2. 昆明理工大学国土资源工程学院, 昆明 532000
2. Faculty of Land and Resources Engineering, Kunming University of Sciences and Technology, Kunming 532000, China
始于新生代早期的印度-欧亚大陆碰撞(Hu et al., 2016)形成了世界上规模最大的碰撞造山带——青藏高原。印度大陆持续向北挤入欧亚大陆内部,沿印度陆块北缘及东缘分别形成了两个(类)碰撞造山带(Mattauer et al., 1999):喜马拉雅-藏中(Himalaya-Central Tibet,Yin and Harrison, 2000)正向碰撞带,以及藏东南(Southeastern Tibetan Plateau, Burchfiel and Chen, 2013)斜向碰撞带。目前两者大致以东喜马拉雅(南迦巴瓦)构造结为分界。这两类碰撞带虽然形成时代相同,但展现了诸多不同的地质记录,特别是构造变形特点几乎完全不同。西南三江造山带绝大部分位于斜向碰撞带内,北段属于两类碰撞带的过渡部位,因而是探究两类碰撞构造带不同地质记录、揭示大陆动力学机理的天然实验室。然而,三江造山带主体构造格局形成于晚古生代至早中生代期间的古特提斯阶段,正确梳理古特提斯大地构造几何格架(tectonic geometrical framework)是理解新生代大陆碰撞过程的先决条件。此外,古特提斯阶段的大洋俯冲、陆陆碰撞形成了大量岩浆岩及与岩浆活动相关矿床(侯增谦等,2004; Wang et al., 2016, 2018)。因而,三江造山带成了我国主要的金属矿产基地,也是重要的矿产资源后备接替基地(邓军等,2012;Deng et al., 2014a, b)。正是由于其蕴含的科学及经济意义,三江造山带一直是我国地质学研究的热点。
基于板块构造理论的区域构造演化研究注重大地构造相分析(Robertson, 1994)。岩浆岩作为大地构造相的重要构件,其岩性组合、地球化学属性,特别是其时-空分布样式,是构建大洋俯冲、陆陆碰撞过程的关键素材(Dickinson, 1971)。以莫宣学等为代表的老一代地质学家以1/20万区域地质调查结果为基础,通过大量实地调查、分析测试,详细梳理了三江造山带的岩浆岩时空分布规律、地球化学属性及空间变化,进而重建了基于板块构造理论的三江造山带构造演化过程,为深入理解三江造山带构造-成矿机理奠定了坚实的基础(莫宣学等, 1993, 2001;钟大赉,1998;潘桂棠等,2002;侯增谦等, 2004)。
众所周知,三江地区1/20万地质图完成于20世纪70~80年代,到目前为止依然是我国最为系统、可靠的基础地质数据体系。然而,限于当时的客观条件,地质体时代主要根据古生物组合、地层对比、地质体之间的交切关系、以及少量全岩同位素测试数据来确定,具有很大的局限性。很多地层,特别是富含火山岩地层古生物含量稀少;部分保存良好的化石指示的地质年代较长;全岩Sm/Nd、Rb/Sr等时线、钾-氩等同位素体系测年结果的精确性强烈依赖样品条件(新鲜程度、是否同源演化等);造山带内沉积-火山岩相变频繁,地层对比难度很大。更兼三江地区植被发育,露头稀少,高山深壑,交通条件恶劣,在外人看来,三江地区从事1/20万填图几乎是不可能完成的工作(Hoke, 2018)。上述客观条件的制约使得1/20万地质图出现了较多地质体时代误植情况,误导了对岩浆岩时空分布规律的揭示。
20世纪90年代末,锆石原位测年技术(Williams, 1998)开始引入国内(刘敦一等,2003),并用于揭示三江构造带岩浆岩时代(如简平等,2003)。21世纪以来,锆石原位U/Pb测年技术逐渐推广,目前已成为成熟的常规测年手段,发表了大量较之以往精度更高的同位素年龄数据。此外,随着我国经济持续发展,大规模基础设施建设不单改善了三江地区的交通状况,还造就了大量连续露头,原先难以企及之地也变得极易到达,年代学样品的空间分布更为均衡(见图 1);关键地质体之间的接触关系得以揭露,从而形成了更为完整、可靠的数据体系,为揭示岩浆岩的时空分布奠定了良好基础。
|
图 1 三江造山带地质图(据三江造山带地质图编图委员会,1986修改),主要展示古特提斯阶段岩浆岩及年代学数据空间分布(数据来源见表 1) Fig. 1 Geological map of the Sanjiang Orogenic Belt (modified after CCSGP, 1986) showing the spatial distribution of the Paleotethyan igneous rocks and their geochronological data (data sources are listed in Table 1) |
莫宣学等(2001)构建了三江造山带古特提斯阶段岩浆岩分布样式的初始版本(version 1.0),经过近20年的数据积累,该版本具备了升级的条件。另外,有关高压变质岩、蛇绿岩等方面的研究进展,特别是相对精确变质时代的确定(邓希光等, 2000, 2002;李才等, 2006a, b;Zhai et al., 2011; Zhang et al., 2006;Pullen et al., 2008, 2011;张修政等,2010;Liu et al., 2013; 李静等, 2015, 2017; 孙载波等,2018),为综合多学科数据、恢复板块俯冲历史奠定了较为坚实的基础。本文将收集现有年代学数据,开展综合分析,梳理三江造山带古特提斯阶段岩浆时空分布样式,并结合多学科研究结果升级古特提斯大洋俯冲模型。由于岩浆岩,特别是花岗质岩石全岩地球化学数据的构造含义存在多解性(莫宣学等,2001),本文不关注单个岩体(或火山岩层)的地球化学数据及原作者的构造解释,而将讨论重点放在岩浆岩的时空分布规律、岩浆岩与变质岩的时空关联等方面。
1 三江造山带的大地构造单元起源于青藏高原腹地的金沙江、澜沧江、怒江流经的青海东南部、西藏东部、四川西部、云南西部地区统称为西南三江地区。三江造山带范围与地理意义上的三江地区基本重合(图 1)。从北往南、从西到东,三江造山带由如下构造单元组成:(1)巴颜喀拉-松潘-甘孜褶皱带,其主体由巨厚三叠纪浊积岩组成,发生强烈褶皱-逆冲构造(Harrowfield and Wilson, 2005),并被晚三叠世-早侏罗世花岗岩侵位(Zhang et al., 2007;王秉璋等,2008)。其南西界为玉树-甘孜-理塘缝合带(莫宣学等,1993;Yang et al., 2012),南东界为龙门山逆冲-褶皱带(Yan et al., 2011)。(2)玉树-甘孜-理塘缝合带以南为东羌塘-中咱-兰坪-思茅地块群,其具有与扬子地块可类比的基底岩石及古生代沉积盖层(三江造山带地质图编图委员会,1986);古特提斯阶段弧岩浆岩主要发育于该地块群内(具体见后)。东羌塘地块与中咱地块之间为金沙江缝合带,以发育不完整洋壳残片为特征(图 1;莫宣学等, 1993, 2001)。中咱地块与兰坪-思茅地块间没有明确界线。(3)兰坪-思茅地块以东为扬子地块(南中国陆块),以发育南华系至下二叠统稳定台地相沉积为主要特征(三江造山带地质图编图委员会,1986)。两者之间的界线为哀牢山-金沙江缝合带(Wang et al., 2000)。(4)兰坪-思茅地块以西为保山地块、腾冲地块,其内很少发育古特提斯阶段弧岩浆岩。兰坪-思茅地块西界为昌宁-孟连缝合带(莫宣学等,1993;钟大赉,1998),其与东羌塘南缘界线——龙木措-双湖缝合带一起组成三江造山带古特提斯阶段最主要的缝合带(潘桂棠等,2002)。沿龙木措-双湖-昌宁-孟连缝合带断续出露兰片岩(邓希光等, 2000, 2002; 陆济璞等,2006; Pullen et al., 2011)、榴辉岩(李才等, 2006a;Zhang et al., 2007;李静等, 2015, 2017)等高压-低温变质岩,指示其为典型大洋俯冲形成的缝合带。
大量二叠纪至三叠纪中、酸性岩浆岩发育于龙木措-双湖-昌宁-孟连缝合带以北、以东,甘孜-理塘缝合带以南的各构造单元中。我们收集了近年发表于国内外刊物上的绝大部分测年数据(表 1),以期分析岩浆岩时空分布规律,进而探讨三江造山带古特提斯构造演化模型。
|
|
表 1 西南三江造山带部分古特提斯阶段岩浆岩、变质岩年代学数据 Table 1 List of available geochronological and thermochronological data of the Paleotethyan igneous and metamorphic rocks from the Sanjiang Orogenic Belt, SW China |
1/20万区域地质调查堪称世纪工程,是我国现代地质学研究的基石。1/100万三江造山带地质图(三江造山带地质图编图委员会,1986)很好地综合了1/20万地质调查成果。这项世纪工程揭露了大量二叠纪-三叠纪岩浆岩,包括火山岩及近同期的花岗质侵入体。目前,绝大部分火成岩时代得到了新的锆石测年数据的制约(图 1)。正如前人已经指出的那样,三江造山带具有极复杂的岩浆岩空间分布(莫宣学等, 1993, 2001)。为了清晰描述岩浆岩时、空分布特点,我们将三江造山带划分为三段:维西以北西为北段;维西往南至凤庆为中段;凤庆以南为南段(图 2)。这三段具有不同的古特提斯岩浆岩空间分布特点。
|
图 2 三江造山带古特提斯弧岩浆岩带分布图(数据来源见表 1) Fig. 2 A sketch map showing the continent marginal arc-belts of the Sanjiang Orogenic Belt, SW China (data sources are listed in Table 1) |
该段呈现两条弧岩浆岩带:
(1) 晚三叠世火山岩及同时代花岗质侵入体主要分布在东羌塘地块北部以及中咱地块东部,组成一条连续的,长达上千千米的岩浆岩带,Yang et al. (2012)定义该岩浆岩带为“玉树-义敦陆缘弧岩浆岩带”,位于玉树-甘孜-理塘缝合带以南,与缝合带平行。该岩浆岩带往南不越过龙门山逆冲带南西方向的延伸线(图 1、图 2),该线以南地区上三叠统不发育岩浆岩,因而被Burchfiel and Chen(2013)称为“过渡单元”(transitional unit)。
(2) 二叠纪-中三叠世火山岩、同时代侵入岩分布于东羌塘地块南部、中咱地块中部及西部,其形成位于兰坪盆地以北、呈北西-南东走向的连续岩浆岩带。莫宣学等(2001)定义其为“江达-维西弧岩浆岩”。该带内多层火山岩与陆缘碎屑岩(含较多植物碎片)互层产出,显示多次火山活跃期与平静期交替的特点(Yang et al., 2011, 2014a)。
在兰坪盆地以北地区(包括兰坪县境内)所有1/20万地质图均显示上三叠统底界为一角度不整合(见Burchfiel and Chen, 2013)。在芒康以东地区,上三叠统沉积-火山岩角度不整合覆盖在二叠纪至中三叠世火山-沉积岩组合之上。角度不整合面上、下岩层具有不同的变形构造样式(Yang et al., 2014a):下伏地层变形表现为紧闭、倒转褶皱,发育密集轴面劈理,而上覆岩层则发育开阔、半尖棱褶皱,轴面劈理不发育或发育扇状破劈理(又见Reid et al., 2005)。这种特点清晰表明,在三江造山带北段,晚三叠世火山岩与前晚三叠世火山岩形成于不同的构造事件。
2.2 三江造山带中段仅发育一条弧岩浆岩带维西以南至凤庆之间的区域总体被兰坪盆地沉积岩覆盖,古特提斯阶段火山岩主要出露于兰坪盆地两侧基底岩系中。以往认为这些岩浆岩主要形成于晚三叠世,并定义了若干以火山岩为主要成份的组级地层单位。但最近发表的大量锆石测年数据表明,其形成于254~240Ma之间短暂时间内(Yang et al., 2014a, b; Xin et al., 2018, 及其中所引文献)。在维西以南,这期岩浆岩主要发育于兰坪盆地东侧的维西(Xin et al., 2018)、马登(唐靓等,2016)、弥沙(梁明娟等,2015)一线。这套岩浆岩厚度巨大(大于1.5km),以流纹岩、英安岩为主,少量玄武岩,覆盖在一套上二叠统碎屑岩、碳酸盐岩组合之上,后者变形强烈(Yang et al., 2014a;唐靓等,2016;Xin et al., 2018)。该带内发育大量与火山岩近同时的花岗岩,其中该带东侧若干花岗质侵入体西侧围岩为火山-沉积岩,东侧围岩为扬子型古生界盖层,岩体变形微弱,侵入接触关系保留完好(见1/20万维西幅、兰坪幅:综合于三江造山带1/100万地质图中,三江造山带地质图编图委员会,1986)。锆石同位素测年结果揭示侵位时间大致在244~248Ma之间(Yang et al., 2014b; Xin et al., 2018)。这种特点表明:(1)该岩浆岩带发育于扬子地块西缘,为陆缘弧岩浆岩带组成部分;(2)火山活动之初地壳处于挤压缩短环境,花岗岩侵位前夕挤压应力消失(具体见Xin et al., 2018)。另外,大量原位锆石测年结果(如李宝龙等,2008;Lin et al., 2012;王舫等,2013)显示,部分点苍山深变质岩的原岩为早中三叠世花岗质岩石;Liu et al. (2013)发表的变质地质学研究数据表明,点苍山深变质作用与古特提斯阶段花岗质岩石侵位同时发生。这种时空关联指示点苍山变形花岗岩可能代表维西-马登弧岩浆岩带的中下地壳部分。因而,我们将这些火成岩组成的岩带称为“维西-马登-点苍山弧岩浆岩带”(图 2)。从1/100万三江造山带地质图(三江造山带地质图编图委员会,1986)可以明显看出,维西-马登-点苍山弧岩浆岩带是江达-维西弧岩浆岩带的延伸(见图 1)。
