青藏高原是地球科学研究的热点地区之一,其上广泛分布着新生代碰撞后火山岩,它们记录了高原演化及其深部动力学过程。腾冲火山岩区位于缅甸微陆块以北,属于青藏高原东南缘(Powell and Johnson, 1980; Mo et al., 2006; Yan et al., 2006; Gao et al., 2015; Guo et al., 2015),是我国最年轻的火山区之一,这些高钾钙碱性火山岩可能保留了新特提斯洋壳和印度板块俯冲消减对高原深部地幔的交代改造作用的重要信息(Hou et al., 2004; Chung et al., 2005; Zhao et al., 2009; Chu et al., 2011; Tian et al., 2018)。
目前对腾冲新生代岩浆作用已经取得了大量的研究成果。前人将腾冲新生代火山活动大致分为四期,其中第四期全新世火山岩以玄武岩-安山岩-英安岩组合为主,为高钾钙碱性系列,主要分布于黑空山、打鹰山、马鞍山(Zhou et al., 2012; 徐翠玲等, 2012; 李欣和刘嘉麒, 2012; Zou et al., 2014; Gao et al., 2015; Tian et al., 2018)。前人研究发现腾冲全新世火山岩(THV)具有相对富集的Sr-Nd同位素组成(Zhu et al., 1983; Chen et al., 2002),但是对于其岩浆演化过程、火山岩成因以及其触发机制等方面还存在争议。部分研究者认为腾冲火山岩地幔源区的富集可能与印度大陆的俯冲交代有关(Zou et al., 2014, 2017; Tian et al., 2018),其他研究者则认为更可能与早期洋壳俯冲消减过程中的交代作用有关(Chen et al., 2002;Zhou et al., 2012; Liu et al., 2017; Duan et al., 2019)。前人在岩浆演化过程上普遍有两种观点,一部分认为腾冲全新世火山岩受到了地壳混染作用影响(Yu et al., 2012; Zhou et al., 2012; Zou et al., 2014; Gao et al., 2015; Liu et al., 2017; Tian et al., 2018),另一部分认为其经历了岩浆混合作用(Yu et al., 2012; Hu et al., 2018)。
本文通过岩石地球化学、主要特征矿物成分以及全岩Sr-Nd同位素分析,对腾冲马鞍山、黑空山、打鹰山全新世火山岩(图 1a)的岩浆演化、源区特征以及构造背景等方面进行了研究。研究结果表明腾冲全新世火山岩是由富集地幔部分熔融形成的基性岩浆在上升过程中在深部岩浆房中经历了结晶分异作用,并且当岩浆侵位至浅部岩浆房时混染了花岗质围岩而形成的。本文认为腾冲全新世火山岩的地幔源区可能经历了与新特提斯洋俯冲相关的交代富集作用,其触发机制可能与青藏高原侧向生长过程中的构造挤出和大规模走滑断裂的活动密切相关。
|
图 1 云南省腾冲全新世火山岩地质图 (a)研究区地质图(据云南省地质局区域地质调查队, 1982①修改); (b)研究区构造简图(据Huang et al., 2013), 图中红线A-B剖面为图 8所在位置 Fig. 1 Simplified geological map of Holocene volcanics of Tengchong (a) geological map of the studied area; (b) tectonic subdivision of study area (after Huang et al., 2013), the red line of A-B corresponds profile in Fig. 8 |
① 云南省地质局区域地质调查队.1982. 1︰20万腾冲幅(G-47-XXV11)区域地质图
1 地质背景及岩石学特征腾冲地块(图 1b)位于三江构造带西部,夹于怒江和缅甸东部密支那缝合带之间,是经历怒江洋(170~100Ma)和密支那洋(150~65Ma)消亡、印度板块向北俯冲碰撞而发生大规模旋转、逃逸、走滑形成的青藏高原东南缘构造变形区域的一部分(Rowley, 1996)。腾冲地块大地构造位置大体与冈底斯带相对应,是青藏-喜马拉雅造山带唯一完成造山垮塌的地区(Mo et al., 2007)。腾冲新生代火山岩分布于狭窄的NE-NNE弧形盆地中,火山熔岩分布面积792km2(姜朝松, 1998)。腾冲火山区(TVF)基底主要为片麻岩、混合岩、混合岩化花岗岩(Chen et al., 2002),其中侵入中生代-新生代的花岗质岩石,上覆早期第四纪沉积岩以及沉积物(Tian et al., 2018)。地球物理研究发现,TVF地壳厚度约为35.4~37.6km(胥颐等, 2017),在3~10km以及15~24km处存在一个低速带,可能与岩浆房的存在有关(秦嘉政等, 2000; Bai et al., 2001; 赵慈平等, 2006; Wu et al., 2016)。
野外共采集8件岩石样品,其中马鞍山3件样品和打鹰山2件样品均为粗安岩,黑空山3件样品包括2件玄武质粗安岩和1件粗安岩。这些样品均呈灰色-深灰黑色,斑状结构,块状构造。其中,玄武质粗面岩斑晶含量相对较少,大约为3%~5%,斑晶矿物主要为单斜辉石、斜长石、橄榄石,以及极少量的斜方辉石。但粗安岩中矿物颗粒含量较多,约占7%~10%,斑晶矿物主要为斜长石、橄榄石、单斜辉石以及极少的斜方辉石和石英。其中,斜长石主要为捕掳晶(图 2a, b),大约在4%~6%,半自形,长条状。这些斜长石基本都存在卡式双晶,且大部分具有溶蚀结构,粒径在0.8~2.4mm。橄榄石斑晶(图 2b, c)含量仅占1%~2%,为粒状,自形程度良好,颗粒较小,粒径约为0.3~0.7mm。斜方辉石呈他形不规则状,少量存在溶蚀港湾状,含量为1%。石英捕掳晶(图 2b, d)为他形粒状,含量约为1%,存在溶蚀结构且具有辉石反应边结构。样品的基质为间粒间隐结构,基质中出现大量斜长石微晶,约占50 %,基本都可见聚片双晶,其粒度较小,无溶蚀结构和明显成分环带。除此之外,基质由少量橄榄石、辉石、不透明的Fe-Ti氧化物以及玻璃质矿物组成,其中玻璃质矿物约占30%,其余矿物基质约占5%。
|
图 2 腾冲全新世火山岩的正交偏光显微照片(a、b)和背散射图像(c、d) (a)粗安岩中存在增生边的斜长石捕掳晶; (b)粗安岩中橄榄石正环带及石英捕掳晶; (c)具有成分环带的橄榄石背散射图像; (d)具有辉石反应边的石英捕掳晶的背散射电子图.Cpx-单斜辉石; Pl-斜长石; Ol-橄榄石; Q-石英 Fig. 2 Petrography (a, b) and BSE image (c, d) of Holocene volcanic rocks of Tengchong (a) plagioclase xenocrysts with overgrowth in trachyandesite; (b) olivine phenocrysts with composition zoning and quartz xenocrysts in trachyandesite; (c) back scattered Electron Imaging (BSE) of olivine phenocrysts with composition zoning; (d) BSE of quartz xenocrysts with pyroxene reaction texture. Cpx-clinopyroxene; Pl-plagioclase; Ol-olivine; Q-quartz |
