岩石学报  2019, Vol. 35 Issue (9): 2765-2773, doi: 10.18654/1000-0569/2019.09.09   PDF    
粤北诸广南部铀矿田流体包裹体的氦氩同位素组成及成矿流体来源示踪
庞雅庆1, 范洪海1, 高飞1, 吴建勇2, 谢小占3     
1. 核工业北京地质研究院, 中核集团铀资源勘查与评价技术重点实验室, 北京 100029;
2. 核工业290研究所, 韶关 512026;
3. 广东省核工业地质局二九一大队, 广州 510800
摘要: 粤北诸广南部铀矿田是我国重要的花岗岩型铀矿产地之一,有关诸广南部花岗岩型铀矿田的成因,多年来一直存在较大的争议。本文以诸广南部铀矿田典型铀矿床成矿期萤石、方解石和黄铁矿中流体包裹体为测试对象,研究了成矿流体的He、Ar同位素地球化学。研究表明,萤石流体包裹体的3He/4He比值为0.021~0.186Ra,40Ar/36Ar比值为298.4~2515.7;方解石流体包裹体的3He/4He比值为0.027~0.209Ra,40Ar/36Ar比值为295.9~327.2;黄铁矿流体包裹体的3He/4He比值为0.021~1.543Ra,40Ar/36Ar比值为326.9~1735.1;He-Ar同位素系统显示成矿流体的3He/4He比值略高于地壳氦同位素特征值(0.01~0.05Ra),但低于幔源氦同位素特征值(6~9Ra),40Ar/36Ar比值接近或高于大气氩的同位素组成(40Ar/36Ar=295.5),成矿流体为壳-幔混合来源。结合H-O、He-Ar、C和Sr等多元同位素证据表明,成矿流体由两个端元组成:一是含有一定放射性成因Ar的大气降水的地壳流体,二是含幔源He的地幔流体。进一步研究表明,受NNW向断裂控制的棉花坑、书楼丘、长排等铀矿床受地幔流体影响比较大,而受NE向断裂控制的蕉坪、东坑、烟筒岭铀矿床受大气降水影响比较大。
关键词: 成矿流体    He-Ar同位素    壳-幔混合    诸广南部矿田    
Helium and argon isotopic compositions of fluid inclusions and tracing to the source of ore-forming fluids for the southern Zhuguang uranium ore field in northern Guangdong Province
PANG YaQing1, FAN HongHai1, GAO Fei1, WU JianYong2, XIE XiaoZhan3     
1. CNNC Key Laboratory of Uranium Resource Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China;
2. Research Institute No. 290, CNNC, Shaoguan 512026, China;
3. 291 Brigade of Guangdong Province Nuclear Industry Geological Bureau, Guangzhou 510800, China
Abstract: Southern Zhuguang uranium ore field is an important producing area of granite type U-deposit in China. The southern Zhuguang uranium deposits have attracted the attention of many geologists and their metallogenesis has long been in dispute. This paper reports He and Ar isotopic data of fluid inclusions trapped by fluorite,calcite and pyrite formed in metallogenic epoch from the southern Zhuguang uranium ore field. 3He/4He ratios of fluid inclusions trapped by fluorite range from 0.021Ra to 0.186Ra,and 40Ar/36Ar ratios of fluid inclusions trapped by fluorite range from 298.4 to 2515.7. 3He/4He ratios of fluid inclusions trapped by calcite range from 0.027Ra to 0.209Ra,and 40Ar/36Ar ratios of fluid inclusions trapped by calcite range from 295.9 to 327.2. 3He/4He ratios of fluid inclusions trapped by pyrite range from 0.021Ra to 1.543Ra,and 40Ar/36Ar ratios of fluid inclusions trapped by pyrite range from 326.9 to 1735.1. 3He/4He ratios of ore-forming fluids are slightly higher than that of the crust,and lower than that of the mantle. 40Ar/36Ar ratios of ore-forming fluids are close to or higher than that of the atmosphere (40Ar/36Ar=295.5). The compositions of He-Ar isotopic system suggest that the ore-forming fluids are characteristics of crust-mantle mixed in source. The compositions of H-O,He-Ar,C and Sr isotopes indicate that the ore-forming fluids are a mixture between crustal fluids containing meteoric water with radioactive Ar and mantle fluids containing mantle-derived He. The synthetical results show that the mantle fluids in source for Mianhuakeng,Shulouqiu and Changpai uranium deposits dominated by NNW faults are more affected than those for Jiaoping,Dongkeng and Yantongling uranium deposits dominated by NE faults.
Key words: Ore-forming fluids    He and Ar isotopes    Crust-mantle mixed    Southern Zhuguang uranium ore field    

粤北诸广南部铀矿田是华南重要的铀矿资源基地之一,目前已发现花岗岩型铀矿床18个。有关诸广南部花岗岩型铀矿田的成因,多年来一直存在较大的争议。金景福和胡瑞忠(1985)提出以晚期花岗岩浆的分异热液成矿为主复成因成矿的观点;王联魁和刘铁庚(1987)王健芳等(1989)傅丽雯等(2016)等主要强调大气降水在成矿中的作用;金景福等(1992)倪师军和金景福(1992)倪师军等(1994)提出了大气降水、幔源流体以及花岗岩中残留热液的三元混合成矿;王明太等(1999)罗毅等(2002)提出深源富铀地质热流体与部分大气水混合成矿;胡瑞忠等(2007, 2015)和Hu et al.(1993, 2008)强调来自于地幔的CO2在铀成矿中的作用;沈渭洲等(2010)朱捌(2010)刘成东等(2016)等主要强调地幔流体在成矿中的作用。争论的焦点是成矿流体和成矿物质是否来源于深部?深部流体是幔源还是壳源?

