2. 中国地质科学院国家地质实验测试中心, 北京 100037
2. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China
西藏南部冈底斯带代表了亚洲板块最南端区域,分布有大量与新特斯洋俯冲和随后的印度-亚欧大陆碰撞有关的中生代-新生代岩浆岩。其中,印度-亚欧大陆碰撞后大陆汇聚期间产生的中新世岩浆岩发育广泛,主要包括钾质-超钾质火山岩(Turner et al., 1993; Miller et al., 1999; Williams et al., 2001; Zhao et al., 2009; Guo et al., 2015)、高Sr/Y比中酸性岩浆岩和普通花岗岩,且中酸性岩浆岩和普通花岗岩的分布近平行于雅鲁藏布缝合带(ITS)的位置(曲晓明等, 2001)。
自Chung et al. (2003)首次报道冈底斯岩基发育中新世埃达克质花岗岩以来,从东部的林芝地区到西部雄巴地区,陆续发现了类似的岩石(Ding et al., 2003; Hou et al., 2004; 侯增谦等, 2004, 2006; Chung et al., 2005, 2009; 陈建林等,2006;Gao et al., 2007, 2008, 2010; Guo et al., 2007; Chen et al., 2010; Xu et al., 2010; Zheng et al., 2012; 陈希节等, 2014; 曾令森等,2017),但对其源区及成因机制的认识仍存在较大的分歧。有关该套岩浆岩的源区和成因机制的认识包括:(1)加厚地壳根部的榴辉岩和/或石榴角闪岩熔融(Chung et al., 2003, 2009; Hou et al., 2004; Guo et al., 2007);(2)加厚下地壳镁铁质物质的部分熔融,并加入了富集地幔和/或上地壳组分(Hou et al., 2004);(3)俯冲板片熔体交代的上地幔区域的熔融(Gao et al., 2007, 2010);(4)基性新生下地壳部分熔融(Hou et al., 2004; 侯增谦等,2005;陈希节等,2014)。导致这些区域发生部分熔融的构造过程包括:(1)俯冲印度大陆岩石圈撕裂(侯增谦等,2006);(2)陆内裂谷作用(Molnar and Tapponnier, 1978; Williams et al., 2001; 赵志丹等,2006; Guo et al., 2007);(3)增厚岩石圈根部拆沉(England and Houseman, 1989; Turner et al., 1996; Miller et al., 1999; Chung et al., 2003, 2005; Hou et al., 2004)。关于新生下地壳的形成也存在不同成因模型,一种强调新生下地壳源于含水地幔楔熔融形成的镁铁质岩浆(Petford and Atherton, 1996);另一种认为新生下地壳可能为含水玄武岩洋壳部分熔融,产生岩浆并上升底侵于壳-幔边界附近而成(Mo et al., 2007, 2008)。
在弧岩浆作用过程中,地壳厚度是调制岩浆岩元素地球化学性质的关键因素(Leeman, 1983; Farner and Lee, 2017), 其中熔融深度是控制岩浆岩的Ce/Y比(Mantle and Collins, 2008)和中酸性岩浆的Sr/Y和La/Yb比(Haschke and Günther, 2003;Chapman et al., 2015;Chiaradia, 2015; Profeta et al., 2015)的主要因素。在碰撞造山构造背景下,高Sr/Y比中酸性岩浆的Sr/Y和La/Yb比值也是反演造山带地壳厚度的重要替代指标(Hu et al., 2017)。Chung et al. (2009)认为冈底斯岩基的地壳增厚作用发生在30Ma之前,这一观点得到冈底斯岩基南部发育>30Ma的高Sr/Y比中酸性岩浆岩(Ji et al., 2009; 管琪等,2010;Guan et al., 2012; Wang et al., 2019)的支持。但自30Ma以来,冈底斯岩基地壳厚度是否发生变化,还是有待探讨的科学问题。通过甄别中酸性岩浆的地球化学特征和Sr/Y比以及(La/Y)N比的影响因素,可以利用这些岩浆岩的Sr/Y和(La/Yb)N比来限定岩浆形成时地壳熔融的深度,并由此反演冈底斯岩基地壳厚度的变化特征。
本文通过对藏南冈底斯岩基东段中新世中酸性高Sr/Y岩浆岩进行锆石U-Pb年代学分析、全岩元素和锆石Hf同位素测试分析,来确定藏南中酸性岩浆岩的形成时代和地球化学特征,限定其古地壳的厚度状态,从而揭示其岩浆过程和岩石成因。
1 地质背景和样品特征青藏高原是自早古生代以来多个微陆块自北向南依次拼接在欧亚大陆南缘,形成分别以金沙江、班公-怒江和雅鲁藏布江缝合带为界的松潘-甘孜、羌塘、拉萨和喜马拉雅四大地块。冈底斯岩基则位于拉萨地体南缘,与雅鲁藏布缝合带毗邻。冈底斯带发育与新特提洋北向俯冲有关的大规模白垩纪-早新生代钙碱性岩浆岩(林子宗火山岩和冈底斯岩基)(Schärer et al., 1984; Coulon et al., 1986; Murphy et al., 1997; Chung et al., 2005; Wen et al., 2008; Ji et al., 2009; Zhu et al., 2011, 2018),以及印度-亚欧大陆碰撞后大陆汇聚期间产生的一些钾质-超钾质和埃达克质岩浆岩(图 1a)。其中,分布广泛的后碰撞中新世埃达克质岩(26~10Ma)由少量的斑岩、岩脉和熔岩所组成,在拉萨地体中呈东-西向带状延伸超过1500km,与印度-雅鲁藏布缝合带(ITS)平行(Chung et al., 2003, 2005, 2009; Guo et al., 2007; Zheng et al., 2012; Li et al., 2017; Liu et al., 2017)。藏南在始新世和渐新世期间分别发生了两次重要的后碰撞构造事件:在50~45Ma特提斯洋俯冲板片的断离(Kohn and Parkinson, 2002;Wen et al., 2008; Chung et al., 2009; Ji et al., 2009; Lee et al., 2009; Zhu et al., 2011);和在30~25Ma拉萨地块加厚岩石圈根部的拆沉(Miller et al., 1999; Williams et al., 2001)。了解藏南后碰撞岩浆岩的成因可以对后碰撞岩浆活动提供很好的记录和约束。
![]() |
图 1 藏南拉萨地体地质简图(a,据Chung et al., 2005, 2009; Hou et al., 2015修改)和冈底斯东段地质简图及采样位置(b) Fig. 1 Simplified geological maps of southern Tibet (a, after Chung et al., 2005, 2009; Hou et al., 2015) and eastern Gangdese batholith with sample locations (b) |
本研究样品采自西藏南部冈底斯带东段四个地区发育的中酸性岩浆岩,分别为江达闪长玢岩(T0289-SV)、米拉山口西日多流纹岩(T0589)、拉萨南花岗闪长斑岩(T0867)和白堆花岗闪长玢岩(T0969-SV)(图 1b)。
T0289-SV闪长玢岩以宽约10m的脉状侵入于早期的花岗岩中(图 2a),为似斑状结构,包含的主要矿物有斜长石(60%~65%)、石英(10%~15%)、角闪石(8%~10%)、碱性长石(5%~8%)以及副矿物钛铁矿、榍石等(图 3a)。T0589流纹岩具流纹构造,斑状结构,斑晶主要有石英(20%~25%)、斜长石(15%~20%)和碱性长石(10%~15%)(图 3b)。T0867花岗闪长斑岩呈1.5m宽的脉体出露于花岗闪长岩中,在花岗闪长斑岩脉中可见长约4cm的钾长石斑晶(图 2c, d)。T0867细粒花岗闪长斑岩脉,与围岩粗粒花岗闪长岩具有明显界线;细粒花岗闪长斑岩的主要矿物包括斜长石(40%~45%)、石英(25%~30%)、角闪石(10%~15%)和钾长石(8%~10%),以及副矿物钛铁矿等,围岩粗粒花岗闪长岩包含的矿物主要为斜长石、石英以及角闪石等(图 3c)。花岗闪长玢岩T0969-SV为似斑状结构,主要矿物包括斜长石(35%~40%)、碱性长石(20%~25%)、石英(15%~20%)和角闪石(10%~15%)等,以及副矿物钛铁矿、榍石等(图 3d)。
![]() |
图 2 冈底斯东段中新世岩浆岩野外地质照片 (a)闪长玢岩脉; (b)流纹岩; (c)花岗闪长斑岩脉与花岗闪长岩围岩界线; (d)含钾长石斑晶的花岗闪长斑岩 Fig. 2 Field photographs showing the Miocene magmatic rocks from eastern Gangdese batholith (a) dioritic porphyrite; (b) rhyolite; (c) boundary between granodioritic porphyry dyke and wall rock of granitic diorite; (d) granodioritic porphyry with large K-feldspar phenocryst |
![]() |
图 3 冈底斯东段中新世岩浆岩显微照片 (a) T0289-SV闪长玢岩; (b) T0589流纹岩; (c) T0867细粒花岗闪长斑岩脉和粗粒花岗闪长岩围岩; (d) T0969-SV花岗闪长玢岩. Pl-斜长石;Qtz-石英;Hbl-角闪石;Bt-黑云母;Ilm-钛铁矿 Fig. 3 Microphotographs showing the Miocene magmatic rocks from eastern Gangdese batholith (a) T0289-SV granitic porphyrite; (b) T0589 rhyolite; (c) T0867 fine-grained granodioritic porphyry and wall rock of coarse granitic diorite; (d) T0969-SV corcovadite. Pl-plagioclase; Qtz-quartz; Hbl-hornblende; Bt-biotite; Ilm-ilmenite |
