2. 江苏省有色金属华东地质勘查局, 南京 210007;
3. 成都理工大学地球科学学院, 成都 610059
2. East China Mineral Exploration and Development Bureau of Nonferrous Metal, Nanjing 210007, China;
3. School of Geosciences, Chengdu University of Technology, Chengdu 610059, China
长江中下游成矿带是我国重要的铁铜金铅锌多金属成矿区域(常印佛等, 1991; 翟裕生等, 1992; 唐永成等, 1998; 周涛发等, 2008, 2012, 2016, 2017),自西向东分布着多个各具特点的矿集区,如鄂东、九瑞、安庆-贵池、庐中、铜陵、宁芜、宁镇(图 1)。区内矿产资源十分丰富,金属矿床(点)200余处,大型矿床22处,中小型矿床近150余处(周涛发等, 2008;阴江宁等, 2016)。并且该区依然具有很好的勘探潜力,近些年来在长江中下游成矿带的勘探已经取得一系列突破(Wu et al., 2011; 蒋少涌等, 2011)。另外,其深部成矿条件良好,勘探潜力巨大(Chen et al., 2001; 吕庆田等, 2004, 2014; 毛景文等, 2004, 2009; 周涛发等, 2008; Zhou et al., 2015)。
![]() |
图 1 长江中下游地区构造简图及矿床分布位置图(据Pan and Dong, 1999) TLF-郯城-庐江断裂; XCF-襄樊-广济断裂; YCF-阳新-常州断裂 Fig. 1 Sketch map showing the distribution of the ore districts in the Middle-Lower Yangtze River Valley Metallogenic Belt (modified after Pan and Dong, 1999) TLF-Tancheng-Lujiang fault; XCF-Xiangfan-Guangji fault; YCF-Yangxin-Changzhou fault |
江苏栖霞山铅锌多金属矿床位于长江中下游成矿带最东端的宁镇矿集区,是华东地区目前已发现规模最大的Pb-Zn多金属矿床。对于栖霞山的研究最早可追溯到1948年,矿床虽然具有悠久的研究历史,但是目前对于成矿过程与矿床成因依然具有争议。这些争议主要集中于成矿物质来源(叶敬仁, 1983; 肖振民等, 1983, 1996; 杨元昭, 1986; 刘沈衡, 1991; 桂长杰和景山, 2011; 付强, 2011; 桂长杰, 2012)、硫主要来源(叶敬仁, 1983; 肖振民等, 1983, 1996; 钟庆禄, 1998; 桂长杰和景山, 2011; 陈伟, 2016)、成矿流体(郭晓山等, 1985; 真允庆和陈金欣, 1986; 蒋慎军和刘沈衡, 1990; 刘沈衡, 1991, 1999; 钟庆禄, 1998; 徐忠发和曾正海, 2006; 桂长杰和景山, 2011; 张明超, 2017),由此也导致了不同的成因观点:(1)喷流沉积型(Sedex)(桂长杰, 2012);(2)岩浆热液型(张明超, 2015);(3)同生沉积-热液叠加型(刘孝善等, 1979; 刘孝善和陈诸麒, 1985)。而成因模式的争议也一定程度上制约了深部找矿的进展。近些年来,栖霞山的深部找矿工作取得突出进展,新增铅锌金属储量达到118.73万吨,达到大型规模(魏新良和龚德奎, 2013; 张明超, 2015),矿体在-600m以下依然具有较好延伸,西部和深部的边界依然没有完全控制,并且矿化特征出现了转变(张明超, 2015; Sun et al., 2018),急需新的矿床成因模式对其进行解释并展开深部找矿方向的预测。
本文在详细厘定成矿阶段的基础上,对不同阶段的矿石矿物(闪锌矿)和脉石矿物(石英)中的包裹体进行研究,以反演成矿流体特征、来源及演化,进而讨论金属沉淀的主导机制。另外,利用不同位置晚期热液闪锌矿的包裹体进行流体空间填图,反映成矿流体通道和可能的热液中心,进而为深部找矿提供依据。
1 区域地质栖霞山铅锌矿位于宁镇地区北西端。宁镇矿集区是我国东部长江中下游成矿带的重要组成部分,地处扬子板块的北东部,其北西邻郯庐断裂带、南东接华南褶皱系(图 1)。该区褶皱构造主要由轴向近东西的三个复背斜和二个复向斜(简称“三背二向”)组成(图 2);断裂构造可分为南北向、北北东向、东西向、北北西向和北西向等,这些断裂把宁镇中段分割成若干断块,各个断块内又被次级横断裂分割(肖振民等, 1996)。
![]() |
图 2 宁镇地区构造及矿床分布图 Fig. 2 Regional geology of the Nanjing-Zhenjiang region, showing the distribution of deposits |
该区自震旦纪到第四纪地层发育比较齐全,最老的地层为下-中元古界,为一套具轻微混合岩化的浅变质岩系;震旦系-三叠系以海相沉积为主,海陆交互相及陆相沉积次之,各系、组之间呈平行不整合或整合接触;侏罗系-白垩系以陆相碎屑岩堆积为主,次为火山岩。其中,中石炭统黄龙组、上石炭统船山组、下二叠统栖霞组和中下三叠统青龙组是主要的赋矿层位。
本区岩浆活动以燕山晚期最为强烈,中酸性岩浆侵入体分布广泛,此外还有陆相火山岩产出,主要发育于中生代的次级断陷盆地中。燕山晚期有三次侵入活动,第一次形成辉长岩(124.9±0.6Ma; 徐祥和邢凤鸣, 1994; LA-ICPMS锆石),辉石闪长岩(121.2±0.85Ma; 刘建敏等, 2014; LA-ICPMS锆石);第二次形成花岗闪长岩(109.1±1.9Ma; 孙洋等, 2014; LA-ICPMS锆石)和石英闪长玢岩(101.5±0.9Ma; 孙洋等, 2014; LA-ICPMS锆石);第三期形成钾长花岗斑岩、碱长花岗斑岩及花岗闪长斑岩(86Ma; 江苏省地质矿产局, 1989; K-Ar黑云母)。区内矿产较为丰富,已知矿床(点)有80余处。自西向东为大型栖霞山铅锌矿、中型铜山铜钼矿、中型安基山铜矿、中型伏牛山铜矿、中型韦岗铁矿等矿区(图 2)。
2 矿床地质特征栖霞山矿区从东到西可分为三茅宫矿段、平山头矿段、虎爪山矿段、北象山矿段、甘家巷矿段和西库矿段(图 3)。栖霞山矿区发育的志留系-侏罗系地层可分为上下两个构造层,下构造层形成栖霞山-甘家巷复式背斜,由志留系至三叠系之海相碳酸盐岩及碎屑沉积岩、陆相碎屑沉积岩和海陆交互相沉积岩组成,背斜的轴部为志留系坟头组地层,出露于平山头矿段,走向北东,沿背斜两翼发育泥盆系至三叠系地层;上构造层为舒缓开阔的盖层,由侏罗系陆相碎屑岩和少量火山岩组成,出露在矿区东北部、西南部及南部的边缘,呈北东向展布。
![]() |
图 3 栖霞山铅锌矿矿区地质简图 Fig. 3 Sketch geological map of Qiaxiashan Pb-Zn deposit |
矿区内断裂比较发育,纵横交错,按产状及发育的地质部位可分为北东东-近东西向纵断裂、北西向横断裂、北东向横断裂及断碎不整合面等四种类型。这些断裂大部分在印支期强烈褶皱的后期既已形成,至燕山期又重新活化,构成区内的控矿断裂。
矿区地表及深部钻孔均未揭露到岩浆岩,但其深部可能有隐伏岩体的存在。在矿区西侧的甘家巷矿段的个别钻孔中已见闪长玢岩岩脉(蒋慎君和刘沈衡, 1990; 徐忠发和曾正海, 2006)。
虎爪山矿段1号主矿体集中了整个矿段90%以上的铅锌储量,矿体呈似层状及大透镜体状(图 4)。主矿体走向北东45°~58°,延长1100m,倾向整体北西(倾角70°~90°)。主矿体向南西向侧伏,侧伏角45°左右,矿体西南端侧伏角有变陡趋势。矿体厚度3.5~90.5m,平均厚度26.8m。主矿体埋藏最浅处约-10m,钻探深度已经达到-1380m,矿体深度控制到-1079m。矿体东部主要受上下构造层间断层不整合面、北西向断裂、古岩溶控制,其中,不整合面内的矿体主要分布于石炭系黄龙组(C2h)-二叠系栖霞组(P1q)的碳酸盐岩一侧,少量小矿体赋存于五通组(D3w)和象山群(J1-2Xn)砂岩层间裂隙中。矿体西部以地层和纵向断裂控制为主,矿体主要赋存在石炭系黄龙组灰岩中,与围岩整合产出,产状随地层和断裂的变化而变化。
![]() |
图 4 虎爪山矿段主矿体形态及矿物分带示意图 Fig. 4 The cross-profile of the main ore body for the Huzhuashan ore section |
结合岩相学观察和电子探针测试结果,可观察到栖霞山铅锌矿具有一定矿石矿物和特征性矿物的分带现象,方向与矿体走向相近,可以分为三个带(图 4):①黄铁矿-菱锰矿带,常分布于铅锌主矿体上部,受黄龙组和高骊山组层间破碎带的控制,少量分布在五通组砂岩中,主要为块状和条带状矿石,黄铁矿含量较高,部分被铅锌矿交代;②闪锌矿-方铅矿带,常分布于黄龙组灰岩与高骊山组砂岩之间,交代黄铁矿矿石,主要为块状矿石、条带状矿石,铅锌矿含量较高;③磁铁矿-黄铜矿-闪锌矿-方铅矿带,具有透闪石-绿帘石-透辉石围岩蚀变,沿主矿体南西侧伏方向分布,即主矿体深部,主要为块状矿、浸染状、角砾状矿石。黄铜矿、磁铁矿主要为后期的热液矿物,交代早期的闪锌矿和方铅矿。
矿石构造以块状、浸染状、条带状、角砾状为主。矿石结构主要为粒状结构(自形晶粒结构、半自形晶粒结构、他形晶粒结构)、镶嵌结构、交代结构、显微压碎结构,次为乳滴状结构、显微包含结构、浸蚀结构、骸晶结构等。围岩蚀变主要为硅化、碳酸盐化、石膏化、重晶石化和绢云母化;部分钻孔见有零星的绿泥石、绿帘石及透闪石等,热液蚀变常与铅锌矿化有关。矿石矿物主要为胶黄铁矿、黄铁矿、闪锌矿、方铅矿、菱锰矿、黄铜矿、磁铁矿、磁黄铁矿等;脉石矿物主要为石英、方解石等。主要矿石类型为黄铁矿矿石、黄铜矿矿石、铅锌矿黄铁矿矿石、菱锰矿磁铁矿矿石等。