野外采集的8件样品均送到河北省廊坊市宇能岩石矿物分选技术有限公司进行薄片磨制以及预处理。首先去除风化面,选择较新鲜的样品进行粗粉碎。其次,将样品在超声波池中清洗30min后,再冲洗三次,烘干备用。然后,使用无污染的碎样机将样品颗粒细磨至5mm内。最后,将样品放至无污染的玛瑙罐里细磨至200目备用。
将磨细至200目的粉末送至中国地质大学(北京)地质过程与矿产资源国家重点实验室进行主量元素的检测。该实验室使用Leeman Labs. Inc公司的Prodigy型全谱直读型发射光谱仪(ICP-OES)用于测定主量元素的含量,分析精度优于3%。HS1406、HS1407、HS1413和DY1409样品的微量元素的测定在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)由Agilent 7500a ICP-MS完成,分析精度优于10%,样品的处理过程的详细流程可见Liu et al. (2008)。MZ1501、DK1502、HK1501和DY1503样品的微量元素测定在武汉上谱分析科技有限责任公司完成,使用的仪器为Agilent 7700e ICP-MS,分析精度为5%,准确度为10%。
本文从8个腾冲全新世火山岩样品中选择了4个代表样品在中国地质大学(北京)地质过程与矿产资源国家重点实验室进行Sr-Nd同位素实验。其中样品MZ1501和HK1501的测试使用仪器为多接受等离子体质谱仪(MC-ICP-MS)。Sr和Nd同位素分馏矫正分别采用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219。分析期间,NIST SRM 987推荐值:87Sr/86Sr=0.710250, BHVO-2的推荐值:86Sr/88Sr=0.703578±0.000011 (2σ)。BHVO-2平均值143Nd/144Nd=0.512977±0.000008 (2σ)。实验室内部标样的Alfa Nd值为143Nd/144Nd=0.512423±0.000024 (2σ)。而其余样品的Sr-Nd同位素的测定是在热电离质谱(TIMS)上完成的,分析期间,NBS987标准值为87Sr/86Sr=0.710274±0.000011 (2σ),BHVO-2标准值为87Sr/86Sr=0.703488±0.000002 (2σ)。而BHVO-2平均值为143Nd/144Nd=0.512957±0.000010 (2σ),实验室内部标样的Alfa Nd值为143Nd/144Nd=0.512423±0.000024 (2σ)。
对腾冲马鞍山火山岩中的矿物(橄榄石,辉石,斜长石)进行电子探针矿物成分分析(EPMA),在中国地质大学(北京)电子探针实验室完成。仪器为EPMA-1600型电子探针仪,其测试电压15V, 电流1×10-8A,束斑直径为1μm。
3 分析结果 3.1 矿物化学本次利用电子探针分析了3个样品中的斜长石、橄榄石、单斜辉石和石英的矿物化学成分(表 1)。
|
|
表 1 腾冲全新世火山岩斜长石和橄榄石代表性电子探针分析结果(wt%) Table 1 Representative EPMA results of olivine and plagioclase in Holocene volcanic rocks of Tengchong (wt%) |
由BSE图像发现橄榄石斑晶发育成分环带,环带单一且仅在边部发生变化(图 2c),即具有核-边结构。样品中橄榄石斑晶的主量元素变化特征均一致,其Mg#、NiO含量变化较大,其中Mg#为65.2~80.2,NiO为0.004%~0.452%,CaO含量为0.14%~0.22%,MnO为0.25%~0.60%。从边部到核部,MgO、NiO、SiO2都升高,但是FeO、CaO、MnO含量都降低。化学成分在核部均一且无明显变化趋势,但边部成分突变明显。其中,橄榄石斑晶核部Fo值为77.91~80.2,边部Fo范围为65.2~67.9,呈正环带的特征。
单斜辉石含量较少,并且主要赋存在较自形的斜长石格架之间形成辉绿结构,此外还存在少量的辉石斑晶。这两者之间化学成分差异很小并且成分均一,仅在部分辉石斑晶边缘出现一圈细窄的成分环带,在成分上显示为普通辉石,从核部到边部,其En值从38.0变为41.6。
由BSE图可见(图 3),斜长石大捕掳晶多具有成分不均一的现象,即存在增生边。由斜长石捕掳晶成分剖面(图 3)可知,从边部到核部,Na2O、SiO2的值都升高,FeO、CaO含量降低。化学成分在核部无明显变化趋势,但边部出现了细、窄的增生边,自核部到边部的An从28.3变为65.0,并且少量斜长石捕掳晶出现溶蚀结构,基质中存在的大量斜长石微晶与斜长石捕掳晶边部An值相似。
|
图 3 腾冲全新世山岩中斜长石斑晶剖面的化学成分变化图 Fig. 3 Compositional sections of plagioclase phenocrysts in Holocene volcanic rocks of Tengchong |
石英捕掳晶含量较少,边部被溶蚀形成港湾状,在BSE图中可见石英边部存在反应边结构(图 2d),经测定为单斜辉石。
3.2 全岩主量和微量元素本文采集的8个火山岩样品均比较新鲜,烧失量均在0.4%之内(表 2)。样品SiO2值为53.5%~61.3%之间,MgO含量在2.51%~4.62%范围内,Fe2O3T的含量为5.65%~8.26%,Mg#分布在50.9~59.5的范围内,Al2O3、CaO相对稳定,成分均值分别为17.0%和5.70%。随着SiO2的升高,火山岩的K2O含量明显升高,而MgO、Fe2O3、TiO2含量则随SiO2的升高逐渐降低。样品的K2O/Na2O比值变化范围在0.72~1.13之间。样品的总碱量(Na2O+K2O)范围为6.28%~7.69%。将本文数据和文献数据一起投图发现THV主体岩性为玄武质粗安岩和粗面安山岩(图 4a),极少量前人样品落入粗面玄武岩和英安岩的范围。大部分样品均为高钾钙碱性系列,极少数样品属于钾玄质系列(图 4b)。本文将采集火山岩样品和前人数据分为两组:一组为SiO2 < 55%的粗面玄武岩和玄武质粗安岩,另一组为SiO2>55%的全新世粗面安山岩。
|
|
表 2 腾冲全新世火山岩主量(wt%)、微量元素(×10-6)与Sr-Nd同位素成分数据 Table 2 Whole-rock major (wt%) and trace elements (×10-6), Sr-Nd isotopic compositions of Holocene volcanic rocks of Tengchong |
|