为获取所采藏南中酸性样品的年龄信息,手工挑选出样品中的锆石,制靶和抛光后,对锆石的阴极发光(CL)和扫描电镜背散射(BSE)图像进行采集和观察(图 4),CL成像在中国地质科学院地质研究所北京离子探针中心进行,BSE图像和锆石内部包裹体成分在中国地质科学院地质研究所自然资源部深部动力学重点实验室获得。观察CL成像和BSE图像中锆石不同生长域的差异特征,选取合适的锆石进行U-Pb年龄测试。
![]() |
图 4 冈底斯东段中新世岩浆岩的锆石阴极发光(CL)图像 Fig. 4 Cathodoluminescence images of zircons from Miocene magmatic rocks from eastern Gangdese batholith |
对藏南中酸性岩浆岩T0289-SV、T0867-1和T0969-SV进行了LA-MC-ICP-MS锆石U-Pb定年。实验在中国地质科学院矿产资源研究所成矿作用与资源评价重点实验室进行,使用的仪器为德国Finnigan公司生产的Neptune型激光多接收等离子体质谱(LA-MC-ICPMS),以及美国New Wave公司生产的UP213nm激光剥蚀系统,采用的剥蚀斑束直径为25μm,频率为10Hz,能量密度为2.5J/cm2,载气为He。锆石的U和Th含量用标样M127(U=923×10-6;Th/U=0.475)进行外标校正。测试过程中,每测定10个点后进行两次GJ-1标样和一次Plesovice标样测试,以便及时校正。详细的分析数据离线处理方法见Liu et al. (2010)。锆石年龄谐和图使用Isoplot 3.0程序获得。分析结果见表 1。
![]() |
表 1 冈底斯东段中新世岩浆岩(样品T0289-SV、T0867-1和T0969-SV)LA-MC-ICP-MS锆石U-Pb定年数据 Table 1 LA-MC-ICP-MS zircon U-Pb analytical results of Miocene magmatic rocks from eastern Gangdese (Sample T0289-SV, T0867-1 and T0969-SV) |
对样品T0589进行了SHRIMP锆石U-Pb定年分析,测试工作在北京离子探针中心进行,使用的仪器为高分辨率高灵敏度离子探针SHRIMP Ⅱ,每测试完3个点插入1次TEMORA锆石标样,U和Th含量使用锆石标样M257进行外标校正。分析结果见表 2。
![]() |
表 2 冈底斯东段中新世岩浆岩(样品T0589-1)SHRIMP锆石U-Pb定年数据 Table 2 SHRIMP zircon U-Pb analytical results of Miocene magmatic rocks from eastern Gangdese (Sample T0589-1) |
为确定藏南中新世中酸性岩浆岩样品的元素地球化学特征,本次研究通过野外系统采样和室内样品的制备,对样品的全岩主、微量元素含量进行了测试分析,测试工作在自然资源部国家地质实验测试中心进行。主量元素利用XRF(X荧光光谱仪3080E)方法进行测试,分析精度为5%;微量和稀土元素(REE)采用等离子质谱仪(ICP-MS-Excell)分析完成,对于含量大于10×10-6的元素,分析精度为5%,含量小于10×10-6的元素,精度为10%,样品中个别含量低的元素测试误差大于10%。分析结果见表 3。
![]() |
表 3 冈底斯东段中新世岩浆岩的全岩元素地球化学组成(主量元素:wt%;稀土和微量元素:×10-6) Table 3 Whole-rock geochemical compositions of Miocene magmatic rocks from eastern Gangdese (major elements: wt%; trace elements: ×10-6) |
锆石Hf同位素测试工作在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室进行,实验所用仪器为Neptune多接收等离子质谱,剥蚀系统为New Wave公司的UP213紫外激光剥蚀系统(LA-MC-ICP-MS),剥蚀斑束直径为40μm,剥蚀物质载气为He,分析点与锆石U-Pb测年点为同一位置。采用的锆石标样为GJ1和Plesovice,其176Hf/177Hf测试平均加权值分别为0.282007±0.000007(2σ,n=36)和0.282476±0.000004(2σ,n=27),与文献报道值(侯可军等,2007;Morel et al., 2008; Sláma et al., 2008)在误差范围内一致。具体的仪器运行条件和分析流程详见侯可军等(2007)。分析结果见表 4。
![]() |
表 4 冈底斯东段中新世岩浆岩中锆石Hf同位素组成 Table 4 Zircon Hf isotope compositions for Miocene magmatic rocks from eastern Gangdese |
在俯冲带和造山演化过程中,地壳厚度的变化是影响岩浆岩地球化学特征的重要参数之一(Leeman, 1983; Lee, 2014; Farner and Lee, 2017),定量或半定量估算地壳厚度是限定深部地质作用和可能岩浆演化过程的关键。中酸性岩浆岩的微量元素地球化学特征(如Sr/Y和(La/Yb)N值等)可作为反演古地壳厚度的替代指标(Chapman et al., 2015;Profeta et al., 2015;Hu et al., 2017),在甄别岩浆岩的地球化学特征基础上,识别满足经验方程适用条件的样品,通过全岩的Ce/Y、Sr/Y比或(La/Yb)N值来估算熔融深度,该方法在云南晚始新世-渐新世碱性岩(Wang et al., 2018)和冈底斯岩基~30Ma高Sr/Y比花岗岩(Wang et al., 2019)中的应用都得到了与地球物理方法给出的地壳厚度较吻合的结果。
Chapman et al. (2015)在综合大量数据的基础上,发现中酸性岩浆岩的Sr/Y比与岩浆作用时的地壳厚度存在线性相关关系(经验方程-1),并应用Sr/Y值研究了美国西部科迪勒拉山系地壳厚度随时间的变化,得到了与其它独立的古海拔高程研究一致的结果。经验方程为:
![]() |
(1) |
式中:Sr/Y值为数据组的中值,H为地壳厚度。该经验公式的适用范围为:全岩SiO2含量在55%~70%之间且MgO含量在1.0%~6.0%之间;数据剔除准则:剔除出用改进的Thompson tau统计法得出的Sr/Y标准差大于10,或Rb/Sr>0.2或Rb/Sr<0.05的样品数据。
Profeta et al. (2015)利用中安第斯山新生代岩浆岩和海岸山脉中生代岩浆岩的全岩(La/Yb)N值估算了这些地区岩浆作用时的地壳厚度,所得结果与其它独立的地质方法得到的厚度限制相符,提出了下述经验公式:
![]() |
(2) |
式中:(La/Yb)N为数据组的中值,H为地壳厚度。公式的使用条件为:SiO2含量为55%~68%,MgO含量小于4%;数据剔除的准则为:剔除出利用改进的Thompson tau统计检验法得到的(La/Yb)N离群值,或Rb/Sr>0.2或Rb/Sr<0.05的样品数据。
上述两个公式皆是基于弧岩浆背景下得到的,在碰撞造山环境下形成的岩浆岩也具有高的Sr/Y和(La/Yb)N值。Hu et al. (2017)研究发现,在碰撞造山背景下,全岩Sr/Y和(La/Yb)N比与地壳厚度的关系和弧岩浆岩作用稍微不同,提出了以下两个改进的经验公式:
![]() |
(3) |
![]() |
(4) |
式中:Sr/Y和(La/Yb)N为数据组的中值,H为地壳厚度。上式的适用条件为:SiO2含量在55%~72%之间且MgO的含量为0.5%~6.0%;数据剔除准则:剔除用改进的Thompson tau统计检验法得到的标准差大于10的离群值或Rb/Sr>0.35的样品数据。
3 数据及结果 3.1 锆石U-Pb年龄4件冈底斯东段中酸性岩浆岩样品的锆石具有相似的结构和形态,大多为长柱状,具有明显的生长韵律环带,个别表现为短柱状、宽板状韵律环带结构(图 4)。
在闪长玢岩样品T0289-SV中,测试结果表明,所测锆石的Th和U含量变化较大,变化范围分别为13.4×10-6~1135×10-6和14.8×10-6~894.7×10-6,Th/U比值较高,为0.70~2.41(表 1)。剔除不谐和年龄及误差较大的分析点后,获得的206Pb/238U年龄变化较小,在17.6~19.5Ma之间,年龄集中在谐和线~18.7Ma附近,加权平均年龄为18.7±0.1Ma(22个分析点,MSWD=1.4)(图 5a, b)。典型的生长韵律环带和高的Th/U比表明该年龄为样品的结晶年龄。
![]() |
图 5 冈底斯东段中新世岩浆岩锆石U-Pb年龄谐和图和年龄分布图 Fig. 5 U-Pb concordia and age distribution diagrams for zircon from Miocene magmatic rocks from eastern Gangdese batholith |
流纹岩样品T0589-1的锆石Th和U含量较高且变化较大,分别为252×10-6~2834×10-6和349×10-6~1303×10-6,Th/U比值较高,为0.51~2.77(表 2)。样品具有较一致的206Pb/238U年龄,在16.2~17.6Ma之间,集中于谐和线的~16.8Ma附近,加权平均年龄为16.8±0.3Ma(12个分析点,MSWD=1.3)(图 5c, d)。锆石清晰的韵律环带和高的Th/U比值表明该年龄为样品的结晶年龄。