经过对样品的手标本观察和薄片镜下观察,可以将栖霞山矿的成矿划分为三个不同阶段(图 5)。第一阶段为同生沉积期,黄铁矿Py1出现在石炭系黄龙组灰岩与高骊山组砂岩中,表现为层纹状构造(图 5a),镜下表现为黄铁矿呈草莓状(图 5b);第二阶段为早期热液成矿期,该阶段黄铁矿Py2多被闪锌矿、方铅矿交代(图 5d),多呈骸晶结构;闪锌矿Sph1呈深灰-红棕色(图 5c),颗粒较细,大小为0.05~1mm,矿石构造多为块状或层状构造,此阶段脉石矿物为方解石;第三阶段为晚期热液成矿期(图 5e),该阶段黄铁矿Py3浅黄色,颗粒较粗,大小为0.2~2mm,多呈粒状结构和镶嵌结构(图 5f);该阶段闪锌矿Sph2呈棕色-浅黄色,颗粒较细,大小为0.05~1mm,矿石构造多为块状、角砾状和脉状构造。局部可见晚期的铅锌矿脉穿插早期热液成矿期形成的铅锌矿石(图 5g)。本阶段也是黄铜矿和磁铁矿形成的主要阶段,其中黄铜矿主要呈脉状、团块状穿切或包裹前期的铅锌矿石(图 5h)。脉石矿物为方解石和石英,少量石英颗粒镶嵌于较大闪锌矿颗粒外围,无色透明,多为自形。
![]() |
图 5 栖霞山矿石照片 层纹状的黄铁矿石(a)及镜下草莓状的黄铁矿反射光照片(b); 揉皱状的铅锌矿石(c)及镜下反射光照片(d); 块状的铅锌矿石(e)及镜下反射光照片(f); (g)晚期铅锌矿脉穿插早期铅锌矿石; (h)晚期黄铜矿脉交代早期铅锌矿石. Py-黄铁矿; Sph-闪锌矿; Gn-方铅矿; Ccp-黄铜矿; Rds-菱锰矿; Cal-方解石; Qz-石英 Fig. 5 Photographs and microphotographs of representative samples from the Qixiashan deposit (a) hand specimen of laminated pyrite; (b) microphotograph (reflected light) corresponding to (a), showing Py1 framboids in carbonate rock; (c) intensely folded Pb-Zn ore; (d) reflected light photograph corresponding to (c), banded sphalerite; (e) massive Pb-Zn ore; (f) microphotograph (reflected light) photograph corresponding to (e), coarse-grained euhedral crystal pyrite (Py3), yellow-brown sphalerite (Sph2), galena (Gn2) veins and calcite (Cal); (g) lead-zinc ore replaced by lead-zinc vein from the late mineralization stage; (h) chalcopyrite vein cut lead-zinc ore from the early mineralization stage. Py-pyrite; Sph-sphalerite; Gn-galena; Ccp-chalcopyrite; Rds-rhodochrosite; Cal-calcite; Qz-quartz |
研究样品来自栖霞山矿区虎爪山矿段I号主矿体,其集中了整个矿段90%以上的铅锌储量。样品采自-525m中段、-575m中段和-625m中段坑道和34线、36线、40线、42线、48线和54线的钻孔。从中选择有代表性的样品进行石英单矿物分离和氢氧同位素测试,石英和闪锌矿包裹体显微测温和激光拉曼探针分析。
3.1 流体包裹体显微测温本文中流体包裹体岩相学和测温工作全部在南京大学内生金属成矿机制研究国家重点实验室包裹体室进行,所用仪器为英国产Linkam THMS600型冷热两用台,分析精度为:±0.2℃,< 30℃;±1℃,< 300℃;±2℃,< 600℃。实验中升温使用电阻丝加热,降温的利用液态氮气进行冷却。速率控制在10℃·min-1,当加热到接近均一温度时,升温速率控制在约1℃·min-1;当接近冰点温度时,回温速率控制在约0.1℃·min-1。由于闪锌矿为半透明矿物,有些闪锌矿包裹体在升温过程中随着温度的升高,透光性下降,使观察者很难观察到包裹体的均一温度。因此针对这类包裹体,采用循环测温法测定其均一温度(Goldstein and Reynolds, 1994; 朱霞等, 2007)。
3.2 激光拉曼探针分析本次工作在对包裹体进行显微测温之后,选择其中有代表性的单个包裹体进行激光拉曼光谱测定,分析包裹体气、液相成分。实验在南京大学内生金属成矿机制研究国家重点实验室激光拉曼探针室进行,实验仪器为英国Renishaw公司RM2000型激光拉曼探针。实验条件:温度23℃,Ar离子激光器(514nm),风冷,狭缝宽50μm,光栅1800cm-1,扫描时间30~60s,扫描次数根据需要在1~3次不等,扫描范围为1000~4000cm-1。
3.3 氢氧同位素分析对包含有石英的矿石,破碎至50~80目,在双目镜下手工挑选纯净的石英。石英氢氧同位素组成均在中国地质科学院矿产资源研究所稳定同位素地球化学研究实验室采用MAT-253EM型质谱仪完成,在氧同位素分析测试中,使用BrF5方法提取氧(Clayton and Mayeda, 1963),分析结果以V-SMOW为标准(Craig, 1961; Baertschi, 1976),测试精度为±0.2‰。在氢同位素分析测试中,使用Zn与水反应提取氢(Coleman et al., 1982; Fallick et al., 1993),测试结果以V-SMOW为标准,分析精度为±2‰。
4 流体包裹体研究 4.1 包裹体岩相学特征根据Roedder (1984)和卢焕章等(2004)提出的室温下流体包裹体相态分类准则,将石英和闪锌矿中包裹体分为以下两种类型:
Ⅰ型包裹体:单相水溶液包裹体,此类包裹体出现量较少,占包裹体数量的1%,大小3~5μm,形态为不规则状、椭圆形,多为次生包裹体,呈串珠状分布(图 6c)。
![]() |
图 6 流体包裹体显微照片 (a、b) Ⅱ型:早期热液闪锌矿富液相气液两相包裹体; (c) Ⅰ型:成矿期石英单相水溶液包裹体; (d) Ⅱ型:成矿期石英富液相气液两相包裹体; (e、f) Ⅱ型:晚期热液闪锌矿富液相气液两相包裹体; (g、h) Ⅱ型:成矿后石英富液相气液两相包裹体 Fig. 6 Microphotographs showing different types of fluid inclusions observed in the Qixiashan deposit (a, b) type Ⅱ: liquid-rich fluid inclusions in brown sphalerite from the early mineralization stage; (c) type I: mono-phase aqueous fluid inclusions of quartz from the late mineralization stage; (d) type Ⅱ: liquid-rich inclusions of quartz from the late mineralization stage; (e, f) type Ⅱ: liquid-rich fluid inclusions in yellow brown sphalerite from the late mineralization stage; (g, h) type Ⅱ: liquid-rich inclusions of quartz from the post-ore stage |
Ⅱ型包裹体:富液相两相水溶液包裹体(图 6a-h),加热均一至液相。该类包裹体主要见于各阶段的石英和闪锌矿中,且占99%。Ⅱ型包裹体大小为2~25μm,形态通常椭圆型、长条型或负晶形,气液比10%~30%,通常孤立或成群分布。
4.2 流体包裹体显微测温学测温工作主要针对早期热液闪锌矿,晚期热液闪锌矿,与晚期热液闪锌矿密切伴生的石英及成矿后的石英进行,原生包裹体显微测温数据结果见表 1。盐度根据所测的冰点温度,利用Bodnar(1993, 2003)提供的方程计算得到。均一温度和盐度分布图见图 7。
![]() |
表 1 栖霞山铅锌矿流体包裹体温度测试结果 Table 1 Summary of microthermometric data of fluid inclusions in quartz and sphalerite in the Qixiashan deposit |
![]() |
图 7 栖霞山矿不同矿化阶段流体包裹体均一温度与盐度关系图 Fig. 7 Homogenization temperature vs. salinity of fluid inclusions from different mineralization stages in the Qixiashan deposit |
早期热液闪锌矿:包裹体类型为Ⅱ型,均一温度分布范围为182~289℃,平均为229℃;流体包裹体盐度分布范围为0.9%~8.2% NaCleqv,平均为4.0% NaCleqv。
晚期热液闪锌矿:包裹体类型为Ⅱ型包裹体加热后均一到液相,均一温度分布范围为201~306℃,平均为252℃;盐度分布范围在0.4%~10.9 % NaCleqv,平均为4.7% NaCleqv。
与晚期热液闪锌矿共生石英:包裹体类型为Ⅱ型,均一温度在197~348℃之间,平均为260℃;均一到液相,盐度分布范围为0.7%~9.2 % NaCleqv,平均为4.3%NaCleqv。
成矿后石英:Ⅱ型包裹体均一温度在120~188℃之间,平均为148℃,均一到液相,盐度分布范围为1.7%~8.9% NaCleqv,平均为3.69%NaCleqv。