稀有气体尤其是氦氩同位素化学性质稳定,在地壳和地幔储库中具有极不相同的同位素组成,即使地壳流体中少量幔源氦的加入也可以很容易判别出来,因此稀有气体同位素在示踪成矿古流体方面得到了广泛的应用(Stuart et al., 1995; Hu et al., 1998, 2004, 2009, 2012; Burnard et al., 1999;胡瑞忠等, 1999; Yamamoto et al., 2001;张连昌等, 2002; Burnard and Polya, 2004; Li et al., 2007; Kendrick et al., 2011; Wu et al., 2011, 2018;陈娴等, 2016; Wei et al., 2019)。本文以棉花坑、书楼丘、长排、油洞、蕉坪、东坑、烟筒岭等典型铀矿床为例,从成矿期萤石、方解石和黄铁矿中流体包裹体的He和Ar同位素组成研究入手,探讨了诸广南部铀矿田成矿流体的来源,为深入研究花岗岩型铀矿成因提供依据。

1 地质背景

粤北诸广南部铀矿田处于闽赣后加里东隆起与湘桂粤北海西-印支坳陷的结合部位,位于诸广山岩体南部,行政区划属广东省仁化县、始兴县和南雄市管辖。区内地层发育比较齐全,从震旦系-第四系均有出露,其中以古生界分布最广,中-新生界次之,主要沿诸广山岩体外围出露,与铀成矿关系密切的变质基底为以震旦-寒武系为主体的新元古代-早古生代地层。区内岩浆活动频繁,主要以印支期和燕山期花岗岩为主,构成了诸广山复式岩体的主体,区内大部分矿床位于这两期花岗岩中。区内断裂构造主要有北东向、北西向、北东东向和北北西向四组,其中以北东向、北东东向规模最大,控制了南雄、百顺断陷带和长江、城口复合断陷区,也控制了铀矿田、矿床的分布(图 1)。

图 1 诸广南部铀矿田地质略图 1-上白垩统;2-泥盆系;3-奥陶系;4-寒武系;5-震旦系;6-燕山早期第三阶段花岗岩;7-燕山早期第二阶段花岗岩;8-燕山早期第一阶段花岗岩;9-印支期第三阶段花岗岩;10-印支期第二阶段花岗岩;11-印支期第一阶段花岗岩;12-海西期第三阶段花岗岩;13-海西期第二阶段花岗闪长岩;14-海西期第一阶段云辉二长岩;15-加里东期片麻状、眼球状花岗岩;16-硅化断裂带;17-铀矿床;18-萤石矿床 Fig. 1 Simplified geological map of southern Zhuguang uranium ore field 1-Upper Cretaceous; 2-Devonian; 3-Ordovician; 4-Cambrian; 5-Sinian; 6-granite of the third stage of early Yanshanian; 7-granite of the second stage of early Yanshania; 8-granite of the first stage of early Yanshanian; 9-granite of the third stage of Indo-Chinese; 10-granite of the second stage of Indo-Chinese; 11-granite of the first stage of Indo-Chinese; 12-granite of the third stage of Hercynian; 13-granodiorite of the second stage of Hercynian; 14-mica-gabbro monzonite of the first stage of Hercynian; 15-augenand gneissic granite of Caledonian; 16-silicified fracture zone; 17-uranium deposit; 18-fluorite deposit

本区矿床均属于花岗岩型铀矿床,根据矿床地质特征、主要控矿因素和矿体产出部位,将区内铀矿床分为大脉型、群脉型、蚀变带型、交点型和盆地边缘花岗岩外带型矿床。

大脉型是本区分布最广的铀矿化类型。该类型矿化多受硅化带及旁侧次级硅化带控制,矿体呈单脉状、侧列状或厚大的透镜状产出。该类型铀矿床一种受北北西向张扭性断裂控制,断裂规模较小,矿体延伸规模较大且较深,铀矿化类型以微晶石英-沥青铀矿型为主,主要分布于长江地区,如棉花坑、书楼丘、长排矿床等;一种受北东或北东东向压扭性断裂控制,断裂规模较大,但矿体仅在断裂局部地段产生,铀矿化类型以萤石-胶状黄铁矿-沥青铀矿型为主,主要分布于百顺、城口地区,如东坑、烟筒岭矿床等。群脉型主要分布在靠近岩体边部,受密集裂隙带控制,矿体品位高,呈脉状、透镜状、似“人身状”沿裂隙密集成群展布,铀矿化类型以梳状石英-沥青铀矿型为主,如澜河矿床。蚀变带型具有矿体小而多、品位低而均匀的特点,矿体产状与含矿构造产状常不一致,形态为似板状、似脉状、透镜状,铀矿化类型以沥青铀矿-胶状黄铁矿-微晶石英型为主,如蕉坪矿床等。交点型受构造与辉绿岩交切的复合轨迹线控制,或受控矿构造与含矿构造相交的共轭线控制,矿体品位较高,呈板柱状,长度小,延伸大,铀矿化类型主要为方解石-沥青铀矿型和微晶石英-沥青铀矿型,如油洞矿床等。盆地边缘花岗岩外带型受层位及构造双重控制,含矿主岩有硅质角砾岩、粗粒长石石英砂岩、褪色蚀变砂砾岩等,矿体呈似层状,缓倾角,形态简单,属成岩成矿为辅,后生热液改造为主的铀矿床,铀矿化类型以萤石-石英-沥青铀矿型为主,如暖水塘矿床等。

诸广南部铀矿田为典型的热液型铀矿。本区矿石类型主要为含沥青铀矿硅化岩型、硅化碎裂岩型、碎裂蚀变花岗岩型和硅化碎裂辉绿岩型等。铀矿物以原生铀矿物为主,在浅部含少量次生铀矿物,主要有沥青铀矿、铀石、硅钙铀矿和钙铀云母(高飞等, 2015)。热液蚀变发育,蚀变期次和类型较多。成矿期构造蚀变带的物质成分较复杂,主要矿物有杂色微晶石英、玉髓、紫黑色萤石、肉红色方解石、黄铁矿、针铁矿和沥青铀矿等,蚀变类型主要有硅化、赤铁矿化、黄铁矿化、萤石化、碳酸盐化,其中紫黑色萤石化、肉红色方解石化、胶状黄铁矿化和赤铁矿化与铀成矿关系密切。