2.3 三江造山带南段三江造山带南段被中生代思茅盆地大范围覆盖,古特提斯阶段岩浆岩出主要露于盆地东西两侧的基底岩系中,从而显示出两条岩浆岩带。
(1) 思茅盆地西侧、澜沧杂岩带以东发育大量流纹岩、英安岩、安山岩及少量玄武岩、玄武安山岩,以及大量花岗岩,其中以巨型临沧岩体为典型代表。大量新的测年结果显示该带火山岩、侵入岩形成于二叠纪-三叠纪(图 1)。这些火山岩、侵入岩组成了临沧-云县岩浆岩带(图 2;莫宣学等, 1993, 2001)。
(2) 思茅盆地东侧绿春、墨江等地发育一系列火成岩,包括零星出露的玄武岩、玄武安山岩(Fan et al., 2010),以及虽然零星但分布范围颇广的花岗质侵入体(郭泱泱等,2012;李龚健等,2013)。在哀牢山变质带以西,这些花岗岩围岩主要为扬子型古生界(图 1)。哀牢山变质岩带与点苍山变质岩带一样,部分变形花岗岩、花岗闪长岩形成于早、中三叠世(李宝龙等,2008;戚学祥等, 2010; Lin et al., 2012; 王舫等,2013)。这些火山岩、花岗岩带状分布,形成绿春-哀牢山岩浆岩带(图 2)。
在兰坪盆地以南地区,由于中、新生代盆地沉积物大范围覆盖,东、西两条古特提斯阶段岩浆岩带的相互关系并不明确。我们曾沿着穿过云县的北东-南西向公路完成了约60km的详细路线调查,并系统采集样品开展锆石测年,发现从澜沧江西岸开始往西出露一套连续完整的、向东逐渐变新的沉积-火山岩组合,火山岩包括玄武岩、安山岩、英安岩、流纹岩,时代从245Ma到220Ma,并被临沧花岗岩侵入(Yang et al., 2014a)。从这种变化趋势推测,我们认为思茅盆地两侧的火成岩可能属于同一个弧岩浆岩带。
由此,我们将三江造山带古特提斯阶段弧岩浆岩划分为三个带(图 2):(1)玉树-义敦陆缘弧岩浆岩带;(2)江达-维西-马登-点苍山陆缘弧岩浆岩带;(3)云县-绿春-哀牢山陆缘弧岩浆岩带。下面将综合现有测年数据探讨各岩浆岩带的年代学格架。
3 弧岩浆岩带的年代学格架 3.1 玉树-义敦陆缘弧岩浆岩带17件岩浆岩样品的锆石加权平均年龄(表 1)统计结果见图 2a。从该图可以看出,玉树-义敦弧岩浆岩形成于220~210Ma短暂的时限内,形成明显的单个峰值年龄:215Ma(Yang et al., 2012)。这一特点指示形成玉树-义敦弧岩浆岩带的洋壳俯冲时间很短,相应地,被俯冲的洋壳规模也应该不大。
3.2 江达-维西-马登-点苍山陆缘弧岩浆岩带该带分为两段,江达-维西段及维西-马登-点苍山段。我们共收集了江达-维西段35件岩浆岩样品的锆石加权平均年龄数据,平均年龄在230~270Ma之间(表 1)。在年龄频谱图上(图 2b)显示三个明显的峰值,分别为258Ma、247Ma、234Ma。该特点显示造就江达-维西陆缘弧的洋壳俯冲事件持续事件超过40Myr,大致每10Myr形成一次岩浆岩集中喷发。这与野外岩石组合观察结果吻合,在岩浆喷发间隙,形成陆缘碎屑岩、碳酸盐岩沉积(Yang et al., 2014a)。
Xin et al.(2018)详细研究了维西-马登段岩浆岩发育特点,并收集、统计了锆石测年结果,发现该区段仅发育一次岩浆活动。岩浆岩集中于7Myr的极短时间内喷涌,形成一个明显的magmatic flare-up,峰期年龄为245Ma。
3.3 云县-绿春-哀牢山陆缘弧岩浆岩带40件火成岩锆石样品加权平均年龄结果(表 1)显示该岩浆岩带具有较其他两个岩浆岩代相对漫长而复杂的岩浆演化历史。岩浆活动时间从早二叠世(280Ma)持续到晚三叠世(210Ma),形成五个明显年龄峰值(图 2c):251Ma、239Ma、231Ma、219~222Ma以及209Ma。各峰值年龄之间的时间差也是大致10Myr。岩浆活动间隙期沉积陆缘碎屑岩(富含植物碎片)、碳酸盐岩(Yang et al., 2014a)。从测年数据的空间分布(图 1)还可以看出另一个规律:在云县-绿春-哀牢山岩浆岩带内,晚三叠世(小于230Ma)岩浆岩集中于岩浆岩带的西侧,东部绝少发育晚三叠世岩浆岩;而老于230Ma的岩浆岩则分布于整个岩浆岩带内。上述岩浆岩时空分布特点显示:(1)形成该岩浆岩带的洋壳俯冲历史长达70Myr;(2)俯冲晚期,岩浆活动向西迁移。
4 俯冲相关构造-热事件——高压/低温变质岩及古特提斯阶段大洋俯冲历史除了上述大量岩浆岩测年数据外,针对三江造山带变质作用及时代也发表了足够多的数据。沿着龙木措-双湖、昌宁-孟连缝合带并没有连续出露高压变质岩。在北段(龙木措-双湖)、南段(昌宁-孟连)分别发育典型的中羌塘高压变质带(Kapp et al., 2000, 2003; 李才等, 2006a, b; Zhang et al., 2006; Pullen et al., 2008, 2011)、勐库榴辉岩带(李静等, 2015, 2017)。具有封闭温度较高的同位素体系矿物相(如锆石U/Pb、石榴石-绿辉石Lu/Hf等)测年结果显示,中羌塘高压变质岩的变质时代在245~230Ma之间(Pullen et al., 2008; Zhai et al., 2011),其中低温兰片岩形成年龄大于270Ma(邓希光等, 2000, 2002);而勐库榴辉岩变质时代在230~219Ma之间(孙载波等,2018)。白云母(多硅)40Ar/39Ar测年结果(李才等,2006b;王根厚等,2006)明显小于上述年龄,指示榴辉岩等高压变质岩折返过程的冷却时代。
我们将弧岩浆岩及高压变质岩年代学数据综合于图 3中,发现高压变质岩与弧岩浆岩具有很好的耦合关系:(1)从整体看,东羌塘、中咱、兰坪-思茅整个古特提斯阶段弧岩浆岩带从早二叠世开始发育弧岩浆岩,岩浆活动持续到210Ma(图 2d);相应地,高压变质岩形成时代也从早二叠世开始,持续到210Ma。(2)从分段看,古特提斯阶段弧岩浆岩带北段(江达-维西)弧岩浆岩活动终止时间(230Ma)明显早于南段(210Ma, 云县-绿春-哀牢山);与此对应,沿缝合带出露的榴辉岩南段(219Ma, 孙载波等,2018)明显比北段年轻(>230Ma, Pullen et al., 2008; Zhai et al., 2011)。此外,Liu et al. (2013)揭示点苍山、哀牢山变质带早期高压麻粒岩相变质(650~720℃,14kbar)时代在254~230Ma之间,与弧岩浆岩活动时限一致。因而,现有数据展示了虽然并不完整,但十分清晰的古特提斯大地构造样式:(1)位于西侧、西南侧的高压-低温变质带;(2)位于东侧、北东侧的弧岩浆岩带,以及局部出露的高压麻粒岩。由此我们认为,江达-维西-云县-哀牢山弧岩浆岩带作为一个整体,由古特提斯洋盆从南、南西往北、北东俯冲形成(现代地理方位)。龙木措-双湖-昌宁-孟连缝合带代表了古特提斯洋闭合、消亡的最终位置(李才等,2006a)。此外,不论弧岩浆岩发育历史还是高压变质岩的形成时代均支持我们先前提出的观点:龙木措-双湖-昌宁-孟连缝合带的闭合过程具有穿时性,北段先于南段闭合,闭合时间差达10~20Myr(Yang et al., 2014a)。
|
图 3 三江造山带不同构造单元构造-热历史年代谱图(数据来源见表 1) Fig. 3 Age-spectra showing the tectonothermal evolutions of different tectonic units in Sanjiang Orogenic Belt, SW China (data sources are listed in Table 1) |
发育于三江造山带北段的晚三叠世火山岩、同时代侵入岩及陆缘碎屑岩夹层(含大量植物碎片)形成一条连续、完整的北西-南东向岩浆岩带——玉树-义敦弧岩浆岩带(Yang et al., 2012)。这套火山-沉积岩角度不整合覆盖在江达-维西弧岩浆岩之上,表明其形成于另一次构造事件。综合1/20万区调成果(三江造山带地质图编图委员会,1986;Burchfiel and Chen, 2013),该岩浆岩带以北为玉树-甘孜-理塘蛇绿混杂带,缝合带以北为巴颜喀拉-松潘-甘孜浊积岩带。上述三个构造单元平行排列,界限截然,其形成的大地构造相组合样式指示洋壳向南西方向俯冲(现代地理方位),玉树-甘孜-理塘缝合带代表洋壳最终消亡位置。
5 存在问题基于新数据积累展现的岩浆岩时空分布样式、大地构造相,特别是高压变质带与弧岩浆岩带的空间配置关系清晰指示了三江造山带古特提斯阶段构造演化由两次洋壳俯冲、及随后的陆陆碰撞过程组成(Yang et al., 2014a)。然而,针对三江造山带古特提斯演化还存在诸多问题值得深入研究。
5.1 弧岩浆岩带岩浆演化的空间差异及反映的深部动力学过程洋壳俯冲引发的大型弧岩浆岩带内岩浆活动普遍具有幕式发育的特点以及明显空间不均一性(如南美安第斯,de Silva and Gosnold, 2007;以及北美Serra Nevada, Ducea, 2001)。许多边界条件综合作用控制着洋陆俯冲带岩浆演化过程,如俯冲角度、俯冲板片的热结构、俯冲速率、俯冲带上盘地幔楔的富集特点、上盘地幔楔及地壳厚度、Wadati-Benioff带的摩擦阻力大小(俯冲带解耦与否)等(Katz et al., 2013)。在长期俯冲过程中,上述边界条件还可能发生变化(Doglioni et al., 2007),造成岩浆岩带具有复杂的演变历史。具有1500km以上长度的江达-维西-云县-哀牢山弧岩浆岩具有长达70Myr的演化历史,表明三江造山带古特提斯主洋盆具有相当大的规模,甚至可与现代太平洋东岸对比。现有数据已经表明,江达-维西-云县-哀牢山岩浆岩带沿纵向、横向均表现出了明显变化:(1)较之于北段、南段,三江造山带中段的弧岩浆岩带宽度明显变小,岩浆活动集中在短暂时间段内;(2)三江造山带南段弧岩浆岩具有向俯冲带方向后退的特点;(3)虽然南、北两段均表现出幕式岩浆活动,但各幕峰值年龄并不能一一对应;(4)从北往南,岩浆活动历史逐渐变长。我们已经对这些变化的构造含义做了一些探讨(Yang et al., 2014a, Xin et al., 2018),但其包含的深部动力学含义依然值得深入研究。
5.2 晚三叠世玉树-义敦弧岩浆岩带向南突然中断及俯冲动力学含义晚三叠世玉树-义敦弧岩浆岩带向西可能穿越西昆仑,延申至伊朗Alboz造山带,显见是个相当规模的大型弧岩浆岩带。区域地质调查结果(三江造山带地质图编图委员会,1986)认为在维西以南地区存在大量晚三叠世火山岩,但新的测年数据表明(Xin et al., 2018),维西至云龙之间出露的火山岩年龄大于230Ma,其属于江达-维西陆缘弧的一部分,而非属于玉树-义敦陆缘弧。因而,玉树-义敦火成岩带并没有向南越过龙门山逆冲带的西南延伸线(图 2),至该线附近,晚三叠世火山岩戛然而止。有趣的是,与晚三叠世俯冲相关的岩浆型矿床仅仅发现于该岩浆岩带的南端(典型者如普朗斑岩型铜矿,李文昌和曾普胜,2007;羊拉矽卡岩矿床,魏君奇等,1997)。为何该岩浆岩带会突然中断,以及与斑岩型矿化的动力学关联等关键问题尚未见讨论。结合巴颜喀拉-松潘-甘孜浊积岩的空间分布特点(图 2),我们推测,龙门山逆冲断层带的前身可能是松潘-甘孜古洋盆的东南部保守型(conservative)板块边界(转换断层),该转换断层走向与洋壳俯冲方向近平行。转换断层边界南东侧不存在洋壳俯冲,故而不发育弧岩浆岩带。该转换断层随洋壳俯冲而俯冲,造成俯冲带局部热扰动,使得最南端的弧岩浆岩具有特殊的地球化学及成矿属性。Chen et al. (2017)在玉树-义敦弧岩浆岩带最南端发现了具MORB属性的晚三叠世玄武岩,岩浆源自软流圈,可能与转换断层的俯冲有关。该推论若能得到详细数据的进一步支撑,则将对俯冲动力学及斑岩型矿床成因具有重大科学意义。
5.3 弧岩浆岩带内发育的超基性岩块的成因在中咱地块内及附近地区,1/20万区域地质调查发现了大量基性、超基性岩块(见图 1、图 2,三江造山带地质图编图委员会,1986),前人将这些岩块归入金沙江蛇绿岩带(莫宣学等,2001)。然而,从其空间展布特点、与弧岩浆岩关系看,这些基性、超基性岩块不像成熟洋壳仰冲、破裂、混杂的产物,其理由如下:(1)这些岩块呈面状分布,没有成带(见图 1,三江造山带地质图编图委员会,1986);(2)二叠纪、早三叠世江达-维西、晚三叠世玉树-义敦弧岩浆岩带内的火山岩直接覆盖在这些岩块之上,同时代花岗质岩体侵入于这些岩块中(Zi et al., 2012a, b)。这些基性、超基性岩块的构造属性及形成过程依然是一个值得进一步研究的科学问题。
5.4 原特提斯与古特提斯的关系最近几年在三江造山带内发现了大量早、中古生代岩浆岩(钟宏等,1999;Jian et al., 2009a, b;汝珊珊等,2012; Zhai et al., 2013),这些数据表明三江造山带内记录了大量早古生代地质演化信息。然而,我们并不清楚早古生代即原特提斯阶段构造演化的细节,也不清楚原特提斯与古特提斯阶段构造演化的关联。解决这些问题对于整个特提斯构造带的大地构造重建具有重大意义。
