract) |
Yuan F, Zhou TF, Fan Y, Lu SM, Qian CC, Zhang LJ, Duan C and Tang MH. 2008. Source, evolution and tectonic setting of Mesozoic volcanic rocks in Luzong basin, Anhui Province. Acta Petrologica Sinica, 24(8): 1691-1702 (in Chinese with English abstract) |
Zack T, Stockli DF, Luvizotto GL, Barth MG, Belousova E, Wolfe MR and Hinton RW. 2011. In situ U-Pb rutile dating by LA-ICP-MS:208Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology, 162(3): 515-530 DOI:10.1007/s00410-011-0609-4 |
Zhai YS, Yao SZ, Lin XD, Zhou XR, Wan TF, Jin FQ and Zhou ZG. 1992. Regularities of Metallogenesis for Copper (Gold) Deposits in the Middle and Lower Reaches of the Yangtze River Area. Beijing: Geological Publishing House, 1-20 (in Chinese with English abstract)
|
Zhang DQ, Li DX, Zhao YM, Chen JH, Li ZL and Zhang KY. 1991. The Zijinshan deposit:The first example of quartz-alunite type epithrmal deposits in the continent of China. Geological Review, 37(6): 481-491 (in Chinese with English abstract) |
Zhang LJ. 2011. Polymetallic mineralisation and associated magmatic and volcanic activity in the Luzong Basin, Anhui Province, eastern China. Ph. D. Dissertation. Hefei: Hefei University of Technology, 1-289 (in Chinese with English summary)
|
Zhang LJ and Zhou TF. 2017. Minerals in-situ LA-ICPMS trace elements study and the applications in ore deposit genesis and exploration. Acta Petrologica Sinica, 33(11): 3437-3452 (in Chinese with English abstract) |
Zhao YM. 2008. Genetic types, distribution and main geological characteristics of rutile deposits. Mineral Deposits, 27(4): 520-530 (in Chinese with English abstract) |
Zhou HY, Li HK, Cui YR, Geng JZ, Zhang J and Li HM. 2013. Rutile U-Pb isotopic dating methodology. Acta Geologica Sinica, 87(9): 1439-1446 (in Chinese with English abstract) |
Zhou TF, Song MY, Fan Y, Yuan F, Liu J, Wu MA, Qian CC and Lu SM. 2007. Chronology of the Bajiatan intrusion in the Luzong basin, Anhui, and its significance. Acta Petrologica Sinica, 23(10): 2379-2386 (in Chinese with English abstract) |
Zhou TF, Fan Y and Yuan F. 2008a. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica, 24(8): 1665-1678 (in Chinese with English abstract) |
Zhou TF, Fan Y, Yuan F, Lu SM, Shang SG, Cooke D, Meffre S and Zhao GC. 2008b. Geochronology of the volcanic rocks in the Lu-Zong Basin and its significance. Science in China (Series D), 51(10): 1470-1482 DOI:10.1007/s11430-008-0111-7 |
Zhou TF, Fan Y, Yuan F, Song CZ, Zhang LJ, Qian CC, Lu SM and David RC. 2010. Temporal-spatial framework of magmatic intrusions in Luzong volcanic basin in East China and their constrain to mineralizations. Acta Petrologica Sinica, 26(9): 2694-2714 (in Chinese with English abstract) |
Zhou TF, Wang SW, Fan Y, Yuan F, Zhang DY and White NC. 2015. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt, eastern China. Ore Geology Reviews, 65: 433-456 DOI:10.1016/j.oregeorev.2014.10.002 |
Zhou TF, Wang SW, Yuan F, Fan Y, Zhang DY, Chang YF and White NC. 2016. Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2): 271-288 (in Chinese with English abstract) |
蔡剑辉, 王立本, 李锦平. 2008. 不同产状和成因类型的金红石矿物学特征及其研究意义. 矿床地质, 27(4): 531-538. DOI:10.3969/j.issn.0258-7106.2008.04.010 |
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 1-312.
|
陈静, 陈衍景, 钟军, 孙艺, 祁进平, 李晶. 2015. 福建省紫金山矿田龙江亭矿床地质和成矿流体特征及成因意义. 矿床地质, 34(1): 98-118. |
陈文, 张彦, 张岳桥, 金贵善, 王清利. 2006. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据. 岩石学报, 22(4): 867-872. |
范裕, 周涛发, 袁峰, 钱存超, 陆三明, Cooke D. 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(8): 1715-1724. |
范裕, 周涛发, 袁峰, 唐敏惠, 张乐骏, 马良, 谢杰. 2010. 庐枞盆地高硫化型浅成低温热液成矿系统:来自矾山明矾石矿床地质特征和硫同位素地球化学的证据. 岩石学报, 26(12): 3657-3666. |
李旋旋, 张乐骏, 高昌生, 谢杰, White NC. 2017. 安徽庐枞盆地酸性蚀变岩帽地质地球化学特征研究. 岩石学报, 33(11): 3545-3558. |
李钟模. 1999. 中国明矾石矿资源状况. 化工矿物与加工, (8): 35. |
梁金龙, 孙晓明, 徐莉, 翟伟, 汤倩, 梁业恒. 2007. CCSD超高压变质金红石U-Pb定年及其约束意义. 岩石学报, 23(12): 3275-3279. DOI:10.3969/j.issn.1000-0569.2007.12.020 |
聂利青, 周涛发, 范裕, 张千明, 张明, 汪龙虎. 2016. 长江中下游成矿带庐枞矿集区首例钨矿床成岩成矿时代及其意义. 岩石学报, 32(2): 303-318. |
潘国强, 董恩耀. 1983. 庐枞火山岩区火山构造及其控矿作用. 中国区域地质, (5): 31-37. |
邱华宁, 彭良. 1997. 40Ar-39Ar年代学与流体包裹体定年. 合肥: 中国科学技术大学出版社, 1-242.
