2. 中原经济区煤层(页岩)气河南省协同创新中心, 焦作 454000
2. Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Province, Jiaozuo 454000, China
平顶山砂岩是华北陆块晚古生代地层上部的一个重要标志层。以该标志层为界,下伏晚古生代以碎屑岩为主的地层,包括本溪组、太原组、山西组、下石盒子组和上石盒子组含有大量的煤层(线),基本不含红色地层(河南省地质矿产厅,1997;山西省地质矿产局,1997;陈晋镳等,1997);上覆地层,包括石千峰组、刘家沟组、和尚沟组、二马营组和油坊庄组,尽管也以碎屑岩为主,但出现有大量的红色地层(王仁农,1997;刘鸿允和刘宪亭,1984;胡斌等,2009;齐永安等,2007)。该标志层在区域上分布广阔,不仅出露于其命名地豫西南一带(河南省地质矿产厅,1997),也广泛分布于豫东、豫北和安徽、江苏、山东、山西、陕西等省(王仁农, 1981, 1997;欧阳舒和王仁农,1985;张抗,1991;山西省地质矿产局,1997),覆盖了华北陆块的大部分地区(陈晋镳等,1997)。平顶山砂岩以发育灰绿、灰黄、灰白色中粗粒长石石英砂岩为特征,在豫西南地区,平顶山砂岩不仅厚度大,且胶结物中含有大量的硅质成分,抗风化能力强,形成了平顶山或单面山的显著地貌。
由于平顶山砂岩分布广泛、岩性特殊,而且在晚古生代地层划分中所具有的显著的意义,有关其沉积时代、沉积环境及其构造意义持续地引起了人们的关注,但也成为大家争议的主要焦点。就其形成时代而言,陈晋镳等(1997)、河南省地质矿产厅(1997)和山西省地质矿产局(1997)主张平顶山砂岩归属于上石盒子组的上部;王仁农(1981, 1997)、欧阳舒和王仁农(1985)、张士(1987)、王斌(1988)则将平顶山砂岩归属于石千峰组的下部,但沉积时代均确定为晚二叠世,其主要的依据是平顶山砂岩中的孢粉组合,他们认为这一孢粉组合的面貌显示了古生代色彩,缺乏典型的中生代成分。但平顶山砂岩的孢粉组合中以裸子植物花粉为主,蕨类植物孢子在组成和含量上皆不占重要地位,且含有三叠纪早期常见的Voltziaceaesporites裸子植物花粉(欧阳舒和王仁农,1985),这与平顶山砂岩下伏地层主要为蕨类植物孢子显著不同(杨起等,1989;胡俊卿等,1997),这也是部分学者将平顶山砂岩划分为三叠纪早期的主要原因(张士,1987;河南煤田地质公司,1991)。对于平顶山砂岩沉积环境的争议,表现在平顶山砂岩是海侵所形成的滨海相砂岩(王仁农,1997)还是海退之后形成的陆相冲积河道-陆缘近海湖滩砂岩(河南省地质矿产局,1989;白斌等,2006)或辫状河-辫状河三角洲沉积的砂岩(郑超等,2003)。
上述认识主要是依据沉积学和微体古生物学的基本研究方法,由于这些方法的局限性和对于同一地质现象的不同理解,所以,在某些问题上存在争议是不可避免的。平顶山砂岩是华北陆块沉积演化史中的关键一环,并且可能是二叠纪-三叠纪转折时期的重要沉积记录,关系到非海相碳酸盐岩地层在这一转折时期的古构造、古地理、古气候和古生物的研究,所以对于其沉积时代和沉积环境的问题是必须要面对的,新的研究方法的介入就显得尤为必要。
沉积岩中含有大量的碎屑锆石,锆石具有已知矿物中最高的U-Pb和Lu-Hf体系封闭温度,基本不会受到风化、搬运、沉积、成岩和改造作用的影响,能够很好地保留源岩的信息(Kinny and Maas, 2003;吴元保和郑永飞,2004)。所以,随着LA-ICP-MS(激光剥蚀-电感耦合等离子体-质谱仪)微区分析技术成功应用于锆石U-Pb同位素定年,结合锆石成因矿物学和Lu-Hf同位素信息,已经形成了一种限定地层的最大沉积年龄(Dickinson and Gehrels, 2009;Tucker et al., 2013)和判断沉积物源区(Sircombe,1999;Richards et al., 2005)的成熟可靠的研究方法,并已得到了广泛的应用(Bruguier et al., 1997;刘超等,2014;Ustaömer et al., 2016;Nazari-Dehkordi et al., 2017)。
本项研究选取华北陆块南部平顶山砂岩的创名地点——平顶山地区,以及其北部巩义地区和宜阳地区的平顶山砂岩地表露头样品,进行碎屑锆石LA-ICP-MS U-Pb测年,并辅以Hf同位素测定,分析平顶山砂岩的最大沉积年龄和沉积物源区,为确定平顶山砂岩的沉积时代和沉积环境提供依据。
1 区域地质概况华北陆块具有典型的双层结构特征,基底由新太古界和古元古界变质岩系组成,盖层由中元古界-中下三叠统基本未变质的以沉积岩为主的地层组成。古生界普遍缺失上奥陶统-志留系-泥盆系-下石炭统,上古生界上石炭统及其以上的地层平行不整合于下伏的下古生界台地碳酸盐之上,为一个完整的海侵-海退旋回(陈钟惠,1993),发育了华北陆块主要的含煤地层,平顶山砂岩作为含煤地层的顶板具有显著的分划性质。晚三叠世以来,华北陆块断裂作用和岩浆作用活跃,已不再具有稳定板块的性质(朱日祥等,2012;Gao and Zhao, 2017;Zhao et al., 2018)。
华北陆块南部以栾川断裂为界与北秦岭造山带相邻(图 1),北秦岭造山带南侧以商丹断裂为界与南秦岭造山带分界。栾川断裂在中新生代构造活动强烈(张国伟等,2001;石铨曾等,2004),商丹断裂为早古生代商丹洋向北俯冲闭合的产物(Şengör,1985;Meng and Zhang, 1999;Dong and Santosh, 2016)。沿该断裂向北依次残存有早古生代形成的蛇绿混杂岩、北秦岭岛弧、二郎坪弧后盆地等地质单元(Dong et al., 2011),上述地质单元中普遍侵入有大面积分布的与俯冲碰撞有关的加里东期花岗岩(卢欣祥,2000;王洪亮等,2006;刘丙祥,2014;Dong and Santosh, 2016),部分构造单元分布有~1000Ma的新元古代侵入岩(张宏飞等,1993;陈志宏等,2004;王涛等,2009)。
|
图 1 华北陆块南部大地构造位置(a, 据Davis et al., 2001)和研究区地质简图(b, 据河南省地质矿产局,1989) Fig. 1 Tectonic setting of the southern part of North China Block (a, modified after Davis et al., 2001) and geological map of study area (b, modified after BGMRH, 1989) |
华北陆块北部以白云鄂博-赤峰断裂为界与兴蒙造山带相邻,该造山带是中亚巨型复合造山带的东段部分,系古亚洲洋多期次俯冲碰撞拼贴的结果(Şengör et al., 1993;邵济安等,1997;Wilde et al., 2003;Windley et al., 2007;王庆龙等,2012),其最终闭合时间被确定为晚泥盆世-早石炭世(徐备等,2014;邵济安等,2015)或晚二叠世(Li,2006;Zhang et al., 2007, 2009;Cao et al., 2013)。由于古亚洲洋的俯冲和拼合,也导致了华北陆块北缘内蒙古隆起的形成,其中侵入有大量的晚古生代岩浆岩(Zhang et al., 2007, 2009;邵济安等,2015)。
2 样品采集及分析方法样品采集的位置位于华北陆块的南部平顶山地区,以及其北部的巩义地区和宜阳地区。
平顶山地区的样品采集于平顶山市北部沿山公路边(33°46′23″N、113°23′12″E),该地区平顶山砂岩出露厚度约110m,主要岩性为浅灰-灰白色长石石英砂岩,与下伏灰绿色砂质泥岩整合接触,二者之间见有明显的冲刷现象,底部为含砾粗砂岩,局部含3~10mm的砾石,向上为砂岩,砂岩的粒度往上变细。根据砂岩的粒度变化,该区平顶山砂岩含有6个向上变细的沉积序列,每个序列下部为含砾粗砂岩、粗砂岩或中砂岩,上部为细砂岩、粉砂岩或砂质泥岩(图 2a)。在下部含砾粗砂岩和中部中粒砂岩中各采集1个样品。其中,下部含砾粗砂岩(样品号170727-11)的碎屑颗粒主要为石英和微斜长石,多为棱角状,呈凸凹接触或缝合接触,石英颗粒多见波状消光显示的亚颗粒,含量约60%,微斜长石见有简单双晶和格子状双晶,常见有表面蚀变留下的褐色斑点,含量约35%,胶结物主要为硅质,主要出现在颗粒边缘,既有非晶质的蛋白石也有隐晶质的玉髓,含量约5%(图 3a);中部中粒砂岩(样品号170727-10)矿物成分和结构与下部含砾粗砂岩(170727-11)相似,但石英颗粒粒度变小,且含量也变少,约50%左右,微斜长石含量较高,约40%,硅质胶结物也有所增加,约10%(图 3b)。
|
图 2 华北陆块南部平顶山(a)、巩义(b)和宜阳(c)地区平顶山砂岩柱状图及采样位置 Fig. 2 Vertical sequence of Pingdingshan sandstone and sample locations in the southern part of North China Block |
|
图 3 华北陆块南部平顶山砂岩野外露头和显微特征 (a)平顶山地区平顶山砂岩下部含砾粗砂岩(170727-11)正交偏光镜下特征;(b)平顶山地区平顶山砂岩中部中粒砂岩(170727-10)正交偏光镜下特征;(c)平顶山砂岩与下伏粉砂质泥岩的冲刷接触现象,巩义地区;(d)平顶山砂岩第三沉积序列轮廓,下部为含砾粗砂岩、粗砂岩,发育块状层理,向上部过渡为中砂岩和细砂岩,发育平行层理,顶部为粉砂岩和泥岩,水平层理发育,宜阳地区;(e)巩义地区平顶山砂岩下部中粒砂岩(160909-8)正交偏光镜下特征;(f)宜阳地区平顶山砂岩第三序列上部中粒砂岩(180408-3)正交偏光镜下特征. Q-石英;Fsp-长石 Fig. 3 Outcrops and microscopic characteristics of Pingdingshan sandstone in the southern part of North China Block |
巩义地区样品采集于巩义市西村镇窑岭(34°35′53″N、112°56′23″E),该地区平顶山砂岩出露厚度约30m,主要岩性为灰白色长石石英砂岩,与下伏白色粉砂质泥岩整合接触,二者之间也见有明显的冲刷现象(图 3c),底部为不稳定的极薄层(< 5cm)砾岩,下部为含砾粗砂岩,向上砂岩的粒度变细。根据砂岩的粒度变化,该区平顶山砂岩含有4个向上变细的沉积序列,每个序列下部为含砾粗砂岩、粗砂岩或中砂岩,上部为细砂岩、粉砂岩或泥岩(图 2b)。在下部中粒砂岩中采集1个样品(样品号160909-8),镜下观察,砂岩的矿物成分也主要为石英和长石,与平顶山地区不同的是,石英颗粒的磨圆度有所提高,呈次圆状-次棱角状,含量约50%,长石的风化更加强烈,有时仅残留有长石的解理,含量约40%,胶结物含量约10%,成分为非晶质的蛋白石和隐晶质的玉髓,呈镶嵌式胶结(图 3e)。
宜阳地区样品采集于宜阳县李沟(34°30′25″N、112°10′5″E),该地区平顶山砂岩出露厚度约160m,主要岩性为灰白色长石石英砂岩,底面凹凸不平,与下伏土黄色粉砂岩冲刷现象明显。平顶山砂岩下部为含砾粗砂岩,向上砂岩的粒度变细。根据砂岩的粒度变化,该区平顶山砂岩含有7个向上变细的沉积序列(图 2c),每个序列下部为含砾粗砂岩、粗砂岩,发育块状层理,向上部过渡为中砂岩和细砂岩,发育平行层理,顶部为粉砂岩和泥岩,水平层理发育(图 3d)。在第三序列中部采集1个样品(样品号180408-3),镜下观察,颗粒成分主要为石英和长石,多为棱角状,少数为次圆状,石英颗粒波状消光明显,含量约50%,长石颗粒风化明显,多呈浅褐色,有时风化为不透明的铁质矿物,含量约45%,胶结物少量,主要为硅质,呈镶嵌式胶结(图 3f)。
锆石的挑选是在廊坊市地科勘探技术服务有限公司完成,制靶工作和阴极发光照相在北京地时科技有限公司完成,锆石U-Pb年龄LA-ICP-MS测定在合肥工业大学资源与环境工程学院实验中心完成。锆石U-Pb LA-ICP-MS测定的激光剥蚀系统为Geo Las 2005,等离子体质谱仪为Agilent7500a,激光束斑直径32μm,激光脉冲重复频率为6Hz。每测定5个样品选用标准锆石91500进行两次锆石U/Pb比值及年龄校准,每测10个样品点测一次NIST610和年龄监控样Plesovice。锆石测试原始数据的处理采用ICPMSDateCal 7. 5软件,并采用Andersen(2002)的方法进行普通铅作年龄校正,年龄计算和图谱制作运用Isoplot处理,详细的分析技术和参数见Liu et al.(2008, 2010)。
锆石Hf同位素在Neptune plus多接收等离子质谱及配套的ESI NWR193紫外激光剥蚀系统(LA-MC-ICP-MS)上进行的,实验过程中采用He作为剥蚀物质载气,剥蚀直径采用40μm,测定时使用锆石国际标样GJ1作为参考物质,分析点与U-Pb定年分析点为锆石的同一环带。相关仪器运行条件及详细分析流程见侯可军等(2007)和Wu et al.(2006)。分析过程中锆石标准GJ1的176Hf/177Hf测试加权平均值分别为0.282007±0.000007(2σ,n=36),与文献报道值(Morel et al., 2008)在误差范围内一致。
3 测试结果 3.1 碎屑锆石的形貌和微量元素样品170727-11中的古生代碎屑锆石粒径在125.1~173.2μm,平均粒径149.0μm,前寒武纪锆石粒径在86.6~244.6μm,平均156.7μm(图 4a);样品170727-10中的古生代碎屑锆石粒径在154.2~230.0μm,平均192.1μm,前寒武纪锆石粒径在101.5~244.1μm,粒径152.9μm(图 4b);样品160909-8中的古生代碎屑锆石粒径在71.6~158.4μm,平均111.5μm,前寒武纪锆石粒径在72.0~168.3μm,平均109.8μm(图 4c);样品180408-3中的古生代碎屑锆石粒径在90.5~174.5μm,平均139.6μm,前寒武纪锆石粒径在90.0~204.0μm,平均131.0μm(图 4d)。古生代锆石一般具有清晰的明暗相间的震荡环带,少数具有扇形分带,自形程度高,晶型较为完整,晶棱锋锐清晰,多呈柱状或细长柱状,显示了岩浆锆石的形貌特征(图 4)。前寒武纪锆石除少数见有震荡环带外,多见弱分带,云雾状分带、斑杂状分带、面状分带、无分带现象,多为自形,呈柱状或细长柱状,也可见浑圆状,少数锆石见有变质增生边,显示了变质锆石或岩浆锆石的变质增生锆石的特征(图 4)。
