2. 中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037;
3. 西藏华泰龙矿业开发有限公司, 拉萨 850212;
4. 成都理工大学地球科学学院, 成都 610059
2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. Tibet Huatailong Mining Development Co. Ltd., Lhasa 850212, China;
4. School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
斑岩型矿床通常产于俯冲岩浆弧环境(Sillitoe et al., 1972, 2010; Lin et al., 2017a、b, 2019; Song et al., 2018),但近些年来,发现其也可以形成于其它环境,比如碰撞环境的与埃达克质钙碱性岩相关的伊朗中部Kerman斑岩铜矿带(Shafiei et al., 2009),以及碰撞后背景的玉龙-哀牢山和冈底斯斑岩铜矿带(Hou et al., 2003, 2009; Yang et al., 2009, 2014; 唐菊兴等,2010)。因为俯冲后构造背景下与俯冲作用所导致的构造岩浆活动有较大区别,岩浆弧环境下形成的斑岩铜矿床的成因模式(Richards et al., 2003, 2011)难于直接应用于俯冲后环境形成的斑岩型铜矿床的勘查评价,所以与俯冲后背景下形成的斑岩型铜矿床成因以及与其相关的岩浆岩成因得到了广泛的关注(Hou et al., 2004, 2009, 2013;Richards et al., 2009;Shafiei et al., 2009;Zheng et al., 2012a, b)。
甲玛是冈底斯成矿带中最重要的铜多金属资源基地,累计探获当量铜资源储量达1500万吨以上,其作为冈底斯成矿带斑岩矿床的典型代表,其是研究大陆碰撞型斑岩型铜成因和含矿斑岩岩石成因的理想对象。前人对甲玛矿床开展了矿床地质特征(唐菊兴等, 2010;林彬等,2012)、地质年代学特征(应立娟等, 2010)、岩石地球化学(秦志鹏等,2012;秦志鹏,2013)、元素分布规律(郑文宝等, 2010)、流体地球化学(周云等,2012)及矿床成因(唐菊兴等, 2010)等方面的研究。在岩浆岩方面,研究主要集中于中酸性岩浆岩(唐菊兴等,2010;秦志鹏, 2012, 2013),而对其内的暗色包体岩石成因研究较为薄弱。这限制了对矿区岩浆岩起源、演化过程及深部动力学过程的进一步限定和理解,阻碍了对甲玛岩浆岩成岩成矿模型的建立。本文结合前人已有的研究资料,重点对矿区中酸性岩浆岩中暗色包体开展了岩相学、岩石地球化学、Hf同位素地球化学及同位素地质年代学研究,从岩相学特征、年代学特征等方面论证了岩浆混合作用的存在,判定了暗色包体岩石成因,讨论了暗色包体对南冈底斯带深部动力过程以及普遍分布的高钾埃达克岩成因的指示作用,探讨了岩浆混合作用对成矿的约束,最终深化和完善了甲玛矿区成岩成矿概念模型。
1 区域地质背景及矿床地质特征甲玛矿区位于西藏特提斯构造域冈底斯成矿带东段(唐菊兴等, 2010, 2011)(图 1),大地构造位置处于西藏冈底斯-念青唐古拉(地体)板片中南部。矿区及邻近区域的地层主要为被动陆缘火山沉积岩系, 包括上三叠统麦隆岗组(T3m)(灰黑色中厚层微晶灰岩夹泥质灰岩、粉砂岩与石英砂岩)、中下侏罗统叶巴组(J1-2y)(下段为片理化流纹质熔岩,含角砾流纹质凝灰岩、凝灰质火山角砾岩;中段为英安质、安山质晶屑凝灰岩夹流纹质晶屑岩屑凝灰岩;上段为流纹质晶屑凝灰岩、凝灰质角砾岩、粉砂岩,该段底部为条纹状硅质岩)、上侏罗统却桑温泉组(J3q)(上部灰色钙质页岩、粉砂质页岩与长石石英砂岩互层;下部灰褐色和暗灰色中厚层状长石石英砂岩、含砾粗砂岩、砂砾岩夹黏土岩)和多底沟组(J3d)(灰白色大理岩、结晶灰岩,夹泥灰岩、灰黑色砾屑灰岩、碎屑泥晶灰岩)、下白垩统林布宗组(K1l)(上部为岩屑砂岩、石英砂岩、岩屑石英粉砂岩与炭质板岩互层;下部为炭质板岩、炭质页岩夹粉-细砂岩,含生屑泥晶灰岩)和楚木龙组(K1c)(灰白色石英砂岩、岩屑石英砂岩夹深灰色板岩,底部夹砾岩)以及塔龙拉组(K1t)(灰黑色石英砂岩、粉砂泥质板岩、泥晶灰岩、生物灰岩)(唐菊兴等,2013)。
![]() |
图 1 西藏拉萨地体构造格架(a,据Yin and Harrison, 2000; Zhu et al., 2011)及南拉萨和中拉萨地体区域地质及矿床分布图(b,据Yang et al., 2015) JSS-金沙江缝合带;BNS-班公湖怒江缝合带;SNMZ-狮泉河缝合带;LMF-洛巴堆-米拉山断裂;IYS-雅鲁藏布江缝合带;SL-南拉萨地体;CL-中拉萨地体;NL-北拉萨地体 Fig. 1 Tectonic framework of the Tibetan Plateau (a, modified after Yin and Harrison, 2000; Zhu et al., 2011) and geological map of the southern and central Lhasa terrane showing the distribution of deposits(b, modified after Yang et al., 2015) JSS-Jinsha Suture; BNS-Bangonghu-Nujiang Suture; SNMZ-Shiquan River-Nam Tso Melange Zone; LMF-Luobadui-Milashan Fault; IYS-Indus-Yarlung Zangbo Suture; SL-Southern Lhasa subterrane; CL-Central Lhasa subterrane; NL-Northern Lhasa subterrane |
矿区出露地层主要为下白垩统林布宗组(K1l)砂板岩、角岩以及上侏罗统多底沟组(J3d)灰岩、大理岩(图 2)。区内岩浆岩主要呈岩枝、岩脉产出,主要岩石类型为花岗斑岩、二长花岗斑岩、花岗闪长斑岩、石英闪长玢岩等(秦志鹏等,2012;秦志鹏,2013)。其中钾化(黑云母化为主)主要发育于二长花岗斑岩、花岗斑岩之中,石英-绢云母化、泥化在四种岩体中均有发育,而青磐岩化发育较差,主要分布于石英闪长玢岩、花岗闪长斑岩中。根据赋矿岩石的不同可将矿体划分为矽卡岩型铜多金属矿体和斑岩型钼(铜)矿体(图 2),斑岩型矿体又可分为产于斑岩中的钼(铜)矿体和产于角岩中的钼铜矿体。甲玛Ⅰ号矽卡岩型主矿体主要受多底沟组与林布宗组的层间构造控制,多呈层状、厚板状产出,总体走向为北西-南东,延长约3000m,矿体倾向北东,延伸>2600m;除Ⅰ号矿体产于层间构造中,另有8个矽卡岩型小矿体均产于矿区滑覆体内, 受滑覆构造控制(唐菊兴等,2010),矿体形态较不规则,变化较大,整体上呈透镜状产于滑覆体前缘,走向北西西-南东东,延长约700m,倾向北北东,延伸>700m。矿石类型主要为浸染状和细脉浸染状矿石,次要类型为稠密浸染状矿石、块状矿石,矿石矿物主要为黄铜矿、斑铜矿、辉钼矿等(唐菊兴等,2010)。
![]() |
图 2 甲玛矿床地质图(a,据唐菊兴等,2010修改)及24号勘探线剖面图(b) Fig. 2 Geological map of the Jiama Cu polymetallic deposit (a, modified after Tang et al., 2010) and profile of No.24 exploration line (b) |
甲玛矿区主要发育四期规模较大的侵入岩,其主要呈岩脉-岩枝状侵位于多底沟组和林布宗组地层之中,岩性分别是花岗斑岩、二长花岗斑岩、花岗闪长斑岩、石英闪长玢岩,其侵位时限均为15Ma左右(唐菊兴等,2010),为陆陆碰撞后形成的中新世斑岩,侵位时序为石英闪长玢岩→花岗斑岩→二长花岗斑岩→花岗闪长斑岩(秦志鹏等,2012; 秦志鹏,2013),其中二长花岗斑岩与花岗斑岩为主要的含矿斑岩,石英闪长玢岩、花岗闪长斑岩含矿性较差,其具体特征如下。
石英闪长玢岩 灰黑色,斑状结构,块状构造,斑晶约占10%,主要矿物为斜长石、角闪石及少量石英,副矿物组合为磷灰石、榍石、锆石、磁铁矿、钛铁矿、锆石。
二长花岗斑岩 灰白,斑状结构,块状构造,斑晶含量为30%~40%,斑晶粒径变化较大,为0.2~5cm不等,以长石斑晶为主,少量为石英斑晶,基质为长英质矿物,主要矿物组合为石英、钾长石、斜长石、角闪石、黑云母,副矿物包括磷灰石、榍石、锆石、磁铁矿。
花岗闪长斑岩 灰白色,细-中粒斑状结构,块状构造,斑晶约为20%,主要为斜长石、钾长石、角闪石、石英组成,副矿物可见磷灰石、榍石、锆石、磁铁矿、锆石。
花岗斑岩 岩石呈灰白-乳白色, 块状构造, 中-细粒斑状结构。斑晶约占20%, 主要矿物为石英、钾长石、斜长石少量黑云母,副矿物主要有磷灰石、榍石、锆石、磁铁矿、钛铁矿。
这些中酸性寄主岩浆中常常发育长石反环带(图 3d),内部为钾长石,外部为斜长石,可见钾长石斑晶被角闪石和黑云母交代呈筛状结构(图 3d)。除此之外,石英具有明显的熔蚀结构,被黑云母、角闪石等暗色矿物交代呈港湾状或浑圆状,偶尔可见石英发育钾长石包壳(图 3c)。
![]() |
图 3 甲玛矿区中酸性岩与暗色包体的野外及镜下照片 (a)二长花岗斑岩中的闪长质MME,MME中长石捕掳晶受熔蚀作用呈不规则;(b)花岗斑岩中的闪长质MME;(c)花岗闪长斑岩中的闪长质MME,花岗闪长斑岩中可见浑圆状石英发育钾长石包壳;(d)二长花岗斑岩中发育长石反环带,内部的钾长石被黑云母和角闪石交代呈筛子结构;(e)花岗闪长斑岩中石英斑晶受熔蚀作用呈港湾状(+);(f)闪长质MME中捕掳石英晶体边部被细粒的角闪石和黑云母包围(+);(g)闪长质MME中钾长石包裹针状磷灰石、黑云母(+);(h)闪长质MME中细粒的镁铁质矿物呈带状包裹于捕掳斜长石晶体中(+);(i)闪长质MME中的捕掳斜长石晶体中包裹黑云母和针状磷灰石(+);(j)闪长质MME中捕掳斜长石晶体边缘受到熔蚀,包裹细粒的镁铁质矿物;(k)闪斜煌斑质MME,暗色矿物以角闪石为主,发育大量针状磷灰石(-);(l)云斜煌斑质MME,暗色矿物以黑云母为主,发育深褐色金云母(-). MME-镁铁质暗色微粒包体;Q-石英;Kfs-钾长石;Bi-黑云母;Hb-角闪石;Pl-斜长石;Ap-磷灰石;Phl-金云母 Fig. 3 Field photos and micrographs of the Jiama granite and its MMEs (a) MME of the monzonitic granite-porphyry, the feldspar crystals in the MME are irregular by corrosion; (b) MME in granite porphyry; (c) MME in granodiorite porphyry, where rounded quartz develops potassium feldspar crust; (d) there is an inverse feldspar ring in the monzonitic granite-porphyry, and the K-feldspar in the interior is screened by biotite and amphibole metasomatism; (e) in granodiorite porphyry, quartz porphyry is estuarine (+); (f) the edges of captured quartz crystals in MME are surrounded