岩石学报  2019, Vol. 35 Issue (2): 455-471, doi: 10.18654/1000-0569/2019.02.12   PDF    
西藏南部冈底斯南缘松卡晚白垩世埃达克质高镁闪长岩地球化学特征及其成因
徐倩1 , 曾令森1 , 高家昊1 , 赵令浩1,2 , 王亚飞1 , 胡昭平1     
1. 自然资源部深部动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 中国地质科学院国家地质实验测试中心, 北京 100037
摘要:松卡岩体地处藏南冈底斯岩基南缘的东段,主要由闪长岩和花岗岩脉组成,为详细研究与大洋俯冲有关的岩浆过程提供了良好的记录。锆石U-Pb地质年代学研究表明松卡岩体闪长岩的形成年龄为97Ma,具有高Sr、低Y和高Sr/Y比的特点,显示出埃达克质岩石的特征,同时具有高MgO含量和高Mg#值,以及较低的87Sr/86Sr(t)(~0.7042)和较高的εNdt)(+4.6~+8.8),是俯冲新特提斯洋壳和少量海洋沉积物部分熔融并随后与上覆地幔楔发生相互作用形成的。与91Ma松卡埃达克质岩石相比,97Ma松卡埃达克质闪长岩具有更多地幔物质参与。松卡花岗岩脉的锆石U-Pb年龄为93Ma,同样具有较低的87Sr/86Sr(t)(0.7046)值和较高的εNdt)(+7.5~+7.8)值,可能是具有亏损地幔特征的中基性岩浆经过分离结晶作用演化而来。上述数据表明,在100~90Ma期间,较年轻的俯冲新特提斯板片可能发生过部分熔融,板片部分熔融熔体与上覆地幔楔的相互作用是形成高镁闪长岩(安山岩)的重要机制之一。
关键词: 冈底斯岩基     高镁闪长岩     埃达克质岩     俯冲作用    
Geochemical characteristics and genesis of the Songka Late Cretaceous adakitic high-Mg diorite in the southern margin of Gangdese, southern Tibet
XU Qian1, ZENG LingSen1, GAO JiaHao1, ZHAO LingHao1,2, WANG YaFei1, HU ZhaoPing1     
1. Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Songka pluton is located in the eastern part of the southern margin of Gangdese batholith, southern Tibet. It is mainly composed of diorite with minor dikes of granitic compositions. Zircon U-Pb analyses shows coarse grained and fine grained diorite formed at 97Ma, whereas the granitic dike at 93Ma, respectively. The Songka diorites are characterized by:(1) high Sr, but low Y contents and high Sr/Y ratios; (2) high MgO and Mg#; and (3) low 87Sr/86Sr(t)(~0.7042), but high εNd(t) (+4.6~+8.8) values. Most of the Songka diorites, especially those coarse grained diorite, display geochemical features resembling those of high-Mg adakitic diorites. Such features could be explained by interactions of melts derived from subducting Neo-Tethyan slab (oceanic crust plus minor amount of marine sediments) with the overlying mantle wedge. Compared with the 91Ma Songka adakitic rocks, formation of the 97Ma Songka adakitic diorite requires a higher degree of involvement of mantle materials. The slightly younger granitic dikes are also characterized by low 87Sr/86Sr(t) (~0.7046) but high εNd(t)(+7.5~+7.8) values, which suggests that they represent evolved melts from more mafic magmas originated from the depleted mantle. Data presented in this study indicate that the relatively young subducting Neo-Tethyan slab could experience partial melting during the time interval of 100~90Ma, and the interaction of slab-derived melts with the overlying mantle wedge is a key process to produce high-Mg diorite.
Key words: Gangdese batholith     High-Mg Diorite     Adakitic rock     Subduction    