|
图 4 华北陆块南部平顶山砂岩代表性碎屑锆石CL图像 (a)样品170727-11;(b)样品170727-10;(c)样品160909-8;(d)样品180408-3.红圆圈为U-Pb分析点置,蓝圆圈为Hf分析点置,数字为该测点的U-Pb年龄 Fig. 4 Cathodoluminescence images and detrital zircon U-Pb ages of Pingdingshan sandstone in the southern part of North China Block |
4个样品的古生代碎屑锆石Th/U比值一般>0.4(表 1、表 2、表 3、表 4、图 5),显示了岩浆锆石的Th/U比值特征(Hermann et al., 2001),而前寒武纪碎屑锆石尽管多数仍具有Th/U比值>0.1的特征,甚至有些Th/U比值接近于1,这明显与U含量较低有关(图 5),这可能是变质锆石生长速度较快造成的(Vavra et al., 1999)。~1880Ma的碎屑锆石在Th/U比值图上是一个低谷(图 5),这可能与该时期变质重结晶作用更加强烈有关(Hoskin and Black, 2000)。
|
|
表 1 平顶山地区平顶山砂岩下部样品(170727-11)碎屑锆石U-Pb同位素测试结果 Table 1 U-Pb isotope analysis result of detrital zircons in lower part of Pingdingshan sandstone (Sample 170727-11) in Pingdingshan area |
|
|
表 2 平顶山地区平顶山砂岩中部样品(170727-10)碎屑锆石U-Pb同位素测试结果 Table 2 U-Pb isotope analyse result of detrital zircons in middle part of Pingdingshan sandstone (Sample 170727-10) in Pingdingshan area |
|
|
表 3 巩义地区平顶山砂岩下部样品(160909-8)碎屑锆石U-Pb同位素测试结果 Table 3 U-Pb isotope analyse result of detrital zircons in lower prat of Pingdingshan sandstone (Sample 160909-8) in Gongyi area |
|
|
表 4 宜阳地区平顶山砂岩第三序列中部样品(180408-3)碎屑锆石U-Pb同位素测试结果 Table 4 U-Pb isotope analyse result of detrital zircons in middle part of the third sequence of Pingdingshan sandstone (Sample 180408-3) in Yiyang area |
|
图 5 华北陆块南部平顶山砂岩碎屑锆石Th、U含量和Th/U比值 Fig. 5 Th, U content and Th/U ratio of detrital zircons of Pingdingshan sandstone in the southern part of North China Block |
对于<1000Ma的锆石,采用206Pb/238U表面年龄;>1000Ma采用207Pb/206Pb表面年龄(Sircombe,1999)。剔除谐和度<90%的数据后,剩余数据在U-Pb谐和图上,大部分数据点落在了谐和线上或接近于谐和线(图 6a,d,g,j),仅有极个别分析点稍偏离谐和线,反映极少部分锆石可能存在一定程度的Pb丢失或U丢失。
|
图 6 华北陆块南部平顶山砂岩碎屑锆石样品的谐和曲线和年龄频谱 (a-c) 170727-11; (d-f) 170727-10; (g-i) 160909-8; (j-l) 180408-3 Fig. 6 Concordia curves and age spectrum of detrital zircons of the Pingdingshan sandstone in the southern part of North China Block |
样品170727-11测试了102粒锆石(表 1),其中14颗锆石谐和度小于90%,不参与年龄的统计,88颗锆石的谐和年龄可以分成2组:第一组10颗,年龄介于249~526Ma之间,占11%,主要峰值为~261Ma、~368Ma和~437Ma;第二组78颗,年龄介于1734~2519Ma之间,占89%,主要峰值为~1844Ma和~2425Ma(图 6b,c)。
样品170727-10测试了101粒锆石(表 2),有6颗锆石谐和度小于90%,不参与年龄的统计,95颗锆石的谐和年龄可以分成2组:第一组10颗,年龄介于260~329Ma之间,占11%,峰值为~269Ma和~322Ma;第二组85颗,年龄介于1732~2684Ma之间,占89%,峰值为~1898Ma和~2563Ma(图 6e,f)。
样品160909-8测试了80粒锆石(表 3),有5颗锆石谐和度小于90%,不参与年龄的统计,75颗锆石的谐和年龄可以分成2组:第一组12颗,年龄介于252~467Ma之间,占16%,主要峰值年龄为~261Ma和~317Ma;第二组63颗,年龄介于989~2824Ma之间,占84%,主要峰值年龄为~1864Ma和~2489Ma,此外还有1个很不显著的~1007Ma峰值(图 6h,i)。
样品(180408-3)所测试的92粒锆石中(表 4),有5颗锆石谐和度小于90%,不参与年龄的统计,87颗锆石的谐和年龄可以分成2组:第一组14颗,年龄介于248~356Ma之间,占16%,主要峰值年龄为~259Ma和~318Ma;第二组73颗,年龄介于818~3893Ma之间,占84%,主要峰值年龄为~1859Ma和~2482Ma,此外,还有2个很不显著的~812Ma和~1648Ma峰值(图 6j,k)。
将上述4个样品谐和度大于90%的345颗碎屑锆石年龄汇总,古生代年龄介于248~526Ma之间,占13%,主要峰值年龄为~259Ma、~318Ma和~435Ma;前寒武纪年龄介于818~3893Ma之间,占87%,峰值年龄为~1871Ma和~2459Ma,此外还有2个非常不明显的峰值~812Ma和~976Ma(图 7)。
|
图 7 华北陆块南部平顶山砂岩样品碎屑锆石U-Pb年龄频谱图 Fig. 7 U-Pb age spectrum of detrital zircons of Pingdingshan sandstone in the southern part of North China Block |
三个地区4个样品的碎屑锆石具有大体相似的年龄组成,所以,本项研究主要对巩义地区下部样品(160909-8)进行了Hf同位素分析。共测试了31颗碎屑锆石Hf同位素数据(表 5),测试点紧邻锆石年龄分析点,为锆石的同一环带。锆石的176Yb/177Hf和176Lu/177Hf比值范围分别为0.008248~0.080467和0.000293~0.002898,176Lu/177Hf普遍小于0.002,表明这些锆石在形成后基本没有放射性成因Hf的积累,因而,所测定的176Hf/177Hf比值代表其形成时的同位素组成(吴福元等,2007)。
|
|
表 5 巩义地区平顶山砂岩下部样品(160909-8)碎屑锆石Hf同位素数据 Table 5 Hf isotope date of detrital zircons of lower Pingdingshan sandstone (Sample 160909-8) in Gongyi area |
测试的峰值为~266Ma的碎屑锆石为3颗,176Hf/177Hf介于0.282369~0.282394,均值为0.282380,εHf(t)值为-9.0~-7.1,均值为-7.9,两阶段模式年龄(tDM2)为1769~1854Ma,均值为1800Ma;峰值年龄为~324Ma的碎屑锆石为6颗,176Hf/177Hf介于0.282082~0.282367,均值为0.282189,εHf(t)值为-17.5~-7.3,均值为-14.0,两阶段模式年龄(tDM2)为1796~2424Ma,均值为2205Ma;峰值为~467Ma的碎屑锆石为1颗,176Hf/177Hf值为0.282452,εHf(t)值为-1.2,两阶段模式年龄(tDM2)为1519Ma;峰值为~1007Ma的碎屑锆石为2颗,176Hf/177Hf分别为0.282057和0.282194,均值为0.282125,εHf(t)值分别为-3.9和+1.5,均值为-1.2,两阶段模式年龄(tDM2)分别为1778Ma和2081Ma;峰值为~1864Ma的碎屑锆石为11颗,176Hf/177Hf介于0.281486~0.281638,均值为0.281577,εHf(t)值为-7.0~+1.3,均值为-3.6,两阶段模式年龄(tDM2)为2672Ma~2821Ma,均值为2664Ma;峰值为2489Ma的碎屑锆石为8颗,176Hf/177Hf介于0.281190~0.281378,均值为0.281314,εHf(t)值为-1.4~+6.4,均值为+3.0,两阶段模式年龄(tDM2)为2627Ma~3086Ma,均值为2805Ma(表 5)。
4 讨论 4.1 平顶山砂岩的最大沉积年龄根据沉积岩中碎屑锆石的年龄可以限定地层的最大沉积年龄,目前主要有7种方法(Dickinson and Gehrels, 2009;Johnston et al., 2009;Lawton and Bradford, 2011;Robinson et al., 2012;Tucker et al., 2013),分别是:①最年轻单颗粒年龄(YSG);②最年轻图像碎屑锆石年龄(YPP);③最年轻碎屑锆石年龄(YDZ);④加权平均年龄(YC1σ)(+3);⑤加权平均年龄(YC2σ)(+3);⑥算术平均年龄(WA);⑦Tuffzirc年龄(+6)。Tuffzirc年龄需要最少有6颗最年轻的碎屑锆石来进行计算(Tucker et al., 2013),限于本项研究最年轻锆石颗粒数较少,因此不讨论Tuffzirc年龄。Dickinson and Gehrels(2009)根据实例分析,讨论了上述前六种年龄的优缺点,认为,最年轻单颗粒年龄(YSG)尽管有潜在的风险性,但YSG的可信度达到了统计效度的95%,YDZ年龄与YSG年龄或无显著差异,或优于YSG年龄,YPP年龄、YC1σ(+3)年龄、YC2σ(+3)年龄和WA年龄由于统计的锆石年龄的离散性,与实际地层年龄相差较大。
根据上述分析,对比表 6中6种不同方法计算的年龄值发现,YPP、YC1σ(+3)、YC2σ(+3)和WA年龄值与平顶山砂岩孢粉化石确定的时代相差较大。从图 6中可以看出,平顶山砂岩4个样品的年轻锆石年龄都能构成连续的年龄谱,因此,本文采用YSG年龄来限定地层的最大沉积年龄(Dickinson and Gehrels, 2009),这一年龄与YDZ年龄相差较小,这与Dickinson and Gehrels(2009)的讨论一致。表 6中平顶山砂岩YSG年龄分别为249±8Ma、260±7Ma、252±7Ma和248±7Ma,与二叠系-三叠系沉积界线年龄251.0±0.4Ma(Ogg et al., 2008)较为接近,所以,根据平顶山砂岩与下伏地层具有明显的冲刷接触关系和岩性上的突变,某些地区可能存在有不整合接触关系(陕西省地质矿产局,1989;刘和,1990),且已有古生物学证据证实平顶山砂岩下部地层年龄为晚二叠世晚期的事实(陈钟惠等,1993;河南省地质矿产厅,1997;山西省地质矿产局,1997;陈晋镳等,1997),可将二叠纪与三叠纪的接触界线置于平顶山砂岩的底界,华北陆块南部平顶山、巩义和宜阳地区的平顶山砂岩的地质时代应归属于早三叠世。这一认识与刘超等(2014)根据太原西山石千峰组底部K8砂岩(相当于平顶山砂岩)碎屑锆石U-Pb年龄确定的沉积时间不早于250Ma,二叠系-三叠系的界线确定在石千峰组K8砂岩之下的结论一致,也与殷鸿福和林和茂(1979)根据海相动物化石确定的孙家沟组底部地层(相当于平顶山砂岩)属于早三叠世早期的认识一致,所以,在岩石地层上,平顶山砂岩应划归石千峰组,相当于王仁农(1997)石千峰组的下段(平顶山砂岩段)。
|
|
表 6 华北陆块南部平顶山砂岩碎屑锆石6种方法计算的最年轻地层年龄对比 Table 6 Comparision of ages calculated by 6 methods with detrial zircons to determine youngest age of Pingdingshan sandstone in the southern part of North China Block |
华北陆块北部的内蒙古隆起,连同其北侧的兴蒙造山带,以及华北陆块南部的北秦岭造山带和南秦岭造山带均有可能成为华北陆块上古生界的沉积物源区。但由于晚古生代期间,华北陆块北侧的兴蒙大洋正处于闭合时期(Li,2006;Zhang et al., 2007, 2009;Cao et al., 2013)或闭合后兴蒙造山带随即的裂陷作用(Zhang and Tang, 1989; 徐备和陈斌1997; 邵济安等,2015;Luo et al., 2016),以及北秦岭造山带南侧的勉略洋正处于扩张阶段(Dong et al., 2011; Dong and Santosh, 2016),所以,兴蒙造山带和南秦岭造山带做为华北陆块上古生界物源区的可能性较小,这已被近年来大量的有关华北陆块上古生界物源区的研究成果所证实(Wang et al., 2010;马收先等, 2011, 2014;Liu et al., 2014;Cai et al., 2015;Wang et al., 2016;马千里等,2017)。