花岗闪长斑岩样品T0867-1的锆石具有较高且变化较大的Th和U含量,分别为97.7×10-6~4685×10-6和114.3×10-6~3758×10-6,Th/U比值也较高,在0.22~1.87之间(表 1)。206Pb/238U年龄变化较小,分布于15.5~17.7Ma之间,谐和图上集中于一致线的~16.9Ma附近,加权平均年龄为16.9±0.2Ma(7个分析点,MSWD=1.0)(图 5e, f)。锆石典型的生长韵律环带和较高的Th/U比值都表明该年龄为样品的结晶年龄。
花岗闪长玢岩样品T0969-SV的锆石同样具有变化较大的Th和U含量,分别为50.7×10-6~1576×10-6和85.5×10-6~1401×10-6,Th/U比值也较高,为0.33~1.37(表 1)。206Pb/238U年龄变化于15.3~22.2Ma之间,集中分布于谐和线的~16.8Ma附近,加权平均年龄为16.8±0.5Ma(11个分析点,MSWD=1.05)(图 5g, h)。锆石清晰的韵律环带和高的Th/U比值表明该年龄为样品的结晶年龄。
3.2 全岩地球化学特征为了解藏南中酸性岩浆岩的地球化学特征,分析其岩石成因,对样品的全岩元素地球化学组成进行了分析测试,结果见表 3。
在主量元素组成上,除样品T0289-SV具有稍低的SiO2含量(64.77%~64.92%)外,其余样品均具有较高的SiO2含量(65.4%~73.03%);样品的Al2O3含量较高,变化于13.82%~16.64%之间;TiO2、FeOT、CaO和MgO含量较低,分别为0.22%~0.57%、1.58%~3.02%、1.2%~3.2%和0.46%~1.34%(图 6a-e);K2O含量较高(2.73%~4.19%),样品均属于高钾钙碱性系列,与陈希节等(2014)的~14Ma埃达克质闪长玢岩相比,本研究样品更富K2O(图 6f)。在SiO2与主量元素协变图(图 6)中,SiO2与其它主量元素相关性不明显,表明分离结晶在样品的形成中未起主要作用;除样品T0589的K2O/Na2O比值稍高(1.03~1.18)外,其余样品均小于1(0.53~0.94),表明藏南中新世中酸性岩浆岩样品具有高钾富钠的特征。
![]() |
图 6 冈底斯东段中新世岩浆岩主量元素SiO2与Al2O3 (a)、TiO2 (b)、FeOT (c)、CaO (d)、MgO (e)和K2O (f)之间的协变图 中新世埃达克质闪长玢岩数据来源于陈希节等(2014) Fig. 6 Co-variation diagrams of SiO2 vs. Al2O3 (a), TiO2 (b), FeOT (c), CaO (d), MgO (e) and K2O (f) for Miocene magmatic rocks from eastern Gangdese batholith Data source of Miocene adakitic dioritic porphyrite from Chen et al. (2014) |
微量元素组成上,样品均具有相似的微量元素特征:(1)具有富集大离子亲石元素LILE(如Cs、K、Sr等),相对亏损高场强元素HFSE(如Nb和Ta等),明显的Nb和Ta负异常以及几乎无异常的Zr和Hf元素(图 7a);(2)具有变化较大并且低的Cr(4.3×10-6~20×10-6)和Ni(3.48×10-6~12.7×10-6)含量;(3)高Sr(317×10-6~1050×10-6)和Ba(604×10-6~949×10-6)、低Y(4.91×10-6~8.13×10-6)和Yb(0.33×10-6~0.79×10-6)含量,以及较高并且变化较大的Sr/Y比(41.94~182.3)特征,在Sr/Y-Y和(La/Yb)N-YbN图(图 8)中,所有样品均落入埃达克岩区域。
![]() |
图 7 冈底斯东段中新世岩浆岩的原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)(标准化值据Sun and Mcdonough, 1989) Fig. 7 Primitive mantle-normalized trace element spider diagram (a) and chondrite-normalized REE pattern (b) of Miocene magmatic rocks from eastern Gangdese batholith (normalization values after Sun and McDonough, 1989) |
![]() |
图 8 冈底斯东段中新世岩浆岩的Sr/Y-Y (a, 底图据Defant et al., 1993)和(La/Yb)N-YbN (b, 底图据Martin, 1999)关系图 Fig. 8 Diagrams showing relationships of Sr/Y vs. Y (a, after Defant et al., 1993) and (La/Yb)N vs. YbN (b, after Martin, 1999) for Miocene magmatic rocks from eastern Gangdese batholith |
在稀土元素组成特征上,冈底斯中新世中酸性岩浆岩具有较低的稀土总量(∑REE=78.92×10-6~169.3×10-6),以及较一致的稀土配分模式(图 7b):(1)均显示富集轻稀土元素(LREE)、亏损重稀土元素(HREE)的轻重稀土分馏明显((La/Yb)N=19.94~65.50)配分模式,并且HREE配分模式相对平坦;和(2)微弱的负Eu异常到无Eu异常(Eu/Eu*=0.77~1.00)的特征。
3.3 锆石Hf同位素组成为确定藏南冈底斯带中新世中酸性埃达克质岩浆岩样品的锆石Hf同位素组成特征,我们对中性岩浆岩样品T0289-SV以及酸性岩浆岩样品T0589-1和T0867-1进行Hf同位素测试,测试结果见表 4。
结果表明,除了继承锆石T0867-1-09和T0867-1-10具有较高的176Lu/177Hf比值,分别为0.002732和0.003798外,其余样品锆石的176Lu/177Hf值均小于0.0017(0.000456~0.001696),表明所测样品锆石的Hf同位素特征代表了样品形成时的Hf同位素组成(吴福元等,2007)。样品均具有正的且变化较大的εHf(t)值(T0289-SV:+2.9~+6.0;T0589:+1.2~+6.5;T0867:+4.9~+14.4),其中,T0867-1的εHf(t)值稍高,T0589-1次之,T0289-SV相对较低(图 9)。样品还具有较年轻的Hf同位素单阶段模式年龄,T0289为453~577Ma,T0589为431~660Ma以及T0867为204~529Ma。较高的εHf(t)值和较年轻的Hf同位素模式年龄,表明样品可能来源于新生下地壳。
![]() |
图 9 冈底斯东段中新世岩浆岩锆石Hf同位素随时间分布图 新生下地壳来源的中新世埃达克质岩区域据陈希节等(2014) Fig. 9 Diagram of zircon εHf(t) vs. U-Pb ages for Miocene magmatic rocks from eastern Gangdese batholith Data source of Miocene adakitic rocks derived from juvenile lower crust from Chen et al. (2014) |
根据Chapman et al. (2015)的Sr/Y值与地壳厚度的估算公式(公式-1)所适用的范围和数据剔除的准则,对符合适用条件的样品T0867和T0969-SV进行Sr/Y值的地壳厚度估算,数据结果表明:样品T0867的Sr/Y中值为166.54,估算的地壳厚度为193.1km,不确定性为15.1km;样品T0969-SV的Sr/Y中值为177.86,估算的地壳厚度为205.7km,不确定性为16.0km。由此可见,样品在满足公式使用条件的前提下得到的估算结果远大于冈底斯岩基可能的地壳厚度65~85km(图 10),显然不反映真实的地壳厚度,但从侧面反映了地壳发生增厚的状态和源区大量残留石榴子石,以及部分Sr并非部分熔融来源的特征。
![]() |
图 10 冈底斯东段中新世岩浆岩Sr/Y与(La/Yb)N中值分别估算的地壳厚度关系图 蓝色和橘色阴影为冈底斯正常地壳厚度(65~85km) Fig. 10 Diagram showing relationship of crustal thickness estimated from median Sr/Y and median (La/Yb)N values of Miocene magmatic rocks from eastern Gangdese batholith Shades of blue and orange showing the Gangdese normal crustal thickness of 65~85km |
对符合Profeta et al. (2015)的(La/Yb)N值与地壳厚度估算公式(公式-2)适用条件的样品T0867和T0969-SV进行地壳厚度估算,结果表明:样品T0867的(La/Yb)N中值为48.13,估算的地壳厚度为82.9km,不确定性为13.2km;样品T0969-SV的(La/Yb)N中值为51.3,估算的地壳厚度为84.2km,不确定性为13.3km。该估算结果在(La/Yb)N中值所对应的冈底斯正常地壳厚度65~85km范围内(图 10),对古地壳的厚度状态具有一定的指示意义。