冈底斯岩基是拉萨地块的重要组成部分,保存了早古生代至新生代岩浆作用的记录(Schäarer et al., 1984; Le Fort, 1988; Chung et al., 2003; Hou et al., 2004; Mo et al., 2007; Wen et al., 2008a, bJi et al., 2009a, bZhu et al., 2011; Zhang et al., 2012王莉等,2012),是了解岛弧岩石圈分异、演化和再造动力学机理的良好野外实验室。在弧岩浆作用过程中,俯冲板片脱水作用和部分熔融作用都可影响俯冲带上盘地幔楔,导致地幔楔的矿物组成、地球化学性质和部分熔融行为发生重大变化,形成具有特殊地球化学特征的弧岩浆岩(Pearce et al., 2005)。其中,俯冲板片部分熔融是形成高Sr/Y比值中酸性岩浆的重要机制之一(Defant and Drummond, 1990),在此机制下所形成的熔体与地幔楔的相互作用及其地球化学效应是俯冲带研究的重要课题之一(Sen and Dunn, 1994; Rapp et al., 1999)。

大量的研究已揭示:冈底斯岩基发育不同时代的高Sr/Y比(埃达克质)岩浆岩,其中高硅埃达克岩(HSA)(SiO2>60%)比较普遍(Chung et al., 2003张宏飞等,2007Zhu et al., 2009; Zhang et al., 2010),而低硅埃达克岩(LSA) (SiO2 < 60%)比较少见(王莉等,2012; Jiang et al., 2014)。虽然增厚下地壳部分熔融(Chung et al., 2003; Hou et al., 2004; Wen et al., 2008a, bZeng et al., 2011; Guan et al., 2012)和岩浆分异作用(王莉等,2012)是形成高硅埃达克岩的主要机制,但在俯冲带环境,高硅埃达克岩通常代表被地幔橄榄岩混染的大洋板片熔融体,而低硅埃达克岩代表来自板片部分熔融体交代的地幔橄榄岩部分熔融产生的熔体(Defant and Drummond, 1990Atherton and Petford, 1993Kay et al., 1993; Kelemen, 1995; Rapp et al., 1999; Martin et al., 2005, 2009)。在部分低硅埃达克岩中,高镁安山岩(Mg#>40)是揭示俯冲板片是否部分熔融及其板片熔体与地幔楔相互作用程度的重要岩石探针。

目前普遍认为除了较年轻(< 40Ma)的高Sr/Y比闪长岩-花岗岩外,冈底斯带出露的高Sr/Y岩浆岩形成于相似的大地构造背景,即形成于新特提斯洋北向俯冲过程中,但对白垩纪高Sr/Y值岩浆作用究竟代表着增厚下地壳部分熔融(Wen et al., 2008a, b)还是洋脊俯冲背景下的大洋板片熔融(Zhang et al., 2010)仍存在不同认识。冈底斯岩基南缘发育大量的中基性岩石,其中部分岩石具有高镁安山岩的特征,为刻画冈底斯南缘白垩纪高Sr/Y比岩石的地球化学特征,揭示这些岩石所代表的构造岩浆过程提供了重要证据。

在野外观测和系统采样的基础上,本文对山南地区松卡岩体闪长岩和花岗岩样品(T1098)进行锆石U-Pb定年、全岩元素和同位素(Sr和Nd同位素)测试分析,来确定松卡岩体闪长岩和花岗岩的形成时代和地球化学特征,揭示其岩浆过程和成因机制。

1 地质背景和样品描述

青藏高原由北向南包括松潘-甘孜、羌塘、拉萨和喜马拉雅地块,分别由金沙江、班公-怒江和雅鲁藏布江缝合带分隔(Yin and Harrison, 2000; Chung et al., 2005)。冈底斯带即位于拉萨地块的南缘,经历了新特提斯洋打开、俯冲以及印度与欧亚大陆碰撞的全过程,保存了很好的中生代岩浆记录。特提斯洋的向北俯冲导致大量以安第斯型冈底斯岩基为代表的岩浆和主要位于拉萨地体南缘的相应喷出岩的产生。松卡岩体即位于西藏山南地区扎囊县桑耶镇松卡村,冈底斯带南缘的东段(图 1),新特提斯洋向北俯冲形成的岛弧岩浆岩带中,毗邻雅鲁藏布江缝合带,岩体主要由花岗闪长岩和少量花岗岩及镁铁质闪长岩组成。其中,雅鲁藏布江缝合带北邻欧亚板块的拉萨地块、南接印度板块的喜马拉雅构造带,是大体沿雅鲁藏布江河谷分布的一套被构造活动改造过的连续分布的蛇绿杂岩带,为印度次大陆与欧亚大陆新生代早期碰撞并使新特提斯洋沿之闭合的部位,被认为是新特提斯洋的残留(Nicolas et al., 1981; Tapponnier et al., 1981)。