by fine grains of amphibole and biotite (+); (g) in MME, K-feldspar envelops acicular apatite and biotite (+); (h) fine-grained magnesium-ferrite minerals in MME are wrapped in bands in the crystals of ichthyoplagioclase (+); (i) inclusion of biotite and acicular apatite in the plagioclase crystals of MME (+); (j) the edge of the trapped plagioclase crystal is eroded, encasing fine grains of magnesium-ferrite minerals; (k) spessartitic MME, dark minerals are mainly amphibole, and a large amount of acicular apatite is developed(-); and (l) dolomous lamprophyric MME with dark minerals dominated by biotite and developed dark brown auric mica (-). MME-mafic microgranular enclaves; Q-quartz; Kfs-potassium feldspar; Bi-biotite; Hb-amphibole; Pl-plagioclase; Ap-apatite; Phl-phlogopite |
暗色包体普遍发育于中酸性岩浆岩中,特别是在二长花岗斑岩、花岗斑岩中更为广泛发育,其与中酸性寄主岩浆多数呈截然、少数为过渡的接触关系,形状呈椭球状,灰色,主要呈细粒自形-半自形粒状结构,块状构造,边部可见细粒矿物组成的冷凝边(图 3a),矿物成分主要为斜长石、角闪石、黑云母及少量石英。岩相学观察表明,暗色包体有两种类型,其中主要为闪长质包体(图 3a, c),其次为煌斑质包体(图 3b, k, l)。煌斑质包体多呈自形等细粒粒状结构,经受明显的碳酸盐化、绢云母化,矿物主要为自形棕色黑云母、柱状角闪石、深褐色金云母以及半自形-他形斜长石和钾长石,其中长石由于受到蚀变而显得浑浊(图 3k, l)。按照斑晶中黑云母和角闪石相对含量大小,煌斑质包体又可分为闪斜煌斑质包体(斑晶主要为自形角闪石和斜长石,少量为黑云母,图 3k)和云斜煌斑质包体(斑晶主要为自形黑云母和斜长石,少量为角闪石,图 3l)。闪长质包体矿物多呈半自形细粒状,包括钾长石(8%~15%)、斜长石(45%~55%)、黑云母(15%~20%)、角闪石(2%~5%)、石英(3%~8%)。闪长质暗色包体中常常可见以下特殊现象:捕掳的钾长石巨晶(明显大于闪长质包体原生矿物)受熔蚀作用呈不规则状(图 3a);捕掳石英受熔蚀作用呈浑圆状,边部被暗色镁铁质矿物(角闪石、黑云母)包围形成石英镶边结构(图 3f);细粒的角闪石和黑云母等镁铁质矿物呈带状或粒状包裹在边缘被熔蚀的斜长石晶体中(图 3h-j),同时可见钾长石晶体中发育针状磷灰石包裹体域(图 3g)。煌斑质暗色包体由于蚀变程度较高,只可见局部发育针状磷灰石,未见上述的其他特殊现象。
3 测试分析方法暗色包体样品主要采集于钻孔ZK2015、ZK813之中,寄主岩石为二长花岗斑岩。岩石主微量元素分析测试是在核工业北京地质研究院完成,其具体测试分析方法见顾枫华等(2015)。锆石U-Pb同位素定年是在中国地质大学(北京)地质过程与矿产资源国家重点实验室矿床地球化学微区分析室完成,同位素定年所采用的激光剥蚀系统为美国产Geolas193准分子固体进样系统,ICP-MS为美国生产的THermo Fisher X SeriesⅡ型四极杆等离子体质谱仪。测试过程中,激光斑束直径为32μm,频率为8Hz,采用He作为载气,Ar气作为补偿气。采用美国国家标准参考物质NIST610对仪器进行最佳化,并将其作为微量元素含量测定的外标。采用标准锆石91500作为定年外标,采用标准锆石GJ1作为监控样品。测试过程中每测定5个样品点测定两次标准锆石91500,每个样品的信号采集时间为100s,其中前20s为背景信号采集时间,样品信号采集时间为50s。测试完成后,采用软件ICPMSDataCal对分析数据进行后期处理,年龄计算和协和图的绘制采用Isoplot 3.0完成。锆石原位Hf同位素在中国地质科学院国家地质测试中心完成,采用配有193nm激光的Neptune多接收电感耦合等离子质谱仪进行测试分析,具体的测试分析方法见Wu et al. (2006)。
4 测试分析结果 4.1 锆石U-Pb同位素地质年代学从闪长质暗色微粒包体(寄主岩石为二长花岗斑岩)中挑选锆石进行U-Pb年龄测定,结果见表 1。锆石呈褐色-无色,自形-半自形,大小约为50~150μm,颗粒晶完好,CL图显示大多数锆石具有清晰的震荡环带(图 4a),锆石具有较高的Th/U比值(0.4~2.62),为岩浆成因。在锆石U-Pb年龄协和图上(图 4b)15个样品点均分布在谐和线及其附近,计算的加权平均年龄为15.3±0.3Ma(MSWD=1.8),代表暗色微粒包体的成岩年龄,与中酸性寄主岩石二长花岗斑岩年龄(15Ma左右;秦志鹏,2013)在误差范围内一致。
![]() |
表 1 甲玛矿区暗色包体中锆石U-Pb同位素数据及测年结果 Table 1 U-Pb isotopic compositions and dating results of zircons from the MMEs in the Jiama deposit |
![]() |
图 4 甲玛矿区暗色包体中锆石CL图像(a)和LA-ICP-MS U-Pb协和图(b) Fig. 4 Cathodoluminescence (CL) images (a) and LA-ICP-MS U-Pb concordia diagram (b) of representative zircons from the MMEs in the Jiama deposit |
锆石具有很高的Hf同位素体系封闭温度,且Lu-Hf同位素体系的封闭温度高于Sm-Nd同位素体系,即使在麻粒岩相等高级变质条件下,锆石仍可保持原始Hf同位素组成(Scherer et al., 2000),故Hf同位素原位分析可以为锆石成因演化提供重要的制约参数(吴福元等,2007), 为讨论岩石成因提供重要的线索和信息。闪长质包体中锆石23个测试点的176Hf/177Hf比值范围为0.282907~0.282751(表 2),平均0.282866。根据锆石LA-MA-ICP-MS定年的原位年龄校正计算后求得,εHf(t)在-0.9~4.6之间,平均为3.2,一个点的εHf(t)<0,其它22个点εHf(t)均>0,且多集中在2~4之间。二阶段Hf模式年龄(tDMC)变化于0.77~1.13Ga之间,平均0.87Ga。锆石Hf模式年龄远大于结晶年龄(15.3±0.3Ma)。
![]() |
表 2 甲玛矿区闪长质包体中锆石Lu-Hf同位素原位分析结果 Table 2 Hf isotopic data for zircons from the MMEs in the Jiama deposit |
暗色微粒包体SiO2含量较低,变化于52.44%~59.45%之间,平均为56.97% (表 3);和中酸性寄主岩浆相比,暗色微粒包体相对高Al2O3(15.56%~16.76%),高MgO(3.53%~6.62%),高TiO2(0.97%~1.03%),高CaO(3.46%~4.88%),高P(0.51%~0.54%);具有明显富K特征,K2O含量为3.19%~5.62%,平均为4.11%;在SiO2-K2O图中投在钾玄岩系列(图 5a)。A/CNK=0.76~0.95,为偏铝质岩石(图 5d)。在哈克图解中(图 6),中酸性寄主岩浆具有一致的演化趋势,MgO、Al2O3、CaO、TiO2、Na2O随着SiO2逐渐升高而降低,K2O随着SiO2增加而升高(图 5a),指示了中酸性寄主岩浆是同源岩浆。但暗色微粒包体SiO2-TiO2、SiO2-K2O、SiO2-Na2O显示与中酸性寄主岩浆不一样的演化趋势,可能指示了暗色微粒包体源区不同于中酸性寄主岩浆。
![]() |
表 3 甲玛矿区闪长质包体主量(wt%)、微量(×10-6)元素测试数据 Table 3 Major (wt%) and trace (×10-6) element data of the MMEs in Jiama deposit |
![]() |
图 5 甲玛矿区暗色微粒包体全岩K2O-SiO2分类图解(a, 据Peccerillo and Taylor, 1976)、(Na2O+K2O)-SiO2图解(b, 据Irvine and Baragar, 1971)、Sr/Y-Y图解(c, 据Defant and Drummond, 1990)以及A/NK-A/CNK图解(d) 数据来源:超钾镁铁质岩石(Zhao et al., 2009); 花岗斑岩、花岗闪长斑岩、二长花岗斑岩、闪长玢岩(秦志鹏, 2013);图 6、图 7、图 9同 Fig. 5 Variation of K2O vs. SiO2 diagram (a, after Peccerillo and Taylor, 1976), (Na2O+K2O) vs. SiO2 diagram (b, after Irvine and Baragar, 1971), Sr/Y vs. Y diagram (c, after Defant and Drummond, 1990) and A/NK vs. A/CNK diagram (d) of the MMEs in Jiama deposit Data sources: the ultrapotassic rocks from Zhao et al. (2009); the granite porphyry, granite diorite porphyry, monzonite granite porphyry and diorite porphyry from Qin (2013); also in Fig. 6, Fig. 7 and Fig. 9 |
![]() |
图 6 甲玛矿区暗色微粒包体部分主量元素哈克图解 Fig. 6 Harker diagrams of selected major elements of the MMEs in Jiama deposit |
暗色微粒包体稀土总量(∑REE=274.7×10-6~327.8×10-6)远高于中酸性寄主岩浆(图 7a),且轻重稀土分异明显(LREE/HREE=21~23,富集LREE和LILE(Rb=189×10-6~284×10-6、Sr=498×10-6~658×10-6、Ba=1247×10-6~1378×10-6),相对亏损HREE和HFSE(Nb、Ta、Ti)(图 7b)。暗色微粒包体具有高Sr(498×10-6~658×10-6)、低Y(11.6×10-6~12.5×10-6)特征(图 5c),Sr/Y比值为40~57,具埃达克质亲和性。相比于已经报道的冈底斯带中新世埃达克质斑岩及甲玛中酸性寄主岩浆,暗色微粒包体具有低SiO2,高MgO和高相容元素(Ni=86.3×10-6~146.3×10-6;Cr=102.4×10-6~227.8×10-6)的特征,由此判别为高Mg闪长岩(Shirey and Hanson, 1984)。
![]() |