华北陆块北部的内蒙古隆起主要由华北陆块的基底新太古界和古元古界所组成,零星分布有华北陆块的沉积盖层中-新元古界和古生界,此外,由于受到北侧兴蒙活动带的影响,内蒙古隆起分布有大量的晚古生代侵入岩体,但早古生代岩浆岩却几乎未有分布(内蒙古自治区地质矿产局,1991;邵济安等, 1997, 2015;Zhang et al., 2007)。岩浆活动的期次主要在中-晚泥盆世(370~397Ma)、早二叠世(280Ma)和晚二叠世(260Ma)(邵济安等, 1997, 2015;张拴宏等,2010)。这些岩体的岩性主要为石英二长岩、正长花岗岩和二长花岗岩,均含有大量的岩浆锆石,其εHf(t)值以较高的负值区别于兴蒙造山带同时期的岩浆岩(Yang et al., 2006;Zhang et al., 2009;邵济安等,2015; Luo et al., 2016),显示了内蒙古隆起海西期岩浆活动受古老地壳再循环的强烈影响。北秦岭造山带海西期岩浆岩分布稀少,但早古生代岩浆岩广泛分布(卢欣祥,2000;王洪亮等,2006;刘丙祥,2014;Dong and Santosh, 2016),并构成了北秦岭岩浆岩带的主体,岩石类型主要为中-酸性花岗质侵入岩,侵位于北秦岭地区主要的变质地层秦岭群、二郎坪群和宽坪群中。对面积较大的古生代岩浆岩体(包括板山坪、五垛山、四棵树、冢岗庙水库、蛮子营、西庄河、漂池、灰池子等岩体)锆石U-Pb定年表明,其年龄区间在386~499Ma,峰值年龄在~450Ma,εHf(t)值为小的负值和较大的正值,形成背景与早古生代期间商丹洋壳向北的俯冲和闭合有关(雷敏,2010;刘丙祥,2014;Dong and Santosh, 2016)。
鉴于上述事实,几乎所有的研究者根据华北陆块内部上古生界碎屑锆石的年龄和εHf(t)值,将其中晚古生代碎屑锆石归源于内蒙古隆起(Liu et al., 2014;Wang et al., 2010, 2016),早古生代碎屑锆石归源于北秦岭造山带(Cai et al., 2015;Wang et al., 2016)。
华北陆块南部平顶山砂岩古生代碎屑锆石主要为岩浆锆石,峰值年龄为~259Ma、~318Ma和~435Ma。~259Ma和~318Ma的峰值可对应于内蒙古隆起晚古生代两次重要的岩浆活动期次。此外,组成~259Ma和~318Ma两个峰值的碎屑锆石εHf(t)值为-17.5~-7.2,也对应于内蒙古隆起晚古生代侵入岩的εHf(t)范围(图 8)。~435Ma峰值由6颗年龄分布在427~526Ma的碎屑锆石所组成,与北秦岭造山带早古生代岩浆岩的年龄分布范围一致,εHf(t)均值为-1.2,也落在早古生代岩浆岩εHf(t)值的范围内(图 8)。如果假设内蒙古隆起和北秦岭造山带古生代岩浆岩提供岩浆锆石的潜力是相同的,由于~259Ma和~318Ma两个峰值占所有古生代碎屑锆石的87%,~435Ma峰值仅占13%,那么,古生代碎屑锆石的物源区应主要为内蒙古隆起,北秦岭造山带仅是次要物源区。
|
图 8 华北陆块南部巩义地区平顶山砂岩锆石εHf(t)值与U-Pb年龄关系图 NQQ-北秦岭造山带εHf(t)范围引自Shi et al. (2013) (稍有修改);S-CAOB-中亚造山带南部εHf(t)范围引自Yang et al. (2006);N-NCC-华北陆块北缘岩浆岩及侵入岩εHf(t)范围引自Liu et al. (2014);E-QOC-秦岭造山带东段加里东期岩浆岩εHf(t)范围引自雷敏(2010);NCC-华北陆块前寒武纪岩浆岩及变质岩εHf(t)范围引自Zhu et al. (2014)和万渝生等(2015) Fig. 8 Correlogram of zircon εHf(t) values vs. U-Pb ages of Pingdingshan sandstone in Gongyi area in the southern part of North China Block |
华北陆块南部平顶山砂岩含有大量的前寒武纪碎屑锆石,占所有碎屑锆石的87%,具有~1871Ma(年龄范围为1515~2269Ma)和~2459Ma(年龄范围为2365~3893Ma)两个明显的峰,尤其~1871Ma的峰非常显著,组成这两个峰的碎屑锆石占前寒武纪碎屑锆石的99%。此外,还有两个非常不明显的~812Ma和~976Ma的峰,仅由3颗锆石组成。
已有研究表明,华北陆块基底具有非常明显的~1800Ma和~2500Ma的年龄峰值(Zhai et al., 2005;Zhao et al., 2005;Peng et al., 2010, 图 9),年龄范围在1600~3800Ma之间,代表了华北陆块基底演化的两个重要阶段。华北陆块基底在~2700Ma围绕古陆核的新地壳的生长,形成了多个微陆块(沈其韩和钱祥麟, 1995;Zhai et al., 2000;Zhai and Santosh, 2011),~2500Ma这些微陆块广泛发生麻粒岩相变质作用和大量花岗岩的侵入,标志着这些微陆块拼贴的完成(Jahn et al.; 1988;Zhai et al., 2000;Zhao et al., 2001, 2005; Zhai and Santosh, 2011),并与~2500Ma的一次超大陆事件相对应(Windley,1995;Condie et al., 2001;Rogers and Santosh, 2004);2300~2000Ma期间,已形成的拼合陆块经历了拉伸-破裂事件,在其内部发育了晋豫、胶辽裂陷盆地和华北北部的丰镇陆内凹陷盆地(翟明国和彭澎,2007;Zhai and Santosh, 2011),1930~1900Ma期间的挤压事件导致了上述裂陷盆地的拼合和焊接,发育了超高温麻粒岩(Zhao and Cawood, 1999;翟明国和彭澎,2007;Zhai and Santosh, 2011),其中,由丰镇陆内凹陷演化来的丰镇活动带可能代表了平行于这一时期华北克拉通北缘拼合带的一条构造带(Kusky et al., 2007;Santosh, 2010;翟明国,2010),1850~1820Ma华北克拉通发育面状的强烈的变质作用和花岗岩的侵入,代表克拉通基底的整体隆升(Zhai and Santosh, 2011)或华北陆块基底的最终形成(Zhao et al., 2001)。
|
图 9 华北陆块南部平顶山砂岩前寒武纪碎屑锆石、华北陆块基底和北秦岭主要变质地层的年龄谱图 (a)华北陆块南部平顶山砂岩(本文);(b)华北陆块基底(Yang and Santosh, 2017;阳琼艳,2016;Darby and Gehrels, 2006;Kröner et al., 2006);(c)北秦岭主要变质地层(秦岭群、宽坪群和二郎坪群)(Shi et al., 2013;Tang et al., 2015;杨敏等,2016) Fig. 9 Age spectra of Precambrian detrital zircons of Pingdingshan sandstone in the southern part of North China Block, basement metamorphic rocks of North China Block and main metamorphic strata of North Qinling Orogenic Belt |
华北陆块沉积盖层中也含有大量的1700~2900Ma的碎屑锆石(Darby and Gehrels, 2006),但根据平顶山砂岩中前寒武纪锆石多为棱角状,磨圆度较差的特征,它们可能不是这些沉积盖层中碎屑锆石的再循环产物,而是寄宿于碎屑沉积物中被搬运的。此外,北秦岭造山带也不存在大范围的~1800Ma和~2500Ma的变质作用和岩浆作用(万渝生等,2011),该区分布的变质地层(秦岭群、二郎坪群和宽坪群)的碎屑锆石尽管存在有~2500Ma和~1810Ma的峰值年龄,但相较其他的758Ma、1050Ma、1550Ma等峰值并不显著(第五春荣等,2010;Zhu et al., 2011;Shi et al., 2013; Tang et al., 2015;杨敏等,2016;杨敏,2017)(图 9c),而平顶山砂岩中并未出现1550Ma峰值,与758Ma和1050Ma相近的~812Ma和~976Ma的峰值也非常微弱。
所以,华北陆块南部平顶山砂岩碎屑锆石~2459Ma和~1871Ma的峰值年龄、年龄范围和εHf(t)值可分别对比于华北陆块~2500Ma和~1800Ma的峰值年龄、年龄范围和εHf(t)值(图 8、图 9),~2700Ma模式年龄也与华北陆块基底大量的新地壳形成年龄一致(Zhai and Santosh, 2011)。~2459Ma峰值的碎屑锆石具有较大Th/U比值和正的εHf(t)值,显示了这一时期有新的地壳的形成,~1871Ma的碎屑锆石较小的Th/U比值和负的εHf(t)值,显示了这一时期广泛的变质事件或地壳的再循环作用,这些特征均与华北陆块基底~2500Ma强烈的岩浆活动(Zhai and Santosh, 2011;Geng et al., 2012),~1800Ma广泛的叠加变质作用或地壳的再循环(Wan et al., 2006;Geng et al., 2012)相吻合。此外,平顶山砂岩中石英颗粒主要为变质石英颗粒,微斜长石是华北克拉通新太古代和古元古代基底花岗片麻岩的主要变质矿物(董晓杰,2012;王庆龙等,2012),可进一步推测,平顶山砂岩中峰值为~1871Ma和~2459Ma的碎屑锆石主要来源于华北陆块基底的中高级变质岩,并且应是平顶山砂岩中碎屑颗粒的主要来源。
根据华北陆块南部及其南侧秦岭-大别造山带晚古生代地层的物源区研究,华北陆块南部上石炭统本溪组、下二叠统太原组和秦岭-大别造山带北侧轻微变质的石炭系(包括下石炭统花园墙组和杨山组、中-下石炭统道人冲组、上石炭统胡油坊组和杨小庄组)主要物源区为北秦岭造山带的加里东期花岗岩和被侵入的主要变质地层——秦岭群、宽坪群和二郎坪群(Li et al., 2004;Wang et al., 2010;李任伟,2010;Liu et al., 2014;Cai et al., 2015;杨栋栋,2015;Wang et al., 2016;曹高社等,2018),可以说明,至早二叠世,华北陆块南部尚不存在华北陆块基底的隆升。根据华北陆块南部的中二叠统山西组、中二叠统下石盒子组和上二叠统上石盒子组主要物源区主要为板块北部的内蒙古隆起(Zhu et al., 2014;Yang and Santosh, 2017),可能说明,华北陆块南部在二叠纪沉积时期不是隆升剥蚀区。根据华北陆块北部及其北侧兴蒙造山带晚古生代地层的物源区研究,华北陆块北部的上古生界和北侧兴蒙造山带的裂陷盆地中存在有大量的峰值年龄为~1800Ma和~2500Ma的碎屑锆石,被认为华北陆块北部的内蒙古隆起在晚石炭世以来一致处于隆升状态,并在早二叠世就已剥蚀至板块的基底(马收先等,2014;Luo et al., 2016; Wang et al., 2016)。所以,平顶山砂岩中峰值年龄为~2459Ma和~1871Ma的碎屑锆石应主要来源于华北陆块北部的内蒙古隆起,这与平顶山砂岩的古生代碎屑锆石主要来源于内蒙古隆起的推论相一致。至于平顶山砂岩中峰值为~1871Ma的碎屑锆石特别丰富的原因,可能与华北克拉通北缘曾经存在一个1930~1900Ma的拼合带有关(Kusky et al., 2007;Santosh, 2010;翟明国,2010)。
平顶山砂岩前寒武纪碎屑锆石还具有两个非常不明显的~812Ma和~976Ma的峰值,εHf(t)均值为-1.2。由于内蒙古隆起不存在~1000Ma的岩浆岩或变质岩,而北秦岭造山带不仅存在该时期的花岗岩体(张宏飞等,1993;Ratschbacher et al., 2003;Wang et al., 2003, 2013; 陈志宏等,2004;王涛等,2009),并且该地区的主要变质地层(宽坪群、二郎坪群和秦岭群)也存在有大量的700~1400Ma的碎屑锆石(第五春荣等,2010;Zhu et al., 2011;Shi et al., 2013; Tang et al., 2015;杨敏等,2016;杨敏,2017),平顶山砂岩~812Ma和~976Ma峰值的碎屑锆石εHf(t)值也落在北秦岭造山带的εHf(t)值范围内(图 8),所以,平顶山砂岩峰值为~812Ma和~976Ma的碎屑锆石可能来源于北秦岭造山带,但北秦岭造山带提供的物源可能有限,这与平顶山砂岩古生代碎屑锆石物源区的分析结果相一致。
根据碎屑锆石的物源区分析,平顶山砂岩的沉积物主要来源于华北陆块北部内蒙古隆起,北秦岭造山带仅是次要的物源区,所以,依据平顶山砂岩的沉积物主要来源于北秦岭造山带而得出的平顶山砂岩主要为陆相冲积河道-陆缘近海湖滩砂岩或辫状河三角洲沉积的认识是值得商榷的(河南省地质矿产局,1989;郑超等,2003;白斌等,2006)。王仁农(1997)根据平顶山砂岩中的沉积构造Lingula sp.等腕足动物化石,以及海绿石、磷灰石等代表浅海相沉积的指相矿物,推测平顶山砂岩为平行于当时秦岭海岸的滨海相砂体,系三角洲前缘席状砂体受来自南部扬子海侵强烈改造的产物。殷鸿福和林和茂(1979)根据孙家沟组底部(相当于平顶山砂岩)大量的海相动物化石也推测华北陆块在早三叠世也存在一次大规模的海侵,我们同意这一认识,说明平顶山砂岩的沉积环境相较下部地层主要为三角洲沉积环境已有较大的改变(陈钟惠等,1993),此与二叠-三叠纪之交广泛产生的海侵相吻合(Teichert et al., 1973;Henderson and Baud, 1997;Zhang et al., 1997)。此外,根据华北陆块南部平顶山砂岩下部的山西组、下石盒子组和上石盒子组沉积物几乎全部来源于华北陆块北部的内蒙古隆起,平顶山砂岩上部的石千峰组的物源主要来源于北秦岭造山带的认识(Zhu et al., 2014;Yang and Santosh, 2017),可以推论,平顶山砂岩可能是这一沉积物源区转变过程中的产物,尽管平顶山砂岩沉积物源区主要为内蒙古隆起,但已混有少量的北秦岭造山带的物源,由此揭开了北秦岭造山带再次崛起的序幕。所以,平顶山砂岩可能是二叠纪与三叠纪之交沉积和构造环境变化在华北陆块南部的物质记录。
5 结论(1) 华北陆块南部平顶山、巩义和宜阳地区的平顶山砂岩主要为硅质胶结的长石石英砂岩,碎屑颗粒主要为变质石英颗粒和微斜长石。依据三个地区4个样品的碎屑锆石LA-ICP-MS U-Pb测年,采用最年轻单颗粒年龄(YSG)限定地层的最大沉积年龄,确定出三个地区4个样品YSG年龄分别为249±8Ma、260±7Ma、252±7Ma和248±7Ma,与二叠系-三叠系沉积界线年龄251.0±0.4Ma相接近,可能说明,平顶山砂岩的底界可能是二叠纪与三叠纪的接触界线,华北陆块南部平顶山砂岩的地质时代应归属于早三叠世,在岩石地层上,平顶山砂岩应划归石千峰组的下段。