4.3 流体包裹体气相成分本文选择了用激光拉曼对各期次的流体包裹体气相成分分析。结果显示,早期热液阶段闪锌矿中流体包裹体(图 8a)和晚期热液阶段闪锌矿中流体包裹体(图 8b)均只出现了闪锌矿和水的包络峰,表明闪锌矿中流体包裹体气相组分主要是水蒸气, 不含其它气相成分。晚期热液阶段石英中流体包裹体(图 8c)和成矿后石英中流体包裹体(图 8d)均只出现了水的包络峰及包裹体寄主矿物石英的峰,表明两个阶段石英中流体包裹体气相组分主要是水蒸气,不含其它气体。
![]() |
图 8 栖霞山铅锌矿各阶段流体包裹体拉曼图谱 (a)早期热液闪锌矿原生包裹体气相成分; (b)晚期热液闪锌矿原生包裹体气相成分; (c)晚期热液石英中原生包裹体气相成分; (d)成矿后石英中原生包裹体气相成分 Fig. 8 Representative Raman spectra of fluid inclusions in different ore stages of the Qixiashan Pb-Zn deposit (a) primary fluid inclusion from the early sphalerite; (b) primary fluid inclusion from the late sphalerite; (c) primary fluid inclusion in quartz from the late mineralization stage; (d) primary fluid inclusion from the post-ore stage |
本文选择与晚期热液成矿阶段的石英和成矿后的石英作为测试样品(表 2)。栖霞山矿区中晚期热液成矿阶段石英的δ18Omineral值变化在8.9‰~15.8‰之间,流体包裹体中δDSMOW变化范围为-71‰~-82‰。成矿后的石英样品的δ18Omineral值为9.6‰,流体包裹体中δDSMOW为-84‰(图 9)。
![]() |
表 2 栖霞山铅锌矿氢氧同位素结果 Table 2 Hydrogen-oxygen isotopic results of the Qixiashan Pb-Zn deposit |
![]() |
图 9 栖霞山铅锌矿氢氧同位素图解(底图据Taylor, 1997) Fig. 9 Fluid δD vs. δ18O characteristics of the fluids at the Qixiashan Pb-Zn deposit (base map after Taylor, 1997) |
脉石矿物和矿石矿物中的流体包裹体为理解成矿过程提供了重要依据(Roedder, 1984; Wilkinson, 2001),为了解成矿流体的物理化学条件提供直接证据(Campbell et al., 1984; Wilkinson, 2001; Shimizu et al., 2003; Moritz, 2006)。但是,与矿石矿物伴生的脉石矿物有时候很难判定是否真正与矿石具有成因联系。脉石矿物中包裹体具有显著不同于矿石矿物的现象在一些矿床中已经被报道,如石英脉型黑钨矿中的黑钨矿和伴生石英(Campbell and Panter, 1990; Lüders, 1996; Bailly et al., 2000; Ni et al., 2015a),高硫型浅成低温热液矿床中硫砷铜矿和石英(Mancano and Campbell, 1995; Kouzmanov et al., 2010)。另外,一些矿床也呈现出脉石矿物与矿石矿物具有相似的包裹体均一温度和盐度,如中-低硫浅成低温热液矿床(Shimizu et al., 2003)。因此,在利用包裹体数据反演成矿过程前,需要比较矿石与伴生脉石矿物的温度盐度数据以区分它们是否同时沉淀,从而阐明矿床的成矿过程(Li et al., 2018)。
栖霞山铅锌矿中晚期铅锌矿化脉中存在伴生石英。我们对比研究了晚期闪锌矿与石英中的包裹体(表 1、图 7),闪锌矿的原生包裹体的均一温度为201~306℃,盐度为0.4%~10.9% NaCleqv,而石英中的温度范围为197~348℃,盐度为0.7%~9.2% NaCleqv。结果显示晚期闪锌矿与其伴生石英具有一致的均一温度和盐度范围,证实两者确实同时沉淀,因此石英的包裹体的物理化学及同位素特征也可以用于成矿流体特征。
5.2 成矿流体演化及金属沉淀机制根据不同矿石的产状和交切关系,栖霞山存在两期不同的铅锌矿化。早期铅锌矿化形成层状矿体,其中闪锌矿结晶细小,呈深灰-红棕色,常出现碎裂结构、骸晶结构、显微包含结构。早期铅锌矿石明显被晚期脉状铅锌矿化切穿。晚期铅锌矿矿化中闪锌矿颗粒较大,呈棕黄色;并伴有明显的黄铜矿和磁铁矿化。
早期闪锌矿中包裹体主要为Ⅱ型包裹体,未发现沸腾包裹体组合,其均一温度范围为182~289℃,盐度范围为0.9%~8.2% NaCleqv,主要分布于2%~6% NaCleqv,包裹体的温度盐度未体现出明显的谐变关系(图 7),这些说明流体沸腾和混合均未在早期闪锌矿沉淀中起到主导作用。早期铅锌矿的沉淀可能受控于成矿流体与同生沉积层发生化学反应。一方面层状铅锌矿体通常出现交代早期同沉积黄铁矿矿体的现象(Sun et al., 2018);另一方面,对早期闪锌矿阶段硫同位素的研究显示,其δ34S值为6.5‰~9.4‰,具有较高的δ34S值(Sun et al., 2018),高于岩浆硫的范围(0‰±5‰; Ohmoto and Rye, 1979)。Pan and Dong (1999)报道了古生代到中生代下扬子地区的海相硫酸盐的硫同位素组成为δ34S=15‰~22‰。早阶段铅锌矿化中异常高的硫同位素可能是由于在其形成过程中混入该地区的硫酸盐。在水岩反应过程中,来自沉积地层的S可以为金属的沉淀提供硫源,从而促进铅锌沉淀(Machel, 2001; Sun et al., 2018);另外该过程也会显著改变成矿流体的酸碱度和氧逸度,降低金属络合物的溶解度,从而引起金属的沉淀(Ohmoto, 1972; Ni et al., 2015b)。
晚期闪锌矿中的包裹体的显微测温结果显示,其均一温度范围为201~306℃,盐度范围为0.4%~10.9% NaCleqv;与闪锌矿密切伴生的石英中流体包裹体的均一温度为197~348℃,盐度范围为0.7%~9.2% NaCleqv,相较于早期闪锌矿对应的流体温度盐度均有所上升,反映了在晚期闪锌矿成矿阶段有更多岩浆水组分的加入。而且晚期闪锌矿阶段硫同位素也表现为狭窄的变化区间,δ34S为1.6‰~3.7‰(Sun et al., 2018),接近于岩浆硫(0‰±5‰; Ohmoto and Rye, 1979),也反映了主要为岩浆来源。晚期岩浆水的加入来源于深部,尽管目前还未在栖霞山矿区深部发现岩体侵入,但是在其西南部已发现矽卡岩化矿物组合,以出现透闪石-绿帘石-透辉石为特征,其成矿流体可能与晚期的铅锌矿化具有密切的联系。首先,矽卡岩中也已发现有铅锌矿化,其矿石矿物具有与晚期铅锌矿化一致的特征,均以块状、角砾状和脉状构造为主,发育棕色-浅黄色的闪锌矿,这与早期铅锌矿化可以明显区分;其次,晚期铅锌矿化中具有伴生明显的黄铜矿化,这也在深部矽卡岩带中明显出现,矿物分带示意图(图 4)中有所总结;另外,流体温度空间分布(图 10)显示出由浅部矿化向深部的矽卡岩区域晚期闪锌矿的成矿流体温度具有明显上升的趋势,并且在矽卡岩带部分温度最高,暗示了与矽卡岩化具有一致的成矿流体来源。
![]() |
图 10 栖霞山矿晚期热液闪锌矿流体包裹体均一温度空间分布图 Fig. 10 Spatial distribution map of the homogenization temperatures of sphalerite fluid inclusions in late hydrothermal fluid at the Qixiashan deposit |
在晚期闪锌矿沉淀阶段,流体混合可能是主要的沉淀机制, 其证据如下:(1)在晚期闪锌矿中仅出现Ⅱ型包裹体,未发现沸腾包裹体组合,说明在闪锌矿沉淀过程中未发生显著的流体沸腾。(2)晚期闪锌矿和与之密切共生的石英中的包裹体的均一温度和盐度显示两者具有一定的谐变关系,表现为流体温度降低盐度降低的趋势,反映了流体混合过程。(3)流体混合过程同样可以在氢氧同位素上体现:通过对铅锌矿化期石英和成矿后石英脉进行D-O同位素测定结果,成矿期的δ18Omineral为8.9‰~15.8‰,δDSMOW值为-71‰ ~82‰,显示成矿流体介于岩浆流体和大气水之间,表明成矿过程中有大气水的混入;形成成矿晚期石英脉的流体则更接近大气水,其δ18Omineral为9.6‰,δDSMOW值为-84‰(图 9)。流体混合在很多铅锌矿中被认为是主导的成矿机制,例如Patricia铅锌银矿床(Chinchilla et al., 2016),Pering铅锌矿床(Huizenga et al., 2006),Morococha铅锌多金属矿床(Catchpole et al., 2011),Baiyinnuoer铅锌矿床(Shu et al., 2017),银山铅锌银矿床(Wang et al., 2013), 悦洋银铅锌多金属矿床(Chi et al., 2018)等。流体混合过程不仅造成成矿流体温度下降引起溶解度下降从而发生金属沉淀;同时也引起成矿流体稀释。铅锌被认为在流体中主要以ZnCl42-和PbCl42-形式进行迁移(Seward and Barnes, 1997; Wood and Samson, 1998; Yardley, 2005),因此流体稀释过程可以使盐度降低,进而造成金属的络合物解耦引发沉淀(Shu et al., 2017)。