图 7 甲玛矿区暗色微粒包体球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) 引用数据皆为样品多个平均值 Fig. 7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized multielement patterns (b) of the MMEs in Jiama deposit (normalization values after Sun and McDonough, 1989) Quoted data representing average values of corresponding several samples |
岩浆混合是壳幔相互作用、物质和能量交换的一种重要形式,对其研究有助于探测地球深部过程(王玉往等,2007)。近年来,越来越多的学者注意到,岩浆岩中广泛发育的暗色微粒包体可为岩浆岩成因及岩浆混合作用研究提供有力证据(王涛,2000;Perugini et al., 2002)。岩浆混合作用包括岩浆化学混合(Magma Mixing)和岩浆机械混合(Magma mingling),是岩浆多元性和火成岩多样性的重要原因之一。化学混合作用过程中,参与混合端员的岩浆完全地混合在一起,形成均一的新地质体。而在岩浆机械混合过程中,参与混合的端员岩浆未完全混合均一,表观特征明显,含有丰富的不平衡标志,可以识别出岩浆团及大量包体的大致轮廓、形态与成分。
暗色包体有多种成因:①围岩的捕虏体(Maas et al., 1997);②同源镁铁质岩浆的堆晶包体,或者是寄主岩浆早期形成的堆晶体(Clemens and Wall, 1988; Dahlquist, 2002; Donaire et al., 2005; Ilbeyli and Pearce, 2005; Shellnutt et al., 2010);③源区的难溶残留体(Chappell et al., 1987; Barbarin and Didier, 1992; Collins et al., 2006);④镁铁质岩浆注入长英质岩浆房发生机械混合的产物(Blundy and Sparks, 1992; Clemens, 2003; Barbarin, 2005)。
甲玛寄主岩浆中闪长质包体具有明显的岩浆结晶结构(图 3a),无堆晶结构,排除了同源镁铁质岩浆堆晶包体或寄主岩浆早期形成的堆晶体成因模式。另外,暗色包体没有变质结构则排除了围岩捕虏体(具热变质结构)和源区难熔残留体成因。暗色包体年龄与寄主花岗岩在测试误差范围内具有一致性(图 4),表明其为同时形成,则进一步排除了围岩捕虏体成因。暗色包体大离子亲石元素含量(Rb、Ba、Sr等元素)以及稀土元素含量远高于寄主中酸性岩浆(图 7a, b),排除了中酸性岩浆源区残留体的可能性,这是因为源区部分熔融(部分熔融程度较低)形成的中酸性岩浆其不相容元素含量高于源区残留体。
本文认为闪长质暗色包体为注入到中酸性岩浆房中未发生完全混合的基性岩浆团块,是一种岩浆混合作用的产物,是证明岩浆混合作用存在的直接证据。依据如下:①暗色包体具有椭圆状(图 3a-c),未显示固态变形,这可能是由于在混入同时期的中酸性岩浆的过程中发生塑性拉伸所致;②暗色包体显示等粒和细粒结构,异于寄主岩浆的斑状结构,且出现大量的针状磷灰石(图 3g),指示温度较高的基性岩浆注入温度相对较低的中酸性岩浆中时形成的一种淬火结构;③在暗色包体中出现捕虏巨晶长石和石英均具有明显的熔蚀结构(图 3a, f),可见长石被角闪石、黑云母等暗色矿物交代呈筛状结构(图 3g-j),还可见角闪石、黑云母等暗色矿物呈带状或粒状包裹于长石中(图 3h, j),以及可见石英边部为暗色矿物包围,形成石英镶边结构(图 3f),指示早期在酸性岩浆中结晶的长石、石英等矿物被后期注入的镁铁质岩浆所捕获,并被镁铁质岩浆熔蚀交代(Vernon, 1984),另外,由于熔蚀作用吸收了周围熔体中的热量,局部过冷却,导致黑云母和角闪石、磷灰石快速结晶,包裹早期的石英和长石形成石英镶边结构和长石的镁铁质矿物暗色带;④在寄主中酸性岩浆中发育长石反环带(图 3d),指示了早期在中酸性岩浆结晶形成钾长石核部,之后当镁铁质岩浆的注入,岩浆基性程度增大,从而在钾长石核部增生形成斜长石边部;⑤寄主花岗岩中发育的钾长石斑晶被角闪石、斜长石交代呈筛状结构(图 3d),石英具有明显的熔蚀结构,具有钾长石包壳(图 3c),边部被暗色矿物交代(图 3e),指示镁铁质岩浆混入中酸性岩浆的过程中,在中酸性岩浆中已结晶的的钾长石、石英等矿物被镁铁质岩浆交代熔蚀,出现矿物化学不平衡的现象;⑥在哈克图解中(图 6),部分主量元素显示闪长质暗色包体与寄主中酸性岩浆岩拟合形成线性趋势,可能指示了二元混合的现象;⑦大部分中酸性寄主岩浆的Mg#较高(Mg#>40),在SiO2含量相同的条件下,比玄武岩部分熔融体富K2O和MgO,说明源区有幔源镁铁质岩浆加入。
5.2 闪长质包体(MME)岩石成因甲玛闪长质包体地球化学特征类似于高Mg闪长岩(高MgO、Mg#、Sr/Y,图 5c)。目前,高Mg闪长岩共有四种成因模式:①榴辉岩化古老下地壳拆沉部分熔融,伴随着与上覆的地幔橄榄岩反应(Xu et al., 2002;Gao et al., 2004;Wang et al., 2005);②俯冲洋壳部分熔融,伴随着与上覆的地幔楔反应(Kay, 1978; Kelemen, 1995; Yogodzinski et al., 1995; Rapp et al., 1999, 2010);③受来源于板片熔融的埃达克质熔体交代的富集地幔橄榄岩部分熔融(Smithies and Champion, 2000; Bourdon et al., 2002; Gao et al., 2007); ④镁铁质岩浆与长英质岩浆混合成因(Streck et al., 2007;Chen et al., 2013)。通过以下讨论,本文认为闪长质包体岩石成因可能为镁铁质岩浆与长英质岩浆的混合产物。
闪长质包体成岩年龄为15Ma左右(图 4),这比新特提斯洋俯冲停止时间晚35Ma左右,也比欧亚板块初始碰撞晚50Ma左右(Yin and Harrison, 2000;Chung et al., 2005;Mo et al., 2007)。新特提斯洋板片断离时间发生于早始新世(50~45Ma),且在晚始新世时期已经沉入地幔深部(DeCelles et al., 2002; Kohn and Parkinson, 2002; Wen et al., 2008),因此在中新世时期,不可能发生洋壳俯冲事件,这就排除了闪长质包体是俯冲洋壳部分熔融,伴随着与上覆地幔反应而成的可能性。虽然现有的地球物理数据显示,现今南拉萨地体地壳厚度为正常地壳厚度的两倍(70~80km)(Zhao et al., 2001),但是许多研究者通过对中新世时期的埃达克质岩研究认为在此时期南拉萨地体厚度为45~50km (Hou et al., 2004, 2009;Guan et al., 2012),少量研究者认为南拉萨地体在早中新世时期厚度不超过35km (Nomade et al., 2004;Gao et al., 2007;Xu et al., 2010)。由此看来,在中新世时期南拉萨地体厚度不足以发生下地壳拆沉(Yang et al., 2015),这就排除了拆沉的榴辉岩化古老下地壳部分熔融,伴随着与上覆的地幔橄榄岩反应形成闪长质包体的可能性。目前发现的白垩纪洋壳板片熔融而成的埃达克岩仅仅分布在雅鲁藏布江缝合带以北3km附近(Zhu et al., 2009; Jiang et al., 2012),在早白垩世时期新特提斯洋板片向北俯冲角度较陡(Zhu et al., 2009),然而甲玛矿区位于距白垩纪板片来源的埃达克质岩体以北45km之远,说明甲玛矿区深部的岩石圈地幔受到白垩纪俯冲板片熔融而成的埃达克质熔体交代的可能性较小(Yang et al., 2015),可以排除闪长质包体为受板片来源的埃达克质熔体交代的地幔部分熔融而成的可能性。
根据岩相学、年代学、地球化学特征,本文认为闪长质包体岩石成因可能是富集岩石圈地幔部分熔融形成的镁铁质岩浆与少量的加厚新生下地壳部分熔融形成的中酸性岩浆发生机械混合的产物,证据如下:
闪长质包体MgO (3.54%~6.62%)、Cr (102.4×10-6~227.8×10-6)、Ni(86.3×10-6~146.3×10-6)明显高于甲玛中酸性寄主岩浆,其成分类似于玄武岩,说明其不可能是地壳来源,因为实验证明,不管是新生地壳还是古老地壳部分熔融均只能产生高硅、低MgO的花岗质熔体(Rapp,2003)。此外,闪长质包体相比于中酸性寄主岩浆,具有更高含量的不相容元素(如LREE、Rb、Ba、Sr、Th、U等)(图 7),说明其初始源区不同于中酸性寄主岩浆(加厚新生下地壳来源,Hou et al., 2013),这是因为如果是同一源区的熔体,更加酸性的岩浆的LREE含量和LILE含量应高于相对基性的岩浆,而这与实际相反。闪长质包体Nb/Ta比值为14.6~19.2(平均值为17.1),明显不同于中酸性寄主岩浆(Nb/Ta=10.7~13.4,平均值为11.8),前者接近于富集地幔(平均为17.7,Sun and McDonough, 1989),后者接近于下地壳(平均为8.3,Rudnick and Gao, 2003),由此认为闪长质包体与中酸性寄主岩浆的初始源区不同,前者初始源区应为地幔来源,后者初始源区应为壳源。
OIB和MORB玄武岩具有Nb、Ta、Ti正异常,以及负的Pb异常(Hofmann et al., 1986)。由图 7可知,暗色微粒包体亏损Nb、Ta、Ti,且具有低的Nb/U(1.0~1.2)和Ce/Pb(2.5~3.7),而完全不同于MORBS和OIBS (Nb/U, 47±10;Ce/Pb,25±5;Hofmann et al., 1986),说明闪长质包体很有可能不是来源于MORBS和OIBS的软流圈地幔。另外,闪长质包体部分大离子亲石元素(Rb、Ba、Th、U、Pb等)以及LREE远高于中酸性寄主岩浆,指示这些不相容元素含量高的原因不是由于中酸性寄主岩浆的影响所致,而是闪长质包体原始特征。如果闪长质包体来自于为正常软流圈地幔,而要形成具有如此高含量不相容元素的镁铁质岩浆,则要求软流圈地幔发生部分熔融程度非常低(<1%),且形成的镁铁质岩浆Co含量理应小于12×10-6(Zheng et al., 2012a),而这与实际测试数据不符,因此这进一步说明了闪长质包体不可能来源于软流圈地幔,而是可能来自于相对富集的岩石圈地幔,这是因为岩石圈地幔受到早期俯冲阶段板片来源的流体交代,从而相比于软流圈地幔更富集轻稀土元素及大离子亲石元素。此外,主量元素地球化学特征显示,闪长质包体的Na2O、TiO2、MgO、CaO、TFe2O3等含量投点均在超钾镁铁质岩石(来源于富集岩石圈地幔,Zhao et al., 2009)范围内及其附近(图 6)。因此本文认为闪长质包体初始源区为富集岩石圈地幔。
岩相学、年代学特征表明存在岩浆混合作用,因此本文认为闪长质包体在形成过程中与中酸性岩浆发生一定程度的混合,是富集岩石圈地幔来源的超钾镁铁质岩浆与少量加厚新生下地壳来源的中酸性岩浆混合的产物,这也得到了地球化学证据的支持:①闪长质包体的稀土和微量分布于超钾镁铁质岩与中酸性寄主岩浆之间(图 7);②完全来源于富集岩石圈地幔的岩浆一般不会具有埃达克质特征(Smithies and Champion, 2000),但闪长质包体具有埃达克质特征(图 5c),说明在混合过程中闪长质包体继承了中酸性寄主岩浆的埃达克质特征;③实验表明,镁铁质下地壳(玄武岩)部分熔融形成的岩浆熔体大多Mg#<40(Rapp and Watson, 1995),寄主岩浆岩部分样品具有较高的Mg#(>40),指示了幔源物质(闪长质包体)的加入;④冲木达-明则岩体中的MMEs(εHf(t)=+2.3~+5.5)以及驱龙矿区高镁闪长岩(εHf(t)=-2.1~+4.9),均被认为是富集岩石圈地幔来源的镁铁质岩浆与新生下地壳部分熔融形成的中酸性岩浆的混合产物(Zheng et al., 2012a;Yang et al., 2015),两者的Hf同位素值与闪长质包体类似(εHf(t)=-0.9~4.6),且闪长质包体Hf同位素分布于花岗闪长斑岩(代表中酸性寄主岩浆)与超钾镁铁质岩Hf同位素之间(图 8);⑤甲玛中酸性寄主岩浆中既含有闪长质包体,也有少量的煌斑质包体,而且甲玛矿区内发育煌斑岩脉体,而煌斑岩常常被解释为交代富集岩石圈地幔部分熔融而成(Lu et al., 2015b),表明甲玛矿区确实存在富集岩石圈地幔来源的镁铁质岩浆侵位现象,间接证明了闪长质包体是富集岩石圈地幔来源的镁铁质岩浆与中酸性寄主岩浆混合而成(混合程度高于煌斑质包体)。