图 4 腾冲全新世火山岩主量元素成分图 (a)硅-碱图(底图据Le Maitre, 1989); (b)钾-硅图(Zou et al., 2010).数据来源:李欣和刘嘉麒(2012), Zhou et al. (2012)和Tian et al. (2018) Fig. 4 The major elements plots of Holocene volcanic rocks from Tengchong (a) total alkalis vs. silica (Le Maitre, 1989); (b) potassium vs. silica diagrams (Zou et al., 2010). Literature data from Li and Liu (2012), Zhou et al. (2012), and Tian et al. (2018) |
结合前人数据和本文数据发现,尽管岩性不同,但其稀土元素和微量元素的特征都比较相似,都显示了轻稀土富集(LERR)、重稀土(HERR)强烈亏损的型式。且所有样品均显示了Eu异常(Eu=0.67~0.87),其中粗面玄武岩的弱的Eu异常(图 5a, c),中酸性岩石显示明显的Eu异常(图 5c)。所有样品均显示出大离子亲石元素(LILE)的相对富集与高场强元素(HFSE)Ta、Nb、Ti的相对亏损(图 5b, d)。
|
图 5 腾冲全新世火山岩球粒陨石标准化稀土元素配分图(a、c, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蜘蛛图(b、d,标准化值据Sun and McDonough, 1989) 文献数据来自Zou et al. (2010), 李欣和刘嘉麒(2012), Zhou et al.(2012)和Tian et al.(2018) Fig. 5 Chondrite-normalized REE patterns (a, c, normalization values after Boynton, 1984) and primitive mantle-normalized trace-element spidergrams (b, d, normalization values after Sun and McDonough, 1989) of the Holocene volcanic rocks from Tengchong Literature data from Zou et al. (2010), Li and Liu (2012), Zhou et al. (2012), and Tian et al. (2018) |
本文4件样品的87Sr/86Sr比值为0.70685~0.70850,143Nd/144Nd的范围为0.51208~0.51234,εNd(t)为-8.8~-5.7,Nd同位素的一阶模式年龄(tDM)为1.15~1.40Ga(表 2)。结合前人数据,腾冲全新世火山岩具有富集Sr-Nd同位素的特征,其中玄武质的全新世火山岩87Sr/86Sr较低,均小于0.707,εNd(t)的范围为-8.8~-2.2,tDM较低(1.03~1.15Ga);中酸性全新世火山岩87Sr/86Sr较高,εNd(t)值为-11.3~-6.5,tDM值较高均大于1.20Ga。
4 讨论 4.1 岩浆演化 4.1.1 浅部地壳混染作用由于印度-欧亚大陆的碰撞和持续汇聚导致青藏高原地壳发生显著加厚和部分熔融,因此碰撞后岩浆岩在岩浆演化过程中容易经历显著的地壳混染作用从而改变原始岩浆的地球化学特征(Hébert et al., 2014; Liu et al., 2014a, b, 2015)。前人研究发现位于青藏高原东南缘腾冲地区的全新世火山岩在岩浆演化过程中也存在上覆地壳物质的参与(Zhu et al., 1983; Chen et al., 2002; Zou et al., 2010)。本文则发现腾冲火山岩的演化过程可能更加复杂,其岩浆在地壳内向上迁移到最后喷发到地表的过程中,从花岗岩围岩中捕获了少量斜长石和石英斑晶。
一般来说,岩浆分异结晶过程中结晶的斜长石的成分会由基性向酸性转变,即晚期结晶的斜长石更加富Na。本文电子探针数据显示斜长石斑晶出现自核部到边部的An值升高(28.3~65.0)的趋势,边部更加富Ca,并存在一个细窄的增生边结构。斜长石呈现增生边的原因可能是:(1)温度较高的基性岩浆与酸性岩浆结晶出斜长石的发生反应,并在较酸性斜长石外部生长与基性岩浆平衡的基性斜长石,从而形成斜长石的增生边。(2)也可能由于温度、压力和挥发分的快速变化导致的成分不连续从而产生的现象(Smith and Lofgren, 1983; Takagi et al., 2005; 牛之建等, 2014)。然而,斜长石斑晶边部An含量的剧烈升高存在一个突变面。但是,如果是因为温度、压力、挥发分等的变化并不会形成这样一个使An值变化大于10%突变面(Ustunisik et al., 2014; 杨帆等, 2018)。Yu et al. (2012)认为An值变化是由于基性岩浆注入至岩浆房内滞留的半固结的早期英安岩岩浆中所造成的。首先,本文的斜长石捕掳晶核部成分均一,An值较低为更长石,是在酸性岩浆体系中平衡结晶形成的;而斜长石捕掳晶边部An值可达到拉长石的范围,符合玄武质岩浆体系结晶所产生的矿物特征。其次,由斜长石成分剖面可知(图 3),样品中斜长石斑晶自核部到边部MgO、FeO、CaO含量都升高,仅Na2O和K2O含量发生了下降,也证明在斜长石后期结晶过程中存在基性岩浆的参与。不仅如此,在粗安岩样品中还发现基性岩浆混染酸性围岩时与石英捕掳晶反应并且在其周围生成了辉石反应边的现象(图 2d),这也是基性岩浆混染了浅部酸性岩石的重要证据之一。除斜长石之外,本文样品中辉石斑晶也存在成分环带,也可能记录了后期基性岩浆的参与(Hu et al., 2018)。因此,本文认为腾冲全新世火山岩的矿物学特征表明幔源岩浆在上升过程中经历了浅部地壳的混染。
除了矿物学证据之外,腾冲全新世火山岩的Sr-Nd同位素变化同样支持浅部地壳混染的观点。腾冲全新世火山岩的87Sr/86Sr(0.706850~0.708498)与144Nd/143Nd(0.512077~0.512343)变化范围较大,并且粗安岩比玄武质岩石具有更加高的87Sr/86Sr和更低的144Nd/143Nd。本文以腾冲地块在中生代-新生代侵入的花岗质岩石为酸性端元(Chen et al., 2007; Liu et al., 2009; Gao et al., 2015),以幔源玄武质火山岩为基性端元进行二端元混合曲线模拟,结果表明腾冲火山岩样品均落在模拟曲线附近(图 6a)。这种Sr-Nd同位素变化趋势证明腾冲浅部地壳中的花岗岩对腾冲全新世火山岩的物质成分有一定的贡献。但强烈的地壳混染作用会使岩石样品产生远大于1的Th/Nb值特征(Saunders et al., 1992; 林木森等, 2017),本文样品及收集的前人数据中并无该现象发生。因此,本文认为腾冲全新世粗安岩的地壳混染作用并不显著。
|