5.3 矿床类型与勘查意义前人的研究对于栖霞山铅锌矿具有多种成因认识。例如部分学者根据矿体形态、构造环境及流体包裹体的特征并与典型的喷流沉积矿床对比认为栖霞山铅锌矿为同生沉积成矿,属于典型Sedex型铅锌矿床(王道华等, 1987; 桂长杰, 2012)。一些学者提出栖霞山铅锌矿为典型岩浆热液型矿床,成矿流体主要来源于岩浆热液流体,铅锌矿体受硅钙面的控制(叶敬仁, 1983; 郭晓山等, 1985; 真允庆和陈金欣, 1986; 钟庆禄, 1998; 叶水泉和曾正海, 2000; 徐忠发和曾正海, 2006; 张明超, 2015)。另外,同生沉积-热液叠加型也被提出(刘孝善等, 1979; 刘孝善和陈诸麒, 1985)。最近,对栖霞山矿石矿物原位同位素的研究揭示出不同期次矿石矿物具有显著不同的硫同位素组成(Sun et al., 2018),指示了一种复合多阶段成因模型。沉积阶段黄铁矿有很低的δ34S值,为负值并且变化范围较大(-13.8‰~-4.0‰),这种很低的负值且变化很宽的硫同位素特征,通常解释为细菌硫酸盐还原作用(Machel, 2001)。本文研究的早晚两期的闪锌矿及晚期石英的流体包裹体特征也表明栖霞山的铅锌矿化为多期岩浆热液活动的结果:(1)早期与晚期的铅锌矿化成矿流体均具有较高的盐度(例如,早期闪锌矿和晚期闪锌矿中包裹体的盐度可分别高达8.2%NaCleqv和10.9% NaCleqv),明显高于典型SEDEX型矿(成矿流体盐度与海水相近,通常不超过7% NaCleqv; Sato, 1972),说明有明显的岩浆组分;(2)另外,晚期闪锌矿阶段成矿流体具有较早期闪锌矿阶段更高的温度盐度,说明晚期闪锌矿阶段的成矿流体具有更多的岩浆组分,暗示了另一期岩浆热液的加入。
早期热液以层状铅锌矿体为主体矿化,该阶段以深灰-红棕色的早期闪锌矿为主。但是目前其西南部分深部已经发现矽卡岩型蚀变和矿化,其矿化特征以出现块状、角砾状和脉状构造为特征,晚期棕色-浅黄色闪锌矿为主,说明晚期铅锌矿化在深部具有勘探潜力。为了限定其深部可能的流体通道方向和热液中心位置,利用晚期闪锌矿中的包裹体进行流体空间填图。结果如图 10、图 11显示,闪锌矿中包裹体的均一温度从289℃下降到215℃,盐度由7.25% NaCleqv下降到2.35% NaCleqv,且温度盐度的降低方向是沿着矿体的侧伏方向,矿体的西南端温度最高,以西南到北东方向为轴,向轴线的两侧温度盐度递减。温度盐度最高值出现在46线的-700到-800m之间,这些区域也正是矽卡岩蚀变富集的区域。虽然目前研究区内未发现岩体出露,但并不排除深部存在隐伏岩体,目前矿区西侧的甘家巷矿段的个别钻孔中已见闪长玢岩岩脉(蒋慎君和刘沈衡, 1990; 徐忠发和曾正海, 2006)。另外,航磁资料也显示在栖霞山象山群砂岩分布区存在低缓的磁异常(杨元昭, 1986; 刘沈衡, 1991),可能是由于隐伏岩体导致。据此推测栖霞山西南部分深部存在热液中心,具有发现矽卡岩型矿化的潜力。
![]() |
图 11 栖霞山矿晚期热液闪锌矿流体包裹体盐度空间分布图 Fig. 11 Spatial distribution map of the salinities of sphalerite fluid inclusions in late hydrothermal fluid at the Qixiashan deposit |
(1) 栖霞山闪锌矿和与其伴生的石英中流体包裹体的均一温度和盐度显示出相似的范围,说明石英为与闪锌矿共生的脉石矿物,其中的流体包裹体可以代表成矿流体。
(2) 根据岩相学研究,栖霞山可以存在两期铅锌矿化。早期层状铅锌矿化闪锌矿中包裹体显示出中低温、中低盐度的成矿流体特征,矿化可能受控于成矿流体与同生沉积层发生化学反应。晚期闪锌矿中包裹体显示出中低温、中低盐度的成矿流体特征,但较早期矿化流体温度盐度均有所上升,暗示了更多岩浆流体加入,流体混合可能是主要的沉淀机制。
(3) 栖霞山铅锌矿具有多期叠加成矿的特点,为了限定其深部可能的热液中心位置,利用晚期闪锌矿中的包裹体进行流体空间填图。结果显示,成矿流体温度以西南到北东方向为轴,向西南方向温度上升,说明成矿流体可能来源于西南方向深部。
致谢 本文野外工作得到了江苏省有色金属华东地质勘查局和南京铅锌银茂有限公司的大力支持,在此深表谢意!
Baertschi P. 1976. Absolute 18O content of standard mean ocean water. Earth and Planetary Science Letters, 31(3): 341-344 DOI:10.1016/0012-821X(76)90115-1 |
Bailly L, Bouchot V, Bény C and Milési JP. 2000. Fluid inclusion study of stibnite using infrared microscopy:An example from the Brouzils antimony deposit (Vendee, Armorican massif, France). Economic Geology, 95(1): 221-226 DOI:10.2113/gsecongeo.95.1.221 |
Bodnar RJ. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684 DOI:10.1016/0016-7037(93)90378-A |
Bodnar RJ. 2003. Re-equilibration of fluid inclusions. In: Samson I, Anderson A and Marshall D (eds.). Fluid Inclusions:Analysis and Interpretation. Canada:Mineralogical Association of Canada, 213-230
|
Bureau of Geology and Mineral Resource of Jiangsu Province. 1989. Geological Records of Ningzhen Mountains. Nanjing: Jiangsu Science and technology Press, 182-283 (in Chinese)
|
Campbell AR, Hackbarth CJ, Plumlee GS and Petersen U. 1984. Internal features of ore minerals seen with the infrared microscope. Economic Geology, 79(6): 1387-1392 DOI:10.2113/gsecongeo.79.6.1387 |
Campbell AR and Panter KS. 1990. Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael's Mount and Cligga Head, Cornwall, England. Geochimica et Cosmochimica Acta, 54(3): 673-681 |
Catchpole H, Kouzmanov K, Fontboté L, Guillong M and Heinrich CA. 2011. Fluid evolution in zoned Cordilleran polymetallic veins:Insights from microthermometry and LA-ICP-MS of fluid inclusions. Chemical Geology, 281(3-4): 293-304 DOI:10.1016/j.chemgeo.2010.12.016 |
Chang YF, Liu XP and Wu YC. 1991. Metallogenic Belt of the Middle and Lower Yangtze River. Beijing: Geological Publishing House, 71-76 (in Chinese)
|
Chen JF, Yan J, Xie Z, Xu X and Xing F. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China:Constraints on sources. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 719-731 DOI:10.1016/S1464-1895(01)00122-3 |
Chen W. 2016. Studies on geological and geochemical characteristics and genesis of the Qixiashan Pb-Zn deposit, Jiangsu Province, China. Master Degree Thesis. Beijing:China University of Geosciences, 1-60 (in Chinese with English summary)
|
Chi Z, Ni P, Pan JY, Ding JY, Wang YQ, Li SN, Bao T, Xue K and Wang WB. 2018. Geology, mineral paragenesis and fluid inclusion studies of the Yueyang Ag-Au-Cu deposit, South China:Implications for ore genesis and exploration. Geochemistry:Exploration, Environment, Analysis, 18(4): 303-318 DOI:10.1144/geochem2017-059 |
Chinchilla D, Ortega L, Piña R, Merinero R, Moncada D, Bodnar RJ, Quesada C, Valverde A and Lunar R. 2016. The Patricia Zn-Pb-Ag epithermal ore deposit:An uncommon type of mineralization in northeastern Chile. Ore Geology Reviews, 73: 104-126 DOI:10.1016/j.oregeorev.2015.10.026 |