![]() |
图 8 甲玛矿区闪长质包体锆石εHf(t)频数分布图 数据来源:花岗闪长斑岩数据为未刊数据;超钾镁铁质岩数据来源于孙晨光等(2008) Fig. 8 The εHf(t) histogram of zircons from the MMEs in Jiama deposit Data sources: the granodiorite porphyry from unpublished; ultrapotassic rocks from Sun et al. (2008) |
关于中新世超钾镁铁质岩石的形成,有研究者认为是俯冲的印度岩石圈板片折返所导致的(Guo et al., 2013),而大多数研究者认为是由于拉萨地体岩石圈东西向伸展,地幔对流诱发软流圈物质上涌(Platt and England, 1993;Turner et al., 1996;Miller et al., 1999),从而导致岩石圈地幔部分熔融形成富K的镁铁质岩浆,因此超钾镁铁质岩石的侵位年龄可以用于限定岩石圈伸展及岩石圈地幔对流减薄事件的时限(Turner et al., 1993; Chung et al., 1998; Williams et al., 2001;Zhao et al., 2009)。在冈底斯带西段(87°E以西)发育大量的中新世超钾镁铁质岩石(Williams et al., 2001, 2004),说明了冈底斯西段在这段时期发生了岩石圈地幔对流减薄事件,然而在冈底斯东段却鲜有报道超钾镁铁质岩石的出露(Zhao et al., 2009;Yang et al., 2015),因此中新世时期岩石圈伸展对流减薄事件是在整个冈底斯带发育还是仅仅在冈底斯带西段发育尚不清楚。甲玛中酸性岩浆中的暗色包体明显具有超钾镁铁质岩浆亲和性,指示了在东冈底斯带存在超钾镁铁质岩浆活动,说明了中新世时期岩石圈伸展对流减薄事件在整个冈底斯带均有不同程度发生。
冈底斯带上的埃达克质岩石普遍具有高K的特征,地球化学特征和同位素地球化学特征变化较大,成因一直具有争议。目前普遍认为其来源于加厚的新生下地壳部分熔融(Chung et al., 2003, 2009; Hou et al., 2004, 2013; Li et al., 2011; Zheng et al., 2012a, b; Guo et al., 2013),然而Gao et al.(2007, 2010)根据部分高钾埃达克质岩石Mg#值较高,而且Mg#与K2O以及一些强不相容元素具有明显的正相关关系,认为冈底斯带高钾埃达克质岩石成因为受板片来源熔体交代的上地幔部分熔融。但是,实际上大多数冈底斯高钾埃达克质岩石具有低MgO,低相容元素(Cr、Ni等)特征,因此受板片来源熔体交代的上地幔部分熔融而成的可能性较小。通过对甲玛暗色包体岩石成因研究发现,中酸性寄主岩浆(高钾埃达克质岩)与来自于富集的岩石圈地幔的超钾镁铁质岩浆发生了不同程度的混合,指示了冈底斯带高钾埃达克质岩石很可能是新生下地壳来源的中酸性岩浆与来自于富集岩石圈地幔的超钾镁铁质岩浆混合而成,此混合成因模型既能解释高钾埃达克质岩大部分样品低Mg#,部分样品高Mg#特征,也解释了Mg#与K2O具有正相关关系。这也得到了同位素证据的支持,Yang et al.(2015)发现,在εNd(t)-(87Sr/86Sr)图中,冈底斯高钾埃达克质岩全部位于超钾镁铁质岩石与俯冲改造的新生下地壳来源岩浆(由冈底斯花岗岩基代表)的混合曲线之上,另外,Wang et al.(2015)也发现冈底斯中新世高钾埃达克质岩石SiO2含量与εNd(t)呈正比,这也说明了俯冲改造的新生下地壳来源的中酸性岩浆(具埃达克质特征,高εNd(t)与来自于富集的岩石圈地幔的超钾镁铁质岩浆(高Mg#,低εNd(t))混合形成冈底斯带中新世高钾埃达克质岩石。综上所述,冈底斯带高钾埃达克质岩为源于加厚新生下地壳的埃达克质岩浆与源于富集岩石圈地幔的超钾镁铁质岩浆不同程度混合的产物(Wang et al., 2015, 2018;Yang et al., 2015, 2016)。
5.4 岩浆混合作用对成矿的约束含水量大小是决定含矿斑岩成矿的关键因素(Rohrlach and Loucks, 2005; Loucks, 2014)。对于岛弧或大陆弧环境的斑岩型Cu矿床,大量的水是来自于俯冲板片脱水释放(Richards, 2011),或者是由于早期水未饱和的地幔来源熔体分离结晶演化而逐渐达到水饱和。然而,对于没有俯冲板片脱水的陆陆碰撞环境的斑岩型Cu矿床的水来源尚不清楚。Shafiei et al.(2009)和Hou et al.(2013)认为陆陆碰撞环境的含矿斑岩中的水是由镁铁质下地壳部分熔融过程中角闪石脱水分解而释放。但是Lu et al.(2015a)通过研究发现冈底斯中新世高Sr/Y含矿斑岩在演化过程中角闪石大量结晶,而斜长石结晶受到抑制,结合锆石饱和温度计算得出成岩温度为680~780℃,并根据相关相图估算得出含矿斑岩含水量不小于10%(在0.8GPa压力条件下),但通过部分熔融实验发现,镁铁质下地壳(玄武质角闪岩)的脱水熔融不能形成如此高含水量的熔体(最高为6.7±1.4%),由此说明在高Sr/Y含矿斑岩的形成过程中有外来水源的加入。
甲玛中酸性含矿斑岩属于冈底斯中新世含矿斑岩,具有高Sr/Y特征(图 5c),同样具有高含水量的特征(在0.8GPa压力下>10%;Lu et al., 2015a),而且甲玛的中酸性岩浆样品大多投点于镁铁质下地壳加水熔融范围内(图 9a, b)。由此说明甲玛中酸性含矿斑岩具有高的含水量的原因是由于外来水源的加入所导致的(Lu et al., 2015a)。因为交代富集地幔来源的镁铁质岩浆的水溶解度非常高(在500MPa压力条件下水含量达到10.7%,Yang et al., 2015),其底侵于新生镁铁质下地壳之下可诱发下地壳加水熔融形成中酸性岩浆,而且镁铁质岩浆在向上侵位,注入长英质岩浆房的过程中,由于压力的降低,其将会释放大量的水进入甲玛中酸性岩浆系统中,从而导致甲玛岩浆岩含水量增高,出熔大量的成矿热液参与成矿。另外,富集岩石圈地幔来源的镁铁质岩浆常常含有大量的有用金属物质和S含量,其在与中酸性岩浆混合的过程中,可以为甲玛岩浆系统提供大量的有用金属物质和S,为成矿奠定初始物质基础,暗色包体中Cu元素平均含量为522×10-6,明显高于中酸性岩浆(平均为195×10-6;秦志鹏,2013),也在一定程度上支持了这一观点。值得注意的是,同一区域地质背景下的其他矿区如驱龙、邦浦等没有发现金矿体,而甲玛许多地方均有独立金矿体的产出,由于金矿的产出常常与富集岩石圈地幔来源的镁铁质岩浆(如煌斑岩)具有密切的成因关系(Müller and Groves, 1993;李献华和孙贤鉥,1995; Song et al., 2016),这说明了富集地幔来源的镁铁质岩浆的混入,除了可以为甲玛岩浆系统提供大量的Cu元素之外,还可能为其提供大量的Au元素。另外,镁铁质岩浆的混入可以活化甲玛中酸性岩浆系统,有利于上地壳大的、生命周期长的岩浆房的形成,这种岩浆房的形成被认为是形成斑岩铜矿,尤其是超大型斑岩铜矿系统的关键(Grondahl and Zajacz, 2017)。
![]() |
图 9 甲玛中酸性含矿斑岩Mg#-SiO2 (a)和SiO2-MgO (b)图解(底图据Lu et al., 2015a) Fig. 9 Mg# vs. SiO (a)2 and SiO2 vs. MgO (b) diagrams of the Jiama porphyry (base map after Lu et al., 2015a) |
综合以上讨论,建立了甲玛的成岩成矿概念模型(图 10):在俯冲阶段,由于洋壳脱水交代作用形成了拉萨地体深部的富集岩石圈地幔,同时由于岛弧玄武质岩浆底垫于下地壳,通过MASH过程(熔融、同化、储集、均一)形成新生下地壳。之后在陆陆碰撞伸展阶段,由于岩石圈伸展作用导致岩石圈地幔对流减薄,软流圈物质上涌,诱发早期俯冲改造形成的交代富集岩石圈地幔部分熔融形成超钾镁铁质岩浆,其底侵于加厚的新生下地壳之下,提供大量的水和热,导致新生下地壳在石榴石稳定区域加水部分熔融,形成具埃达克质特征的中酸性岩浆(Yang et al., 2015),岩浆向上侵位,在上地壳浅部位置形成岩浆房,并在岩浆房中不断发生分离结晶,导致闪长玢岩、花岗闪长斑岩、二长花岗斑岩、花岗斑岩侵位。在中酸性岩浆源区位置(下地壳热带),以及在上地壳中酸性岩浆房中,来自于交代富集岩石圈地幔的超钾镁铁质岩浆与中酸性岩浆发生不同程度的岩浆混合,此过程为甲玛中酸性岩浆系统提供大量的水、有用金属物质以及S,从而导致甲玛高含水量岩浆岩出熔大量成矿热液,在岩体内部形成斑岩型铜钼矿体。在此过程中,流体垂向逃逸,在顶部角岩化的林布宗组中形成角岩型矿体;而流体侧向逃逸,在林布宗组与多底沟组的层间接触带和推滑覆构造中形成矽卡岩型富铜多金属矿体,在层间滑脱D2变形带中形成矽卡岩型厚富铜矿体;在远端形成独立的金矿体。最终构成甲玛独特的“四位一体”矿体分布样式。
![]() |
图 10 甲玛矿床成岩成矿模式图 (a, b, 据Yang et al., 2015修改;c, 据唐攀未刊资料修改) Fig. 10 Petrogenetic model for the formation of Jiama deposit (a, b, modified after Yang et al., 2015; c, modified after unpublished data from Tang) |
通过对甲玛中酸性岩浆中的暗色微粒包体进行了详细的岩相学、地质年代学、地球化学、同位素地球化学特征研究,以及和中酸性寄主岩浆对比分析,发现暗色微粒包体岩石成因对甲玛岩浆混合和成矿具有重要启示作用。得到结论如下:
(1) 甲玛暗色包体有闪长质和煌斑质两种类型,并以闪长质包体为主。闪长质包体发育大量针状磷灰石,捕掳的钾长石巨晶受熔蚀作用呈不规则状,捕掳的石英受熔蚀作用呈浑圆状,边部被暗色镁铁质矿物(角闪石、黑云母)包围形成石英镶边结构。细粒的角闪石和黑云母等镁铁质矿物呈带状或粒状包裹在边缘被熔蚀的斜长石晶体中。中酸性寄主岩浆中出现长石反环带,以及石英熔蚀结构等。闪长质包体成岩年龄(15.3±0.3Ma)与中酸性寄主岩石在误差范围内一致。这些特征指示了岩浆混合作用的存在。
(2) 闪长质暗色包体主微量元素地球化学特征、同位素地球化学特征指示闪长质包体是主要由富集岩石圈地幔来源的超钾镁铁质岩浆(基性混合端元)与少量的加厚新生下地壳部分熔融形成的中酸性岩浆(酸性混合端元)混合而成。
(3) 闪长质暗色包体的混合成因指示了东冈底斯带在中新世时期存在深部岩石圈地幔伸展对流减薄事件,证实了南拉萨地体中普遍分布的高钾埃达克质岩石在形成过程中可能不同程度地混入了部分来自于富集岩石圈地幔来源的超钾镁铁质岩浆。
(4) 来自于富集岩石圈地幔的镁铁质岩浆的混入,可以为甲玛中酸性岩浆系统提供大量的水、有用金属物质以及S,这也是控制甲玛超大型斑岩-矽卡岩型铜多金属矿床形成的关键因素之一。