2 样品采集与分析方法

黄铁矿流体包裹体中的稀有气体较难扩散丢失,被认为是用于稀有气体研究理想的样品(Burnard et al., 1999; Hu et al., 1998, 2004, 2009, 2012),而萤石和方解石也成功被前人利用探讨成矿流体的稀有气体同位素组成(Yamamoto et al., 2001;赵葵东等, 2002;田世洪等, 2006;张国全等, 2010;庞雅庆等, 2014;王峰等, 2017),因此本次研究重点选择与铀矿石共生的成矿期的黄铁矿、萤石和方解石用压碎法测试流体包裹体中He、Ar同位素组成。铀矿石中铀矿物主要为沥青铀矿,多呈团块状、微脉状、细脉状产出(图 2a-f);成矿期黄铁矿粒度较小,多呈胶状、粒状、细脉状与沥青铀矿伴生(图 2a, b);成矿期萤石呈紫黑色、紫色,以团块状或细脉状与猪肝色、灰黑色微晶石英共生(图 2a, c, d);成矿期方解石呈浅肉红色,呈脉状或团块状与沥青铀矿共生(图 2e, f)。

图 2 诸广南部铀矿田矿石组构特征 (a)沿硅化碎裂岩裂隙充填的沥青铀矿-黄铁矿小脉,局部见紫黑色萤石团块;(b)反射光下石英、黄铁矿与沥青铀矿密切共生;(c)沿硅化碎裂岩裂隙充填的沥青铀矿-萤石-石英小脉;(d)单偏光下石英、萤石与沥青铀矿密切共生;(e)沿碎裂蚀变花岗岩裂隙充填的沥青铀矿-方解石-石英小脉;(f)正交偏光下石英、方解石与沥青铀矿密切共生.Ptc-沥青铀矿;Py-黄铁矿;Fl-萤石;Qtz-石英;Cal-方解石 Fig. 2 Photographs showing ore structures and minerals of southern Zhuguang uranium ore field (a) pitchblende and pyrite vein with purplish-black fluorite filling the fracture of silicified cataclastic rock; (b) quartz and pyrite coexist with pitchblende under eflected light; (c) pitchblende, fluorite and quartzve in filling the fracture of silicified cataclastic rock; (d) quartz and fluorite coexist with pitchblende under plane polarized light; (e) pitchblende, calcite and quartz vein filling the fracture of cataclastic-altered granite; (f) quartz and calcite coexist with pitchblende under perpendicular polarized light. Ptc-pitchblende; Py-pyrite; Fl-fluorite; Qtz-quartz; Cal-calcite

本次研究样品采自诸广南部矿田棉花坑、书楼丘、长排、油洞、蕉坪、东坑、烟筒岭等代表性铀矿床的坑道或钻孔,测试对象为成矿期黄铁矿、萤石、方解石中的流体包裹体。

样品采用人工分选方法,在双目显微镜反复挑选,矿物纯度达99%以上。He、Ar同位素组成的测定在核工业北京地质研究院分析测试研究中心完成。分析过程如下:首先,将样品用超纯水超声清洗10min,再用丙酮超声清洗两次各10min,去除表面有机物等杂质,并在小于150℃温度下烘烤去气36~48h。然后,压碎样品释放出气体,对释放出的气体经液氮冷阱、锆铝泵纯化,将装有活性炭的冷指套上液氮,分离混合稀有气体中的Ar、Kr和Xe,之后用低温冷凝泵分离剩余混合稀有气体中的Ne得到纯净的He。最后,将He、Ar分别送入质谱计进行含量和同位素测试。质谱仪型号为Helix SFT,测量结果以大气He、Ar同位素组成为标准。

3 分析结果与讨论 3.1 分析结果

表 1为诸广南部铀矿田典型铀矿床黄铁矿、萤石和方解石中流体包裹体的氦、氩同位素组成,氦和氩同位素的分析误差一般小于5%。由表 1可见,诸广南部铀矿田典型铀矿床的黄铁矿、方解石和萤石流体包裹体的3He/4He比值变化较大,为0.021~1.543Ra,平均为0.176Ra,略高于地壳氦同位素特征值,但低于幔源氦同位素特征值;40Ar/36Ar比值变化较大,为295.9~2329.8,平均为795.1,接近或高于大气氩的同位素组成;岭田萤石矿的萤石流体包裹体的3He/4He比值接近地壳同位素特征值,40Ar/36Ar比值接近大气氩的同位素组成。

表 1 诸广南部铀矿田典型铀矿床流体包裹体He、Ar同位素组成 Table 1 He and Ar isotopic compositions of fluid inclusions from the uranium deposits of southern Zhuguang uranium ore field
3.2 He-Ar同位素体系

矿物流体包裹体中氦、氩初始同位素组成的影响因素包括:成矿后流体活动,扩散丢失,宇宙成因3He以及放射性成因He、Ar等(胡瑞忠等, 1999)。

本次研究所选取的矿物主要为铀成矿期的紫色萤石、肉红色方解石和胶状黄铁矿,流体包裹体主要以原生包裹体为主,其成分基本可以代表铀沉淀时成矿流体的成分(郭国林等, 2010;张闯等, 2016)。为了避免次生包裹体携带的成矿后流体活动的干扰,在测试前对样品进行了预处理;流体包裹体壁能有效防止气体扩散,虽然部分矿物流体包裹体中的氦会发生一定的丢失,但在扩散丢失过程中氦同位素并未产生明显的分馏,对3He/4He值影响可忽略不计(胡瑞忠等, 1999),而氩在流体包裹体中的扩散系数远低于氦,一般也不考虑Ar扩散丢失的影响;由于本次研究的样品采自于地下坑道或钻孔,故可排除流体包裹体内存在宇宙成因3He污染的可能性;区内缺乏含锂的矿物,故含锂矿物诱发而产生3He对流体中氦的浓度的影响可以忽略不计;铀矿床成矿流体中含有丰富的U、Th放射性元素会产生一定量的4He,对分析结果会产生一定的影响,但可以肯定的是初始成矿流体的3He/4He值绝对比直接测试的结果要大。