Clayton RN and Mayeda TK. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27(1): 43-52 DOI:10.1016/0016-7037(63)90071-1 |
Coleman ML, Shepherd TJ, Durham JJ, Rouse JE and Moore GR. 1982. Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry, 54(6): 993-995 DOI:10.1021/ac00243a035 |
Craig H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133(3467): 1833-1834 DOI:10.1126/science.133.3467.1833 |
Fallick AE, Macaulay CI and Haszeldine RS. 1993. Implications of linearly correlated oxygen and hydrogen isotopic compositions for kaolinite and illite in the Magnus Sandstone, North Sea. Clays and Clay Minerals, 41(2): 184-190 DOI:10.1346/CCMN.1993.0410207 |
Fu Q. 2011. Geochemistry and metallogenic model of the Qixiashan lead-zinc polymetallic deposit, Jiangsu. Master Degree Thesis. Beijing:China University of Geosciences, 1-60 (in Chinese with English summary)
|
Goldstein RH and Reynolds TJ. 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. USA: Society for Sedimentary Geology
|
Gui CJ and Jing S. 2011. Ore-forming properties and prospect of Pb-Zn polymetallic ore deposit in Xixia Mountain of Nanjing. Journal of Geology, 35(4): 395-400 (in Chinese with English abstract) |
Gui CJ. 2012. Mineral deposit genetic study on the Qixiashan Pb-Zn deposit in Nanjing, Jiangsu Province, China. Master Degree Thesis. Nanjing:Nanjing University, 1-56 (in Chinese with English summary)
|
Guo XS, Xiao ZM, Ou YJ and Lu QX. 1985. On the genesis of the Qixiashan lead-zine ore deposit of Nanjing. Mineral Deposits, 4(1): 11-21 (in Chinese with English abstract) |
Huizenga JM, Gutzmer J, Banks D and Greyling L. 2006. The paleoproterozoic carbonate-hosted Pering Zn-Pb deposit, South Africa. Ⅱ:Fluid inclusion, fluid chemistry and stable isotope constraints. Mineralium Deposita, 40(6-7): 686-706 |
Jiang SJ and Liu SH. 1990. On the infrastructure and metallogenic model of Qixiashan Pb-Zn-Ag deposit. Jiangsu Geology, (3): 9-14 (in Chinese with English abstract) |
Jiang SY, Ding QF, Yang SY, Zhu ZY, Sun MZ, Sun Y and Bian LZ. 2011. Discovery and significance of carbonate mud mounds from Cu-polymetallic deposits in the Middle and Lower Yangtze Metallogenic Belt:Examples from the Wushan and Dongguashan deposits. Acta Geologica Sinica, 85(5): 744-756 (in Chinese with English abstract) |
Kouzmanov K, Pettke T and Heinrich CA. 2010. Direct analysis of ore-precipitating fluids:Combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals. Economic Geology, 105(2): 351-373 DOI:10.2113/gsecongeo.105.2.351 |
Li SN, Ni P, Bao T, Xiang HL, Chi Z, Wang GG, Huang B, Ding JY and Dai BZ. 2018. Genesis of the Ancun epithermal gold deposit, Southeast China:Evidence from fluid inclusion and stable isotope data. Journal of Geochemical Exploration, 195: 157-197 DOI:10.1016/j.gexplo.2018.01.016 |
Liu JM, Yan J, Li QZ and Liu XQ. 2014. Zircon LA-ICPMS dating of the Anjishan pluton in Nanjing-Zhenjiang area and its significance. Geological Review, 60(1): 190-200 |
Liu SH. 1991. Interpretation of gravity and magnetic characteristics of the Qixiashan Pb-Zn poly metal deposit, Nanjing and discussion on its genesis. Contributions to Geology and Mineral Resources Research, 6(1): 76-84 (in Chinese with English abstract) |
Liu SH. 1999. Geophysical exploration model of the Qixiashan lead-zinc polymetallic deposit in Nanjing. Geophysical and Geochemical Exploration, 23(1): 72-78 (in Chinese with English abstract) |
Liu XS, Chen ZQ, Chen YQ, Zhu ZQ, Liu ZY and Cheng QF. 1979. The texture and structure of ores from the sulfide deposits of Qixiashan, Nanjing, and their implication to the ore genesis. Journal of Nanjing University (Natural Science), (4): 75-94 (in Chinese)
|
Liu XS and Chen ZQ. 1985. A study of the strata-bound polymetallic pyrite deposit of Qixishan in Nanjing. Journal of Guilin College of Geology, 5(2): 121-130 (in Chinese with English abstract) |
Lu HZ, Fan HR, Ni P, Ou GX, Shen K and Zhang WH. 2004. Fluid Inclusions. Beijing: Science Press, 1-450 (in Chinese)
|
Lü QT, Hou ZQ, Yang ZS and Shi DN. 2005. Underplating in the middle-lower Yangtze Valley and model of geodynamic evolution:Constraints from geophysical data. Science in China (Series D), 48(7): 985-999 DOI:10.1360/03yd0205 |