图 1 藏南拉萨地体地质简图(a, 据Chung et al., 2005, 2009Hou et al., 2015修改)和扎囊地区地质简图(b, 据Jiang et al., 2014) Fig. 1 Simplified geological maps of southern Tibet (a, modified after Chung et al., 2005, 2009; Hou et al., 2015) and Zhanang area (b, after Jiang et al., 2014)

松卡岩体所处的泽当-贡嘎地区发育有丰富的晚白垩世-早新生代岩浆岩,包含了由玄武质安山岩、安山岩、安山质角砾岩和少量英安岩以及其它侵入岩组成的岛弧火山岩和火山碎屑岩(Aitchison et al., 2000),为详细研究与大洋俯冲有关的过程提供了良好的记录。

本文所采样品为松卡村西松卡岩体中的粗粒闪长岩(T1098-A1~A7)、细粒闪长岩(T1098-B1~B7)和花岗岩脉(T1098-C1~C2),样品均较新鲜。其中,粗粒闪长岩与细粒闪长岩的颜色和粒度差别显著:粗粒闪长岩呈现灰色,粒度在5~7mm左右;细粒闪长岩则呈深灰色,粒度在1~2mm左右,两者具有明显的界线(图 2a)。灰白色花岗岩则呈脉状出露于闪长岩中(图 2b, c),并在该采样点处见有角闪石伟晶出露(图 2d)。粗粒闪长岩和细粒闪长岩具有相似的矿物组合,包括斜长石(55%~60%)、角闪石(20%~25%)和少量的石英(5%~10%)、黑云母(5%~10%)以及副矿物磷灰石(图 3b, e)和榍石(图 3c)等,并且两者的角闪石都可见环带结构(图 3a, d, e),但两者在黑云母含量上有一定的差异——细粒闪长岩比粗粒闪长岩具有稍多的黑云母。粗粒闪长岩和细粒闪长岩镜下多见角闪石颗粒中包裹小的长石颗粒或角闪石颗粒镶嵌于长石中,且其接触部位无反应边,角闪石与黑云母伴生的现象也较为发育。花岗岩则主要由石英(25%~30%)、斜长石(20%~25%)、钾长石(25%~30%)和黑云母(10%~15%)以及副矿物锆石等组成(图 3f),其中黑云母以不规则形状镶嵌于长石和石英中,并且其接触部位无反应边发生。

图 2 松卡岩体闪长岩和花岗岩脉野外地质照片 Fig. 2 Field photographs showing the diorite and granite dikes of the Songka pluton

图 3 松卡岩体闪长岩和花岗岩显微照片 (a-c)粗粒闪长岩;(d、e)细粒闪长岩;(f)花岗岩. Hbl-角闪石;Pl-斜长石;Ap-磷灰石;Tnt-榍石;Kf-钾长石;Bt-黑云母;Qtz-石英 Fig. 3 Microphotographs showing the diorite and granite of the Songka pluton (a-c) coarse diorite; (d, e) fine-grained diorite; (f) granite. Hbl-hornblende; Pl-plagioclase; Ap-apatite; Tnt-titanite; Kf-K-feldspar; Bt-biotite; Qtz-quartz
2 分析方法 2.1 LA-MC-ICP-MS锆石U-Pb定年