Barbarin B and Didier J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 145-153. DOI:10.1017/S0263593300007835 |
Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin, and relations with the hosts. Lithos, 80(1-4): 155-177. DOI:10.1016/j.lithos.2004.05.010 |
Blundy JD and Sparks RSJ. 1992. Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy. Journal of Petrology, 33(5): 1039-1104. DOI:10.1093/petrology/33.5.1039 |
Bourdon E, Eissen JP, Monzier M, Robin C, Martin H, Cotten J and Hall ML. 2002. Adakite-like lavas from Antisana Volcano (Ecuador):Evidence for slab melt metasomatism beneath Andean Northern Volcanic Zone. Journal of Petrology, 43(2): 199-217. DOI:10.1093/petrology/43.2.199 |
Chappell BW, White AJR and Wyborn D. 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology, 28(6): 1111-1138. DOI:10.1093/petrology/28.6.1111 |
Chen B, Jahn BM and Suzuki K. 2013. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton:Tectonic implications. Geology, 41(1): 91-94. DOI:10.1130/G33472.1 |
Chung SL, Lo CH, Lee TY, Zhang YQ, Xie YW, Li XH and Wang PL. 1998. Diachronous uplift of the Tibetan Plateau starting 40Myr ago. Nature, 394(6695): 769-773. DOI:10.1038/29511 |
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024. DOI:10.1130/G19796.1 |
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196. |
Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY and Lo CH. 2009. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36-48. DOI:10.1016/j.tecto.2009.08.008 |
Clemens JD and Wall VJ. 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21(1): 53-66. DOI:10.1016/0024-4937(88)90005-9 |
Clemens JD. 2003. S-type granitic magmas:Petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1-2): 1-18. DOI:10.1016/S0012-8252(02)00107-1 |
Collins WJ, Wiebe RA, Healy B and Richards SW. 2006. Replenishment, crystal accumulation and floor aggradation in the megacrystic Kameruka Suite, Australia. Journal of Petrology, 47(11): 2073-2104. DOI:10.1093/petrology/egl037 |
Dahlquist JA. 2002. Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6): 643-655. DOI:10.1016/S0895-9811(02)00112-8 |
DeCelles PG, Robinson DM and Zandt G. 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, 21(6): 1062. |
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(18): 662-665. |
Donaire T, Pascual E, Pin C and Duthou JL. 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks:The case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. DOI:10.1007/s00410-005-0652-0 |
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892-897. DOI:10.1038/nature03162 |
Gao YF, Hou ZQ, Kamber BS, Wei RH, Meng XJ and Zhao RS. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones:Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153: 105-120. DOI:10.1007/s00410-006-0137-9 |
Gao YF, Yang ZS, Santosh M, Hou ZQ, Wei RH and Tian SH. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119: 651-663. DOI:10.1016/j.lithos.2010.08.018 |
Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS and Yuan HL. 2012. Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88-99. DOI:10.1016/j.gr.2011.07.004 |
Guo ZF, Wilson M, Zhang ML, Chen ZH and Zhang LH. 2013. Post-collisional, K-rich mafic magmatism in South Tibet:Constraints on Indian slab-to-wedge transport processes and plateau uplift. Contributions to Mineralogy and Petrology, 165(6): 1311-1340. DOI:10.1007/s00410-013-0860-y |
Gu FH, Zhang YM, Liu RP, Zheng L and Sun X. 2015. Magma mixing and mingling of the Shadegai granite in Inner Mongolia:Evidence from petrography, mineral chemistry and geochronology. Acta Petrologica Sinica, 31(5): 1374-1390. |
Grondahl C and Zajacz Z. 2017. Magmatic controls on the genesis of porphyry Cu-Mo-Au deposits:The Bingham canyon example. Earth and Planetary Science Letters, 480: 53-65. DOI:10.1016/j.epsl.2017.09.036 |
Hofmann AW, Jochum KP, Seufert M and White WM. 1986. Nb and Pb in oceanic basalts:New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. DOI:10.1016/0012-821X(86)90038-5 |
Hou ZQ, Ma HW, Zaw K, Zhang YQ, Wang MJ, Wang Z, Pan GT and Tang RL. 2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98(1): 125-145. |
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. DOI:10.1016/S0012-821X(04)00007-X |
Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF and Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51. DOI:10.1016/j.oregeorev.2008.09.006 |
Hou ZQ, Zheng YC, Yang ZM, Rui ZY, Zhao ZD, Jiang SH, Qu XM and Sun QZ. 2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita, 48(2): 173-192. DOI:10.1007/s00126-012-0415-6 |
Ilbeyli N and Pearce JA. 2005. Petrogenesis of igneous enclaves in plutonic rocks of the central Anatolian crystalline complex, turkey. International Geology Review, 47(10): 1011-1034. DOI:10.2747/0020-6814.47.10.1011 |
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. DOI:10.1139/e71-055 |
Jiang ZQ, Wang Q, Li ZX, Wyman DA, Tang GJ, Jia XH and Yang YH. 2012. Late Cretaceous (ca.90Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet):Slab melting and implications for Cu-Au mineralization. Journal of Asian Earth Sciences, 53: 67-81. DOI:10.1016/j.jseaes.2012.02.010 |