Lü QT, Dong SW, Shi DN, Tang JT, Jiang GM, Zhang YQ, Xu T and Sinoprobe-03-CJ Group. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt:A review from Sinoprobe. Acta Petrologica Sinica, 30(4): 889-906 (in Chinese with English abstract) |
Lüders V. 1996. Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite):Metallogenic implications. Economic Geology, 91(8): 1462-1468 DOI:10.2113/gsecongeo.91.8.1462 |
Machel HG. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings:Old and new insights. Sedimentary Geology, 140(1-2): 143-175 DOI:10.1016/S0037-0738(00)00176-7 |
Mancano DP and Campbell AR. 1995. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu-Au deposit. Geochimica et Cosmochimica Acta, 59(19): 3909-3916 DOI:10.1016/0016-7037(95)00282-5 |
Mao JW, Stein H, Du AD, Zhou TF, Mei YX, Li YF, Zang WS and Li JW. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River Belt and its implications for mineralization. Acta Geologica Sinica, 78(1): 121-131 (in Chinese with English abstract) |
Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley Metallogenic Belt. Mineral Deposits, 28(2): 109-119 (in Chinese with English abstract) |
Moritz R. 2006. Fluid salinities obtained by infrared microthermometry of opaque minerals:Implications for ore deposit modeling:A note of caution. Journal of Geochemical Exploration, 89(1-3): 284-287 DOI:10.1016/j.gexplo.2005.11.068 |
Ni P, Wang XD, Wang GG, Huang JB, Pan JY and Wang TG. 2015a. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geology Reviews, 65: 1062-1077 DOI:10.1016/j.oregeorev.2014.08.007 |
Ni P, Wang GG, Yu W, Chen H, Jiang LL, Wang BH, Zhang HD and Xu YF. 2015b. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie Orogen, Central China. Ore Geology Reviews, 65: 1078-1094 DOI:10.1016/j.oregeorev.2014.09.017 |
Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551-578 DOI:10.2113/gsecongeo.67.5.551 |
Ohmoto H and Rye RO. 1979. Isotopes of sulfur and carbon. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 2nd Edition. New York:Wiley, 509-567
|
Pan YM and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177-242 |
Roedder E. 1984. Fluid Inclusions. Reviews in Mineralogy. U.S.:Mineralogical Society of America, 1-644
|
Sato T. 1972. Behaviours of ore-forming solutions in seawater. Mining Geology, 22(111): 31-42 |
Seward TM and Barnes HL. 1997. Metal transport by hydrothermal ore fluids. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley and Sons, 435-486
|
Shimizu T, Aoki M and Kabashima T. 2003. Near-infrared and visible light microthermometry of fluid inclusions in sphalerite from a possible southeast extension of the Toyoha polymetallic deposit, Japan. Resource Geology, 53(2): 115-126 |
Shu QH, Chang ZS, Hammerli J, Lai Y and Huizenga JM. 2017. Composition and evolution of fluids forming the Baiyinnuo'er Zn-Pb skarn deposit, northeastern China:Insights from laser ablation ICP-MS study of fluid inclusions. Economic Geology, 112(6): 1441-1460 DOI:10.5382/econgeo.2017.4516 |
Sun XJ, Ni P, Yang YL, Qin H, Chen H, Gui CJ and Jing S. 2018. Formation of the Qixiashan Pb-Zn deposit in Middle-Lower Yangtze River Valley, eastern China:Insights from fluid inclusions and in situ LA-ICP-MS sulfur isotope data. Journal of Geochemical Exploration, 192: 45-59 DOI:10.1016/j.gexplo.2018.03.011 |
Sun Y, Ma CQ and Liu YY. 2013. The latest Yanshanian magmatic and metallogenic events in the Middle-Lower Yangtze River Belt:Evidence from the Ningzhen region. Chinese Science Bulletin, 58(34): 4308-4318 DOI:10.1007/s11434-013-6015-8 |
Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing:Geological Publishing House: 60-85 (in Chinese) |
Taylor HP Jr. 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley & Sons Inc., 229-302
|
Wang DH, Fu DX and Wu LX. 1987. Basic Geological Characteristics and Mineralization Regularity of Copper, Gold, Iron and Sulfide Ore Deposits in the Middle-Lower Yangtze River Valley. Beijing: Geological Publishing House, 1-153 (in Chinese)
|
Wang GG, Ni P, Wang RC, Zhao KD, Chen H, Ding JY, Zhao C and Cai YT. 2013. Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China:Implications for ore genesis and exploration. Journal of Asian Earth Sciences, 74: 343-360 DOI:10.1016/j.jseaes.2012.11.038 |
Wei XL and Gong DK. 2013. On prospecting potential of deep copper in Qixiashan Pb-Zn-Ag mine of Nanjing. Journal of Geology, 37(2): 230-250 (in Chinese with English abstract) |