(2) 根据三个地区4个样品碎屑锆石的形貌特征、微量元素和年龄谱,并辅以Hf同位素测定表明,平顶山砂岩的沉积物主要来源于华北陆块北部内蒙古隆起,北秦岭造山带仅是次要的物源区,平顶山砂岩可能是在一次大规模的海侵下沉积的一套滨海相砂体。根据平顶山砂岩及其下伏和上覆地层沉积环境和物源区的变化,平顶山砂岩可能是二叠纪与三叠纪之交沉积和构造环境变化在华北陆块南部的物质记录。
致谢 感谢王世炎教授级高工、郑德顺教授、杨明慧教授和梁新权博士提出的建设性意见。
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 DOI:10.1016/S0009-2541(02)00195-X |
Bai B, Zhou LF, Liu BH and Xie QF. 2006. Sedimentary environment patterns analysis on Shiqianfeng Formation of Upper Permian in southern part of North China. Journal of Northwest University (Natural Science Edition), 36(3): 461-466 (in Chinese with English abstract) |
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X |
Bruguier O, Lancelot JR and Malavieille J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China):Provenance and tectonic correlations. Earth and Planetary Science Letters, 152(1-4): 217-231 DOI:10.1016/S0012-821X(97)00138-6 |
Bureau of Geology and Mineral Resources of Henan Province (BGMRH). 1989. Regional Geology of Henan. Beijing: Geological Publishing House: 375-376 (in Chinese)
|
Bureau of Geology and Mineral Resources of Henan Province. 1997. National Stratigraphic Division and Comparative Study 41:Henan Lithostratigraphy. Wuhan: China University of Geosciences Press: 128-129 (in Chinese)
|
Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. 1991. Regional Geology of Inner Mongolia Autonomous Region. Beijing: Geological Publishing House: 1-725 (in Chinese)
|
Bureau of Geology and Mineral Resources of Shaanxi Province. 1989. Regional Geology of Shaanxi Province. Beijing: Geological Publishing House: 180 (in Chinese)
|
Bureau of Geology and Mineral Resources of Shanxi Province. 1997. National Stratigraphic Division and Comparative Study 14:Stratigraphy (Lithostratic) of Shanxi Province. Wuhan: China University of Geosciences Press: 188-199 (in Chinese)
|
Cai SH, Wang QF, Liu XF, Feng YW and Zhang Y. 2015. Petrography and detrital zircon study of Late Carboniferous sequences in the southwestern North China Craton:Implications for the regional tectonic evolution and bauxite genesis. Journal of Asian Earth Sciences, 98: 421-435 DOI:10.1016/j.jseaes.2014.11.002 |
Cao GS, Xing Z, Bi JH, Sun FY, Liu LZ, Du X, Zhou HC and Chen YC. 2108. Material sources analysis of the Benxi Formation bauxite in the Yanshi-Longmen area, western Henan. Acta Geologica Sinica, 92(7): 1507-1523 (in Chinese with English abstract) |
Cao HH, Xu WL, Pei FP, Wang ZW, Wang F and Wang ZJ. 2013. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos, 170-171: 191-207 DOI:10.1016/j.lithos.2013.03.006 |
Chen JB, Wu TS, Zhang PY and You WC. 1997. Regional Strata in North China, Stratigraphic Multiple Division and Comparative Study in China. Wuhan: China University of Geosciences Press: 65-86 (in Chinese)
|
Chen ZH, Wu FD, Zhang SL, Zhang NM, Ma JX and Ge LG. 1993. The Depositional Environments and Coal-Accumulating Regularities of Late Paleozoic Coal-Bearing Measures in North China. Wuhan: China University of Geosciences Press: 123-129 (in Chinese)
|
Chen ZH, Lu SN, Li HK, Song B, Li HM and Xiang ZQ. 2004. The age of the Dehe biotite monzogranite gneiss in the North Qinling:TIMS and SHRIMP U-Pb zircon dating. Geological Bulletin of China, 23(2): 136-141 (in Chinese with English abstract) |
Coalfield Geology Company of Henan Province. 1991. The Late Palaeozoic Coal-accumulating Laws in Henan Province. Wuhan: China University of Geosciences Press: 118-119 (in Chinese)
|
Condie KC. 2001. Mantle Plumes and Their Record in Earth History. Cambridge, UK: Cambridge University Press: 1-305
|
Darby BJ and Gehrels G. 2006. Detrital zircon reference for the North China block. Journal of Asian Earth Sciences, 26(6): 637-648 DOI:10.1016/j.jseaes.2004.12.005 |
Davis GA, Zheng Y, Wang C, Darby BJ, Zhang CH and Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. In: Hendrix MS and Davis GA (eds.). Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. Memoirs-Geological Society of America, 171-198
|
Dickinson WR and Gehrels GE. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2): 115-125 DOI:10.1016/j.epsl.2009.09.013 |
Diwu CR, Sun Y, Liu L, Zhang CL and Wang HL. 2010. The disintegration of Kuanping Group in North Qinling orogenic belt and Neo-Proterozoic N-MORB. Acta Petrologica Sinica, 26(7): 2025-2038 (in Chinese with English abstract) |
Dong XJ. 2012. Composition and evolution of the Early Precambrian basement in Daqingshan Region, Inner Mongolia. Ph. D. Dissertation. Changchun: Jilin University, 1-114 (in Chinese with English summary)
|
Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China:Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237 DOI:10.1016/j.jseaes.2011.03.002 |
Dong YP and Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, Central China. Gondwana Research, 29(1): 1-40 DOI:10.1016/j.gr.2015.06.009 |
Gao XY and Zhao TP. 2017. Late Mesozoic magmatism and tectonic evolution in the southern margin of the North China Craton. Science China (Earth Sciences), 60(11): 1959-1975 DOI:10.1007/s11430-016-9069-0 |
Geng YS, Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton:Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529 DOI:10.1016/j.gr.2011.07.006 |
Henderson CM and Baud A. 1997. Correlation of the Permian-Triassic Boundary in Arctic Canada and Comparison with Meishan, China. In: Proceedings of the 30th International Geological Congress. Beijing: VSP Scientific Publishers, 11: 143-152
|
Hermann J, Rubatto D, Korsakov A and Shatsky VS. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82 DOI:10.1007/s004100000218 |
Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439 |
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract) |
Hu B, Yang WT, Song HB, Wang M and Zhong MY. 2009. Trace fossils and ichnofabrics in the Heshanggou Formation of lacustrine deposits, Jiyuan area, Henan Province. Acta Sedimentologica Sinica, 27(4): 573-582 (in Chinese with English abstract) |
Hu JQ, Mao GX, Xiao X and Tian NX. 1997. Late Palaeozoic sporopollen assemblage and the upper two fold lower limit in the southern part of North China Basin. Henan Petroleum, 11(3): 5-7 (in Chinese) |
Jahn BM, Auvray B, Shen QH, Liu DY, Zhang ZQ, Dong YJ, Ye XJ, Zhang QZ, Cornichet J and Mace J. 1988. Archean crustal evolution in China:The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research, 38(4): 381-403 DOI:10.1016/0301-9268(88)90035-6 |