|
任启江, 刘孝善, 徐兆文. 1991a. 安徽庐枞中生代火山构造洼地及其成矿作用. 北京: 地质出版社, 1-206.
|
任启江, 王德滋, 刘孝善, 杨荣勇, 孙冶东, 邱检生. 1991b. 安徽庐枞地区巴家滩和矾山-石马滩岩体的时代和岩浆物质来源. 科学通报, 36(10): 771-773. |
唐敏惠. 2008.安徽庐枞盆地大矾山明矾石矿床地质特征及成因研究.硕士学位论文.合肥: 合肥工业大学, 1-108 http://cdmd.cnki.com.cn/Article/CDMD-10359-2009155348.htm
|
王松山. 1983. 我国K-Ar法标准样40Ar-40K和40Ar-39Ar年龄测定及放射成因40Ar的析出特征. 地质科学, (4): 315-323. |
王晓琳, 姬长生, 任海兵. 2010. 我国明矾石资源综合利用现状与发展前景研究. 中国矿业, 19(4): 15-17, 21. DOI:10.3969/j.issn.1004-4051.2010.04.005 |
吴明安, 侯明金, 赵文广. 2007. 安徽省庐枞地区成矿规律及找矿方向. 资源调查与环境, 28(4): 269-277. DOI:10.3969/j.issn.1671-4814.2007.04.006 |
夏学惠, 闫飞, 赵玉海. 2007. 中国金红石矿床地质及成因类型. 化工矿产地质, 29(3): 185-192. DOI:10.3969/j.issn.1006-5296.2007.03.009 |
徐庆生, 覃锋, 刘阳, 袁波, 孙赫, 陈喜峰, 郑杰, 牛向龙. 2010. 岩帽:地质特征及找矿意义. 地质与勘探, 46(1): 20-23. |
徐少康. 2001a. 我国金红石矿床成因类型及成矿区带. 化工矿产地质, 23(1): 11-18. |
徐少康. 2001b. 我国主要金红石矿床金红石自然颗粒产状及粒度特征. 化工矿产地质, 23(2): 101-103, 108. |
宣之强. 1998. 中国明矾石资源及其应用. 化工矿产地质, 20(4): 279-286. |
杨静, 郑德文, 武颖. 2013. 表生明矾石族矿物40Ar/39Ar年代学概述. 地震地质, 35(1): 177-187. DOI:10.3969/j.issn.0253-4967.2013.01.015 |
袁峰, 周涛发, 范裕, 陆三明, 钱存超, 张乐骏, 段超, 唐敏慧. 2008. 庐枞盆地中生代火山岩的起源、演化及形成背景. 岩石学报, 24(8): 1691-1702. |
翟裕生, 姚书振, 林新多, 周珣若, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社, 1-120.
|
张德全, 李大新, 赵一鸣, 陈景河, 李子林, 张克尧. 1991. 福建紫金山矿床——我国大陆首例石英-明矾石型浅成低温热液铜-金矿床. 地质论评, 37(6): 481-491. DOI:10.3321/j.issn:0371-5736.1991.06.001 |
张乐骏. 2011.安徽庐枞盆地成岩成矿作用研究.博士学位论文.合肥: 合肥工业大学, 1-289
|
张乐骏, 周涛发. 2017. 矿物原位LA-ICPMS微量元素分析及其在矿床成因和预测研究中的应用进展. 岩石学报, 33(11): 3437-3452. |
赵一鸣. 2008. 金红石矿床的类型、分布及其主要地质特征. 矿床地质, 27(4): 520-530. DOI:10.3969/j.issn.0258-7106.2008.04.009 |
周红英, 李怀坤, 崔玉荣, 耿建珍, 张健, 李惠民. 2013. 金红石U-Pb同位素定年技术研究. 地质学报, 87(9): 1439-1446. |
周涛发, 宋明义, 范裕, 袁峰, 刘珺, 吴明安, 钱存超, 陆三明. 2007. 安徽庐枞盆地中巴家滩岩体的年代学研究及其意义. 岩石学报, 23(10): 2379-2386. DOI:10.3969/j.issn.1000-0569.2007.10.006 |
周涛发, 范裕, 袁峰. 2008a. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8): 1665-1678. |
周涛发, 范裕, 袁峰, 陆三明, 尚世贵, Cooke D, Meffre S, 赵国春. 2008b. 安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义. 中国科学(D辑), 38(11): 1342-1353. |
周涛发, 范裕, 袁峰, 宋传中, 张乐骏, 钱存超, 陆三明, David RC. 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9): 2694-2714. |
周涛发, 王世伟, 袁峰, 范裕, 张达玉, 常印佛, White NC. 2016. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用. 岩石学报, 32(2): 271-288. |
2019, Vol. 35