同样地,对符合Hu et al. (2017)的Sr/Y值、(La/Yb)N值与地壳厚度关系式(公式-3, -4)适用条件的样品T0867和T0969-SV进行地壳厚度估算,结果如下:1) Sr/Y值对地壳厚度的估算结果:样品T0867估算的地壳厚度为139.8km,不确定性为18.5km,样品T0969-SV估算的地壳厚度为147.4km,不确定性为19.2km;2) (La/Yb)N值对地壳厚度的估算结果:样品T0867估算的地壳厚度为77.6km,不确定性为19.2km,样品T0969-SV估算的地壳厚度为79.4km,不确定性为19.4km。上述结果显示,Sr/Y值求得的中新世冈底斯带地壳厚度大于130km,已不代表真实的地壳厚度,但该碰撞造山构造背景下的(La/Yb)N值所估算的地壳厚度为合理厚度,落入了(La/Yb)N值对应的冈底斯岩基合理地壳厚度范围内(图 10),并且与利用Profeta et al. (2015)估算的结果相符,表明中新世冈底斯的地壳厚度约为77~84km,属于显著增厚的状态,与其它独立的地质方法得到的地壳厚度较一致(Hirn et al., 1984;朱介寿等,2006; Nábělek et al., 2009; 李廷栋,2010)。
4 岩石成因藏南冈底斯岩基东段的中新世中酸性岩浆岩具有几乎一致的年龄以及相似的主微量和稀土元素特征,在Hf同位素方面也均具有正的且变化较大的εHf(t)值,表明它们可能来源于相似源区,具有相似的成因机制。样品均具有高Sr低Y和高Sr/Y、La/Yb比等特征,在Sr/Y-Y和(La/Yb)N-YbN图中落入了埃达克质岩区域(图 8),表明该冈底斯岩基东段中新世中酸性岩浆岩具有埃达克质岩的特征。尽管所有样品都具有较高的K2O含量,在SiO2-K2O图中也均属于高钾钙碱性系列(图 6f),但它们的K2O/Na2O比值除样品T0589外其余都小于1。样品具有高的SiO2含量(>64%),但相比之下,T0589含有稍高的SiO2含量,T0867和T0969-SV次之,T0289-SV则具有较低的SiO2含量,表明T0289-SV更接近原始岩浆特征,其余样品代表演化程度较高的岩浆,其中T0589演化程度最高。由于石榴石中赋存元素Cr、Sc、Y和HREE,本研究样品显示上述元素含量均较低,在Cr-Sc关系图(图 11)中Sc含量随Cr含量的变化呈现出几乎稳定不变的状态,表明样品形成深度较深,位于石榴石稳定深度,且石榴石不是岩浆演化过程中的主要控制矿物。此外,样品高的La/Yb和Sr/Y比值以及低的Y和Yb含量表明源区可能存在较多的石榴子石残留(Barker and Arth, 1976),较平坦的HREE配分模式可能为源区残留角闪石所致(高永丰等,2003)。
![]() |
图 11 冈底斯东段中新世岩浆岩Cr-Sc关系图 Fig. 11 Diagram showing relationship of Cr vs. Sc for Miocene magmatic rocks from eastern Gangdese batholith |
虽然俯冲洋壳的部分熔融是形成埃达克岩的经典机制(Defant and Drummond, 1990),但冈底斯岩基在中新世期间已经处于后碰撞阶段,新特提斯洋的俯冲作用已经终止,并且在~50Ma期间,俯冲新特提斯大洋岩石圈发生断离作用(DeCelles et al., 2002;Kohn and Parkinson, 2002; Ji et al., 2016),可以排除该机制为藏南中新世埃达克质岩的成因。其他可能的过程包括:(1)俯冲大陆地壳部分熔融(Wang et al., 2008;姜子琦等,2011);或(2)后碰撞环境中增厚下地壳部分熔融(Chung et al., 2003, 2009; Guo et al., 2007; Xu et al., 2010; Zhang et al., 2010)。
中新世埃达克质中酸性岩浆岩不太可能是俯冲印度大陆地壳部分熔融产物。印度大陆地壳部分熔融的熔体具有异常高的Sr(>0.7200)但异常低的Nd(εNd(t) < -10.0)和锆石Hf(εHf(t) < -15.0)同位素组成(Zhang et al., 2004; Zeng et al., 2011, 2015; Liu et al., 2016; Gao et al., 2017; 曾令森和高利娥, 2017),中新世高Sr/Y比中酸性岩浆岩均具有正的εHf(t)(+1.2~+14.4)(图 9),与印度大陆地壳来源熔体具有较大差异。此外,样品具有低的MgO和相容元素(Cr和Ni)含量,而来自无论是俯冲陆壳还是俯冲洋壳派生的熔体在上升过程中将不可避免地与上覆地幔楔反应,获得高的MgO和相容元素含量(Sen and Dunn, 1994;Kelemen,1995;Rapp and Watson, 1995; Rapp et al., 1999;Wood and Turner, 2009;徐倩等,2019),因此这些样品的地球化学特征与俯冲陆壳来源的熔体不符,可以排除俯冲印度大陆地壳部分熔融成因。
藏南中新世埃达克质中酸性岩浆岩样品具有高SiO2、低MgO和相容元素(如Cr、Ni等)含量以及正且部分较高的εHf(t)值和较年轻的Hf同位素模式年龄等特征,显示了样品的新生地壳而非地幔来源。正的且变化较大的Hf同位素比值也意味着古老地壳的混染作用在埃达克质岩浆形成过程中所占比例较小,并具有一定的变化,其中,T0867-1具有稍高的εHf(t)值,T0589-1次之,T0289-SV则具有相对较低的εHf(t)值,表明T0289-SV发生了相对高的古老地壳混染。在图 9中,本研究的中新世岩浆岩样品靠近并落入陈希节等(2014)所研究的新生下地壳来源的冈底斯带中段中新世埃达克质岩区域,且具有更高的εHf(t)值,表明冈底斯带中段中新世岩浆岩的形成具有可能比东段稍多的古老地壳物质参与;此外,利用(La/Yb)N值对样品所代表的地壳厚度进行估算,得到的结果较接近青藏高原南部的地壳厚度(图 10),进一步证明了其壳幔边界新生下地壳来源。印度与亚欧大陆碰撞,导致新特提斯洋板片俯冲缓慢,使得新特提斯洋壳与上覆地幔/地壳之间发生热平衡,从而引起地幔来源的含水玄武岩洋壳部分熔融,产生岩浆并上升底侵于壳-幔边界附近,形成高密度含石榴石镁铁质新生下地壳(Mo et al., 2007, 2008)。大量的地球物理数据证实,部分印度板块已俯冲至拉萨地体之下(Zhao et al., 1993, 2010, 2011; Owens and Zandt, 1997; Li et al., 2008; Nábělek et al., 2009; Zhang et al., 2015),印度板块向亚洲板块下俯冲导致拉萨地壳增厚,Kay et al.(1993, 1994)提出,当大陆地壳变得足够厚时,下地壳将转变为榴辉岩,榴辉岩密度比地幔大,因此可能脱离地壳并下沉(即拆沉),该过程将使相对较热的地幔与新暴露的新生下地壳接触,从而导致新生下地壳部分熔融,产生中新世埃达克质岩。
因此,我们认为冈底斯地块东段中新世埃达克质中酸性岩是由拉萨地体增厚的镁铁质下地壳物质(占主体的新生下地壳+少量古老地壳)部分熔融形成,造成部分熔融的热量可能来自由于拉萨地块岩石圈根部拆沉而导致的显著热扰动。
5 结论(1) 藏南冈底斯东段中酸性岩浆岩的结晶年龄为16~18Ma,形成于中新世。
(2) 冈底斯岩基东段中新世中酸性岩具有高SiO2,高Sr、Ba含量和Sr/Y比以及低Y含量,高钾富钠,富集轻稀土元素、亏损重稀土元素,高εHf(t)值等特征,并显示埃达克质岩石的地球化学亲缘性。
(3) 元素地球化学和同位素特征分析以及(La/Yb)N值对地壳厚度的估算结果表明,冈底斯岩基东段中新世中酸性岩浆岩是由拉萨地体增厚下地壳(占主体的新生下地壳+少量古老地壳)部分熔融形成,并在源区残留石榴子石和角闪石,造成熔融的热量来源可能为拉萨地体岩石圈根部拆沉导致的热扰动。
(4) 与冈底斯带中段~14Ma埃达克质闪长玢岩脉相比,冈底斯带东段的中新世岩浆岩具有更高的K含量和稍高的εHf(t)值,表明中段中新世岩浆岩的形成可能具有更多的古老地壳物质参与。
致谢 感谢吴才来研究员、戚学祥研究员和何碧竹研究员仔细审阅稿件,提出众多建设性修改意见。
Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4(6): 596-600 |
Chapman JB, Ducea MN, DeCelles PG and Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y:An example from the North American Cordillera. Geology, 43(10): 919-922 DOI:10.1130/G36996.1 |
Chen JL, Xu JF, Kang ZQ and Wang BD. 2006. Origin of the Miocene Bugasi group volcanic rocks in the Cuoqin County, western Tibetan Plateau. Acta Petrologica Sinica, 22(3): 585-594 (in Chinese with English abstract) |
Chen JL, Xu JF, Wang BD, Kang ZQ and Li J. 2010. Origin of Cenozoic alkaline potassic volcanic rocks at Konglong Xiang, Lhasa terrane, Tibetan Plateau:Products of partial melting of a mafic lower-crustal source?. Chemical Geology, 273(3-4): 286-299 DOI:10.1016/j.chemgeo.2010.03.003 |