5.5 印支地块向南逃逸?前已述及,古特提斯阶段构造演化造就了西南三江造山带基本构造格局,始于新生代早期(Hu et al., 2016)的印度-欧亚大陆碰撞改造了这一构造格局。因而,对古特提斯构造格局的改造程度及样式是推演陆陆碰撞过程及动力学机理的基础。前人基于当时对三江造山带古特提斯构造格局的理解提出了“陆陆碰撞引发印支地块向南大规模逃逸”的构造模型(如,Tapponnier et al., 1982, 1986; Leloup et al., 1993, 1995)。该模型在国内被广泛接受,并深刻影响了对三江造山带新生代构造演化的理解(Zhang et al., 2010, 2012a, b; Liu et al., 2012)。然而,挤出模型在提出之初就争议不断(England and Houseman, 1986; Vilotte et al., 1986; England and Molnar, 1997; Mattauer et al., 1999;Searle, 2006)。从本文根据新的年代学数据重建的古特提斯阶段弧岩浆岩分布看,新生代构造变形并没有完全破坏古特提斯阶段形成的大地构造几何格架,证据如下:(1)发育在扬子地块西缘的二叠纪-早三叠世弧岩浆岩带依然保留完整;(2)作为逃逸地块东部边缘最主要走滑剪切带的红河-哀牢山剪切带西侧扬子型古生界保留完好(图 1;三江造山带地质图编图委员会,1986);(3)实际上,点苍山、哀牢山剪切带的变形岩石本身就是古特提斯阶段弧岩浆岩带的一部分;(4)位于雪龙山、点苍山剪切带之间的晚二叠世-早三叠世弧岩浆岩没有经历任何剪切变形, 而表现为挤压变形(Yang et al., 2014b);(5)详细构造解析结果显示,三江造山带绝大部分走滑剪切带的主要变形机制为纯剪,而非简单剪切(Searle, 2006; Zhang et al., 2010, 2012a, b; Liu et al., 2012)。这些特点表明,印支地块几乎没有向南逃逸,或者逃逸距离很小(史鹏亮等,2015;Li et al., 2017)。由此看来,斜向碰撞带构造演化及动力学依然值得进一步研究,清晰的古特提斯阶段大地构造几何格架是深入研究相关问题的基础。
6 结论三江造山带地质演化复杂,更兼山高坡陡、植被覆盖严重,许多地质问题尚待深入调查。但综合现有数据,可得如下主要结论:
(1) 三江造山带古特提斯构造格局由两次不同的大洋俯冲、陆陆碰撞过程形成:早二叠世到晚三叠世向北、北东方向俯冲形成江达-维西-云县-哀牢山陆缘弧岩浆岩;晚三叠世向南俯冲形成玉树-义敦陆缘弧岩浆岩带。
(2) 假定两个俯冲带的俯冲速率相差不大,则演化历史更长的江达-维西-云县-哀牢山弧岩浆岩带对应的龙木措-双湖-昌宁-孟连古洋盆为古特提斯主洋盆,而玉树-甘孜-理塘代表消失的古特提斯分支洋盆。
(3) 三江造山带古特提斯主洋盆洋壳俯冲时限达70Myr,形成了多个弧岩浆作用活跃期,各活跃期间隔约为10Myr。
(4) 同一弧岩浆岩带不同部位岩浆活动的活跃期并不一一对应。唯有详细梳理整个造山带构造-岩浆-热事件的时空配置关系方能构建相对合理的大地构造演化模型。
致谢 本文第一作者在求学期间适逢翟裕生院士担纲校长,有幸多次聆听先生教诲,受益终生;在从事三江造山带研究的最近十年间,先生每每莅临指导,多有启迪。值此先生90华诞,谨以此文表达对先生的敬意。两位匿名审稿人提出了很多修改意见,在此表示感谢。
Burchfiel BC and Chen ZL. 2013. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Boulder, Colorado: Geological Society of America, Memoir 210
|
Cao DH, Wang AJ, Huang YF, Zhang W, Hou KJ, Li RP and Li YK. 2009. SHRIMP geochronology and Hf isotope composition of zircons from Xuejiping porphyry copper deposit, Yunnan Province. Acta Geologica Sinica, 83(10): 1430-1435 (in Chinese with English abstract) |
Chen JL, Xu JF, Ren JB and Huang XX. 2017. Late Triassic E-MORB-like basalts associated with porphyry Cu-deposits in the southern Yidun continental arc, eastern Tibet:Evidence of slab-tear during subduction?. Ore Geology Reviews, 90: 1054-1062 DOI:10.1016/j.oregeorev.2016.12.006 |
Compiling Committee of the Sanjiang Geological Map (CCSGP). 1986. Geological Map of the Jinshajiang, Langcangjiang, Nujiang Regions (scale 1:1000000). Beijing: Geological Publishing House (in Chinese)
|
de Silva SL and Gosnold WD. 2007. Episodic construction of batholiths:Insights from the spatiotemporal development of an ignimbrite flare-up. Journal of Volcanology and Geothermal Research, 167(1-4): 320-335 DOI:10.1016/j.jvolgeores.2007.07.015 |
Deng J, Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349-1361 (in Chinese with English abstract) |
Deng J, Wang QF, Li GJ and Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299 DOI:10.1016/j.earscirev.2014.05.015 |
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437 DOI:10.1016/j.gr.2013.08.002 |
Deng XG, Ding L, Liu XH, Zhou Y, Yin A, Kapp PA, Murphy MA and Manning CE. 2001. Petrology and 40Ar/39Ar isotopic ages of blueschists in Gangmar, central Qiangtang, northern Tibet. Chinese Science Bulletin, 46(5): 423-427 DOI:10.1007/BF03183281 |
Deng XG, Ding L, Liu XH, Yin A, Kapp PA, Murphy MA and Manning CE. 2002. Geochemical characteristics of the blueschists and its tectonic significance in the central Qiangtang area, Tibet. Acta Petrologica Sinica, 18(4): 517-525 (in Chinese with English abstract) |
Dickinson WR. 1971. Plate tectonics in geologic history. Science, 174(4005): 107-113 DOI:10.1126/science.174.4005.107 |
Doglioni C, Carminati E, Cuffaro M and Scrocca D. 2007. Subduction kinematics and dynamic constraints. Earth-Science Reviews, 83(3-4): 125-175 DOI:10.1016/j.earscirev.2007.04.001 |
Ducea MN. 2001. The California Arc:Thick granitic batholiths, eclogitic residues, lithosphere-scale thrusting, and magmatic flare-ups. GSA Today, 11: 4-10 |
England P and Houseman G. 1986. Finite strain calculations of continental deformation:2. Comparison with the India-Asia collision zone. Journal of Geophysical Research:Solid Earth, 91(B3): 3664-3676 |
England P and Molnar P. 1997. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophysical Journal International, 130(3): 551-582 DOI:10.1111/gji.1997.130.issue-3 |
Fan WM, Wang YJ, Zhang AM, Zhang FF and Zhang YZ. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos, 119(3-4): 553-568 DOI:10.1016/j.lithos.2010.08.010 |
Guo YY, Guo AL and Hu XJ. 2012. The geochemistry and chronology of Shuanggou Indosinian granite. Yunnan Geology, 31(1): 134-138 (in Chinese with English abstract) |
Harrowfield MJ and Wilson CJL. 2005. Indosinian deformation of the Songpan Garzê fold belt, Northeast Tibetan Plateau. Journal of Structural Geology, 27(1): 101-117 DOI:10.1016/j.jsg.2004.06.010 |
Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF and Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys:U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos, 113(3-4): 408-422 DOI:10.1016/j.lithos.2009.04.031 |
Hoke GD. 2018. Geochronology transforms our view of how Tibet's southeast margin evolved. Geology, 46(1): 95-96 DOI:10.1130/focus012018.1 |
Hou ZQ, Yang YQ, Qu XM, Huang DH, Lü QT, Wang HP, Yu JJ and Tang SH. 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang region, China. Acta Geologica Sinica, 78(1): 109-120 (in Chinese with English abstract) |
Hu JM, Meng QR, Shi YR and Qu HJ. 2005. SHRIMP U-Pb dating of zircons from granitoid bodies in the Songpan-Ganzi terrane and its implications. Acta Petrologica Sinica, 21(3): 867-880 (in Chinese with English abstract) |
Hu XM, Garzanti E, Wang JG, Huang WT, An W and Webb A. 2016. The timing of India-Asia collision onset:Facts, theories, controversies. Earth-Science Reviews, 160: 264-299 DOI:10.1016/j.earscirev.2016.07.014 |