Wilkinson JJ. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229-272 DOI:10.1016/S0024-4937(00)00047-5 |
Wood SA and Samson IM. 1998. Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Reviews in Economic Geology, 10: 33-80 |
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30 DOI:10.1016/j.jseaes.2010.11.014 |
Xiao ZM, Guo XS, Ou YJ, Lu QX and Xing LY. 1983. On multiple stratabound characteristics of Qixiashan Pb-Zn-Mn-S deposit, Nanjing. Geology and Exploration, (9): 1-7 (in Chinese) |
Xiao ZM, Ye SQ, Zhong QL, Zhang LG and Zeng ZH. 1996. Metallogenic Geology and Exploration Model of Qixiashan Lead-Zing-Silver Deposit, Nanjing. Beijing: Geological Publishing House, 1-81 (in Chinese)
|
Xu X and Xing FM. 1994. Whole-rock and mineral Rb-Sr isochron ages of the three gabbros in Nanjing-Wuhu area, China. Scientia Geologica Sinica, 29(3): 309-312 (in Chinese with English abstract) |
Xu ZF and Zeng ZH. 2006. Discussions on relationship between mineralization and magmatism in Qixiashan Pb-Zn-Ag ore deposit of Nanjing. Jiangsu Geology, 30(3): 177-182 (in Chinese with English abstract) |
Yang YZ. 1986. Study on features of Magnetic anomaly of deep source and discussion on its genesis in Qixiashan Pb-Zn poly metal deposit, Nanjing. Geology and Exploration, 22(2): 42-46 (in Chinese) |
Yardley BWD. 2005. 100th Anniversary Special Paper:Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100(4): 613-632 DOI:10.2113/gsecongeo.100.4.613 |
Ye JR. 1983. Activation of platform and the formation of the lead-zinc polymetallic ore deposits in Qixia Mountain. Geotectonica et Metallogenia, 7(3): 248-255 (in Chinese with English abstract) |
Ye SQ and Zeng ZH. 2000. A study on fluid inclusions in Qixiashan lead and zinc ore deposit, Nanjing. Volcanology & Mineral Resources, 21(4): 266-274 (in Chinese with English abstract) |
Yin JN, Xing SW and Xiao KY. 2016. Metallogenic characteristics and resource potential analysis of the Middle-Lower Yangtze River Fe-Cu-Au-Pb-Zn Metallogenic Belt. Acta Geologica Sinica, 90(7): 1525-1536 (in Chinese with English abstract) |
Zhai YS, Yao SZ and Lin XD. 1992. Iron Copper Deposits in the Middle and Lower Reaches of Changjiang River. Beijing: Geological Publishing House, 1-120 (in Chinese)
|
Zhang MC. 2015. Research on metallization of the Qixiashan lead-zinc-silver polymetallic deposit, Jiangsu Province. China. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-211
|
Zhang MC, Chen RY, Ye TZ, Li JC, Lü ZC, He X, Chen H and Yao L. 2017. Genetic study on the Qixiashan Pb-Zn polymetallic deposit in Jiangsu Province:Evidence from fluid inclusions and H-O-S-Pb isotopes. Acta Petrologica Sinica, 33(11): 3453-3470 (in Chinese with English abstract) |
Zhen YQ and Chen JX. 1986. Compositions of sulfur and lead isotope and the origin of Qixiashan lead-zine deposit in Nanjing. Journal of Guilin College of Geology, 6(4): 319-328 (in Chinese with English abstract) |
Zhong QL. 1998. Discovery and prospecting of large scale Qixiashan Pb-Zn-Ag polymetallic deposit in Nanjing. Jiangsu Geology, 27(2): 230-250 (in Chinese with English abstract) |
Zhou TF, Fan Y and Yuan F. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica, 24(8): 1665-1678 (in Chinese with English abstract) |
Zhou TF, Fan Y, Yuan F and Zhong GX. 2012. Progress of geological study in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 28(10): 3051-3066 (in Chinese with English abstract) |
Zhou TF, Wang SW, Fan Y, Yuan F, Zhang DY and White NC. 2015. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt, eastern China. Ore Geology Reviews, 65: 433-456 DOI:10.1016/j.oregeorev.2014.10.002 |
Zhou TF, Wang SW, Yuan F, Fan Y, Zhang DY, Chang YF and White NC. 2016. Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2): 271-288 (in Chinese with English abstract) |
Zhou TF, Fan Y, Wang SW and White NC. 2017. Metallogenic regularity and metallogenic model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3353-3372 (in Chinese with English abstract) |
Zhu X, Ni P, Huang JB and Wang TG. 2007. Introduction to Infrared micro-thermometric technique:An example from fluid inclusion study in rutile deposits. Acta Petrologica Sinica, 23(9): 2052-2058 (in Chinese with English abstract) |
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 71-76.