Chen XJ, Xu ZQ, Meng YK and He ZY. 2014. Petrogenesis of Miocene adakitic diorite-porphyrite in middle Gangdese batholith, southern Tibet:Constraints from geochemistry, geochronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 30(8): 2253-2268 (in Chinese with English abstract) |
Chiaradia M. 2015. Crustal thickness control on Sr/Y signatures of recent arc magmas:An Earth scale perspective. Scientific Reports, 5: 8115 DOI:10.1038/srep08115 |
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024 DOI:10.1130/G19796.1 |
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196 |
Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY and Lo CH. 2009. The nature and timing of crustal thickening in southern Tibet:Geochemical and zircon Hf isotopic constraints from post-collisional adakites. Tectonophysics, 477(1-2): 36-48 DOI:10.1016/j.tecto.2009.08.008 |
Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302 DOI:10.1016/0012-821X(86)90186-X |
Decelles PG, Robinson DM and Zandt G. 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21(6): 1062 |
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0 |
Defant MJ and Drummond MS. 1993. Mount St. Helens:Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 21(6): 547-550 |
Ding L, Kapp P, Zhong DL and Deng WM. 2003. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10): 1833-1865 DOI:10.1093/petrology/egg061 |
England P and Houseman G. 1989. Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 94(B12): 17561-17579 DOI:10.1029/JB094iB12p17561 |
Farner MJ and Lee CTA. 2017. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism:A global study. Earth and Planetary Science Letters, 470: 96-107 DOI:10.1016/j.epsl.2017.04.025 |
Gao LE, Zeng LS and Asimow PD. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources:The Himalayan leucogranites. Geology, 45(1): 39-42 |
Gao YF, Hou ZQ and Wei RH. 2003. Neogene porphyries from Gangdese:Petrological, geochemical characteristics and geodynamic significances. Acta Petrologica Sinica, 19(3): 418-428 (in Chinese with English abstract) |
Gao YF, Hou ZQ, Kamber BS, Wei RH, Meng XJ and Zhao RS. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones:Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105-120 DOI:10.1007/s00410-006-0137-9 |
Gao YF, Wei RH, Hou ZQ, Tian SH and Zhao RS. 2008. Eocene high-MgO volcanism in southern Tibet:New constraints for mantle source characteristics and deep processes. Lithos, 105(1-2): 63-72 DOI:10.1016/j.lithos.2008.02.008 |
Gao YF, Yang ZS, Santosh M, Hou ZQ, Wei RH and Tian SH. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4): 651-663 DOI:10.1016/j.lithos.2010.08.018 |
Guan Q, Zhu DC, Zhao ZD, Zhang LL, Liu M, Li XW, Yu F and Mo XX. 2010. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet:Products of Neo-Tethyan ridge subduction?. Acta Petrologica Sinica, 26(7): 2165-2179 (in Chinese with English abstract) |
Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS and Yuan HL. 2012. Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88-99 DOI:10.1016/j.gr.2011.07.004 |
Guo ZF, Wilson M and Liu JQ. 2007. Post-collisional adakites in South Tibet:Products of partial melting of subduction-modified lower crust. Lithos, 96(1-2): 205-224 DOI:10.1016/j.lithos.2006.09.011 |
Guo ZF, Wilson M, Zhang ML, Cheng ZH and Zhang LH. 2015. Post-collisional ultra-potassic mafic magmatism in South Tibet:Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. Journal of Petrology, 56(7): 1365-1406 DOI:10.1093/petrology/egv040 |
Haschke M and Günther A. 2003. Balancing crustal thickening in arcs by tectonic vs. magmatic means. Geology, 31(11): 933-936 |
Hirn A, Lepine JC, Jobert G, Sapin M, Wittlinger G, Xu ZX, Gao EY, Wang XJ, Teng JW, Xiong SB, Pandey MR and Tater JM. 1984. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307(5946): 23-25 DOI:10.1038/307023a0 |
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract) |
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155 DOI:10.1016/S0012-821X(04)00007-X |
Hou ZQ, Gao YF, Meng XJ, Qu XM and Huang M. 2004. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract) |
Hou ZQ, Meng XJ, Qu XM and Gao YF. 2005. Copper ore potential of adakitic intrusives in Gangdese porphyry copper belt:Constrains from rock phase and deep melting process. Mineral Deposits, 24(2): 108-121 (in Chinese with English abstract) |