为了确定松卡岩体中闪长岩和花岗岩脉的年龄,对松卡岩体代表性粗粒闪长岩(T1098-A)、细粒闪长岩(T1098-B)和花岗岩脉(T1098-C)三件样品进行LA-MC-ICPMS锆石U-Pb定年。从所测样品中手工挑选出锆石,经过制靶和抛光后,进行阴极发光(CL)和扫描电镜背散射(BSE)成像观察,揭示锆石的内部结构。阴极发光成像在中国地质科学院地质研究所北京离子探针中心进行,BSE图像和锆石内部包裹体的成分测试在中国地质科学院地质研究所自然资源部深部动力学重点实验室进行。通过阴极发光和BSE图像来观察锆石不同生长域的差异特征,选取合适的锆石U-Pb测试点。锆石U-Pb同位素定年测试在中国地质科学院矿产资源研究所成矿作用与资源评价重点实验室进行,所用仪器为德国Finnigan公司生产的Neptune型激光多接收等离子体质谱(LA-MC-ICPMS)。激光剥蚀系统采用美国NEW Wave公司生产的UP213nm, 所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。U和Th含量以锆石标样M127(U=923×10-6;Th/U=0.475)为外标进行校正。在测试过程中,每测定10个样品点前后重复测量两次锆石标样GJ-1和一次锆石标样Plesovice。分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal完成(Liu et al., 2010),锆石年龄谐和图用Isoplot 3.0程序获得。分析结果见表 1

表 1 松卡闪长岩和花岗岩的LA-MC-ICP-MS锆石U-Pb定年数据 Table 1 LA-MC-ICP-MS zircon U-Pb analytical results of the diorite and granite from the Songka pluton
2.2 全岩地球化学分析

为确定松卡岩体闪长岩和花岗岩的元素地球化学特征,本次研究在野外系统采样、再经过室内样品制备的基础上,在自然资源部国家地质实验测试中心进行了样品全岩主、微量元素组成的测试分析。主量元素采用XRF(X荧光光谱仪3080E)方法进行分析,分析精度为5%;微量元素和稀土元素(REE)采用等离子质谱仪(ICP-MS-Excell)进行分析,含量大于10×10-6的元素测试精度为5%,而小于10×10-6的元素测试精度为10%,个别在样品中含量低的元素测试误差大于10%。分析结果见表 2

表 2 松卡闪长岩和花岗岩元素地球化学组成(主量元素:wt%;稀土和微量元素:×10-6) Table 2 Bulk-rock geochemical compositions of the diorite and granite from Songka pluton (major elements: wt%; trace elements: ×10-6)
2.3 Sr-Nd同位素测试

样品的Rb-Sr和Sm-Nd同位素分析在中国科学技术大学放射性同位素地球化学实验室进行,采用同位素稀释法,利用热电离质谱仪MAT-26测试完成。样品的化学分离纯化在净化实验室完成。Sr和Nd同位素比值分析结果分别采用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219进行质量分馏标准化校正。在分析样品期间,Sr同位素监测标样为NBS987,测定值为87Sr/86Sr=0.710249±0.000012(2σ,n=38),Nd同位素监测标样为La Jolla,测定值为143Nd/144Nd=0.511869±0.000006(2σ,n=25)。详细的分析方法和流程参见Chen et al.(2002, 2007)。根据各类岩石样品锆石的U-Pb定年结果,分别计算初始Sr和Nd同位素比值,分析结果见表 3

表 3 松卡闪长岩和花岗岩的Sr和Nd同位素组成 Table 3 Sr and Nd isotope compositions of the diorite and granite from Songka pluton
3 数据及结果 3.1 锆石U-Pb年龄

在粗粒闪长岩样品T1098-A中,锆石多为短柱状,具有宽板状韵律环带,个别具有窄的生长边,部分边部具有较弱的振荡韵律环带(图 4)。测试结果表明,所测锆石的U和Th含量变化较大,变化范围分别为172.6×10-6~2173×10-6和199.1×10-6~4958×10-6,Th/U比值较高,为0.83~3.51(表 1)。选取谐和度高的锆石(>95%)来进行年龄计算,获得的206Pb/238U年龄变化较小,在92.8 ~100.1Ma之间,集中在谐和线的~96.7Ma附近,加权平均年龄为96.7±1.1Ma(17个分析点,MSWD=1.5)(图 5)。典型的生长韵律环带和较高的Th/U比值都表明该年龄为粗粒闪长岩T1098-A的结晶年龄。

图 4 松卡闪长岩和花岗岩的锆石阴极发光图像 Fig. 4 Cathodoluminescence images of zircons from diorite and granite of Songka pluton