地壳中3He/4He的特征值一般为0.01~0.05Ra,地幔流体中3He/4He的特征值一般为6~9Ra(Stuart et al., 1995)。从表 1的测试结果可以看出,诸广南部铀矿田黄铁矿流体包裹体的3He/4He比值为0.021~1.543Ra,萤石流体包裹体的3He/4He比值为0.021~0.186Ra,方解石流体包裹体的3He/4He比值为0.027~0.209Ra,除五个样品处于地壳3He/4He比值(0.01~0.05Ra)的范围内,其余均高于地壳3He/4He比值,但低于地幔3He/4He比值(6~9Ra)。Ballentine et al. (2002)研究认为流体中3He/4He比值>0.1Ra就意味着成矿流体中含幔源流体,这表明诸广南部铀矿田典型矿床成矿流体不仅存在有壳源He,同时也存在幔源He。

根据壳-幔二元混合模式,成矿流体中地幔流体He比例可以根据以下公式计算得出(Kendrick et al., 2001):

其中:R为样品的3He/4He,Rc为地壳3He/4He,Rm为地幔3He/4He;地壳3He/4He值下限值为2×10-8,地幔3He/4He值下限值为1.1×10-5(Stuart et al., 1995)。计算结果显示,典型铀矿床成矿流体中地幔端元流体的比例约为0.08%~19.49%,平均为2.06%。书楼丘、棉花坑、长排铀矿床幔源氦的质量分数为0.08%~2.48%,大于蕉坪、东坑、烟筒岭铀矿床幔源氦的质量分数(0.09%~0.99%),但明显低于交点型的油洞矿床(19.49%),反映了书楼丘、棉花坑、长排以及油洞矿床成矿流体主要来源于地壳,但有部分地幔流体的参与。考虑到铀矿床中丰富的U、Th会产生一定量的4He,初始成矿流体的3He/4He值肯定要比测试值大,故蕉坪、东坑、烟筒岭铀矿床成矿流体主要来源于地壳,但有少量地幔流体的参与。而岭田萤石矿成矿流体则完全来源于地壳,无幔源流体的参与。

表 1显示诸广南部铀矿田黄铁矿流体包裹体的40Ar/36Ar比值为326.9~1735.1,萤石流体包裹体的40Ar/36Ar比值为298.4~2515.7,方解石流体包裹体的40Ar/36Ar比值为295.9~327.2,除一个样品外,其余均略高于大气降水40Ar/36Ar的特征值(295.5),反映铀矿床成矿时流体具有大气降水端元,流体中存在地壳放射性成因氩(40Ar*)。

成矿流体中放射性成因的40Ar*可由下列公式计算确定(Kendrick et al., 2001):

计算结果显示,样品中放射性成因40Ar*的含量为0.14%~88.25%,平均为33.29%,大气Ar的贡献为11.75%~99.86%,平均为66.71%。同时,大部分样品的40Ar/36Ar略高于大气饱和水的40Ar/36Ar,说明成矿流体中确实有大气降水的参与。

从诸广南部铀矿田典型矿床R/Ra-40Ar/36Ar图解(图 3)上可见,棉花坑、书楼丘、长排、油洞铀矿床数据点主要位于地壳端元和地幔端元之间,而蕉坪、东坑、烟筒岭铀矿床数据点均落在地壳端元附近,岭田萤石矿数据点明显位于地壳端元,表明典型铀矿床的成矿流体均有不同程度地幔流体的加入,其40Ar/36Ar的特征值则表明其明显也受到大气降水的影响。

图 3 诸广南部铀矿田典型铀矿床流体包裹体的R/Ra-40Ar/36Ar图解(底图据赵葵东等, 2002) ASM-大气饱和水;M-地幔流体范围;C-地壳流体范围 Fig. 3 R/Ra vs. 40Ar/36Ar diagram of fluid inclusions from the uranium deposits of southern Zhuguang uranium ore field (base map after Zhao et al., 2002) ASM-air saturated water; M-mantle fluid; C-crust fluid

表 1可见,诸广南部铀矿田典型矿床40Ar*/4He比值为0.0004~0.6393,平均约为0.07,远低于地壳岩石特征的40Ar*/4He比值(约0.2, Stuart et al., 1995),表明成矿流体在地壳中长期循环过程中获取4He的效率比40Ar的要高出很多。研究表明,现代地下水40Ar*/4He值的降低与地下水从流经岩石中优先获取4He(相对于40Ar)有关(Torgersen et al., 1989; Hu et al., 2004, 2009)。矿物中Ar和He的封闭温度决定了地下水能否从地壳岩石中获取放射性成因的40Ar*4He,大多数矿物中40Ar*的封闭温度大于200℃,而He的封闭温度小于200℃(含铀矿物 < 100℃)。诸广南部铀矿田典型矿床中具有大气降水性质的成矿流体对地壳岩石氦的优先获得以及未能获取氩的特性说明成矿时流体温度较低,可能是一种中低温流体。