Hou ZQ, Zhao ZD, Gao YF, Yang ZM and Jiang W. 2006. Tearing and dischronal subduction of the Indian continental slab:Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet. Acta Petrologica Sinica, 22(4): 761-774 (in Chinese with English abstract) |
Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD and McCuaig TC. 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575 DOI:10.2113/econgeo.110.6.1541 |
Hu FY, Ducea MN, Liu SW and Chapman JB. 2017. Quantifying crustal thickness in continental collisional belts:Global perspective and a geologic application. Scientific Reports, 7(1): 7058 DOI:10.1038/s41598-017-07849-7 |
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245 DOI:10.1016/j.chemgeo.2009.01.020 |
Ji WQ, Wu FY, Chung SL, Wang XC, Liu CZ, Li QL, Liu ZC, Liu XC and Wang JG. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45Ma oceanic island basalt-type magmatism in southern Tibet. Geology, 44(4): 283-286 DOI:10.1130/G37612.1 |
Jiang ZQ, Wang Q, Wyman DA, Tang GJ, Jia XH, Yang YH and Yu HX. 2011. Origin of 30Ma Chongmuda adakitic intrusive rocks in the southern Gangdese region, southern Tibet:Partial melting of the northward subducted Indian continent crust?. Geochimica, 40(2): 126-146 (in Chinese with English abstract) |
Kay SM, Ramos VA and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. Journal of Geology, 101(6): 703-714 DOI:10.1086/648269 |
Kay SM, Coira B and Viramonte J. 1994. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna Plateau, central Andes. Journal of Geophysical Research:Solid Earth, 99(B12): 24323-24339 DOI:10.1029/94JB00896 |
Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology, 120(1): 1-19 DOI:10.1007/BF00311004 |
Kohn M and Parkinson CD. 2002. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology, 30(7): 591-594 DOI:10.1130/0091-7613(2002)030<0591:PCFESB>2.0.CO;2 |
Lee CTA. 2014. Copper conundrums. Nature Geoscience, 7(1): 10-11 |
Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q and Zhang Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1): 20-35 |
Leeman WP. 1983. The influence of crustal structure on compositions of subduction-related magmas. Journal of Volcanology and Geothermal Research, 18(1-4): 561-588 DOI:10.1016/0377-0273(83)90026-4 |
Li C, Van der Hilst RD, Meltzer AS and Engdahl ER. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2): 157-168 DOI:10.1016/j.epsl.2008.07.016 |
Li TD. 2010. Principal characteristics of the lithosphere of China. Earth Science Frontiers, 17(3): 1-13 (in Chinese with English abstract) |
Li YL, Li XH, Wang CS, Wei YS, Chen X, He J, Xu M and Hou YL. 2017. Miocene adakitic intrusions in the Zhongba terrane:Implications for the origin and geochemical variations of post-collisional adakitic rocks in southern Tibet. Gondwana Research, 41: 65-76 DOI:10.1016/j.gr.2015.09.004 |
Liu D, Zhao ZD, DePaolo DJ, Zhu DC, Meng FY, Shi QS and Wang Q. 2017. Potassic volcanic rocks and adakitic intrusions in southern Tibet:Insights into mantle-crust interaction and mass transfer from Indian plate. Lithos, 268-271: 48-64 DOI:10.1016/j.lithos.2016.10.034 |
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082 |
Liu ZC, Wu FY, Ding L, Liu XC, Wang JG and Ji WQ. 2016. Highly fractionated Late Eocene (~35Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354 DOI:10.1016/j.lithos.2015.11.026 |
Mantle GW and Collins WJ. 2008. Quantifying crustal thickness variations in evolving orogens:Correlation between arc basalt composition and Moho depth. Geology, 36(1): 87-90 DOI:10.1130/G24095A.1 |
Martin H. 1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429 DOI:10.1016/S0024-4937(98)00076-0 |
Miller C, Schuster R, Klötzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultra-potassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424 DOI:10.1093/petroj/40.9.1399 |
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242 DOI:10.1016/j.lithos.2006.10.005 |
Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syn-collisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67 DOI:10.1016/j.chemgeo.2008.02.003 |
Molnar P and Tapponnier P. 1978. Active tectonics of Tibet. Journal of Geophysical Research:Solid Earth, 83(B11): 5361-5375 DOI:10.1029/JB083iB11p05361 |
Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS and Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1-2): 231-235 DOI:10.1016/j.chemgeo.2008.06.040 |