Johnston S, Gehrels G, Valencia V and Ruiz J. 2009. Small-volume U-Pb zircon geochronology by laser ablation-multicollector-ICP-MS. Chemical Geology, 259(3-4): 218-229 DOI:10.1016/j.chemgeo.2008.11.004 |
Kinny PD and Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341 DOI:10.2113/0530327 |
Kröner A, Wilde SA, Zhao GC, O'Brien PJ, Sun M, Liu DY, Wan YS, Liu SW and Guo JH. 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan complex of northern China:Evidence for Late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research, 146(1-2): 45-67 DOI:10.1016/j.precamres.2006.01.008 |
Kusky TM, Windley BF and Zhai MG. 2007. Tectonic evolution of the North China block: From orogen to craton to orogen. In: Zhai MG, Windley BF, Kusky TM and Meng QR (eds.). Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society, London, Special Publications, 280(1): 1-34
|
Lawton TF and Bradford BA. 2011. Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, U.S.A, from zircon U-Pb geochronology and petrography. Journal of Sedimentary Research, 81(7): 495-512 DOI:10.2110/jsr.2011.45 |
Lei M. 2010. Petrogenesis of granites and their relation to tectonic evolution of orogen in the east part of Qinling orogenic belt. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
|
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224 DOI:10.1016/j.jseaes.2005.09.001 |
Li RW, Li SY, Jin FQ, Wan YS and Zhang SK. 2004. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance:Constraints from trace elements, mineral chemistry and SHRIMP dating of zircon. Sedimentary Geology, 166(3-4): 245-264 DOI:10.1016/j.sedgeo.2003.12.009 |
Li RW. 2010. Provenance study of the adjacent basins to Dabie Shan:New results and its application. Acta Sedimentologica Sinica, 28(1): 102-117 (in Chinese with English abstract) |
Liu BX. 2014. Magmatism and crustal evolution in the eastern North Qinling Terrain. Ph. D. Dissertation. Hefei: University of Science and Technology of China, 73-75 (in Chinese with English summary)
|
Liu C, Sun BL and Zeng FG. 2014. Constraints on U-Pb dating of detrital zircon of the maximum depositional age for Upper Permian to Lower Triassic strata in Xishan, Taiyuan. Acta Geologica Sinica, 88(8): 1579-1587 (in Chinese with English abstract) |
Liu H. 1990. A discussion on the movement of the Late Paleozoic of the Palaeozoic in Henan Province. Coal Geology of China, 2(4): 29-32 (in Chinese) |
Liu HY and Liu XT. 1984. Continental Triassic lithostratigraphic units in Shanxi Province:Shiqianfeng Group and Ermaying Group. Bulletin of the Chinese Academy of Geological Sciences, 9: 137-156 (in Chinese with English abstract) |
Liu J, Zhao Y, Liu AK, Zhang SH, Yang ZY and Zhuo SG. 2014. Origin of Late Palaeozoic bauxites in the North China Craton:Constraints from zircon U-Pb geochronology and in situ Hf isotopes. Journal of the Geological Society, 171(5): 695-707 DOI:10.1144/jgs2013-074 |
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CJ and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004 |
Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546 DOI:10.1007/s11434-010-3052-4 |
Lu XX. 2000. Description of Granite Tectonic Map of Qinling Mountains. Xi'an: Xi'an Map Publishing House: 20-21 (in Chinese)
|
Luo ZW, Zhang ZC, Li K, Li JF, Tang WH and Xu B. 2016. Petrography, geochemistry, and U-Pb detrital zircon dating of Early Permian sedimentary rocks from the North Flank of the North China Craton:Implications for the Late Palaeozoic tectonic evolution of the eastern Central Asian Orogenic Belt. International Geology Review, 58(7): 787-806 DOI:10.1080/00206814.2015.1118646 |
Ma QL, Xu XR and Du YS. 2017. Zircon U-Pb chronology and provenance of the Sanhao Conglomerate in Zhoukoudian, Beijing:Implications for coeval paleogeography. Geological Science and Technology Information, 36(4): 29-35 (in Chinese with English abstract) |
Ma SX, Meng QR and Qu YQ. 2011. A study of detrital zircons of Late Carboniferous-Middle Triassic strata in the northern margin of North China block and its geological implication. Geological Bulletin of China, 30(10): 1485-1500 (in Chinese with English abstract) |
Ma SX, Lv TY, Wu GL and Duan L. 2014. The revision of the Benxi and Liujiagou formations in Pingquan area. Geology in China, 41(3): 728-740 (in Chinese with English abstract) |
Meng QR and Zhang GW. 1999. Timing of collision of the North and South China blocks:Controversy and reconciliation. Geology, 27(2): 123-126 |
Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS and Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1-2): 231-235 DOI:10.1016/j.chemgeo.2008.06.040 |
Nazari-Dehkordi T, Spandler C, Oliver NHS, Chapman J and Wilson R. 2017. Provenance, tectonic setting and source of Archean metasedimentary rocks of the Browns Range Metamorphics, Tanami Region, Western Australia. Australian Journal of Earth Sciences, 64(6): 723-741 DOI:10.1080/08120099.2017.1355844 |
Ogg JG, Ogg GM and Gradstein FM. 2008. The Concise Geologic Time Scale. Cambridge: Cambridge University Press: 165-170
|
Ouyang S and Wang RN. 1985. Age assignment of the Pingdingshan member in Henan and Anhui provinces. Experimental Petroleum Geology, 7(2): 141-147 (in Chinese with English abstract) |
Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China Craton:Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659 DOI:10.1016/j.precamres.2010.08.015 |
Qi YA, Hu B, Zhang GC and Gong YM. 2007. Ichnofabrics and their environmental interpretation from Middle Triassic Youfangzhuang Formation, Jiyuan region, western Henan Province. Acta Sedimentologica Sinica, 25(3): 372-379 (in Chinese with English abstract) |
Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, McWilliams MO, Ireland T, Dong SW and Hu JM. 2003. Tectonics of the Qinling (Central China):Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1-2): 1-53 DOI:10.1016/S0040-1951(03)00053-2 |
Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F and Draganits E. 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters, 236(3-4): 773-796 DOI:10.1016/j.epsl.2005.05.034 |
Robinson AC, Ducea M and Lapen TJ. 2012. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics, 31(2): TC2016 |