图 6 腾冲全新世火山岩微量元素和同位素成分图 (a) Sr-Nd同位素图; (b) Ba/La-Th/Nd图(引自Guo et al., 2015); (c) Th/Nb-εNd图(引自Liu et al., 2017).文献数据均来自于李欣和刘嘉麒(2012); Zhou et al. (2012); Tian et al. (2018); Zou et al. (2010); 腾冲花岗岩数据来自Chen et al. (2007), Liu et al. (2009); (d) 87Sr/86Sr-206Pb/204Pb图, Pb同位素数据来自于Tian et al. (2018); Zou et al. (2017); 远洋沉积物数据来自Rehkämper and Hofmann (1997),印度大陆沉积物数据来自Plank and Langmuir (1998),MORB型地幔源区数据来自Workman and Hart (2005) Fig. 6 Trace element and isotopic geochemistry plots of Tengchong Holocene volcanic rocks (a) Sr and Nd isotopic correlations; (b) Ba/La vs. Th/Nd (after Guo et al., 2015); (c) Th/Nb vs. εNd (after Liu et al., 2017). The data in literature from Li and Liu (2012), Zhou et al. (2012), Tian et al. (2018), and Zou et al. (2010); The data of granites from Chen et al. (2007), Liu et al. (2009). (d)87Sr/86Sr vs. 206Pb/204Pb, the 206Pb/204Pb data from Zou et al. (2017) and Tian et al. (2018). The data of pelagic sediments from Rehkämper and Hofmann (1997), Indian sediments from Plank and Langmuir (1998), MORB source mantle from Workman and Hart (2005) |
前人认为腾冲火山区存在多个不同深度的岩浆房,幔源基性岩浆在不同深度的岩浆房停留并发生了不同的岩浆过程(罗照华等, 2011; Yu et al., 2012)。根据采集样品矿物成分、地球化学特征,本文认为全新世火山岩在发生浅部地壳混染作用之前,在深部岩浆房内发生滞留,从而发生部分矿物的分离结晶作用。通常情况下,橄榄石地幔捕掳晶具有CaO < 0.16%, NiO2的值为0.4%左右和Fo>90的特征(Sato, 1977; Thompson and Gibson, 2000; Zhao et al., 2009; 雷杭山等,2017),但是本文发现腾冲全新世火山岩中橄榄石核部CaO的值均大于0.16%,NiO2的最大值为0.3%以及其Fo值均小于90(图 7a)。因此,本文认为样品中橄榄石为岩浆成因,排除地幔橄榄石成因。而腾冲火山岩CaO、Fe2O3T、TiO2、MgO与SiO2存在负相关关系,K2O则与SiO2存在正相关关系,表明岩浆演化过程中可能存在橄榄石、辉石以及钛铁氧化物的分离结晶作用。在稀土元素的配分模式图上(图 5a, c)样品存在微弱的Eu负异常,其值大约为(0.67~0.87),表明在岩浆演化过程中存在斜长石的分离结晶作用。腾冲火山岩的地球化学特征和矿物化学分析结果与岩相学观察一致。
|
图 7 腾冲全新世火山岩中橄榄石斑晶矿物化学图解 (a) Fo与CaO关系图(底图据Thompson and Gibson, 2000; Zhao et al., 2009; 雷杭山等, 2017); (b) Fo与NiO关系图(底图据Sato, 1977; Huang et al., 2010).文献数据于红梅(2011) Fig. 7 Major elements of olivine phenocrysts in Holocene volcanic rocks of Tengchong (a) Fo vs. CaO diagram (modified after Thompson and Gibson, 2000; Zhao et al., 2009; Lei et al., 2017); (b) Fo vs. NiO diagram (modified after after Sato, 1977; Huang et al., 2010). Literature data from Yu (2011) |
腾冲全新世粗安岩与玄武质岩石均为高钾钙碱性系列,具有富集大离子亲石元素、亏损高场强元素Nb-Ta-Ti、极度富集Pb的特征,高87Sr/86Sr以及低144Nd/143Nd呈EM Ⅱ型特征(图 6a),表明两者岩浆源区可能都受到洋壳或陆壳俯冲交代作用的影响(Pearce and Parkinson, 1993; Marschall and Schumacher, 2012; Guo et al., 2015; Zou et al., 2017)。前人认为腾冲玄武质火山岩的源区是由软流圈地幔楔被印度大陆沉积物交代形成的(Guo et al., 2015; Tian et al., 2018)。但是,软流圈地幔一般具有高Ce/Pb的特征,而腾冲全新世玄武质火山岩Ce/Pb仅为5.77~9.35,远低于软流圈地幔即MORB的Ce/Pb值25(Hofmann, 1997; Guo et al., 2005)。并且腾冲玄武质的火山岩相对高87Sr/86Sr、低144Nd/143Nd以及亏损Nb-Ta-Ti的特征更表明其地幔源区为富集的岩石圈地幔,而非软流圈地幔。此外,还有部分学者认为腾冲玄武质火山岩源区是岩石圈地幔被印度大陆沉积物交代富集形成的(Zou et al., 2014, 2017),但腾冲玄武质火山岩的87Sr/86Sr和206Pb/204Pb之间表现为负相关关系(图 6d),表明具有高87Sr/86Sr比值的壳源物质的加入降低了地幔源区的206Pb/204Pb。这与印度大陆沉积物的高87Sr/86Sr、高206Pb/204Pb同位素特征不符,而与远洋沉积物中高87Sr/86Sr端元具有低206Pb/204Pb的特征相符。因此,本文认为腾冲全新世玄武质火山岩的岩石圈地幔源区经历过远洋沉积物起源的熔体的交代富集作用。
前人认为俯冲板片可以通过形成流体或者熔体的方式来交代岩石圈地幔(Class et al., 2000; Marschall and Schumacher, 2012; Guo et al., 2013, 2015)。流体交代会导致地幔源区相对减少REE、Th、HFSE,且富集大量的LILE、Pb和U;而发生熔体交代则会导致源区富集Th、LILE和LREE(Gao et al., 2015)。腾冲玄武质火山岩不仅富集LREE和LILE,还存在具有高Th含量(15.1×10-6~30.7×10-6)和Th/U比值(8.8~10.8),表明了地幔交代介质主要是洋壳沉积物起源的熔体(Plank and Langmuir, 1998; Zou et al., 2014; Liu et al., 2017)。腾冲玄武质火山岩高Th/Ce (>0.15; Hawkesworth et al., 1997)和Nb/Zr (>0.05; Vroon et al., 1993; Elburg et al., 2002; Gao et al., 2005)以及高Th/Nd、低Ba/La(10.7~13.4)(Sheppard and Taylor, 1992; Gao et al., 2015)的特征同样支持沉积物起源的熔体是主要的地幔交代介质(图 6b)。沉积物熔体也会显著改变地幔源区的Nd同位素组成(Hawkesworth et al., 1997)。由εNd(t)与Th/Nb的负相关关系同样支持腾冲玄武质火山岩的地幔源区经历过以洋壳沉积物起源的熔体的交代富集作用(图 6c)。