Jian P, Liu DY and Sun XM. 2003. SHRIMP dating of Baimaxueshan and Ludian granitoid batholiths, northwestern Yunnan Province, and its geological implications. Acta Geoscientia Sinica, 24(4): 337-342 (in Chinese with English abstract) |
Jian P, Liu DY and Sun XM. 2008. SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite, southwestern China:Geochronological constraints for the evolution of Paleo-Tethys. Journal of Asian Earth Sciences, 32(5-6): 371-384 DOI:10.1016/j.jseaes.2007.11.006 |
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys orogen in southwest China (I):Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113(3-4): 748-766 DOI:10.1016/j.lithos.2009.04.004 |
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009b. Devonian to Permian plate tectonic cycle of the Paleo-Tethys orogen in southwest China (Ⅱ):Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767-784 DOI:10.1016/j.lithos.2009.04.006 |
Kapp P, Yin A, Manning CE, Murphy M, Harrison TM, Spurlin M, Ding L, Deng XG and Wu CM. 2000. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology, 28(1): 19-22 DOI:10.1130/0091-7613(2000)28<19:BMCCIT>2.0.CO;2 |
Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH and Ding L. 2003. Tectonic evolution of the Early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22(4): TC1043 DOI:10.1029/2002TC001383 |
Katz RF, Spiegelman M and Langmuir CH. 2013. A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9): 1073 |
Kong HL, Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang S, Li R and Wang QL. 2012. Petrogenesis of Lincang granites in Sanjiang area of western Yunnan Province:Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope. Acta Petrologica Sinica, 28(5): 1438-1452 (in Chinese with English abstract) |
Leloup PH, Harrison TM, Ryerson FJ, Chen WJ, Li Q, Tapponnier P and Lacassin R. 1993. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. Journal of Geophysical Research:Solid Earth, 98(B4): 6715-6743 DOI:10.1029/92JB02791 |
Leloup PH, Lacassin R, Tapponnier P, Schärer U, Zhong DL, Liu XH, Zhang LS, Ji SC and Trinh PT. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 13-84 |
Leng CB, Zhang XC, Wang SX, Qin CJ, Gou TZ and Wang WQ. 2008. SHRIMP zircon U-Pb dating of the Songnuo ore-hosted porphyry, Zhongdian, Northwest Yunnan, China and its geological implication. Geotectonica et Metallogenia, 32(1): 124-130 (in Chinese with English abstract) |
Li BL, Ji JQ, Fu XY, Gong JF, Song B, Qing JC and Zhang C. 2008. Zircon SHRIMP dating and its geological implications of the metamorphic rocks in Ailao Shan-Diancang Mountain ranges, West Yunnan. Acta Petrologica Sinica, 24(10): 2322-2330 (in Chinese with English abstract) |
Li C, Zhai QG, Dong YS and Huang XP. 2006a. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chinese Science Bulletin, 51(9): 1095-1100 DOI:10.1007/s11434-006-1095-3 |
Li C, Zhai QG, Chen W, Yu JJ, Huang XP and Zhang Y. 2006b. 40Ar-39Ar chronometry of the eclogite from central Qiangtang area, Qinghai-Tibet Plateau. Acta Petrologica Sinica, 22(12): 2843-2849 (in Chinese with English abstract) |
Li GJ, Wang QF, Yu L, Hu ZC, Ma N and Huang YH. 2013. Closure time of the Ailaoshan Paleo-Tethys Ocean:Constraints from the zircon U-Pb dating and geochemistry of the Late Permian granitoids. Acta Petrologica Sinica, 29(11): 3883-3900 (in Chinese with English abstract) |
Li J, Sun ZB, Xu GX, Zhou K, Huang L, Tian SM, Zeng WT, Chen GY and Liu GC. 2015. Firstly discovered garnet-amphibolite from Mengku area, Shuangjiang County, western Yunnan Province, China. Acta Mineralogica Sinica, 35(4): 421-424 (in Chinese with English abstract) |
Li J, Sun ZB, Huang L, Xu GX, Tian SM, Deng RH and Zhou K. 2017. P-T-t path and geological significance of retrograded eclogites from Mengku area in western Yunnnan Province, China. Acta Petrologica Sinica, 33(7): 2285-2301 (in Chinese with English abstract) |
Li SH, Advokaat EL, van Hinsbergen DJJ, Koymans M, Deng CL and Zhu RX. 2017. Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China:Review and updated kinematic reconstruction. Earth-Science Reviews, 171: 58-77 DOI:10.1016/j.earscirev.2017.05.007 |
Li WC and Zeng PS. 2007. Characteristics and metallogenic model of the Pulang superlarge porphyry copper deposit in Yunnan, China. Journal of Chengdu University of Technology (Science & technology Edition), 34(4): 436-446 (in Chinese with English abstract) |
Liang MJ, Yang TN, Shi PL, Xue CD, Xiang K and Liao C. 2015. U-Pb geochronology, Hf isotopes of zircons from the volcanic rocks along the eastern margin of Lanping basin, Sanjiang orogenic belt. Acta Petrologica Sinica, 31(11): 3247-3268 (in Chinese with English abstract) |
Lin QC, Xia B and Zhang YQ. 2006. Zircon SHRIMP U-Pb dating of the syn-collisional Xuejiping quartz diorite porphyrite in Zhongdian, Yunnan, China, and its geological implications. Geological Bulletin of China, 25(1-2): 133-137 (in Chinese with English abstract) |
Lin TH, Chung SL, Chiu HY, Wu FY, Yeh MW, Searle MP and Iizuka Y. 2012. Zircon U-Pb and Hf isotope constraints from the Ailao Shan-Red River shear zone on the tectonic and crustal evolution of southwestern China. Chemical Geology, 291: 23-37 DOI:10.1016/j.chemgeo.2011.11.011 |
Liu DY, Jian P, Zhang Q, Zhang FQ, Shi YR, Shi GH, Zhang LQ and Tao H. 2003. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia:Evidence for the Early Paleozoic subduction. Acta Geologica Sinica, 77(3): 317-327 (in Chinese with English abstract) |
Liu FL, Wang F, Liu PH and Liu CH. 2013. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Research, 24(1): 429-450 DOI:10.1016/j.gr.2012.10.016 |