Rogers JJW and Santosh M. 2004. Continents and Supercontinents. Oxford: Oxford University Press
|
Santosh M. 2010. A synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment. Journal of Geodynamics, 50(3-4): 116-133 DOI:10.1016/j.jog.2010.04.002 |
Şengör AMC. 1985. Geology:East Asian tectonic collage. Nature, 318(6041): 16-17 DOI:10.1038/318016a0 |
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 DOI:10.1038/364299a0 |
Shao JA, Mu BL, He GQ and Zhang LQ. 1997. Geological effects in tectonic superposition of Paleo-Pacific domain and Paleo-Asian domain in northern part of North China. Science in China (Series D), 40(6): 634-640 DOI:10.1007/BF02877693 |
Shao JA, He GQ and Tang KD. 2015. The evolution of Permian continental crust in northern part of North China. Acta Petrologica Sinica, 31(1): 47-55 (in Chinese with English abstract) |
Shen QH and Qian XL. 1995. Archean rock assemblages, episodes and tectonic evolution of China. Acta Geosicientia Sinica, 16(2): 113-120 (in Chinese with English abstract) |
Shi QZ, Wei XD, Li ML and Pang JQ. 2004. Nappe Structures and Extensional Detachment Structures in the Northern Margin of East Qinling Mountains, Henan Province. Beijing: Geological Publishing House: 15-34 (in Chinese)
|
Shi Y, Yu JH and Santosh M. 2013. Tectonic evolution of the Qinling orogenic belt, Central China:New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 231: 19-60 DOI:10.1016/j.precamres.2013.03.001 |
Sircombe KN. 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology, 124(1-4): 47-67 DOI:10.1016/S0037-0738(98)00120-1 |
Söderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324 DOI:10.1016/S0012-821X(04)00012-3 |
Tang L, Santosh M and Dong YP. 2015. Tectonic evolution of a complex orogenic system:Evidence from the northern Qinling belt, central China. Journal of Asian Earth Sciences, 113: 544-559 DOI:10.1016/j.jseaes.2015.03.033 |
Teichert C, Kummel B and Sweet WC. 1973. Permian-Triassic Strata, Kuh-E-Ali Bashi, Northwestern Iran. Harvard: Harvard University, 145
|
Tucker RT, Roberts EM, Hu Y, Kemp AIS and Salisbury SW. 2013. Detrital zircon age constraints for the Winton Formation, Queensland:Contextualizing Australia's Late Cretaceous dinosaur faunas. Gondwana Research, 24(2): 767-779 DOI:10.1016/j.gr.2012.12.009 |
Ustaömer T, Ustaömer PA, Robertson AHF and Gerdes A. 2016. Implications of U-Pb and Lu-Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian-Triassic Palaeotethyan Karakaya Complex, NW Turkey. International Journal of Earth Sciences, 105(1): 7-38 |
Vavra G, Schmid R and Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404 DOI:10.1007/s004100050492 |
Wan YS, Wilde SA, Liu DY, Yang CX, Song B and Yin XY. 2006. Further evidence for~1.85Ga metamorphism in the central zone of the North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research, 9(1-2): 189-197 DOI:10.1016/j.gr.2005.06.010 |
Wan YS, Liu DY, Dong CY and Yin XY. 2011. SHRIMP zircon dating of meta-sedimentary rock from the Qinling Group in the north of Xixia, North Qinling Orogenic Belt:Constraints on complex histories of source region and timing of deposition and metamorphism. Acta Petrologica Sinica, 27(4): 1172-1178 (in Chinese with English abstract) |
Wan YS, Dong CY, Xie HQ, Liu SJ, Ma MZ, Xie SW, Ren P, Sun HY and Liu DY. 2015. Some progress in the study of Archean basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685-700 (in Chinese with English abstract) |
Wang B. 1988. Division and correlation of Upper Permian-Lower Triassic in middle part of Henan and discussion on some geological topics. Experimental Petroleum Geology, 10(2): 142-158 (in Chinese with English abstract) |
Wang HL, He SP, Chen JL, Xu XX, Sun Y and Diwu CR. 2006. LA-ICPMS dating of zircon U-Pb and tectonic significance of Honghuapu subduction-related intrusions in the west segment of northern Qinling Mountains. Geoscience, 20(4): 536-544 (in Chinese with English abstract) |
Wang QF, Deng J, Liu XF, Zhao R and Cai SH. 2016. Provenance of Late Carboniferous bauxite deposits in the North China Craton:New constraints on marginal arc construction and accretion processes. Gondwana Research, 38: 86-98 DOI:10.1016/j.gr.2015.10.015 |
Wang QL, Jin W, Cai LB, Cui XH, Zhang Q and Wu CS. 2012. Characteristics and genesis of Neoarchean granitic complex in Xingcheng of western Liaoning. Global Geology, 31(3): 479-492 (in Chinese with English abstract) |
Wang RN. 1981. Henan Yongcheng and its adjacent areas, "Shiqianfeng Formation". Journal of Stratigraphy, 5(3): 181-189 (in Chinese) |
Wang RN. 1997. New advance of the study of the Shiqianfeng Formation in western Henan. Geological Review, 43(2): 200-209 (in Chinese with English abstract) |
Wang T, Wang XX, Zhang GW, Pei XZ and Zhang CL. 2003. Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling orogenic belt (China). Gondwana Research, 6(4): 699-710 DOI:10.1016/S1342-937X(05)71018-2 |
Wang T, Wang XX, Tian W, Zhang CL, Li WP and Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time:Implications for orogenic processes in the orogens of central China. Science in China (Series D), 52(9): 1359-1384 DOI:10.1007/s11430-009-0129-5 |
Wang XX, Wang T and Zhang CL. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China:Constraints on orogenic process. Journal of Asian Earth Sciences, 72: 129-151 DOI:10.1016/j.jseaes.2012.11.037 |
Wang Y, Zhou LY, Zhao LJ, Ji M and Gao HL. 2010. Palaeozoic uplands and unconformity in the North China Block:Constraints from zircon LA-ICP-MS dating and geochemical analysis of bauxite. Terra Nova, 22(4): 264-273 |
Wilde SA, Wu FY and Zhang XZ. 2003. Late Pan-African magmatism in northeastern China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research, 122(1-4): 311-327 DOI:10.1016/S0301-9268(02)00217-6 |
Windley BF. 1995. Uniformitarianism today: Plate tectonics is the key to the past. In: Le Bas MJ (ed.). Milestones in Geology. Geological Society, London, Memoirs, 16(1): 11-23
|
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 DOI:10.1144/0016-76492006-022 |
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003 |
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract) |
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569 DOI:10.1007/BF03184122 |