考虑到青藏高原东南缘前后经历了三次俯冲事件:(1)新特提斯洋的俯冲闭合;(2)印度大陆俯冲;以及(3)印度洋俯冲(Zhou et al., 2012; Liu et al., 2017; Zou et al., 2017)。根据腾冲玄武质火山岩的地球化学及同位素特征可以判断,腾冲岩石圈地幔的富集作用与洋壳沉积物的俯冲有关。而地球物理研究表明:在腾冲之下的地壳410km深度存在一个低速的滞留板片可能是俯冲的印度陆壳(Lei et al., 2009; Zhao and Liu, 2010),而印度洋壳还尚未俯冲至腾冲之下。因此,结合前文论述本文认为导致腾冲火山区岩石圈地幔源区的交代富集作用可能与早期新特提斯洋壳的俯冲消减有关。
4.3 腾冲火山岩构造背景腾冲地区新生代岩浆作用从5Ma时才开始大规模爆发(Zhu et al., 1983; Liu et al., 2017),此时新特提斯洋已经俯冲闭合,印度与腾冲地块也已经碰撞结束。因此该火山岩属于大陆板内环境,是碰撞后岩浆作用的产物(Chung et al., 2005; 林木森等, 2017)。腾冲新生代火山岩分布与腾冲弧形盆地中(李大明等, 2000),火山熔岩分布面积较小,仅为792km2,并不符合岩石圈拆沉所引起的岩浆作用现象。因此,本文排除了岩石圈拆沉这一触发机制。根据腾冲地区地震层析成像剖面图(图 8)可以发现,断裂带附近存在热异常,可能与软流圈上涌有关,因此本文认为其触发机制与区域走滑断裂带有关。
|
图 8 腾冲地形图及地震层析成像剖面图(据Huang and Zhao, 2006修改) Fig. 8 Topographic and seismic tomography profiles of Tengchong (modified after Huang and Zhao, 2006) |
腾冲地区自印度-欧亚大陆发生碰撞以来就受到高原侧向生长过程构造块体的挤出作用的影响(Wang et al., 2008; Zhang et al., 2010; Guo et al., 2015),导致腾冲火山岩呈现出沿走滑断裂附近的盆地分布(Guo et al., 2015)。由于高原侧向生长过程不仅伴随着构造块体的挤出,还导致周缘地区的碰撞后岩浆岩呈现出沿区域大型走滑断裂分布的特征,例如腾冲火山区东侧的哀牢山-红河断裂带(Wang et al., 2001;Guo et al., 2005)和藏北昆仑左旋走滑断裂带(Liu et al., 2018)附近的幔源碱性岩浆岩。因此,本文认为腾冲全新世火山岩的形成可能与区域走滑断裂引起的局部伸展构造背景有关,这种伸展环境导致被新特提斯洋壳沉积物交代改造的岩石圈地幔发生了减压熔融形成了玄武质岩浆。玄武质岩浆侵位到地壳浅部岩浆房发生了分离结晶作用并与浅部花岗岩发生混染,从而产生了腾冲全新世高钾钙碱性系列的粗面玄武岩-英安岩。
5 结论(1) 腾冲全新世火山岩岩浆演化存在结晶分异作用,当其上升侵位至浅部岩浆房时混染了少量浅部地壳中的花岗岩。
(2) 腾冲全新世火山岩为高钾钙碱性系列,源区为EM Ⅱ型富集地幔,其亏损高场强元素和低Ce/Pb等特征表明源区为岩石圈地幔,并且Sr、Pb同位素以及高Th/U、低Ba/La等特征证明该富集作用与俯冲导致的新特提斯洋壳沉积物熔体交代改造的岩石圈地幔有关。
(3) 区域上大型的走滑断裂带活动不仅形成了局部伸展的构造环境,还导致经历过交代富集的岩石圈地幔发生减压熔融,从而形成腾冲全新世火山岩。
致谢 审稿人董国臣和罗照华提出了宝贵的修改意见,刘栋和佟鑫帮助完成实验和提出论文初稿修改建议,作者一并表示感谢。
Bai DH, Meju MA and Liao ZJ. 2001. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China. Geophysical Journal International, 148(3): 677-687. |
Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 2: 63-114
|
Chen FK, Satir M, Ji J and Zhong D. 2002. Nd-Sr-Pb isotopes of Tengchong Cenozoic volcanic rocks from western Yunnan, China:Evidence for an enriched-mantle source. Journal of Asian Earth Sciences, 21(1): 39-45. DOI:10.1016/S1367-9120(02)00007-X |
Chen FK, Li XH, Wang XL, Li QL and Siebel WG. 2007. Zircon and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179-1194. DOI:10.1007/s00531-006-0146-y |
Chu MF, Chung SL, O'Reilly SY, Pearson NJ, Wu FY, Li XH, Liu DY, Ji JQ, Chu QH and Lee HY. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 307(3-4): 479-486. DOI:10.1016/j.epsl.2011.05.020 |
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196. |
Class C, Miller DM, Goldstein SL and Langmuir CH. 2000. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems, 1: 1004. |
Duan XZ, Fan HR, Zhang HF, Yaxley G, Santosh M, Tian HC, Tan KX, Tang ZP, Xie YS, Xiao YL, He ZH and Guo HF. 2019. Melt inclusions in phenocrysts track enriched upper mantle source for Cenozoic Tengchong volcanic field, Yunnan Province, SW China. Lithos, 324-325: 180-201. DOI:10.1016/j.lithos.2018.10.034 |