Liu HC, Wang YJ, Cai YF, Ma LY, Xing XW and Fan WM. 2013. Zircon U-Pb geochronology and Hf isotopic composition of the Xin'anzhai granite along the Ailaoshan tectonic zone in West Yunnan Province. Geotectonica et Metallogenia, 37(1): 87-98 (in Chinese with English abstract) |
Liu JL, Tang Y, Tran MD, Cao SY, Zhao L, Zhang ZC, Zhao ZD and Chen W. 2012. The nature of the Ailao Shan-Red River (ASRR) shear zone:Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. Journal of Asian Earth Sciences, 47: 231-251 DOI:10.1016/j.jseaes.2011.10.020 |
Lu JP, Zhang N, Huang WH, Tang ZH, Li YK, Xu H, Zhou QE, Lu G and Li Q. 2006. Characteristics and significance of the metamorphic minerals glaucophane-lawsonite assemblage in the Hongjishan area, north-central Qiangtang, northern Tibet, China. Geological Bulletin of China, 25(1-2): 70-75 (in Chinese with English abstract) |
Mattauer M, Matte P and Olivet JL. 1999. A 3D model of the India-Asia collision at plate scale. Comptes Rendus de l'Académie des Sciences, Series ⅡA, Earth and Planetary Science, 328(8): 499-508 |
Mo XX, Lu FX, Shen SY, Zhu QW, Hou ZQ and Yang KH. 1993. Sanjiang Tethyan Volcanism and Related Mineralization. Beijing: Geological Publishing House, 1-267 (in Chinese)
|
Mo XX, Deng JF, Dong FL, Yu XH, Wang Y, Zhou S and Yang WG. 2001. Volcanic petrotectonic assemblages in Sanjiang orogenic belt, SW China and implication for tectonics. Geological Journal of China Universities, 7(2): 121-138 (in Chinese with English abstract) |
Nie F, Dong GC, Mo XX, Zhu DC, Dong ML and Wang X. 2012. Geochemistry, zircon U-Pb chronology of the Triassic granites in the Changning-Menglian suture zone and their implications. Acta Petrologica Sinica, 28(5): 1465-1476 (in Chinese with English abstract) |
Pan GT, Li XZ, Wang LQ, Ding J and Chen ZL. 2002. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions. Geological Bulletin of China, 21(11): 701-707 (in Chinese with English abstract) |
Peng TP, Wang YJ, Zhao GC, Fan WM and Peng BX. 2008. Arc-like volcanic rocks from the southern Lancangjiang zone, SW China:Geochronological and geochemical constraints on their petrogenesis and tectonic implications. Lithos, 102(1-2): 358-373 DOI:10.1016/j.lithos.2007.08.012 |
Pullen A, Kapp P, Gehrels GE, Vervoort JD and Ding L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 36(5): 351-354 DOI:10.1130/G24435A.1 |
Pullen A, Kapp P, Gehrels GE, Ding L and Zhang Q. 2011. Metamorphic rocks in central Tibet:Lateral variations and implications for crustal structure. Geological Society of America Bulletin, 123(3-4): 585-600 DOI:10.1130/B30154.1 |
Qi XX, Zhu LH, Li HQ, Hu ZC and Li ZQ. 2010. Zircon LA-ICP-MS U-Pb dating for mylonitized granite from the Ailaoshan-Jinshajiang tectonic zone in the eastern Qinghai-Tibet Plateau and its tectonic significance. Acta Geologica Sinica, 84(3): 357-369 (in Chinese with English abstract) |
Reid AJ, Wilson CJL and Liu S. 2005. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. Journal of Structural Geology, 27(1): 119-137 DOI:10.1016/j.jsg.2004.06.011 |
Robertson AHF. 1994. Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the Eastern Mediterranean region. Earth-Science Reviews, 37(3-4): 139-213 DOI:10.1016/0012-8252(94)90028-0 |
Roger F, Arnaud N, Gilder S, Tapponnier P, Jolivet M, Brunel M, Malavieille J, Xu ZQ and Yang JS. 2003. Geochronological and geochemical constraints on Mesozoic suturing in East Central Tibet. Tectonics, 22(4): 1037 |
Ru SS, Li F, Wu J, Li JB, Wang DW and Huang YC. 2012. Geochemistry and chronology of granodiorite porphyry in the Dapingzhang Cu polymetallic deposit. Acta Petrologica et Mineralogica, 31(4): 531-540 (in Chinese with English abstract) |
Searle MP. 2006. Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia. Journal of the Geological Society, 163: 1025-1036 DOI:10.1144/0016-76492005-144 |
Sha SQ, Wang ZX, Guo TZ, Xiao WF and Yang XD. 2007. Zircon SHRIMP dating and geochemical characteristics of granites in the eastern part of the Bayan Har mountains. Acta Geoscientica Sinica, 28(3): 261-269 (in Chinese with English abstract) |
Shi PL, Yang TN, Liang MJ, Xue CD and Fan JW. 2015. Temporal and spatial variation in the Cenozoic strain of the Sanjiang orogenic belt, SW China:A brief review and new observations. Acta Petrologica Sinica, 31(11): 3331-3352 (in Chinese with English abstract) |
Sun ZB, Li J, Zhou K, Zeng WT, Wu JL, Hu SB, Liu GC and Zhao JT. 2018. Zircon U-Pb age and geological significance of retro-graded eclogites from Mengku area in western Yunnan Province. Geological Bulletin of China, 37(11): 2032-2043 (in Chinese with English abstract) |
Tang J, Xue CD, Yang TN, Liang MJ, Xiang K, Liao C, Jiang LL and Xin D. 2016. Late Permian to Early Triassic tectonostratigraphy of Madeng area, northwestern Yunnan, SW China:Volcanics zircon U-Pb dating. Acta Petrologica Sinica, 32(8): 2535-2554 (in Chinese with English abstract) |
Tapponnier P, Peltzer G, Le Dain AY, Armijo R and Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine. Geology, 10(12): 611-616 DOI:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 |
Tapponnier P, Peltzer G and Armijo R. 1986. On the mechanics of the collision between India and Asia. In: Coward MP and Ries AC (eds.). Collision Tectonics. Geological Society, London, Special Publications, 19: 113-157
|
Vilotte JP, Madariaga R, Daigniéres M and Zienkiewicz O. 1986. Numerical study of continental collision:Influence of buoyancy forces and an initial stiff inclusion. Geophysical Journal International, 84(2): 279-310 DOI:10.1111/j.1365-246X.1986.tb04357.x |