Kay RW. 1978. Aleutian magnesian andesites:Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132. DOI:10.1016/0377-0273(78)90032-X |
Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. DOI:10.1007/BF00311004 |
Kohn MJ and Parkinson CD. 2002. Petrologic case for Eocene slab breakoff during the Indo-Asian collision. Geology, 30(7): 591-594. DOI:10.1130/0091-7613(2002)030<0591:PCFESB>2.0.CO;2 |
Li JX, Qin KZ, Li GM, Xiao B, Chen L and Zhao JX. 2011. Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet:Melting of thickened juvenile arc lower crust. Lithos, 126(3-4): 265-277. DOI:10.1016/j.lithos.2011.07.018 |
Li XH and Sun SS. 1995. Lamprophyre and gold mineralization an assessment of observations and theories. Geological Review, 41(3): 252-260. |
Lin B, Tang JX, Zhang Z, Zheng WB, Leng QF, Zhong WT and Ying LJ. 2012. Preliminary study of fissure system in Jiama porphyry deposit of Tibet and its significance. Mineral Deposits, 31(3): 579-589. |
Lin B, Tang JX, Chen YC, Song Y, Hall G, Wang Q, Yang C, Fang X, Duan JL, Yang HH, Liu ZB, Wang YY and Feng J. 2017a. Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet:Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes. Resource Geology, 67(1): 1-21. DOI:10.1111/rge.2017.67.issue-1 |
Lin B, Chen YC, Tang JX, Wang Q, Song Y, Yang C, Wang WL, He W and Zhang LJ. 2017b. 40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au) deposit in the Bangong Co-Nujiang metallogenic belt of Tibet, China:Implication for generation of super-large deposit. Acta Geologica Sinica (English Edition), 91(2): 602-616. DOI:10.1111/acgs.2017.91.issue-2 |
Lin B, Tang JX, Chen YC, Baker M, Song Y, Yang HH, Wang Q, He W and Liu ZB. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet. Gondwana Research, 66: 168-182. DOI:10.1016/j.gr.2018.07.009 |
Loucks RR. 2014. Distinctive composition of copper-ore-forming arc magmas. Australian Journal of Earth Sciences, 61: 5-16. DOI:10.1080/08120099.2013.865676 |
Lu YJ, Loucks RR, Fiorentini ML, Yang ZM and Hou ZQ. 2015a. Fluid flux melting generated post-collisional high Sr/Y copper ore-forming water-rich magmas in Tibet. Geology, 43(7): 583-586. DOI:10.1130/G36734.1 |
Lu YJ, McCuaig TC, Li ZX, Jourdan F, Hart CJR, Hou ZQ and Tang SH. 2015b. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze craton:Mantle source and tectonic implications. Lithos, 233: 139-161. DOI:10.1016/j.lithos.2015.02.003 |
Maas R, Nicholls IA and Legg C. 1997. Igneous and metamorphic enclaves in the S-type Deddick granodiorite, Lachlan Fold Belt, SE Australia:Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. Journal of Petrology, 38(7): 815-841. DOI:10.1093/petroj/38.7.815 |
Miller C, Schuster R, Klötzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424. DOI:10.1093/petroj/40.9.1399 |
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242. DOI:10.1016/j.lithos.2006.10.005 |
Müller D and Groves DI. 1993. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geology Reviews, 8(5): 383-406. DOI:10.1016/0169-1368(93)90035-W |
Nomade S, Renne PR, Mo XX, Zhao ZD and Zhou S. 2004. Miocene volcanism in the Lhasa block, Tibet:Spatial trends and geodynamic implications. Earth and Planetary Science Letters, 221(1-4): 227-243. DOI:10.1016/S0012-821X(04)00072-X |
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745 |
Perugini D, Poli G and Gatta GD. 2002. Analysis and simulation of magma mixing processes in 3D. Lithos, 65(3-4): 313-330. DOI:10.1016/S0024-4937(02)00198-6 |
Platt JP and England PC. 1993. Convective removal of lithosphere beneath mountain belts:Thermal and mechanical consequences. American Journal of Science, 294: 307-336. |
Qin ZP, Wang XW, Tang JX, Zhou Y and Tang XQ. 2012. Geochemical characteristics and significance of the Jiama adakitic porphyry, Tibet. Journal of Jilin University (Earth Science Edition), 42. |
Qin ZP. 2013. Genetic model of the Jiama copper-polymetallic ore deposits, Tibet. Ph. D. Dissertation. Chengdu: Chengdu University of Technology (in Chinese with English summary)
|
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36: 891-931. DOI:10.1093/petrology/36.4.891 |
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356. DOI:10.1016/S0009-2541(99)00106-0 |
Rapp RP. 2003. Experimental constraints on the origin of compositional variations in the adakite-TTG-sanukitoid-HMA family of granitoids. Geophysical Research Abstracts, 5: 08123. |
Rapp RP, Norman MD, Laporte D, Yaxley GM, Martin H and Foley SF. 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere:Melt-rock reaction experiments at 3~4GPa and petrogenesis of Archean Mg-diorites (sanukitoids). Journal of Petrology, 51(6): 1237-1266. DOI:10.1093/petrology/egq017 |
Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515-1533. DOI:10.2113/gsecongeo.98.8.1515 |
Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247-250. DOI:10.1130/G25451A.1 |
Richards JP. 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits:Just add water. Economic Geology, 106(7): 1075-1081. DOI:10.2113/econgeo.106.7.1075 |