Elburg MA, van Bergen M, Hoogewerff J, Foden J, Vroon P, Zulkarnain I and Nasution A. 2002. Geochemical trends across an arc-continent collision zone:Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta, 66(15): 2771-2789. DOI:10.1016/S0016-7037(02)00868-2 |
Gao JF, Zhou MF, Robinson PT, Wang CY, Zhao JH and Malpas J. 2015. Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan Plateau. Journal of Asian Earth Sciences, 98: 1-17. DOI:10.1016/j.jseaes.2014.10.036 |
Guo ZF, Hertogen J, Liu J, Pasteels P, Boven A, Punzalan L, He HY, Luo XJ and Zhang WH. 2005. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China:Petrological and geochemical constraints on petrogenesis. Journal of Petrology, 46(1): 33-78. DOI:10.1093/petrology/egh061 |
Guo ZF, Wilson M, Zhang ML, Cheng ZH and Zhang LH. 2013. Post-collisional, K-rich mafic magmatism in South Tibet:Constraints on Indian slab-to-wedge transport processes and plateau uplift. Contributions to Mineralogy and Petrology, 165(6): 1311-1340. DOI:10.1007/s00410-013-0860-y |
Guo ZF, Cheng ZH, Zhang ML, Zhang LH, Li XH and Liu JQ. 2015. Post-collisional high-K calc-alkaline volcanism in Tengchong volcanic field, SE Tibet:Constraints on Indian eastward subduction and slab detachment. Journal of the Geological Society, 172(5): 624-640. DOI:10.1144/jgs2014-078 |
Hawkesworth CJ, Turner SP, McDermott F, Peate DW and Van Calsteren P. 1997. U-Th isotopes in arc magmas:Implications for element transfer from the subducted crust. Science, 276(5312): 551-555. DOI:10.1126/science.276.5312.551 |
Hébert R, Guilmette C, Dostal J, Bezard R, Lesage G, Bédard é and Wang CS. 2014. Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo Suture Zone southern Tibet:Geodynamic implications. Gondwana Research, 25(3): 1263-1271. DOI:10.1016/j.gr.2013.05.013 |
Hofmann AW. 1997. Mantle geochemistry:The message from oceanic volcanism. Nature, 385(6613): 219-229. DOI:10.1038/385219a0 |
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. DOI:10.1016/S0012-821X(04)00007-X |
Hu JH, Song XY, He HL, Zheng WQ, Yu SY, Chen LM and Lai CK. 2018. Constraints of texture and composition of clinopyroxene phenocrysts of Holocene volcanic rocks on a magmatic plumbing system beneath Tengchong, SW China. Journal of Asian Earth Sciences, 154: 342-353. DOI:10.1016/j.jseaes.2017.12.029 |
Huang JL and Zhao DP. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research, 11(B9): B09305. |
Huang XL, Niu YL, Xu YG, Chen LL and Yang QJ. 2010. Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from Western Yunnan, SW China. Journal of Petrology, 51(8): 1617-1654. DOI:10.1093/petrology/egq032 |
Huang XW, Zhou MF, Wang CY, Robinson PT, Zhao JH and Qi L. 2013. Chalcophile element constraints on magma differentiation of Quaternary volcanoes in Tengchong, SW China. Journal of Asian Earth Sciences, 76: 1-11. DOI:10.1016/j.jseaes.2013.07.020 |
Jiang CS. 1998. Distribution characteristics of Tengchong volcano in the Cenozoic era. Journal of Seismological Research, 21(4): 309-319. |
Le Maitre RW. 1989. A classification of Igneous Rock and Glossary of Terms. Oxford: Blackwell Science Publication.