|
陈伟. 2016.江苏栖霞山铅锌矿床地质地球化学特征及成因研究.硕士学位论文.北京: 中国地质大学, 1-60
|
付强. 2011.栖霞山铅锌多金属矿床地球化学特征及成矿模式探讨.硕士学位论文.北京: 中国地质大学, 1-60
|
桂长杰, 景山. 2011. 南京栖霞山铅锌多金属矿成矿特征及找矿方向. 地质学刊, 35(4): 395-400. DOI:10.3969/j.issn.1674-3636.2011.04.395 |
桂长杰. 2012.江苏省南京市栖霞山铅锌矿矿床成因研究.硕士学位论文.南京: 南京大学, 1-56
|
郭晓山, 肖振明, 欧亦君, 陆勤星. 1985. 南京栖霞山铅锌矿床成因探讨. 矿床地质, 4(1): 11-20. |
蒋少涌, 丁清峰, 杨水源, 朱志勇, 孙明志, 孙岩, 边立曾. 2011. 长江中下游成矿带铜多金属矿床中灰泥丘的发现及其意义——以武山和冬瓜山铜矿为例. 地质学报, 85(5): 744-756. |
蒋慎君, 刘沈衡. 1990. 栖霞山铅锌银矿床深部地质构造特征及成因过程模型初探. 江苏地质, (3): 9-14. |
江苏省地质矿产局. 1989. 宁镇山脉地质志. 南京:江苏科学技术出版社, 182. |
刘建敏, 闫峻, 李全忠, 刘晓强. 2014. 宁镇地区安基山岩体锆石LA-ICPMS U-Pb定年及意义. 地质论评, 60(1): 190-200. |
刘沈衡. 1991. 南京栖霞山铅锌多金属矿床重磁异常及矿床成因解释. 地质找矿论丛, 6(1): 76-84. |
刘沈衡. 1999. 南京栖霞山铅锌多金属矿床地球物理勘查模式. 物探与化探, 23(1): 72-78. DOI:10.3969/j.issn.1000-8918.1999.01.014 |
刘孝善, 陈诸麒, 陈永清, 朱志群, 刘章燕, 程启芬. 1979. 南京栖霞山硫化物矿床的矿石结构构造及其对矿石的成因意义. 南京大学学报(自然科学版), (4): 75-94. |
刘孝善, 陈诸麒. 1985. 南京栖霞山层控多金属黄铁矿矿床的研究. 桂林冶金地质学院学报, 5(2): 121-130. |
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 1-450.
|
吕庆田, 侯增谦, 杨竹森, 史大年. 2004. 长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束. 中国科学(D辑), 34(9): 783-794. |
吕庆田, 董树文, 史大年, 汤井田, 江国明, 张永谦, 徐涛, SinoProbe-03-CJ项目组. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述. 岩石学报, 30(4): 889-906. |
毛景文, Stein H, 杜安道, 周涛发, 梅燕雄, 李永峰, 藏文栓, 李进文. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78(1): 121-131. |
毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2): 109-119. DOI:10.3969/j.issn.0258-7106.2009.02.001 |
孙洋, 马昌前, 刘园园. 2014. 长江中下游燕山期最新的成岩成矿事件:来自宁镇地区的证据. 科学通报, 59(8): 668-678. |
唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 60-85.
|
王道华, 傅德鑫, 吴履秀. 1987. 长江中下游区域铜、金、铁、硫矿床基本特征及成矿规律. 北京: 地质出版社, 1-153.
|
魏新良, 龚德奎. 2013. 南京栖霞山铅锌银矿床深部找铜前景. 地质学刊, 37(2): 230-250. DOI:10.3969/j.issn.1674-3636.2013.02.230 |
肖振民, 郭晓山, 欧亦君, 陆勤星, 邢林源. 1983. 栖霞山铅锌锰硫矿床的多源层控特征. 质与勘探, (9): 1-7. |
肖振民, 叶水泉, 钟庆禄, 张立公, 曾正海. 1996. 南京栖霞山铅锌银矿床地质及勘查模式. 北京: 地质出版社, 1-81.
|
徐祥, 邢凤鸣. 1994. 宁芜地区三个辉长岩的全岩和矿物Rb-Sr等时线年龄. 地质科学, 29(3): 309-312. |
徐忠发, 曾正海. 2006. 南京栖霞山铅锌银矿床成矿作用与岩浆活动关系探讨. 江苏地质, 30(3): 177-182. |
杨元昭. 1986. 据深源磁异常的发现论栖霞山多金属矿矿床的成因. 地质与勘探, 22(2): 42-46. |
叶敬仁. 1983. 地台活化与栖霞山铅锌多金属矿床的形成. 大地构造与成矿学, 7(3): 248-255. |
叶水泉, 曾正海. 2000. 南京栖霞山铅锌矿床流体包裹体研究. 火山地质与矿产, 21(4): 266-274. DOI:10.3969/j.issn.1671-4814.2000.04.003 |
阴江宁, 邢树文, 肖克炎. 2016. 长江中下游Fe-Cu-Au-Pb-Zn多金属成矿带主要地质成矿特征及潜力分析. 地质学报, 90(7): 1525-1536. DOI:10.3969/j.issn.0001-5717.2016.07.018 |
翟裕生, 姚书振, 林新多. 1992. 长江中下游地区铁铜矿床. 北京: 地质出版社, 1-120.
|
张明超. 2015.江苏栖霞山铅锌银多金属矿床成矿作用研究.博士学位论文.北京: 中国地质大学, 1-211
|
张明超, 陈仁义, 叶天竺, 李景朝, 吕志成, 何希, 陈辉, 姚磊. 2017. 江苏栖霞山铅锌多金属矿床成因探讨:流体包裹体及氢-氧-硫-铅同位素证据. 岩石学报, 33(11): 3453-3470. |
真允庆, 陈金欣. 1986. 南京栖霞山铅锌矿床硫铅同位素组成及其成因. 桂林冶金地质学院学报, 6(4): 319-328. |
钟庆禄. 1998. 南京栖霞山大型铅锌银多金属矿床的发现及其找矿远景. 江苏地质, 22(1): 56-61. |
周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8): 1665-1678. |
周涛发, 范裕, 袁峰, 钟国雄. 2012. 长江中下游成矿带地质与矿产研究进展. 岩石学报, 28(10): 3051-3066. |
周涛发, 王世伟, 袁峰, 范裕, 张达玉, 常印佛, White NC. 2016. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用. 岩石学报, 32(2): 271-288. |
周涛发, 范裕, 王世伟, White VC. 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353-3372. |
朱霞, 倪培, 黄建宝, 王天刚. 2007. 显微红外测温技术及其在金红石矿床中的应用. 岩石学报, 23(9): 2052-2058. DOI:10.3969/j.issn.1000-0569.2007.09.004 |