Wang BD, Wang LQ, Wang DB and Zhang WP. 2011a. Zircons U-Pb dating of volcanic rocks from Renzhixueshan Formation in Shangdie rift basin of Sanjiang area and its geological implications. Acta Petrologica et Mineralogica, 30(1): 25-33 (in Chinese with English abstract) |
Wang BD, Wang LQ, Qiangba ZX, Zeng QG, Zhang WP, Wang DB and Cheng WH. 2011b. Early Triassic collision of northern Lancangjiang suture:Geochronological, geochemical and Hf isotope evidences from the granitic gneiss in Leiwuqi area, East Tibet. Acta Petrologica Sinica, 27(9): 2752-2762 (in Chinese with English abstract) |
Wang BZ, Luo ZH, Zeng XP, Wang YZ and Qi SS. 2008. Indosinian granitoids in the Zhidoi area in the northern segment of the Sanjiang belt, Qinghai:Their petrogenesis and zircon U-Pb dating. Geology in China, 35(2): 196-206 (in Chinese with English abstract) |
Wang CM, Bagas L, Lu YJ, Santosh M, Du B and McCuaig TC. 2016. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 156: 39-65 DOI:10.1016/j.earscirev.2016.02.008 |
Wang CM, Bagas L, Chen JY, Yang LF, Zhang D, Du B and Shi KX. 2018. The genesis of the Liancheng Cu-Mo deposit in the Lanping Basin of SW China:Constraints from geology, fluid inclusions, and Cu-S-H-O isotopes. Ore Geology Reviews, 92: 113-128 DOI:10.1016/j.oregeorev.2017.11.012 |
Wang DD, Li BL, Ji JQ and Liu YH. 2014. Zircon SHRIMP U-Pb geochronology and it tectonic implication of the metamorphic rocks in southern Lancang River tectonic zone, West Yunnan Province. Acta Petrologica Sinica, 30(9): 2725-2738 (in Chinese with English abstract) |
Wang F, Liu FL and Liu PH. 2013. Multiple granitic magma events in Sanjiang complex belt, Yunnan Province:Implications for tectonic evolution. Acta Petrologica Sinica, 29(6): 2141-2160 (in Chinese with English abstract) |
Wang GH, Jia JC, Wan YP, Zhang WJ, Zhou ZG, Li QS and Yang GD. 2006. Forming and tectonic significance of the Youxi tectono-schistose Formation, north Baqen County, Eastern Tibet. Earth Science Frontiers, 13(4): 180-187 (in Chinese with English abstract) |
Wang XF, Metcalfe I, Jian P, He LQ and Wang CS. 2000. The Jinshajiang-Ailaoshan suture zone, China:Tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences, 18(3): 675-690 |
Wang YJ, Zhang AM, Fan WM, Peng TP, Zhang FF, Zhang YH and Bi XW. 2010. Petrogenesis of Late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, Southwest China, and tectonic implications for the evolution of the eastern Paleotethys:Geochronological and geochemical constraints. Lithos, 120(3-4): 529-546 DOI:10.1016/j.lithos.2010.09.012 |
Wei JQ, Zhan MG, Lu YF, Chen KX and He LQ. 1997. Geochemistry of granitoids in Yangla ore district, western Yunnan. Geology and Mineral Resources of South China, 4(1): 51-56 (in Chinese with English abstract) |
Wei JQ, Wang XD, Zhuang X and Liu YH. 2008. Zircon SHRIMP U-Pb dating of diorite among Jicha serpentine and Eza gabbro from Lancangjiang belt, Yunnan Province and its geological significance. Acta Petrologica Sinica, 24(6): 1297-1301 (in Chinese with English abstract) |
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks Ⅲ WC and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Socorro, New Mexico: Reviews in Economic Geology, 7: 1-35
|
Xin D, Yang TN, Liang MJ, Xue CD, Han X, Liao C and Tang J. 2018. Syn-subduction crustal shortening produced a magmatic flare-up in middle Sanjiang Orogenic Belt, southeastern Tibet Plateau:Evidence from geochronology, geochemistry, and structural geology. Gondwana Research, 62: 93-111 DOI:10.1016/j.gr.2018.03.009 |
Yan DP, Zhou MF, Li SB and Wei GQ. 2011. Structural and geochronological constraints on the Mesozoic-Cenozoic tectonic evolution of the Longmen Shan thrust belt, eastern Tibetan Plateau. Tectonics, 30(6): TC6005 DOI:10.1029/2011TC002867 |
Yan QR, Wang ZQ, Liu SW, Li QG, Zhang HY, Wang T, Liu DY, Shi YR, Jian P, Wang JG, Zhang DH and Zhao J. 2005. Opening of the Tethys in Southwest China and its significance to the breakup of East Gondwanaland in Late Paleozoic:Evidence from SHRIMP U-Pb zircon analyses for the Garzê ophiolite block. Chinese Science Bulletin, 50(3): 256-264 DOI:10.1007/BF02897536 |
Yang TN, Zhang HR, Liu YX, Wang ZL, Song YC, Yang ZS, Tian SH, Xie HQ and Hou KJ. 2011. Permo-Triassic arc magmatism in central Tibet:Evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chemical Geology, 284(3-4): 270-282 DOI:10.1016/j.chemgeo.2011.03.006 |
Yang TN, Hou ZQ, Wang Y, Zhang HR and Wang ZL. 2012. Late Paleozoic to Early Mesozoic tectonic evolution of Northeast Tibet:Evidence from the Triassic composite western Jinsha-Garzê-Litang suture. Tectonics, 31(4): TC4004 DOI:10.1029/2011TC003044 |
Yang TN, Ding Y, Zhang HR, Fan JW, Liang MJ and Wang XH. 2014a. Two-phase subduction and subsequent collision defines the Paleotethyan tectonics of the southeastern Tibetan Plateau:Evidence from zircon U-Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, Southwest China. Geological Society of America Bulletin, 126(11-12): 1654-1682 DOI:10.1130/B30921.1 |
Yang TN, Liang MJ, Fan JW, Shi PL, Zhang HR and Hou ZH. 2014b. Paleogene sedimentation, volcanism, and deformation in eastern Tibet:Evidence from structures, geochemistry, and zircon U-Pb dating in the Jianchuan Basin, SW China. Gondwana Research, 26(2): 521-535 DOI:10.1016/j.gr.2013.07.014 |
Yang XA, Liu JJ, Han SY, Zhang HY, Liu C, Wang H and Chen SY. 2011. U-Pb dating of zircon from the Linong granodiorite, Re-Os dating of molybdenite from the ore body and their geological significances in Yangla copper deposit, Yunnan. Acta Petrologica Sinica, 27(9): 2567-2576 (in Chinese with English abstract) |
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280 DOI:10.1146/annurev.earth.28.1.211 |