Xu B and Chen B. 1997. Framework and evolution of the Middle Paleozoic orogenic belt between Siberian and North China plates in northern Inner Mongolia. Science in China (Series D), 40(5): 463-469 DOI:10.1007/BF02877610 |
Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with English abstract) |
Yang DD. 2015. Late Paleozoic sedimentary record of the Northern margin of the Dabie Mountains and its implications for tectonic evolution. Ph. D. Dissertation. Hefei: Hefei University of Technology (in Chinese with English summary)
|
Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW and Liu XM. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3-4): 336-352 DOI:10.1016/j.epsl.2006.04.029 |
Yang M, Liu L, Wang YW, Liao XY, Kang L and Gai YS. 2016. Geochronology of detrital zircons from metaclastic of Erlangping complex in the North Qinling belt and its tectonic implication. Acta Petrologica Sinica, 32(5): 1452-1466 (in Chinese with English abstract) |
Yang M. 2017. Detrital zircon U-Pb dating of metaclastic rocks from Erlangping, Kuanping and Taowan Group in the eastern Qinling area and its tectonic implication. Master Degree Thesis. Xi'an: Northwest University (in Chinese with English summary)
|
Yang Q. 1987. Sedimentary Environment and Coal Accumulation Characteristics of Late Paleozoic Coal Measures in Yu County, Henan. Beijing: Geological Publishing House: 55-63 (in Chinese)
|
Yang QY. 2016. Precambrian crustal evolution of the North China Craton: An integrated petrological, geochemical and geochronological study. Ph. D. Dissertation. Beijing: China University of Geosciences, 133-136 (in Chinese with English summary)
|
Yang QY and Santosh M. 2017. The building of an Archean microcontinent:Evidence from the North China Craton. Gondwana Research, 50: 3-37 DOI:10.1016/j.gr.2017.01.003 |
Yin HF and Lin HM. 1979. Triassic marine strata in Weibei area, Shanxi, and on the age of Shiqianfeng Group. Journal of Stratigraphy, 3(4): 233-241 (in Chinese) |
Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.1): 219-232 |
Zhai MG, Guo JH and Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton:A review. Journal of Asian Earth Sciences, 24(5): 547-561 DOI:10.1016/j.jseaes.2004.01.018 |
Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China craton. Acta Petrologica Sinica, 23(11): 2665-2682 (in Chinese with English abstract) |
Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36 (in Chinese with English abstract) |
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research, 20(1): 6-25 DOI:10.1016/j.gr.2011.02.005 |
Zhang GW, Zhang BR, Yuan XC and Zhang QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press: 1-855 (in Chinese)
|
Zhang HF, Zhang BR and Luo TC. 1993. Geochemical study of genesis and tectonic setting for Late Proterozoic granitoids, North Qinling, China. Earth Science (Journal of China University of Geosciences), 18(2): 194-202 (in Chinese with English abstract) |
Zhang K. 1991. Diachronism of the Sunjiagou Formation:A discussion. Regional Geology of China, (3): 221-228 (in Chinese with English abstract) |
Zhang KX, Tong JN, Yin HF and Wu SB. 1997. Sequence stratigraphy of the Permian-Triassia boundary section of Changxing, Zhejiang, Southern China. Acta Geologica Sinica, 71(1): 90-103 |
Zhang S. 1987. The Shiqianfeng Formation in western Henan and its discussion on the times. Henan Geology, 5(3): 33-36 (in Chinese) |
Zhang SH, Zhao Y, Song B, Yang ZY, Hu JM and Wu H. 2007. Carboniferous granitic plutons from the northern margin of the North China block:Implications for a Late Palaeozoic active continental margin. Journal of the Geological Society, 164(2): 451-463 DOI:10.1144/0016-76492005-190 |
Zhang SH, Zhao Y, Song B, Hu JM, Liu SW, Yang YH, Chen FK, Liu XM and Liu J. 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton:Geochronology, petrogenesis, and tectonic implications. GSA Bulletin, 121(1-2): 181-200 |
Zhang SH, Zhao Y, Liu JM, Hu JM, Song B, Liu J and Wu H. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block:A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824-842 (in Chinese with English abstract) |
Zhang YP and Tang KD. 1989. Pre-Jurassic tectonic evolution of intercontinental region and the suture zone between the North China and Siberian platforms. Journal of Southeast Asian Earth Sciences, 3(1-4): 47-55 DOI:10.1016/0743-9547(89)90008-1 |
Zhao GC and Cawood PA. 1999. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block:Implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science, 299(4): 309-339 |
Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton:Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73 DOI:10.1016/S0301-9268(00)00154-6 |
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002 |
Zhao TP, Meng L, Gao XY, Jin C, Wu Q and Bao ZW. 2018. Late Mesozoic felsic magmatism and Mo-Au-Pb-Zn mineralization in the southern margin of the North China Craton:A review. Journal of Asian Earth Sciences, 161: 103-121 DOI:10.1016/j.jseaes.2018.04.020 |
Zheng C, Li BF and Wen XR. 2003. Depositional characteristics of the Late Permian braided channel-braided delta deposits in northern foothills of the Qinling Mountains, China. Geoscience, 17(4): 415-420 (in Chinese with English abstract) |
Zhu RX, Xu YG, Zhu G, Zhang HF, Xia QE and Zheng TY. 2012. Destruction of the North China Craton. Scientia Sinica (Terrae), 42(8): 1135-1159 (in Chinese) DOI:10.1360/zd-2012-42-8-1135 |
Zhu XQ, Zhu WB, Ge RF and Wang X. 2014. Late Paleozoic provenance shift in the south-central North China Craton:Implications for tectonic evolution and crustal growth. Gondwana Research, 25(1): 383-400 DOI:10.1016/j.gr.2013.04.009 |
Zhu XY, Chen FK, Li SQ, Yang YZ, Nie H, Siebel W and Zhai MG. 2011. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China:Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gondwana Research, 20(1): 194-204 DOI:10.1016/j.gr.2010.12.009 |
白斌, 周立发, 刘彬辉, 谢其锋. 2006. 南华北上二叠统石千峰组物源与沉积环境分析. 西北大学学报(自然科学版), 36(3): 461-466. DOI:10.3321/j.issn:1000-274X.2006.03.030 |
曹高社, 邢舟, 毕景豪, 孙凤余, 刘凌之, 杜欣, 周红春, 陈永才. 2018. 豫西偃龙地区本溪组铝土矿成矿物质来源分析. 地质学报, 92(7): 1507-1523. DOI:10.3969/j.issn.0001-5717.2018.07.012 |
陈晋镳, 武铁山, 张鹏远, 游文澄. 1997. 华北区区域地层——全国地层多重划分对比研究. 武汉: 中国地质大学出版社: 65-86.