|
Lei HS, Ma Q, Liu Z, Zhao ZD, Zhu DC and Mo XX. 2017. The geochemistry and petrogenesis of Cenozoic basalt in Sofular-Acigöl Marr, Central Turkey. Acta Petrologica Sinica, 33(8): 2619-2632. |
Lei JS, Zhao DP and Su YJ. 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in Southwest China from local and teleseismic data. Journal of Geophysical Research, 114: B05302. |
Li DM, Li Q and Chen WJ. 2000. Volcanic activities in the Tengchong volcano area since Pliocene. Acta Petrologica Sinica, 16(3): 362-370. |
Li X and Liu JQ. 2012. A study on the geochemical characteristics and petrogenesis of Holocene volcanic rocks in the Tengchong volcanic eruption field, Yunnan Province, SW China. Acta Petrologica Sinica, 28(5): 1507-1516. |
Lin MS, Peng SB and Qiao WT. 2017. 40Ar/30Ar geochronology and geochemistry of Pleistocene trachyandesite in Tengchong, western Yunnan, China, and its tectonic implication. Acta Petrologica Sinica, 33(10): 3137-3146. |
Liu D, Zhao ZD, Zhu DC, Niu YL and Harrison TM. 2014a. Zircon xenocrysts in Tibetan ultrapotassic magmas:Imaging the deep crust through time. Geology, 42(1): 43-46. |
Liu D, Zhao ZD, Zhu DC, Niu YL, DePaolo DJ, Harrison TM, Mo XX, Dong GC, Zhou S, Sun CG, Zhang ZC and Liu JL. 2014b. Postcollisional potassic and ultrapotassic rocks in southern Tibet:Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 207-231. DOI:10.1016/j.gca.2014.03.031 |
Liu D, Zhao ZD, Zhu DC, Niu YL, Widom E, Teng FZ, DePaolo DJ, Ke S, Xu JF, Wang Q and Mo XX. 2015. Identifying mantle carbonatite metasomatism through Os-Sr-Mg isotopes in Tibetan ultrapotassic rocks. Earth and Planetary Science Letters, 430: 458-469. DOI:10.1016/j.epsl.2015.09.005 |
Liu D, Zhao ZD, Niu YL, Zhu DC and Li XH. 2018. Perovskite U-Pb and Sr-Nd isotopic perspectives on melilitite magmatism and outward growth of the Tibetan Plateau. Geology, 46(12): 1027-1030. |
Liu F, Li X, Wang GQ, Liu YF, Zhu HL, Kan JT, Huang F, Sun WD, Xia XP and Zhang ZF. 2017. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau:Evidence from magnesium and calcium isotopes. Journal of Geophysical Research-Solid Earth, 122(12): 9729-9744. DOI:10.1002/2017JB014206 |
Liu S, Hu RZ, Gao S, Feng CX, Huang ZL, Lai SC, Yuan HL, Liu XM, Coulson IM, Feng GY, Wang T and Qi YQ. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, western Yunnan Province, SW China. Journal of Asian Earth Sciences, 36(2-3): 168-182. DOI:10.1016/j.jseaes.2009.05.004 |
Liu YS, Zong KQ, Kelemen PB and Gao S. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese Continental Scientific Drill Hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1-2): 133-153. DOI:10.1016/j.chemgeo.2007.10.016 |
Luo ZH, Liu JQ, Zhao CP, Guo ZF, Cheng LL, Li XH and Li DP. 2011. Deep fluids and magmatism:The deep processes beneath the Tengchong volcano group. Acta Petrologica Sinica, 27(10): 2855-2862. |
Marschall HR and Schumacher JC. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5(12): 862-867. DOI:10.1038/ngeo1634 |
Mo XX, Zhao ZD, Deng JF, Flower M, Yu XH, Luo ZH, Li YH, Zhou S, Dong GC, Zhu DC and Wang LL. 2006. Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan Plateau:Implications for lithosphere heterogeneity and collision-induced asthenosphere mantle flow. Geological Society of America Special Paper, 409: 507-530. |
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242. |
Niu ZJ, Liu Y and Di YJ. 2014. Zoning characteristics of the plagioclase from the Mesozoic trachyandesite in Wuchagou area of the Da Hinggan Mountains and its geological implications. Acta Petrologica et Mineralogica, 33(1): 102-108. |
Pearce JA and Parkinson IJ. 1993. Trace element models for mantle melting:Application to volcanic arc petrogenesis. In:Prichard HM, Alabaster T, Harris NBW and Neary CR (eds.). Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publications, 76(1): 373-403. |
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394. DOI:10.1016/S0009-2541(97)00150-2 |
Powell CM and Johnson BD. 1980. Contraints on the Cenozoic position of Sundaland. Tectonophysics, 63(1-4): 91-109. DOI:10.1016/0040-1951(80)90109-2 |
Qin JZ, Huangfu G, Li Q, Qian XD, Su YJ and Cai MJ. 2000. 3-D chromatography of velocity structure in Tengchong volcano areas and nearby. Journal of Seismological Research, 23(2): 157-164. |
Rehkämper M and Hofmann AW. 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters, 147(1-4): 93-106. DOI:10.1016/S0012-821X(97)00009-5 |
Rowley DB. 1996. Age of initiation of collision between India and Asia:A review of stratigraphic data. Earth and Planetary Science Letters, 145(1-4): 1-13. DOI:10.1016/S0012-821X(96)00201-4 |
Sato H. 1977. Nickel content of basaltic magmas:Identification of primary magmas and a measure of the degree of olivine fractionation. Lithos, 10(2): 113-120. DOI:10.1016/0024-4937(77)90037-8 |
Saunders AD, Storey M, Kent RW and Norry MJ. 1992. Consequences of plume-lithosphere interactions. In: Storey BC, Alabasater T and Pankhurst RJ (eds.). Magmatism and the Causes of Continental Break-up. Geological Society, London, Special Publications, 68: 41-60
|
Sheppard S and Taylor WR. 1992. Barium-and LREE-rich, olivine-mica-lamprophyres with affinities to lamproites, Mt. Bundey, Northern Territory, Australia. Lithos, 28(3-6): 303-325. |
Smith RK and Lofgren GF. 1983. An analytical and experimental study of zoning in plagioclase. Lithos, 16(2): 153-168. |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
|
Takagi D, Sato H and Nakagawa M. 2005. Experimental study of a low-alkali tholeiite at 1~5kbar:Optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contributions to Mineralogy and Petrology, 149(5): 527-540. DOI:10.1007/s00410-005-0666-7 |