Yong Y, Chen W, Zhang Y and Liu XY. 2011. Zircon SHRIMP U-Pb dating and geochemistry of the Rangnianggongba gabbro in Yushu area, Qinghai Province. Acta Petrologica et Mineralogica, 30(3): 419-426 (in Chinese with English abstract) |
Zeng QG, Wang BD, Qiangba ZX, Nima CR and Li H. 2010. Zircon Cameca U-Pb dating of granitoid gneisses in the Leiwuqi area of the eastern Tibet, China and its geological implication. Geological Bulletin of China, 29(8): 1123-1128 (in Chinese with English abstract) |
Zhai QG, Zhang RY, Jahn BM, Li C, Song SG and Wang J. 2011. Triassic eclogites from central Qiangtang, northern Tibet, China:Petrology, geochronology and metamorphic P-T path. Lithos, 125(1-2): 173-189 DOI:10.1016/j.lithos.2011.02.004 |
Zhai QG, Jahn BM, Wang J, Su L, Mo XX, Wang KL, Tang SH and Lee HY. 2013. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet:SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos, 168-169: 186-199 DOI:10.1016/j.lithos.2013.02.005 |
Zhang B, Zhang JJ and Zhong DL. 2010. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. Journal of Structural Geology, 32(4): 445-463 DOI:10.1016/j.jsg.2010.02.001 |
Zhang B, Zhang JJ, Zhong DL, Yang LK, Yue YH and Yan SY. 2012a. Polystage deformation of the Gaoligong metamorphic zone:Structures, 40Ar/39Ar mica ages, and tectonic implications. Journal of Structural Geology, 37: 1-18 DOI:10.1016/j.jsg.2012.02.007 |
Zhang B, Zhang JJ, Chang ZF, Wang XX, Cai FL and Lai QH. 2012b. The Biluoxueshan transpressive deformation zone monitored by synkinematic plutons, around the Eastern Himalayan Syntaxis. Tectonophysics, 574-575: 158-180 DOI:10.1016/j.tecto.2012.08.017 |
Zhang HF, Parrish P, Zhang L, Xu WC, Yuan HL, Gao S and Crowley QG. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:Implication for lithospheric delamination. Lithos, 97(3-4): 323-335 DOI:10.1016/j.lithos.2007.01.002 |
Zhang KJ, Zhang YX, Li B, Zhu YT and Wei RZ. 2006. The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone:Evidence from geochemical comparison with the Jinsha suture. Geology, 34(6): 493-496 DOI:10.1130/G22404.1 |
Zhang XZ, Dong YS, Li C, Chen W, Shi JR, Zhang Y and Wang YS. 2010. Identification of the eclogites with different ages and their tectonic significance in central Qiangtang, Tibetan Plateau:Constraints from 40Ar-39Ar geochronology. Geological Bulletin of China, 29(12): 1815-1824 (in Chinese with English abstract) |
Zhong DL. 1998. Paleotethysides in West Yunnan and Sichuan, China. Beijing: Science Press, 1-248 (in Chinese)
|
Zhong H, Hu RZ, Ye ZJ and Tu GC. 2000. Isotope geochronology of Dapingzhang spilite-keratophyre formation in Yunnan Province and its geological significance. Science in China (Series D), 43(2): 200-207 |
Zhu JJ, Hu RZ, Bi XW, Zhong H and Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126(3-4): 248-264 DOI:10.1016/j.lithos.2011.07.003 |
Zi JW, Cawood PA, Fan WM, Tohver E, Wang YJ and McCuaig TC. 2012a. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos, 140-141: 166-182 DOI:10.1016/j.lithos.2012.02.006 |
Zi JW, Cawood PA, Fan WM, Wang YJ and Tohver E. 2012b. Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic mélange, Southwest China, and implications for the Paleo-Tethys. Tectonics, 31(2): TC2012 |
曹殿华, 王安建, 黄玉凤, 张维, 侯可军, 李瑞萍, 李以科. 2009. 中甸弧雪鸡坪斑岩铜矿含矿斑岩锆石SHRIMP U-Pb年代学及Hf同位素组成. 地质学报, 83(10): 1430-1435. DOI:10.3321/j.issn:0001-5717.2009.10.007 |
邓军, 王长明, 李龚健. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349-1361. |
邓希光, 丁林, 刘小汉, 周勇, Yin A, Kapp PA, Murphy MA, Manning CE. 2000. 青藏高原羌塘中部冈玛日地区蓝闪石片岩及其40Ar/39Ar年代学. 科学通报, 45(21): 2322-2326. DOI:10.3321/j.issn:0023-074X.2000.21.015 |
邓希光, 丁林, 刘小汉, Yin A, Kapp PA, Murphy MA, Manning CE. 2002. 青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义. 岩石学报, 18(4): 517-525. |
郭泱泱, 郭安林, 胡晓佳. 2012. 双沟印支期花岗岩地球化学和地质年代学研究. 云南地质, 31(1): 134-138. |
侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120. |
胡健民, 孟庆任, 石玉若, 渠洪杰. 2005. 松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 21(3): 867-880. |
简平, 刘敦一, 孙晓猛. 2003. 滇西北白马雪山和鲁甸花岗岩基SHRIMP U-Pb年龄及其地质意义. 地球学报, 24(4): 337-342. DOI:10.3321/j.issn:1006-3021.2003.04.008 |
孔会磊, 董国臣, 莫宣学, 赵志丹, 朱弟成, 王硕, 李荣, 王乔林. 2012. 滇西三江地区临沧花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报, 28(5): 1438-1452. |
冷成彪, 张兴春, 王守旭, 秦朝建, 苟体忠, 王外全. 2008. 滇西北中甸松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义. 大地构造与成矿学, 32(1): 124-130. DOI:10.3969/j.issn.1001-1552.2008.01.016 |
李宝龙, 季建清, 付孝悦, 龚俊峰, 宋彪, 庆建春, 张臣. 2008. 滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义. 岩石学报, 24(10): 2322-2330. |
李才, 翟庆国, 董永胜, 黄小鹏. 2006a. 青藏高原羌塘中部榴辉岩的发现及其意义. 科学通报, 51(1): 70-74. |
李才, 翟庆国, 陈文, 于介江, 黄小鹏, 张彦. 2006b. 青藏高原羌塘中部榴辉岩40Ar-39Ar定年. 岩石学报, 22(12): 2843-2849. |
李龚健, 王庆飞, 禹丽, 胡兆初, 马楠, 黄钰涵. 2013. 哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约. 岩石学报, 29(11): 3883-3900. |
李静, 孙载波, 徐桂香, 周坤, 黄亮, 田素梅, 曾文涛, 陈光艳, 刘桂春. 2015. 滇西双江县勐库地区榴闪岩的发现与厘定. 矿物学报, 35(4): 421-424. |
李静, 孙载波, 黄亮, 徐桂香, 田素梅, 邓仁宏, 周坤. 2017. 滇西勐库退变质榴辉岩的P-T-t轨迹及地质意义. 岩石学报, 33(7): 2285-2301. |
李文昌, 曾普胜. 2007. 云南普朗超大型斑岩铜矿特征及成矿模型. 成都理工大学学报(自然科学版), 34(4): 436-446. DOI:10.3969/j.issn.1671-9727.2007.04.011 |
梁明娟, 杨天南, 史鹏亮, 薛传东, 向坤, 廖程. 2015. 三江造山带兰坪盆地东缘火山岩锆石U-Pb年代学、Hf同位素组成. 岩石学报, 31(11): 3247-3268. |
林清茶, 夏斌, 张玉泉. 2006. 云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义. 地质通报, 25(1-2): 133-137. |
刘敦一, 简平, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据. 地质学报, 77(3): 317-327. DOI:10.3321/j.issn:0001-5717.2003.03.004 |
刘汇川, 王岳军, 蔡永丰, 马莉燕, 邢晓婉, 范蔚茗. 2013. 哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究. 大地构造与成矿学, 37(1): 87-98. DOI:10.3969/j.issn.1001-1552.2013.01.010 |
陆济璞, 张能, 黄位鸿, 唐专红, 李玉坤, 许华, 周秋娥, 陆刚, 李乾. 2006. 藏北羌塘中北部红脊山地区蓝闪石+硬柱石变质矿物组合的特征及其意义. 地质通报, 25(1-2): 70-75. |
莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉. 1993. 三江特提斯火山作用与成矿. 北京: 地质出版社, 1-267.