3.3 成矿流体来源探讨

为了确定成矿流体的性质和来源,前人对诸广南部铀矿田进行了大量的氢氧同位素分析,可以通过开展氢氧同位素体系和氦氩同位素体系对比研究,探讨成矿流体的来源。

对于棉花坑铀矿床,金景福和胡瑞忠(1985)朱捌(2010)认为其成矿流体来源为岩浆水与大气降水混合来源,陈培荣和刘义(1990)认为其成矿热液来源于大气降水,沈渭洲等(2010)朱捌(2010)认为成矿流体主要由地幔流体组成,傅丽雯等(2016)认为成矿流体来源于深循环的大气降水。对于长排矿床,徐浩等(2018)认为成矿流体可能来源于深部,后期有大气降水的加入。对于东坑、澜河铀矿床,王健芳等(1989)和李田港等(李田港, 1989;李田港等, 1993)认为其成矿热液来源于大气降水。刘埃平和金景福(1994)认为东坑矿床成矿热液是大气降水与少量基性脉岩有关的深源流体混合而成。王明太等(1999)认为诸广铀成矿区成矿流体为深源富铀地质热流体与部分大气水混合。庞雅庆等(2015)分析了诸广南部地区不同期次流体包裹体氢氧同位素组成,认为诸广南部地区典型铀矿床成矿期流体以深源流体为主,但后期明显受到大气降水的影响。

鉴于上述不同的观点,结合氦氩同位素体系,作者认为诸广南部铀矿田典型矿床成矿流体由两个端元组成:一是地壳流体端元,含有一定放射性成因Ar的大气降水,为在水岩过程中获得较多地壳岩石中放射性成因4He的中低温流体;另一端元是含地幔He的流体。

这一观点同样也得到碳同位素的佐证,棉花坑铀矿床成矿流体中的碳主要来自于地幔或部分来自于下地壳(胡瑞忠等, 1993, 2007, 2015; Hu et al., 2008;张国全等, 2008;沈渭洲等, 2010;郭国林等, 2010;庞雅庆等, 2015),长排铀矿床成矿流体的碳主要来源于深部(徐浩等, 2018),东坑铀矿床成矿流体中的碳主要来自于深源(刘埃平和金景福, 1994)。锶同位素组成显示,棉花坑铀矿床成矿流体中的Sr可能主要来源于基性脉岩(幔源)与赋矿花岗岩体(壳源)(沈渭洲等, 2010)。由此可见,诸广南部铀矿田典型铀矿床成矿流体H-O和He-Ar同位素体系所示踪的成矿流体来源具有一致性。

棉花坑、书楼丘、长排铀矿床受NNW向张扭性断裂控制,该类含矿断裂带地表规模较小,深部延伸规模较大,深部可能与近南北向控岩基底断裂相连,与深部幔源流体沟通性较好,导致其矿体延伸规模较深,受地幔流体影响较大;油洞矿床为交点型铀矿床,其含矿围岩主要为基性脉岩,成矿流体明显地幔流体影响最大;蕉坪、东坑、烟筒岭铀矿床受NE向区域性深大断裂控制,该类含矿断裂带地表规模较大,成矿深度相对较浅,受大气降水影响也较大。

4 结论

(1) 诸广南部铀矿田成矿流体的3He/4He比值为0.021~1.543Ra,平均为0.176Ra,40Ar/36Ar比值为295.9~2329.8,平均为795.1,位于地壳和地幔流体范围之内,反映成矿流体为壳幔混合流体。

(2) 流体包裹体氦、氩同位素研究表明,成矿流体由两个端元组成:一是地壳流体端元,含有一定放射性成因Ar的大气降水,为在水岩过程中获得较多地壳岩石中放射性成因4He的中低温流体;另一端元是含地幔He的流体。

(3) 结合H-O、He-Ar、C和Sr等多元同位素证据表明,诸广南部铀矿田受NNW向断裂控制的棉花坑、书楼丘、长排等铀矿床受地幔流体影响比较大,而受NE向断裂控制的蕉坪、东坑、烟筒岭铀矿床受大气降水影响比较大。

致谢      核工业290研究所、广东省核工业地质局二九一大队及302矿部对野外工作给予了大力支持;核工业北京地质研究院分析测试研究中心刘汉彬研究员对氦、氩同位素分析给予了大力帮助;在此一并表示感谢。