Thompson RN and Gibson SA. 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 407(6803): 502-506. DOI:10.1038/35035058 |
Tian HC, Yang W, Li SG, Ke S and Duan XZ. 2018. Low δ26Mg volcanic rocks of Tengchong in southwestern China:A deep carbon cycle induced by supercritical liquids. Geochimica et Cosmochimica Acta, 240: 191-219. DOI:10.1016/j.gca.2018.08.032 |
Ustunisik G, Kilinc A and Nielsen RL. 2014. New insights into the processes controlling compositional zoning in plagioclase. Lithos, 200-201: 80-93. DOI:10.1016/j.lithos.2014.03.021 |
Vroon PZ, Van Bergen MJ, White WM and Varekamp JC. 1993. Sr-Nd-Pb isotope systematics of the Banda Arc, Indonesia:Combined subduction and assimilation of continental material. Journal of Geophysical Research, 98(B12): 22349-22366. DOI:10.1029/93JB01716 |
Wang JH, Yin A, Harrison TM, Grove M, Zhang YQ and Xie GH. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision Zone. Earth and Planetary Science Letters, 188(1-2): 123-133. DOI:10.1016/S0012-821X(01)00315-6 |
Wang Q, Wyman DA, Xu JF, Dong YH, Vasconcelos PM, Pearson N, Wan YS, Dong H, Li CF, Yu YS, Zhu TX, Feng XT, Zhang QY, Zi F and Chu ZY. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171. DOI:10.1016/j.epsl.2008.04.034 |
Workman RK and Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. DOI:10.1016/j.epsl.2004.12.005 |
Wu TF, Zhang SX, Li MK, Qin WB and Zhang CY. 2016. Two crustal flowing channels and volcanic magma migration underneath the SE margin of the Tibetan Plateau as revealed by surface wave tomography. Journal of Asian Earth Sciences, 132: 25-29. DOI:10.1016/j.jseaes.2016.09.017 |
Xu CL, Zhao GT, He YY and Li DP. 2012. Geochemistry of Cenozoic volcanic rocks from Tengchong, western Yunnan. Marine Geology and Quaternary Geology, 32(2): 65-75. DOI:10.3724/SP.J.1140.2012.02065 |
Xu Y, Li XL and Wang S. 2017. Crustal thickness and Poisson's ratio of the Tengchong volcanic area in southweatern China. Chinese Journal of Geophysics, 60(6): 2256-2264. |
Yan DP, Zhou MF, Wang CY and Xia B. 2006. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 28(4-6): 332-353. DOI:10.1016/j.jseaes.2005.10.011 |
Yang F, Huang XL and Li J. 2018. Magma processes and petrogenesis of the Late Cretaceous plagioclase-phyric basalt in the Changchengling area, South China. Acta Petrologica Sinica, 34(1): 157-171. |
Yu HM. 2011. Microstructural study on volcanic products and its geological implications. Ph. D. Dissertation. Beijing: Institute of Geology, China Earthquake Administration (in Chinese with English summary)
|
Yu HM, Xu JD, Lin CY, Shi LB and Chen XD. 2012. Magmatic processes inferred from chemical composition, texture and crystal size distribution of the Heikongshan lavas in the Tengchong volcanic field, SW China. Journal of Asian Earth Sciences, 58: 1-15. DOI:10.1016/j.jseaes.2012.07.013 |
Zhang B, Zhang JJ and Zhong DL. 2010. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China. Journal of Structural Geology, 32(4): 445-463. DOI:10.1016/j.jsg.2010.02.001 |
Zhao CP, Ran H and Chen KH. 2006. Present-day magma chambers in Tengchong volcano area inferred from relative geothermal gradient. Acta Petrologica Sinica, 22(6): 1517-1528. |
Zhao DP and Liu L. 2010. Deep structure and origin of active volcanoes in China. Geoscience Frontiers, 1(1): 31-44. |
Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH and Hou ZQ. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190-212. |
Zhou MF, Robinson PT, Wang CY, Zhao JH, Yan DP, Gao JF and Malpas J. 2012. Heterogeneous mantle source and magma differentiation of Quaternary arc-like volcanic rocks from Tengchong, SE margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 163(5): 841-860. DOI:10.1007/s00410-011-0702-8 |
Zhu BQ, Mao CX, Lugmair GW and Macdougall JD. 1983. Isotopic and geochemical evidence for the origin of Plio-Pleistocene volcanic rocks near the Indo-Eurasian collisional margin at Tengchong, China. Earth and Planetary Science Letters, 65(2): 263-275. DOI:10.1016/0012-821X(83)90165-6 |
Zou HB, Fan QC, Schmitt AK and Sui JL. 2010. U-Th dating of zircons from Holocene potassic andesites (Maanshan volcano, Tengchong, SE Tibetan Plateau) by depth profiling:Time scales and nature of magma storage. Lithos, 118(1-2): 202-210. |
Zou HB, Shen CC, Fan QC and Lin K. 2014. U-series disequilibrium in young Tengchong volcanics:Recycling of mature clay sediments or mudstones into the SE Tibet mantle. Lithos, 192-195: 132-141. DOI:10.1016/j.lithos.2014.01.017 |
Zou HB, Ma MJ, Fan QC, Xu B, Li SQ, Zhao YW and King DT Jr. 2017. Genesis and open-system evolution of Quaternary magmas beneath southeastern margin of Tibet:Constraints from Sr-Nd-Pb-Hf isotope systematics. Lithos, 272-273: 278-290. DOI:10.1016/j.lithos.2016.12.012 |
姜朝松. 1998. 腾冲新生代火山分布特征. 地震研究, 21(4): 309-319. |
雷杭山, 马倩, 刘泽, 赵志丹, 朱弟成, 莫宣学. 2017. 土耳其中部阿哲格尔火山湖新生代玄武岩的地球化学与岩石成因. 岩石学报, 33(8): 2619-2632. |
李大明, 李齐, 陈文寄. 2000. 腾冲火山区上新世以来的火山活动. 岩石学报, 16(3): 362-370. |
李欣, 刘嘉麒. 2012. 云南腾冲全新世火山岩地球化学特征及其成因. 岩石学报, 28(5): 1507-1516. |
林木森, 彭松柏, 乔卫涛. 2017. 滇西腾冲更新世粗面安山岩Ar-Ar年代学、地球化学特征及其构造意义. 岩石学报, 33(10): 3137-3146. |
罗照华, 刘嘉琦, 赵慈平, 郭正府, 程黎鹿, 李晓惠, 李大鹏. 2011. 深部流体与岩浆活动:兼论腾冲火山群的深部过程. 岩石学报, 27(10): 2855-2862. |
牛之建, 刘跃, 狄永军. 2014. 大兴安岭五岔沟地区中生代粗安岩中斜长石环带特征及其地质意义. 岩石矿物学杂志, 33(1): 102-108. DOI:10.3969/j.issn.1000-6524.2014.01.008 |
秦嘉政, 皇甫岗, 李强, 钱晓东, 苏有锦, 蔡明军. 2000. 腾冲火山及邻区速度结构的三维层析成象. 地震研究, 23(2): 157-164. DOI:10.3969/j.issn.1000-0666.2000.02.010 |
徐翠玲, 赵广涛, 何雨旸, 李德平. 2012. 滇西腾冲新生代火山岩岩石地球化学特征. 海洋地质与第四纪地质, 32(2): 65-75. |
胥颐, 李雪垒, 汪晟. 2017. 腾冲火山区的地壳厚度和平均泊松比研究. 地球物理学报, 60(6): 2256-2264. |
杨帆, 黄小龙, 李洁. 2018. 华南长城岭晚白垩世斜斑玄武岩的岩浆作用过程与岩石成因制约. 岩石学报, 34(1): 157-171. |
于红梅. 2011.火山喷发物的显微构造研究及其地质意义.博士学位论文.北京: 中国地震局地质研究所
|
赵慈平, 冉华, 陈坤华. 2006. 由相对地热梯度推断的腾冲火山区现存岩浆囊. 岩石学报, 22(6): 1517-1528. |
2019, Vol. 35