图 5 松卡粗粒闪长岩(a、b)、细粒闪长岩(c、d)和花岗岩(e、f)的锆石U-Pb年龄谐和图和年龄分布图 Fig. 5 U-Pb concordia and age distribution diagrams for zircon from coarse diorite (a, b), fine-grained diorite (c, d) and granite (e, f) from the Songka pluton

在细粒闪长岩样品T1098-B中,锆石分为两种类型,大多数锆石为短柱状,具宽板状韵律环带;个别锆石边部具有明显的振荡环带(图 4)。测试结果表明,所测锆石点的U和Th含量变化也较大,分别在193.8×10-6~1763×10-6和74.8×10-6~3756×10-6之间,Th/U比值较高,在0.94~3.25之间(仅1个样品为0.24)(表 1)。我们选取谐和度大于95%的锆石进行年龄计算,获得的206Pb/238U年龄变化范围为94.9~107.4Ma,集中在谐和线的96.6Ma附近,加权平均年龄为96.6±0.8Ma(11个分析点,MSWD=1.02)(图 5)。高Th/U比值和典型的韵律环带表明它们为岩浆成因锆石,代表了样品T1098-B的结晶年龄。

在花岗岩脉样品T1098-C中,锆石多为短柱状,并具有清晰的韵律环带(图 4)。测试结果表明,所测锆石的U和Th含量变化较大,变化范围分别为165.9×10-6~1167×10-6和139.9×10-6~1673×10-6,Th/U比值较高,在0.78~1.84之间(表 1)。选取谐和度较高(≥95%)的锆石进行年龄计算,获得的206Pb/238U年龄变化较小,在91.6~95.4Ma之间变化,集中在谐和线的92.6Ma附近,加权平均年龄为92.6±0.7Ma(13个分析点,MSWD=0.74)(图 5)。高的Th/U比值和明显的韵律环带,表明它们为岩浆成因锆石,代表了样品T1098-C的结晶年龄。

上述结果表明:在测试误差范围内,粗粒和细粒闪长岩的结晶时代相似,为97Ma;侵入闪长岩的花岗岩脉形成时间较晚,为93Ma。

3.2 全岩地球化学特征

为了解松卡闪长岩和花岗岩脉的地球化学特征,分析其岩石成因,对这些样品的全岩元素地球化学组成进行了测试,分析结果见表 2

3.2.1 主量元素

在主量元素组成特征上(表 2图 6),粗粒闪长岩样品SiO2含量为52.52%~56.19%,Al2O3含量的变化范围为14.40%~15.72%,TiO2含量较低为0.83%~1.33%,具有高的MgO(5.36%~6.83%)含量和Mg#(55.6~63.3)值,Na2O/K2O(1.82~2.05)比值较高,均大于1,表明该粗粒闪长岩样品为高镁富钠闪长岩。与粗粒闪长岩相比,细粒闪长岩样品具有相似的SiO2(53.32%~57.21%)和TiO2(0.95%~1.13%)含量,稍高的Al2O3(15.56%~17.67%)但稍低的MgO(3.14%~5.66%)含量和Mg#(46.4~59.0)值,Na2O/K2O比值为1.21~2.23,同样为高镁富钠闪长岩。与上述闪长岩相比,花岗岩脉SiO2含量较高,为76.30%~76.56%,Al2O3(12.35%~12.40%)、TiO2(0.14%)、MgO(0.18%~0.19%)和Mg#(30.6~31.5)值都较低,Na2O/K2O(0.48~0.49)比值也较低,表明该花岗岩为富钾花岗岩。

图 6 松卡闪长岩和花岗岩主量元素Al2O3(a)、TiO2(b)、MgO(c)、Na2O(d)与SiO2之间的协变图 俯冲环境的高镁安山岩数据来源:Wood and Turner, 2009Tatsumi and Ishizaka, 1982 Fig. 6 Co-variation diagrams of Al2O3(a), TiO2(b), MgO (c), Na2O (d) versus SiO2 for diorite and granite from the Songka pluton Data sources of high-Mg andesites from subduction environment: Wood and Turner, 2009; Tatsumi and Ishizaka, 1982
3.2.2 微量元素