参考文献
Ballentine CJ, Burgess R and Marty B. 2002. Tracing fluid origin, transport and interaction in the crust. Reviews in Mineralogy and Geochemistry, 47(1): 539-614 DOI:10.2138/rmg.2002.47.13
Burnard PG, Hu RZ, Turner G and Bi XW. 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63(10): 1595-1604 DOI:10.1016/S0016-7037(99)00108-8
Burnard PG and Polya DA. 2004. Importance of mantle derived fluids during granite associated hydrothermal circulation:He and Ar isotopes of ore minerals from Panasqueira. Geochimica et Cosmochimica Acta, 68(7): 1607-1615 DOI:10.1016/j.gca.2003.10.008
Chen PR and Liu Y. 1990. The physicochemical conditions for metallogenesis of No.302 uranium deposit and the source and migration direction of its hydrothermal solution. Mineral Deposits, 9(2): 149-157 (in Chinese with English abstract)
Chen X, Su WC and Huang Y. 2016. He and Ar isotope geochemistry of ore-forming fluids for the Qinglong Sb deposit in Guizhou Province, China. Acta Petrologica Sinica, 32(11): 3312-3320 (in Chinese with English abstract)
Fu LW, Sun LQ, Ling HF, Shen WZ, Li K and Feng SJ. 2016. Study on the source of ore-forming fluid and ore-forming material of the 302 uranium deposit in northern Guangdong Province:Evidence from H-O-Sr-Nd isotope geochemistry. Geological Journal of China Universities, 22(1): 43-52 (in Chinese with English abstract)
Gao F, Pang YQ, Zhao L, Li WL, Ye SX and Fu SC. 2015. Study on occurrence of uranium mineral in Changjiang granite-type uranium deposits of Zhuguang. Uranium Geology, 31(Suppl.): 330-335 (in Chinese with English abstract)
Guo GL, Liu XD, Pan JY, Liu CD, Yan ZB and Chen YP. 2010. Study of fluid inclusion from uranium deposit No. 302 in North Guangdong. Uranium Geology, 26(6): 350-354, 368 (in Chinese with English abstract)
Hu RZ, Li CY, Ni SJ, Liu J and Yu JS. 1993. Research on ΣCO2 source in ore-forming hydrothermal solution of granite-type uranium deposit, South China. Science in China (Series B), 36(10): 1252-1262
Hu RZ, Burnard PG, Turner G and Bi XW. 1998. Helium and argon isotope systematics in fluid inclusions of Machangqing copper deposit in West Yunnan Province, China. Chemical Geology, 146(1-2): 55-63 DOI:10.1016/S0009-2541(98)00003-5
Hu RZ, Bi XW, Turner G and Burnard PG. 1999. He and Ar isotopic geochemistry of gold ore-forming fluids in the Ailaoshan gold mineralization belt. Science in China (Series D), 29(4): 321-330 (in Chinese)
Hu RZ, Burnard PG, Bi XW, Zhou MF, Peng JT, Su WC and Wu KX. 2004. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chemical Geology, 203(3-4): 305-317 DOI:10.1016/j.chemgeo.2003.10.006
Hu RZ, Bi XW, Peng JT, Liu S, Zhong H, Zhao JH and Jiang GH. 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China. Mineral Deposits, 26(2): 139-152 (in Chinese with English abstract)
Hu RZ, Bi XW, Zhou MF, Peng JT, Su WC, Liu S and Qi HW. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598 DOI:10.2113/gsecongeo.103.3.583
Hu RZ, Burnard PG, Bi XW, Zhou MF, Peng JT, Su WC and Zhao JH. 2009. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China:Evidence from He, Ar and C isotopes. Chemical Geology, 266(1-2): 86-95 DOI:10.1016/j.chemgeo.2008.07.017
Hu RZ, Bi XW, Jiang GH, Chen HW, Peng JT, Qi YQ, Wu LY and Wei WF. 2012. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, southeastern China. Mineralium Deposita, 47(6): 623-632 DOI:10.1007/s00126-011-0396-x
Hu RZ, Mao JW, Hua RM and Fan WM. 2015. Intra-Continental Mineralization of South China Craton. Beijing: Science Press, 1-903 (in Chinese with English abstract)
Jin JF and Hu RZ. 1985. The genesis of uranium deposit No.302. Journal of Chengdu College of Geology, (4): 1-11, 105 (in Chinese with English abstract)
Jin JF, Ni SJ and Hu RZ. 1992. Vertical zoning of hydrothermal dikes in the No.302 uranium deposit and the cause of its formation. Mineral Deposits, 11(3): 252-258 (in Chinese with English abstract)
Kendrick MA, Burgess R, Pattrick RAD and Turner G. 2001. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralising fluids. Geochimica et Cosmochimica Acta, 65(16): 2651-2668 DOI:10.1016/S0016-7037(01)00618-4
Kendrick MA, Honda M, Oliver NHS and Phillips D. 2011. The noble gas systematics of late-orogenic H2O-CO2 fluids, Mt Isa, Australia. Geochimica et Cosmochimica Acta, 75(6): 1428-1450 DOI:10.1016/j.gca.2010.12.005
Li TG. 1989. Geological features of deposits No.201 and No.361 and analyses of formation conditions of uranium-rich ore deposits. Uranium Geology, 5(2): 66-71 (in Chinese with English abstract)
Li TG, Tong HS, Feng MY, Li YX and Xu Z. 1993. The geological characteristics and forming conditions of granite type uranium-rich ore deposits. China Nuclear Science and Technology Report: 1-9 (in Chinese with English abstract)