|
莫宣学, 邓晋福, 董方浏, 喻学惠, 王勇, 周肃, 杨伟光. 2001. 西南三江造山带火山岩-构造组合及其意义. 高校地质学报, 7(2): 121-138. DOI:10.3969/j.issn.1006-7493.2001.02.001 |
聂飞, 董国臣, 莫宣学, 朱弟成, 董美玲, 王霞. 2012. 滇西昌宁-孟连带三叠纪花岗岩地球化学、年代学及其意义. 岩石学报, 28(5): 1465-1476. |
潘桂棠, 李兴振, 王立全, 丁俊, 陈智粱. 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, 21(11): 701-707. DOI:10.3969/j.issn.1671-2552.2002.11.002 |
戚学祥, 朱路华, 李化启, 胡兆初, 李志群. 2010. 青藏高原东缘哀牢山-金沙江构造带糜棱状花岗岩的LA-ICP-MS U-Pb定年及其构造意义. 地质学报, 84(3): 357-369. DOI:10.3969/j.issn.1004-9665.2010.03.011 |
汝珊珊, 李峰, 吴静, 李进宝, 汪德文, 黄应才. 2012. 云南大平掌铜多金属矿区花岗闪长斑岩地球化学特征及年代学研究. 岩石矿物学杂志, 31(4): 531-540. DOI:10.3969/j.issn.1000-6524.2012.04.006 |
三江造山带地质图编图委员会. 1986. 三江造山带地质图(1/100万). 北京: 地质出版社.
|
沙淑清, 王宗秀, 郭通珍, 肖伟峰, 杨欣德. 2007. 巴颜喀拉山东段花岗岩锆石SHRIMP定年及其地球化学特征. 地球学报, 28(3): 261-269. DOI:10.3321/j.issn:1006-3021.2007.03.004 |
史鹏亮, 杨天南, 梁明娟, 薛传东, 范金伟. 2015. 三江构造带新生代变形构造的时-空变化:研究综述及新数据. 岩石学报, 31(11): 3331-3352. |
孙载波, 李静, 周坤, 曾文涛, 吴嘉林, 胡绍斌, 刘桂春, 赵江泰. 2018. 滇西勐库地区退变质榴辉岩锆石U-Pb年龄及其地质意义. 地质通报, 37(11): 2032-2043. |
唐靓, 薛传东, 杨天南, 梁明娟, 向坤, 廖程, 姜丽莉, 信迪. 2016. 滇西马登地区晚二叠世-早三叠世地层组合及年代学:火山岩锆石U-Pb定年证据. 岩石学报, 32(8): 2535-2554. |
王保弟, 王立全, 王冬兵, 张万平. 2011a. 三江上叠裂谷盆地人支雪山组火山岩锆石U-Pb定年与地质意义. 岩石矿物学杂志, 30(1): 25-33. |
王保弟, 王立全, 强巴扎西, 曾庆高, 张万平, 王冬兵, 程万华. 2011b. 早三叠世北澜沧江结合带碰撞作用:类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据. 岩石学报, 27(9): 2752-2762. |
王秉璋, 罗照华, 曾小平, 王毅志, 祁生胜. 2008. 青海三江北段治多地区印支期花岗岩的成因及锆石U-Pb定年. 中国地质, 35(2): 196-206. DOI:10.3969/j.issn.1000-3657.2008.02.002 |
王丹丹, 李宝龙, 季建清, 刘昱恒. 2014. 澜沧江构造带南段变质岩系锆石U-Pb年代学及构造涵义. 岩石学报, 30(9): 2725-2738. |
王根厚, 贾建称, 万永平, 张维杰, 周志广, 李秋实, 杨国东. 2006. 藏东巴青县北部酉西岩组构造片理形成及构造意义. 地学前缘, 13(4): 180-187. DOI:10.3321/j.issn:1005-2321.2006.04.016 |
王舫, 刘福来, 刘平华. 2013. 云南"三江"变质杂岩带多期花岗质岩浆事件及其构造意义. 岩石学报, 29(6): 2141-2160. |
魏君奇, 战明国, 路远发, 陈开旭, 何龙清. 1997. 滇西德钦羊拉矿区花岗岩类地球化学. 华南地质与矿产, 4(1): 50-56. |
魏君奇, 王晓地, 庄晓, 刘云华. 2008. 澜沧江缝合带吉岔蛇纹岩中闪长岩和俄咱辉长岩中锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 24(6): 1297-1301. |
闫全人, 王宗起, 刘树文, 李秋根, 张宏远, 王涛, 刘敦一, 石玉若, 简平, 王建国, 张德会, 赵建. 2005. 西南三江特提斯洋扩张与晚古生代东冈瓦纳裂解:来自甘孜蛇绿岩辉长岩的SHRIMP年代学证据. 科学通报, 50(2): 158-166. DOI:10.3321/j.issn:0023-074X.2005.02.010 |
杨喜安, 刘家军, 韩思宇, 张红雨, 罗诚, 汪欢, 陈思尧. 2011. 云南羊拉铜矿床里农花岗闪长岩体锆石U-Pb年龄、矿体辉钼矿Re-Os年龄及其地质意义. 岩石学报, 27(9): 2567-2576. |
雍拥, 陈文, 张彦, 刘新宇. 2011. 玉树地区让娘贡巴辉长岩锆石SHRIMP U-Pb测年和地球化学特征. 岩石矿物学杂志, 30(3): 419-426. DOI:10.3969/j.issn.1000-6524.2011.03.007 |
曾庆高, 王保弟, 强巴扎西, 尼玛次仁, 李虎. 2010. 藏东类乌齐地区花岗质片麻岩锆石Cameca U-Pb定年及其地质意义. 地质通报, 29(8): 1123-1128. DOI:10.3969/j.issn.1671-2552.2010.08.003 |
张修政, 董永胜, 李才, 陈文, 施建荣, 张彦, 王云生. 2010. 青藏高原羌塘中部不同时代榴辉岩的识别及其意义——来自榴辉岩及其围岩40Ar-39Ar年代学的证据. 地质通报, 29(12): 1815-1824. DOI:10.3969/j.issn.1671-2552.2010.12.009 |
钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 1-248.
|
钟宏, 胡瑞忠, 叶造军, 涂光炽. 1999. 云南大平掌细碧-角斑岩建造的同位素年代学及其地质意义. 中国科学(D辑), 29(5): 407-412. |
2019, Vol. 35