在微量元素组成上,松卡粗粒闪长岩与细粒闪长岩具有以下相似的特征:(1)均显示富集大离子亲石元素LILE(如Cs、Rb、K、Sr等),相对亏损高场强元素HFSE(如Nb、Ta、Ti等),具有明显的Nb和Ta负异常,但较弱的Zr和Hf负异常(图 7a);(2)高Sr(粗粒闪长岩:576×10-6~922×10-6,细粒闪长岩:647×10-6~1246×10-6),低Y(粗粒闪长岩:12.7×10-6~17×10-6,细粒闪长岩:15.2×10-6~19.6×10-6)和Yb(粗粒闪长岩:1.06×10-6~1.47×10-6,细粒闪长岩:1.23×10-6~1.78 ×10-6)和高Sr/Y(粗粒闪长岩:39.9~67.3,细粒闪长岩:38.4~80.4)比值,以及较低且均匀的La/Yb(粗粒闪长岩:11.4~15.4,细粒闪长岩:12.6~16.8)比值(图 8a, b)。但在Cr和Ni含量上有所不同,粗粒闪长岩具有高的Cr(50.1×10-6~133×10-6)和Ni(35.7×10-6~63.4×10-6)含量,而细粒闪长岩的Cr、Ni含量较低且变化较大,变化范围分别为9.82×10-6~74.6×10-6和9.85×10-6~38.3×10-6(图 8c)。虽然这些闪长岩具有高Sr/Y比特征,但与高Ba-Sr闪长岩相比(Tarney and Jones, 1994Fowler et al., 2008; 王亚莹等,2017Wang et al., 2018),它们的Ba含量较低(<300×10-6)(表 2)。和闪长岩相比,花岗岩也显示富集大离子亲石元素(如Cs、Rb、K等),亏损高场强元素(如Nb、Ta、Ti、P等)的特征,并且相比闪长岩更加亏损Ti和P(图 7a)。与闪长岩相比,花岗岩的Sr含量明显较低,为88.8×10-6~95.6×10-6,Sr/Y比值也较低,小于12.0。

图 7 松卡闪长岩和花岗岩的原始地幔标准化微量元素蛛网图(a)和球粒陨石稀土元素配分图(b)(标准化数值据Sun and McDonough, 1989) Fig. 7 Primitive mantle-normalized trace element spider diagrams (a) and chondrite-normalized REE patterns (b) of the diorite and granite from Songka pluton (normalization values after Sun and McDonough, 1989)

图 8 松卡闪长岩和花岗岩的Sr/Y-Y(a,底图据Castillo et al., 1999)、(La/Yb)N-YbN(b,底图据Martin, 1999)和Cr-Ni(c)关系图 Fig. 8 Diagrams showing relationships of Sr/Y vs. Y (a, after Castillo et al., 1999), (La/Yb)N vs. YbN (b, after Martin, 1999) and Cr vs. Ni (c) for diorite and granite from the Songka pluton
3.2.3 稀土元素

在稀土元素组成上,松卡粗粒闪长岩和细粒闪长岩同样表现出相似的特征:(1)样品均具有轻重稀土分馏明显,富集轻稀土元素(LREE)而亏损重稀土元素(HREE)(粗粒闪长岩:(La/Yb)N=8.15~11.1,细粒闪长岩:(La/Yb)N=9.07~11.8)(图 7b),但HREE配分模式相对平坦(粗粒闪长岩:(Ho/Yb)N=1.22~1.36,细粒闪长岩:(Ho/Yb)N =1.18~1.35);和(2)微弱Eu负异常到无Eu异常(粗粒闪长岩:Eu/Eu*=0.93~1.03,细粒闪长岩:Eu/Eu*=0.89~1.03)。与闪长岩相比,花岗岩具有轻重稀土分馏更明显((La/Yb)N=17.4~66.2),且明显亏损中稀土元素(MREE)及Eu负异常显著(Eu/Eu*=0.43~0.56)等特征(图 7b)。