Li ZL, Hu RZ, Yang JS, Peng JT, Li XM and Bi XW. 2007. He, Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit, Hunan Province, China. Lithos, 97(1-2): 161-173 DOI:10.1016/j.lithos.2006.12.009
Liu AP and Jin JF. 1994. The hydrothermal geochemical features and physico-chemical conditions of uranium deposit 361. Journal of Chengdu Institute of Technology, (1): 54-61 (in Chinese with English abstract)
Liu CD, Li ZW, Liu JH and Liang L. 2016. Research progress in mantle fluids involved uranium metallization:A case study of granite type uranium deposit cluster area, northern Guangdong. Uranium Geology, 32(4): 193-199 (in Chinese with English abstract)
Luo Y, Wang MT, Li JH and Ma HF. 2002. Geological characteristics and metallogenetic model of Zhuguang uranium ore concentrated area. China Nuclear Science and Technology Report: 220-235 (in Chinese with English abstract)
Ni SJ and Jin JF. 1992. The mixing and boiling of hydrothermal solution of uranium deposit No.302 and the geological interpretation. Journal of Chengdu College of Geology, 19(4): 9-15 (in Chinese with English abstract)
Ni SJ, Hu RZ and Jin JF. 1994. A vertical zoning model generated by the mixing and boiling of hydrothermal solution for uranium deposit No.302. Uranium Geology, 10(2): 70-77 (in Chinese with English abstract)
Pang YQ, Lin JR, Yang RD, Hu ZH, Gao F and Wang YJ. 2014. Helium and argon isotopic composition of ore forming fluid from Huangnihu uranium deposit in southern Jiangxi Province and their geological implications. Uranium Geology, 30(4): 223-229 (in Chinese with English abstract)
Pang YQ, Gao F, Xia ZQ, Xu WX, Xu Y, Lin K and Zhao L. 2015. Regional uranium metallogenetic model and prospecting direction of southern Zhuguangshan pluton. Uranium Geology, 31(Suppl.): 322-329 (in Chinese with English abstract)
Shen WZ, Ling HF, Deng P, Zhu B, Huang GL and Tan ZZ. 2010. Study on isotope geochemistry of uranium deposit 302 in northern Guangdong Province. Uranium Geology, 26(2): 80-87 (in Chinese with English abstract)
Stuart FM, Burnard PG, Taylor RP and Turner G. 1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochimica et Cosmochimica Acta, 59(22): 4663-4673 DOI:10.1016/0016-7037(95)00300-2
Tian SH, Ding TP and Yuan ZX. 2006. Mantle fluids in the Maoniuping LREE deposit, Sichuan Province:Evidence of Pb-Sr-Nd, He-Ar isotopes and REE. Acta Geologica Sinica, 80(7): 1035-1044 (in Chinese with English abstract)
Torgersen T, Kennedy BM, Hiyagon H, Chiou KY, Reynolds JH and Clarke WB. 1989. Argon accumulation and the crustal degassing flux of 40Ar in the Great Artesian Basin, Australia. Earth and Planetary Science Letters, 92(1): 43-56 DOI:10.1016/0012-821X(89)90019-8
Wang F, Lin JR, Hu ZH and Wang YJ. 2017. Isotopic characteristics of metallogenic fluid and its genesis in Yunji uranium deposit of Xiangshan. World Nuclear Geoscience, 34(1): 9-13, 19 (in Chinese with English abstract)
Wang JF, Gao DT and Zheng JY. 1989. A preliminary appoach to the metallogenetic geochemical conditions of rich uranium ores in the southern part of Zhuguang massif. Uranium Geology, 5(4): 194-202 (in Chinese with English abstract)
Wang LK and Liu TG. 1987. H, O, S, Pb isotopic studies of uranium ore deposits in granitoid rocks of South China. Geochimica, (1): 67-78 (in Chinese with English abstract)
Wang MT, Luo Y, Sun ZF, Zhu JC and Li JH. 1999. Discussion on genesis of uranium deposits in Zhuguang uranium metallogenic region. Uranium Geology, 15(5): 279-285 (in Chinese with English abstract)
Wei WF, Hu RZ, Bi XW, Jiang GH, Yan B, Yin RS and Yang JH. 2019. Mantle-derived and crustal He and Ar in the ore-forming fluids of the Xihuashan granite-associated tungsten ore deposit, South China. Ore Geology Reviews, 105: 605-615 DOI:10.1016/j.oregeorev.2019.01.014
Wu LY, Hu RZ, Peng JT, Bi XW, Jiang GH, Chen HW, Wang QY and Liu YY. 2011. He and Ar isotopic compositions and genetic implications for the giant Shizhuyuan W-Sn-Bi-Mo deposit, Hunan Province, South China. International Geology Review, 53(5-6): 677-690 DOI:10.1080/00206814.2010.510022
Wu LY, Hu RZ, Li XF, Stuart FM, Jiang GH, Qi YQ and Zhu JJ. 2018. Mantle volatiles and heat contributions in high sulfidation epithermal deposit from the Zijinshan Cu-Au-Mo-Ag orefield, Fujian Province, China:Evidence from He and Ar isotopes. Chemical Geology, 480: 58-65 DOI:10.1016/j.chemgeo.2017.08.005
Xu H, Zhang C, Pang YQ, Cao HJ, Liu JL and Liu WQ. 2018. Characteristics of ore-forming fluids of the Changpai uranium deposit in Guangdong Province. Geoscience, 32(5): 902-912 (in Chinese with English abstract)