Murphy MA, Yin A, Harrison TM, Dürr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X and Zhou X. 1997. Did the Indo-Asian collision alone create the Tibetan Plateau?. Geology, 25(8): 719-722 DOI:10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2 |
Nábělek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su HP, Chen J, Huang BS and the Hi-CLIMB Team. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946): 1371-1374 DOI:10.1126/science.1167719 |
Owens TJ and Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387(6628): 37-43 DOI:10.1038/387037a0 |
Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust:The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521 DOI:10.1093/petrology/37.6.1491 |
Profeta L, Ducea MN, Chapman JB, Paterson SR, Gonzales SMH, Kirsch M, Petrescu L and DeCelles PG. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5: 17786 |
Qu XM, Hou ZQ and Huang W. 2001. Is Gangdese porphyry copper belt the second "Yulong" copper belt?. Mineral Deposits, 20(4): 355-366 (in Chinese with English abstract) |
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931 DOI:10.1093/petrology/36.4.891 |
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3. 8GPa. Chemical Geology, 160(4): 335-356 DOI:10.1016/S0009-2541(99)00106-0 |
Schärer U, Xu RH and Allègre CJ. 1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth and Planetary Science Letters, 69(2): 311-320 |
Sen C and Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5GPa and 2.0GPa:Implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409 DOI:10.1007/BF00307273 |
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005 |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19 |
Turner S, Hawkesworth C, Liu JQ, Rogers N, Kelley S and van Calsteren P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364(6432): 50-54 DOI:10.1038/364050a0 |
Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, van Calsteren P and Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45-71 DOI:10.1093/petrology/37.1.45 |
Wang Q, Wyman DA, Xu JF, Dong YH, Vasconcelos PM, Pearson N, Wan YS, Dong H, Li CF, Yu YS, Zhu TX, Feng XT, Zhang QY, Zi F and Chu ZY. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171 DOI:10.1016/j.epsl.2008.04.034 |
Wang W, Zeng LS, Gao LE, Wang Q, Guo CL, Hou KJ and Zeng LJ. 2018. Eocene-Oligocene potassic high Ba-Sr granitoids in the southeastern Tibet:Petrogenesis and tectonic implications. Lithos, 322: 38-51 DOI:10.1016/j.lithos.2018.10.008 |
Wang YF, Zeng LS, Gao JH, Zhao LH, Gao LE and Shang Z. 2019. Along-arc variations in isotope and trace element compositions of Paleogene gabbroic rocks in the Gangdese batholith, southern Tibet. Lithos, 324-325: 877-892 DOI:10.1016/j.lithos.2018.11.036 |
Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201 DOI:10.1016/j.chemgeo.2008.03.003 |
Williams H, Turner S, Kelley S and Harris N. 2001. Age and composition of dikes in southern Tibet:New constraints on the timing of east-west extension and its relationship to post collisional volcanism. Geology, 29(4): 339-342 DOI:10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2 |
Wood BJ and Turner SP. 2009. Origin of primitive high-Mg andesite:Constraints from natural examples and experiments. Earth and Planetary Science Letters, 283(1-4): 59-66 DOI:10.1016/j.epsl.2009.03.032 |
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract) |
Xu Q, Zeng LS, Gao JH, Zhao LH, Wang YF and Hu ZP. 2019. Geochemical characteristics and genesis of the Songka Late Cretaceous adakitic high-Mg diorite in the southern margin of Gangdese, southern Tibet. Acta Petrologica Sinica, 35(2): 455-471 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.12 |
Xu WC, Zhang HF, Guo L and Yuan HL. 2010. Miocene high Sr/Y magmatism, South Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293-306 DOI:10.1016/j.lithos.2009.09.005 |
Zeng LS, Gao LE, Xie KJ and Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266 DOI:10.1016/j.epsl.2011.01.005 |
Zeng LS, Gao LE, Tang SH, Hou KJ, Guo CL and Hu GY. 2015. Eocene magmatism in the Tethyan Himalaya, southern Tibet. In:Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK and Robinson DM (eds.). Tectonics of the Himalaya. Geological Society, London, Special Publications, 412: 287-316 |