3.3 Sr-Nd同位素地球化学特征

为确定松卡岩体闪长岩和花岗岩的Sr-Nd同位素组成特征,对3件粗粒闪长岩、2件细粒闪长岩和2件花岗岩样品进行了Sr和Nd同位素分析,分析结果见表 3,Sr-Nd的同位素系统关系见图 9,图中投影点的大小大于分析误差。

图 9 松卡闪长岩εNd(t)-87Sr/86Sr(t)关系图解 数据来源:91 Ma松卡埃达克质岩(Jiang et al., 2014);雅鲁藏布江蛇绿岩(牛晓露等,2006Xu and Castillo, 2004Zhang et al., 2005);藏南俯冲板片来源的埃达克质岩(Zhu et al., 2009Jiang et al., 2012Jiang et al., 2014);藏南增厚镁铁质下地壳来源的埃达克质岩(Wen et al., 2008bJiang et al., 2014);AR9(Sr=131×10-687Sr/86Sr(t)=0.703039,Nd=9.46×10-6εNd(t)=+9.6;牛晓露等,2006);印度洋深海沉积物V28-343(Sr=119×10-687Sr/86Sr(t)=0.71682,Nd=23.05×10-6εNd(t)=-9.3;Othman et al., 1989) Fig. 9 εNd(t) vs. 87Sr/86Sr(t) isotope systematics of diorite from Songka pluton Data sources: 91Ma adakitic rocks from Songka pluton (Jiang et al., 2014); Yarlung Tsangpo ophiolites (Niu et al., 2006; Xu and Castillo, 2004; Zhang et al., 2005); subducted slabs-derived adakitic rocks in southern Tibet (Zhu et al., 2009; Jiang et al., 2012; Jiang et al., 2014); thickened mafic lower crust-derived adakitic rocks in southern Tibet (Wen et al., 2008b; Jiang et al., 2014); AR9 (Sr=131×10-6, 87Sr/86Sr(t)=0.703039, Nd=9.46×10-6, εNd(t)=+9.6;Niu et al., 2006); Indian Ocean pelagic sediment V28-343(Sr=119×10-6, 87Sr/86Sr(t)=0.71682, Nd=23.05×10-6, εNd(t)=-9.3;Othman et al., 1989)

粗粒闪长岩具有较低的Rb(32.9×10-6~50.9×10-6)但较高的Sr(576×10-6~922×10-6)含量,较低的Sm(3.6×10-6~4.98×10-6)和Nd(16.3×10-6~21.6×10-6)含量,以及较低的Rb/Sr(0.036~0.084)和Sm/Nd(0.211~0.234)比值;初始Sr同位素比值87Sr/86Sr(t)较低,为0.704164~0.704230,但Nd同位素比值较高,εNd(t)在+4.6~+6.6之间。和粗粒闪长岩相比,细粒闪长岩具有相对较高的Rb(41.7×10-6~72.6×10-6)、Sr(647×10-6~1246×10-6)和Sm(4.27×10-6~5.62×10-6)、Nd(18.8×10-6~26.7×10-6)含量,以及相似的Rb/Sr(0.038~0.110)和稍低的Sm/Nd(0.202~0.227)比值;初始Sr同位素比值87Sr/86Sr(t)与粗粒闪长岩较一致,为0.704226~0.704239,εNd(t)变化范围为+6.5~+8.8。相比之下,花岗岩脉具有比闪长岩更高的Rb(104×10-6~105×10-6)和更低的Sr(88.8×10-6~95.6×10-6)、Sm(1.31×10-6~1.66×10-6)和Nd(9.65×10-6~16.7×10-6)含量,以及较高的Rb/Sr(1.09~1.18)和较低的Sm/Nd(0.099~0.136)比值;初始Sr同位素比值稍高,为0.704601~0.704628,Nd同位素比值也较高,εNd(t)为+7.5~+7.8。