Rohrlach BD and Loucks RR. 2005. Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines. In: Porter TM (ed.). Super Porphyry Copper and Gold Deposits: A Global Perspective. Adelaide: PGC Publishing, 369-407
|
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Oxford: Elsevier, 1-64
|
Scherer EE, Cameron KL and Blichert-Toft J. 2000. Lu-Hf garnet geochronology:Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432. DOI:10.1016/S0016-7037(00)00440-3 |
Shafiei B, Haschke M and Shahabpour J. 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265-283. DOI:10.1007/s00126-008-0216-0 |
Shellnutt JG, Jahn BM and Dostal J. 2010. Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos, 119(1-2): 34-46. DOI:10.1016/j.lithos.2010.07.011 |
Shirey SB and Hanson GN. 1984. Mantle-derived Archaean monozodiorites and trachyandesites. Nature, 310(5974): 222-224. DOI:10.1038/310222a0 |
Sillitoe RH. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67(2): 184-197. DOI:10.2113/gsecongeo.67.2.184 |
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41. DOI:10.2113/gsecongeo.105.1.3 |
Smithies RH and Champion DC. 2000. The Archaean high-Mg diorite suite:Links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology, 41(12): 1653-1671. DOI:10.1093/petrology/41.12.1653 |
Song Y, Jiang SH, Bagas L, Li C, Hu JZ, Zhang Q, Zhou W and Ding HY. 2016. The geology and geochemistry of Jinchangyu gold deposit, North China Craton:Implications for metallogenesis and geodynamic setting. Ore Geology Reviews, 73: 313-329. DOI:10.1016/j.oregeorev.2014.10.031 |
Song Y, Yang C, Wei SG, Yang HH, Fang X and Lu HT. 2018. Tectonic control, reconstruction and preservation of the Tiegelongnan porphyry and epithermal overprinting Cu (Au) deposit, central Tibet, China. Minerals, 8(9): 398. DOI:10.3390/min8090398 |
Streck MJ, Leeman WP and Chesley J. 2007. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt. Geology, 35(4): 351-354. DOI:10.1130/G23286A.1 |
Sun CG, Zhao ZD, Mo XC, Zhu DC, Dong GC, Zhou S, Chen H, Xie LW, Yang YH, Sun JF and Yu F. 2008. Enriched mantle source and petrogenesis of Sailipu ultrapotassic rocks in southwestern Tibetan Plateau:Constraints from zircon U-Pb geochronology and Hf isotopic compositions. Acta Petrologica Sinica, 24(2): 249-264. |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
|
Tang JX, Wang DH, Wang XW, Zhong KH, Ying LJ, Zheng WB, Li FJ, Guo N, Qin ZP, Yao XF, Li L, Wang Y and Tang XQ. 2010. Geological features and metallogenic model of the Jiama copper-polymetallic deposit in Tibet. Acta Geoscientica Sinica, 31(4): 495-506. |
Tang JX, Deng SL, Zheng WB, Ying LJ, Wang XW, Zhong KH, Qin ZP, Ding F, Li FJ, Tang XQ and Peng HJ. 2011. An exploration model for Jiama copper polymetallic deposit in Maizhokunggar County, Tibet. Mineral Deposits, 30(2): 179-196. |
Tang JX, Zheng WB, Chen YC, Wang DH, Ying LJ and Qin ZP. 2013. Prospecting breakthrough of the deep porphyry ore body and its significance in Jiama copper polymetallic deposit, Tibet, China. Journal of Jilin University (Earth Science Edition), 43(4): 1100-1110. |
Turner S, Hawkesworth C, Liu JQ, Rogers N, Kelley S and Van Calsteren P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364(6432): 50-54. DOI:10.1038/364050a0 |
Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P and Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45-71. DOI:10.1093/petrology/37.1.45 |
Vernon RH. 1984. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment. Nature, 309(5967): 438-439. DOI:10.1038/309438a0 |
Wang Q, McDermott F, Xu JF, Bellon H and Zhu YT. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting. Geology, 33(6): 465-468. DOI:10.1130/G21522.1 |
Wang R, Richards JP, Zhou LM, Hou ZQ, Stern RA, Creaser RA and Zhu JJ. 2015. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 150: 68-94. DOI:10.1016/j.earscirev.2015.07.003 |
Wang R, Weinberg RF, Collins WJ, Richards JP and Zhu DC. 2018. Origin of post-collisional magmas and formation of porphyry cu deposits in southern Tibet. Earth-Science Reviews, 181: 122-143. DOI:10.1016/j.earscirev.2018.02.019 |
Wang T. 2000. Origin of hybrid granitoids and the implications for continental dynamics. Acta Petrologica Sinica, 16(2): 161-168. |
Wang YW, Wang JB, Wang LJ and Fang TH. 2007. Magma-mixing genesis of quartz monzodiorite in the Weiya, Xingjiang. Acta Petrologica Sinica, 23(4): 733-746. |
Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201. DOI:10.1016/j.chemgeo.2008.03.003 |
Williams H, Turner S, Kelley S and Harris N. 2001. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to post-collisional volcanism. Geology, 29(4): 339-342. DOI:10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2 |
Williams HM, Turner S, Pearce JA, Kelley SP and Harris NBW. 2004. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. Journal of Petrology, 45(3): 555-607. DOI:10.1093/petrology/egg094 |
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic composition of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105-126. DOI:10.1016/j.chemgeo.2006.05.003 |
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220. |
Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China:Partial melting of delaminated lower continental crust?. Geology, 30(12): 1111-1114. DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2 |
Xu WC, Zhang HF, Guo L and Yuan HL. 2010. Miocene high Sr/Y magmatism, South Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293-306. DOI:10.1016/j.lithos.2009.09.005 |
Yang ZM, Hou ZQ, White NC, Chang ZS, Li ZQ and Song YC. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36(1-3): 133-159. DOI:10.1016/j.oregeorev.2009.03.003 |
Yang ZM, Hou ZQ, Xu JF, Bian XF, Wang GR, Yang ZS, Tian SH, Liu YC and Wang ZL. 2014. Geology and origin of the post-collisional Narigongma porphyry Cu-Mo deposit, southern Qinghai, Tibet. Gondwana Research, 26(2): 536-556. DOI:10.1016/j.gr.2013.07.012 |
Yang ZM, Lu YJ, Hou ZQ and Chang ZS. 2015. High-Mg diorite from Qulong in southern Tibet:Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, 56(2): 227-254. DOI:10.1093/petrology/egu076 |
Yang ZM, Goldfarb R and Chang ZS. 2016. Generation of post-collisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. In: Richards JP (ed.). Tectonics and Metallogeny of the Tethyan Orogenic Belt. Littleton, CO: Society of Economic Geologists, 279-300
|
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. DOI:10.1146/annurev.earth.28.1.211 |
Ying LJ, Wang DH, Tang JX, Chang ZS, Qu WJ, Zheng WB and Wang H. 2010. Re-Os dating of molybdenite from the Jiama copper polymetallic deposit in Tibet and its metallogenic significance. Acta Geologica Sinica, 84(8): 1165-1174. |
Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV and Kay SM. 1995. Magnesian andesite in the western Aleutian Komandorsky region:Implications for slab melting and processes in the mantle wedge. GSA Bulletin, 107(5): 505-519. DOI:10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2 |
Zhao W, Mechie J, Brown LD, Guo J, Haines S, Hearn T, Klemperer SL, Ma YS, Meissner R, Nelson KD, Ni JF, Pananont P, Rapine R, Ross A and Saul J. 2001. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophysical Journal International, 145(2): 486-498. DOI:10.1046/j.0956-540x.2001.01402.x |
Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH and Hou ZQ. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190-212. DOI:10.1016/j.lithos.2009.02.004 |
Zheng WB, Chen YC, Song X, Tang JX, Ying LJ, Li FJ and Tang XQ. 2010. Element distribution of Jiama copper-polymetallic deposit in Tibet and its geological significance. Mineral Deposits, 29(5): 775-784. |
Zheng YC, Hou ZQ, Li W, Liang W, Huang KX, Li QY, Sun QZ, Fu Q and Zhang S. 2012a. Petrogenesis and geological implications of the Oligocene Chongmuda-Mingze adakite-like intrusions and their mafic enclaves, southern Tibet. Journal of Geology, 120(6): 647-669. DOI:10.1086/667812 |
Zheng YC, Hou ZQ, Li QY, Sun QZ, Liang W, Fu Q, Li W and Huang KX. 2012b. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane:Evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296-311. DOI:10.1016/j.lithos.2012.05.026 |
Zhou Y, Tang JX, Qin ZP and Peng HJ. 2012. A study of fluid inclusions and their constraints on the genesis of the Jiama (Gyama) copper polymetallic deposit in Tibet. Acta Geoscientica Sinica, 33(4): 485-500. |
Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC and Liu B. 2009. Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. DOI:10.1016/j.jseaes.2008.05.003 |
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255. DOI:10.1016/j.epsl.2010.11.005 |
顾枫华, 章永梅, 刘瑞萍, 郑硌, 孙玄. 2015. 内蒙古沙德盖花岗岩岩浆混合作用:岩相学、矿物化学和年代学证据. 岩石学报, 31(5): 1374-1390. |
李献华, 孙贤鉥. 1995. "煌斑岩"与金矿的实际观察与理论评述. 地质论评, 41(3): 252-260. DOI:10.3321/j.issn:0371-5736.1995.03.008 |
林彬, 唐菊兴, 张志, 郑文宝, 冷秋锋, 钟婉婷, 应立娟. 2012. 西藏甲玛斑岩矿床裂隙系统的初步研究及意义. 矿床地质, 31(3): 579-589. DOI:10.3969/j.issn.0258-7106.2012.03.015 |
秦志鹏, 汪雄武, 唐菊兴, 周云, 唐晓倩. 2012. 西藏甲玛埃达克质斑岩的地球化学特征及意义. 吉林大学学报(地球科学版), 42. |
秦志鹏. 2013.西藏甲玛铜多金属矿床成因模式.博士学位论文.成都: 成都理工大学
|
孙晨光, 赵志丹, 莫宣学, 朱弟成, 董国臣, 周肃, 陈海红, 谢烈文, 杨岳衡, 孙金凤, 于枫. 2008. 青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因:锆石U-Pb年代学和Hf同位素制约. 岩石学报, 24(2): 249-264. |
唐菊兴, 王登红, 汪雄武, 钟康惠, 应立娟, 郑文宝, 黎枫佶, 郭娜, 秦志鹏, 姚晓峰, 李磊, 王友, 唐晓倩. 2010. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型. 地球学报, 31(4): 495-506. |
唐菊兴, 邓世林, 郑文宝, 应立娟, 汪雄武, 钟康惠, 秦志鹏, 丁枫, 黎枫佶, 唐晓倩, 钟裕峰, 彭慧娟. 2011. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型. 矿床地质, 30(2): 179-196. DOI:10.3969/j.issn.0258-7106.2011.02.002 |
唐菊兴, 郑文宝, 陈毓川, 王登红, 应立娟, 秦志鹏. 2013. 西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义. 吉林大学学报(地球科学版), 43(4): 1100-1110. |
王涛. 2000. 花岗岩混合成因研究及大陆动力学意义. 岩石学报, 16(2): 161-168. |
王玉往, 王京彬, 王莉娟, 方同辉. 2007. 新疆尾亚地区石英二长闪长岩的岩浆混合成因. 岩石学报, 23(4): 733-746. |
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. |
应立娟, 王登红, 唐菊兴, 畅哲生, 屈文俊, 郑文宝, 王焕. 2010. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义. 地质学报, 84(8): 1165-1174. |
郑文宝, 陈毓川, 宋鑫, 唐菊兴, 应立娟, 黎枫佶, 唐晓倩. 2010. 西藏甲玛铜多金属矿元素分布规律及地质意义. 矿床地质, 29(5): 775-784. DOI:10.3969/j.issn.0258-7106.2010.05.003 |
周云, 唐菊兴, 秦志鹏, 彭惠娟. 2012. 西藏甲玛铜多金属矿床成因研究——来自流体包裹体的证据. 地球学报, 33(4): 485-500. DOI:10.3975/cagsb.2012.04.09 |