Yamamoto J, Watanabe M, Nozaki Y and Sano Y. 2001. Helium and carbon isotopes in fluorites:Implications for mantle carbon contribution in an ancient subduction zone. Journal of Volcanology and Geothermal Research, 107(1-3): 19-26 DOI:10.1016/S0377-0273(00)00315-2
Zhang C, Cai YQ, Xu H and Liu JL. 2016. Mineralization mechanism of 302 uranium deposit, North Guangdong Province:Evidence from fluid inclusions. Journal of East China University of Technology, 39(2): 156-164 (in Chinese with English abstract)
Zhang GQ, Hu RZ, Shang PQ, Tian JJ and Shuang Y. 2008. Study on the C-O isotopic composition of calcites and metallogenic dynamics background in the No.302 uranium deposit. Acta Mineralogica Sinica, 28(4): 413-420 (in Chinese with English abstract)
Zhang GQ, Hu RZ, Jiang GH, Liu S, Zhu WG, Tian JJ, Shuang Y and Fan XR. 2010. Mantle-derived volatile components involved in uranium mineralization:Evidence from He isotopes of the No.302 uranium deposit. Geochimica, 39(4): 386-395 (in Chinese with English abstract)
Zhang LC, Shen YC, Li HM, Zeng QD, Li GM and Liu TB. 2002. Helium and argon isotopic compositions of fluid inclusions and tracing to the source of ore-forming fluids for Jiaodong gold deposits. Acta Petrologica Sinica, 18(4): 559-565 (in Chinese with English abstract)
Zhao KD, Jiang SY, Xiao HQ and Ni P. 2002. Origin of ore-forming fluids of the Dachang Sn-polymetallic ore deposit:Evidence from helium isotopes. Chinese Science Bulletin, 47(12): 1041-1045 DOI:10.1007/BF02907579
Zhu B. 2010. The study of mantle liquid and uranium metallogenesis: Take uranium ore field of South Zhuguang Mountain as an example. Ph. D. Dissertation. Chengdu: Chengdu University of Technology, 1-114 (in Chinese with English summary)
陈培荣, 刘义. 1990. 302铀矿床成矿物理化学条件、热液来源和运移方向. 矿床地质, 9(2): 149-157.
陈娴, 苏文超, 黄勇. 2016. 贵州晴隆锑矿床成矿流体He-Ar同位素地球化学. 岩石学报, 32(11): 3312-3320.
傅丽雯, 孙立强, 凌洪飞, 沈渭洲, 李坤, 冯尚杰. 2016. 粤北302铀矿床成矿流体与成矿物质来源研究:H、O、Sr、Nd同位素证据. 高校地质学报, 22(1): 43-52.
高飞, 庞雅庆, 赵琳, 李伟林, 叶松鑫, 伏顺成. 2015. 诸广长江地区花岗岩型铀矿铀矿物赋存状态研究. 铀矿地质, 31(增): 330-335.
郭国林, 刘晓东, 潘家永, 刘成东, 严兆彬, 陈益平. 2010. 粤北302铀矿床流体包裹体研究. 铀矿地质, 26(6): 350-354, 368. DOI:10.3969/j.issn.1000-0658.2010.06.005
胡瑞忠, 李朝阳, 倪师军, 刘莉, 于津生. 1993. 华南花岗岩型铀矿床成矿热液中∑CO2来源研究. 中国科学(B辑), 23(2): 189-196.
胡瑞忠, 毕献武, Turner G, Burnard P. 1999. 哀牢山金矿带金成矿流体He和Ar同位素地球化学. 中国科学(D辑), 29(4): 321-330.
胡瑞忠, 毕献武, 彭建堂, 刘燊, 钟宏, 赵军红, 蒋国豪. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139-152. DOI:10.3969/j.issn.0258-7106.2007.02.001
胡瑞忠, 毛景文, 华仁民, 范蔚茗. 2015. 华南陆块陆内成矿作用. 北京: 科学出版社, 1-903.
金景福, 胡瑞忠. 1985. 302矿床成因探讨. 成都地质学院学报, (4): 1-11, 105.
金景福, 倪师军, 胡瑞忠. 1992. 302铀矿床热液脉体的垂直分带及其成因探讨. 矿床地质, 11(3): 252-258.
李田港. 1989. 201和361矿床的地质特征和富铀矿床形成条件的初步分析. 铀矿地质, 5(2): 66-71.
李田港, 童航寿, 冯明月, 李月湘, 徐展. 1993. 花岗岩型铀矿富矿地质特征及形成条件. 中国核科技报告: 1-9.
刘埃平, 金景福. 1994. 361铀矿床热液地球化学特征及成矿物理化学条件. 成都理工学院学报, (1): 51-61.
刘成东, 李志文, 刘江浩, 梁良. 2016. 地幔流体参与铀成矿作用的研究进展——以粤北花岗岩型铀矿矿集区为例. 铀矿地质, 32(4): 193-199. DOI:10.3969/j.issn.1000-0658.2016.04.001
罗毅, 王明太, 李建红, 马汉峰. 2002. 诸广铀矿集区成矿地质特征及成矿模式. 中国核科技报告: 220-235.
倪师军, 金景福. 1992. 302铀矿床热液的混合和沸腾及其地质意义. 成都地质学院学报, 19(4): 9-15.
倪师军, 胡瑞忠, 金景福. 1994. 302铀矿床热液的混合和沸腾垂直分带模式. 铀矿地质, 10(2): 70-77.
庞雅庆, 林锦荣, 杨瑞栋, 胡志华, 高飞, 王勇剑. 2014. 赣南黄泥湖铀矿床成矿流体的氦、氩同位素组成及其意义. 铀矿地质, 30(4): 223-229. DOI:10.3969/j.issn.1000-0658.2014.04.006
庞雅庆, 高飞, 夏宗强, 徐文雄, 许攸, 林坤, 赵琳. 2015. 诸广山岩体南部区域铀成矿模式及找矿方向. 铀矿地质, 31(增): 322-329.
沈渭洲, 凌洪飞, 邓平, 朱捌, 黄国龙, 谭正中. 2010. 粤北302铀矿床同位素地球化学研究. 铀矿地质, 26(2): 80-87. DOI:10.3969/j.issn.1000-0658.2010.02.003
田世洪, 丁悌平, 袁忠信. 2006. 四川牦牛坪轻稀土矿床地幔流体特征——铅锶钕和氦氩同位素及稀土元素证据. 地质学报, 80(7): 1035-1044. DOI:10.3321/j.issn:0001-5717.2006.07.010
王峰, 林锦荣, 胡志华, 王勇剑. 2017. 相山云际矿床铀成矿流体同位素特征及成因. 世界核地质科学, 34(1): 9-13, 19. DOI:10.3969/j.issn.1672-0636.2017.01.002
王健芳, 高德统, 郑家仪. 1989. 诸广岩体南部富铀矿成矿地球化学条件的初步探讨. 铀矿地质, 5(4): 194-202.
王联魁, 刘铁庚. 1987. 华南花岗岩铀矿H、O、S、Pb同位素研究. 地球化学, (1): 67-78. DOI:10.3321/j.issn:0379-1726.1987.01.010
王明太, 罗毅, 孙志富, 朱杰辰, 李建红. 1999. 诸广铀成矿区矿床成因探讨. 铀矿地质, 15(5): 279-285. DOI:10.3969/j.issn.1000-0658.1999.05.004
徐浩, 张闯, 庞雅庆, 曹豪杰, 刘佳林, 刘文泉. 2018. 广东长排铀矿床成矿流体特征. 现代地质, 32(5): 902-912.
张闯, 蔡煜琦, 徐浩, 刘佳林. 2016. 粤北302铀矿床成矿机制探讨——来自流体包裹体的证据. 东华理工大学学报(自然科学版), 39(2): 156-164. DOI:10.3969/j.issn.1674-3504.2016.02.009
张国全, 胡瑞忠, 商朋强, 田建吉, 双燕. 2008. 302铀矿床方解石C-O同位素组成与成矿动力学背景研究. 矿物学报, 28(4): 413-420. DOI:10.3321/j.issn:1000-4734.2008.04.013
张国全, 胡瑞忠, 蒋国豪, 刘燊, 朱维光, 田建吉, 双燕, 范效仁. 2010. 幔源挥发性组分参与302铀矿床成矿作用的氦同位素证据. 地球化学, 39(4): 386-395.
张连昌, 沈远超, 李厚民, 曾庆栋, 李光明, 刘铁兵. 2002. 胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪. 岩石学报, 18(4): 559-565.
赵葵东, 蒋少涌, 肖红权, 倪培. 2002. 大厂锡-多金属矿床成矿流体来源的He同位素证据. 科学通报, 47(8): 632-635. DOI:10.3321/j.issn:0023-074X.2002.08.017
朱捌. 2010.地幔流体与铀成矿作用研究——以诸广山南部铀矿田为例.博士学位论文.成都: 成都理工大学, 1-114