|
陈钟惠, 武法东, 张守良, 张年茂, 马晋贤, 葛立刚. 1993. 华北晚古生代含煤岩系的沉积环境和聚煤规律. 武汉: 中国地质大学出版社: 123-129.
|
陈志宏, 陆松年, 李怀坤, 宋彪, 李惠民, 相振群. 2004. 北秦岭德河黑云二长花岗片麻岩体的成岩时代——TIMS和SHRIMP锆石U-Pb同位素年代学. 地质通报, 23(2): 136-141. DOI:10.3969/j.issn.1671-2552.2004.02.006 |
第五春荣, 孙勇, 刘良, 张成立, 王洪亮. 2010. 北秦岭宽坪岩群的解体及新元古代N-MORB. 岩石学报, 26(7): 2025-2038. |
董晓杰. 2012.内蒙古大青山地区早前寒武纪基底组成与演化.博士学位论文.长春: 吉林大学, 1-114 http://cdmd.cnki.com.cn/Article/CDMD-10183-1012362773.htm
|
河南煤田地质公司. 1991. 河南省晚古生代聚煤规律. 武汉: 中国地质大学出版社: 118-119.
|
河南省地质矿产局. 1989. 河南省区域地质志. 北京: 地质出版社: 375-376.
|
河南省地质矿产厅. 1997. 全国地层多重划分对比研究41:河南省岩石地层. 武汉: 中国地质大学出版社: 128-129.
|
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025 |
胡斌, 杨文涛, 宋慧波, 王敏, 钟明洋. 2009. 豫西济源地区早三叠世和尚沟组湖相遗迹化石及遗迹组构. 沉积学报, 27(4): 573-582. |
胡俊卿, 毛国兴, 肖学, 田纳新. 1997. 华北盆地南部晚古生代孢粉组合及上二叠统下限. 河南石油, 11(3): 5-7. |
雷敏. 2010.秦岭造山带东部花岗岩成因及其与造山带构造演化的关系.博士学位论文.北京: 中国地质科学院 http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012326.htm
|
李任伟. 2010. 大别山周缘盆地物源研究:新结果及运用. 沉积学报, 28(1): 102-117. |
刘丙祥. 2014.北秦岭地体东段岩浆作用与地壳演化.博士学位论文.合肥: 中国科学技术大学, 73-75 http://cdmd.cnki.com.cn/Article/CDMD-10358-1014299883.htm
|
刘超, 孙蓓蕾, 曾凡桂. 2014. 太原西山上二叠统-下三叠统地层最大沉积年龄的碎屑锆石U-Pb定年约束. 地质学报, 88(8): 1579-1587. |
刘和. 1990. 河南古生代末箕山运动刍议. 中国煤田地质, 2(4): 29-32. |
刘鸿允, 刘宪亭. 1984.山西的陆相三叠系石千峰群和二马营群.中地质科学院院报, 第9号: 137-156 http://www.cnki.com.cn/Article/CJFDTotal-DQXB198402012.htm
|
卢欣祥. 2000. 秦岭花岗岩大地构造图及说明书. 西安: 西安地图出版社: 20-21.
|
马千里, 许欣然, 杜远生. 2017. 北京周口店三好砾岩的时代、物源背景及其古地理意义:来自沉积学和碎屑锆石年代学的证据. 地质科技情报, 36(4): 29-35. |
马收先, 孟庆任, 曲永强. 2011. 华北地块北缘上石炭统-中三叠统碎屑锆石研究及其地质意义. 地质通报, 30(10): 1485-1500. DOI:10.3969/j.issn.1671-2552.2011.10.002 |
马收先, 吕同艳, 武国利, 段亮. 2014. 平泉地区本溪组和刘家沟组厘定. 中国地质, 41(3): 728-740. DOI:10.3969/j.issn.1000-3657.2014.03.004 |
内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社: 1-725.
|
欧阳舒, 王仁农. 1985. 豫皖地区平顶山砂岩段地质时代的探讨. 石油实验地质, 7(2): 141-147. |
齐永安, 胡斌, 张国成, 龚一鸣. 2007. 豫西济源地区中三叠世油房庄组遗迹组构及其环境解释. 沉积学报, 25(3): 372-379. DOI:10.3969/j.issn.1000-0550.2007.03.007 |
陕西省地质矿产局. 1989. 陕西省区域地质志. 北京: 地质出版社: 180.
|
山西省地质矿产局. 1997. 全国地层多重划分对比研究14:山西省岩石地层. 武汉: 中国地质大学出版社: 188-199.
|
邵济安, 牟保磊, 何国琦, 张履桥. 1997. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用. 中国科学(D辑), 27(5): 390-394. |
邵济安, 何国琦, 唐克东. 2015. 华北北部二叠纪陆壳演化. 岩石学报, 31(1): 47-55. |
沈其韩, 钱祥麟. 1995. 中国太古宙地质体组成、阶段划分和演化. 地球学报, 16(2): 113-120. |
石铨曾, 尉向东, 李明立, 庞继群. 2004. 河南省东秦岭山脉北缘的推覆构造及伸展拆离构造. 北京: 地质出版社: 15-34.
|
万渝生, 刘敦一, 董春艳, 殷小艳. 2011. 西峡北部秦岭群变质沉积岩锆石SHRIMP定年:物源区复杂演化历史和沉积、变质时代确定. 岩石学报, 27(4): 1172-1178. |
万渝生, 董春艳, 颉颃强, 刘守偈, 马铭株, 谢士稳, 任鹏, 孙会一, 刘敦一. 2015. 华北克拉通太古宙研究若干进展. 地球学报, 36(6): 685-700. |
王斌. 1988. 河南中部晚二叠世与早三叠世地层划分对比及几个地质问题的商榷. 石油实验地质, 10(2): 142-158. |
王洪亮, 何世平, 陈隽璐, 徐学义, 孙勇, 第五春荣. 2006. 北秦岭西段红花铺俯冲型侵入体LA-ICPMS定年及其地质意义. 现代地质, 20(4): 536-544. DOI:10.3969/j.issn.1000-8527.2006.04.003 |
王庆龙, 金巍, 蔡丽斌, 崔夏红, 张桥, 吴朝盛. 2012. 辽西兴城地区新太古代花岗质杂岩特征与成因. 世界地质, 31(3): 479-492. DOI:10.3969/j.issn.1004-5589.2012.03.005 |
王仁农. 1981. 河南永城及其相邻地区的"石千峰组". 地层学杂志, 5(3): 181-189. |
王仁农. 1997. 豫西石千峰组研究新进展. 地质论评, 43(2): 200-209. DOI:10.3321/j.issn:0371-5736.1997.02.013 |
王涛, 王晓霞, 田伟, 张成立, 李伍平, 李舢. 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示. 中国科学(D辑), 39(7): 949-971. |
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. |
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002 |
徐备, 陈斌. 1997. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化. 中国科学(D辑), 27(3): 227-232. |
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857. |
杨栋栋. 2015.大别山北缘晚古生代沉积记录及其对构造演化的制约.博士学位论文.合肥: 合肥工业大学 http://cdmd.cnki.com.cn/Article/CDMD-10359-1016285026.htm
|
杨敏, 刘良, 王亚伟, 廖小莹, 康磊, 盖永升. 2016. 北秦岭二郎坪杂岩变沉积岩碎屑锆石年代学及其构造地质意义. 岩石学报, 32(5): 1452-1466. |
杨敏. 2017.东秦岭地区二郎坪、宽坪及陶湾岩群变沉积岩碎屑锆石年代学研究及其地质意义.硕士学位论文.西安: 西北大学 http://cdmd.cnki.com.cn/Article/CDMD-10697-1017104454.htm
|
杨起. 1987. 河南禹县晚古生代煤系沉积环境与聚煤特征. 北京: 地质出版社: 55-63.
|
阳琼艳. 2016.华北克拉通前寒武纪地壳演化: 来自岩石学、地球化学和地质年代学的证据.博士学位论文.北京: 中国地质大学, 133-136
|
殷鸿福, 林和茂. 1979. 陕西渭北地区三叠纪海相化石层并论石千峰群的时代. 地层学杂志, 3(4): 233-241. |
翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682. DOI:10.3969/j.issn.1000-0569.2007.11.001 |
翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36. DOI:10.3969/j.issn.0258-7106.2010.01.004 |
张国伟, 张本仁, 袁学成, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社: 1-855.
|
张宏飞, 张本仁, 骆庭川. 1993. 北秦岭新元古代花岗岩类成因与构造环境的地球化学研究. 地球科学-中国地质大学学报, 18(2): 194-202. |
张抗. 1991. 孙家沟组穿时性讨论. 中国区域地质, (3): 221-228. |
张士. 1987. 豫西的石千峰组及其时代讨论. 河南地质资源, 5(3): 33-36. |
张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代:早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824-842. DOI:10.3969/j.issn.1000-6524.2010.06.017 |
郑超, 李宝芳, 温显端. 2003. 秦岭北麓晚二叠世平顶山段辫状河-辫状三角洲沉积体系及其构造涵义. 现代地质, 17(4): 415-420. DOI:10.3969/j.issn.1000-8527.2003.04.009 |
朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学(地球科学), (42): 1135-1159. |
2019, Vol. 35