Zeng LS and Gao LE. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrologica Sinica, 33(5): 1420-1444 (in Chinese with English abstract) |
Zeng LS, Gao LE, Guo CL, Hou KJ and Wang Q. 2017. Early Cretaceous forearc extension of the Gangdese continental arc, southern Tibet. Acta Petrologica Sinica, 33(8): 2377-2394 (in Chinese with English abstract) |
Zhang H, Zhao DP, Zhao JM and Liu HB. 2015. Tomographic imaging of the underthrusting Indian slab and mantle upwelling beneath central Tibet. Gondwana Research, 28(1): 121-132 DOI:10.1016/j.gr.2014.02.012 |
Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T and King J. 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228(1-2): 195-212 DOI:10.1016/j.epsl.2004.09.031 |
Zhang HF, Harris N, Guo L and Xu WC. 2010. The significance of Cenozoic magmatism from the western margin of the eastern syntaxis, southeast Tibet. Contributions to Mineralogy and Petrology, 160(1): 83-98 DOI:10.1007/s00410-009-0467-5 |
Zhao JM, Yuan XH, Liu HB, Kumar P, Pei SP, Kind R, Zhang ZJ, Teng JW, Ding L, Gao X, Xu Q and Wang W. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11229-11233 DOI:10.1073/pnas.1001921107 |
Zhao WJ, Nelson KD, Che J, Quo J, Lu D, Wu C and Liu X. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455): 557-559 DOI:10.1038/366557a0 |
Zhao WJ, Kumar P, Mechie J, Kind R, Meissner R, Wu ZH, Shi DN, Su HP, Xue GQ, Karplus M and Tilmann F. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nature Geoscience, 4(12): 870-873 DOI:10.1038/ngeo1309 |
Zhao ZD, Mo XX, Nomade S, Renne PR, Zhou S, Dong GC, Wang LL, Zhu DC and Liao ZL. 2006. Post-collisional ultrapotassic rocks in Lhasa block, Tibetan Plateau:Spatial and temporal distribution and its' implications. Acta Petrologica Sinica, 22(4): 787-794 (in Chinese with English abstract) |
Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH and Hou ZQ. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190-212 DOI:10.1016/j.lithos.2009.02.004 |
Zheng YC, Hou ZQ, Li QY, Sun QZ, Liang W, Fu Q, Li W and Huang KX. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane:Evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296-311 DOI:10.1016/j.lithos.2012.05.026 |
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005 |
Zhu DC, Wang Q, Chung SL, Cawood PA and Zhao ZD. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120Ma. In: Treloar PJ and Searle MP (eds.). Himalayan Tectonics: A Modern Synthesis. Geological Society, London, Special Publications, 483
|
Zhu JS, Cai XL, Cao JM and Yan ZQ. 2006. Lithospheric structure and geodynamics in China and its adjacent areas. Geology in China, 33(4): 793-803 (in Chinese with English abstract) |
陈建林, 许继峰, 康志强, 王保第. 2006. 青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因. 岩石学报, 22(3): 585-594. |
陈希节, 许志琴, 孟元库, 贺振宇. 2014. 冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 30(8): 2253-2268. |
高永丰, 侯增谦, 魏瑞华. 2003. 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义. 岩石学报, 19(3): 418-428. |
管琪, 朱弟成, 赵志丹, 张亮亮, 刘敏, 李小伟, 于枫, 莫宣学. 2010. 西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?. 岩石学报, 26(7): 2165-2179. |
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025 |
侯增谦, 高永丰, 孟祥金, 曲晓明, 黄卫. 2004. 西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248. |
侯增谦, 孟祥金, 曲晓明, 高永丰. 2005. 西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束. 矿床地质, 24(2): 108-121. DOI:10.3969/j.issn.0258-7106.2005.02.003 |
侯增谦, 赵志丹, 高永丰, 杨志明, 江万. 2006. 印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761-774. |
姜子琦, 王强, Wyman DA, 唐功建, 贾小辉, 杨岳衡, 喻亨祥. 2011. 西藏冈底斯南缘冲木达约30Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?. 地球化学, 40(2): 126-146. |
李廷栋. 2010. 中国岩石圈的基本特征. 地学前缘, 17(3): 1-13. |
曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿(化)带:西藏第二条"玉龙"铜矿带?. 矿床地质, 20(4): 355-366. DOI:10.3969/j.issn.0258-7106.2001.04.009 |
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. |
徐倩, 曾令森, 高家昊, 赵令浩, 王亚飞, 胡昭平. 2019. 西藏南部冈底斯南缘松卡晚白垩世埃达克质高镁闪长岩地球化学特征及其成因. 岩石学报, 35(2): 455-471. |
曾令森, 高利娥. 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩. 岩石学报, 33(5): 1420-1444. |
曾令森, 高利娥, 郭春丽, 侯可军, 王倩. 2017. 西藏南部冈底斯大陆弧早白垩纪弧前伸展作用. 岩石学报, 33(8): 2377-2394. |
赵志丹, 莫宣学, Nomade S, Renne PR, 周肃, 董国臣, 王亮亮, 朱弟成, 廖忠礼. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22(4): 787-794. |
朱介寿, 蔡学林, 曹家敏, 严忠琼. 2006. 中国及相邻区域岩石圈结构及动力学意义. 中国地质, 33(4): 793-803. DOI:10.3969/j.issn.1000-3657.2006.04.009 |