4 岩石成因 4.1 闪长岩成因

松卡岩体的粗粒和细粒闪长岩的结晶年龄相似,并且具有相似的主微量和稀土元素以及Sr-Nd同位素地球化学特征,表明其可能来自于相似源区,具有相似的成因机制。

松卡粗粒闪长岩和细粒闪长岩都具有高镁、高Cr和Ni含量以及高Sr/Y比值等特征,但相比之下,粗粒闪长岩具有更高的MgO含量、Mg#值和Cr、Ni含量,以及稍低的Sr/Y比值,因此粗粒闪长岩可能更接近原始岩浆特征,而细粒闪长岩代表演化程度较高的岩浆(图 8c)。粗粒闪长岩和细粒闪长岩样品均具有较为平坦的HREE配分模式(图 7b),Y/Yb比值也接近于10,表明其源区残留相主要为角闪石(高永丰等,2003)。与俯冲带高镁安山岩相比,松卡闪长岩与高镁安山岩具有相似的地球化学特征(图 6c),均为中基性高镁岩石。前人实验研究表明,从玄武质岩石演化到高镁安山质岩石需要增加SiO2和MgO含量,而消耗残留体中的单斜辉石是导致熔体中SiO2和MgO含量增加的关键过程之一(Kushiro,1972Wood and Turner, 2009),因此,松卡闪长岩在其生成过程中可能消耗了源区单斜辉石,并在源区残留角闪石。在富含水岩浆分异系列中,全岩的Al2O3/TiO2和Sr/Y比值会随着SiO2的增加而上升,但在含水少或不含水的岩浆分异系列中,这些比值随着SiO2的增加而保持平坦或下降(Loucks, 2000, 2014),松卡闪长岩的Al2O3/TiO2和Sr/Y比值与SiO2呈正相关关系(图 10a, b),表明其形成于富含水的岩浆系统中,经历了消耗源区单斜辉石并在源区残留角闪石的含水岩浆演化过程。

图 10 松卡闪长岩Al2O3/TiO2-SiO2(a)、Sr/Y-SiO2(b)、Zr/Nb-Zr(c)(底图据Geng et al., 2009)、和Mg#-SiO2(d, 底图据Rapp et al., 1999)关系图 数据来源:121Ma朗县闪长岩(王莉等,2013);91Ma松卡埃达克质岩(Jiang et al., 2014) Fig. 10 Diagrams showing relationship of Al2O3/TiO2 vs. SiO2 (a), Sr/Y vs. SiO2 (b), Zr/Nb vs. Zr (c) (after Geng et al., 2009) and Mg# vs. SiO2 (d, after Rapp et al., 1999) for diorite from Songka pluton Data sources: 121Ma diorite from Langxian(Wang et al., 2013); 91Ma adakitic rocks from Songka pluton(Jiang et al., 2014)

松卡村西的松卡岩体晚白垩世闪长岩(粗粒闪长岩和细粒闪长岩)具有富钠贫钾,高Sr含量和Sr/Y比值以及低Y含量并且亏损重稀土元素的特点,在Sr/Y-Y和La/Yb-Yb图解(图 8a, b)中样品基本落入埃达克岩区域,显示了该松卡晚白垩世闪长岩具有埃达克质岩的特征。形成上述特征的过程主要包括:(1)加厚下地壳部分熔融(Chung et al., 2003; Hou et al., 2004; Wang et al., 2005);(2)拆沉或俯冲大陆下地壳部分熔融(Wang et al., 2006; Wang et al., 2008b姜子琦等, 2011);(3)玄武质母岩浆分离结晶作用(Castillo et al., 1999; Macpherson et al., 2006; Castillo, 2012);以及(4)俯冲洋壳部分熔融(Defant and Drummond, 1990Rapp et al., 1999; Defant et al., 2002; Martin et al., 2005Escuder et al., 2007)等。

首先,可排除松卡埃达克质闪长岩的加厚下地壳熔融来源。加厚镁铁质下地壳部分熔融产生的埃达克质岩石通常具有低MgO含量或Mg#值(< 40)以及低Cr、Ni含量的特征(Atherton and Petford, 1993Sen and Dunn, 1994Rapp and Watson, 1995Rapp et al., 1999)。He et al.(2011)通过对大别山高Sr/Y花岗岩类研究指出,加厚镁铁质下地壳部分熔融形成的岩石不但具有较高的Sr/Y、Sr/CaO、(Dy/Yb)N、(La/Yb)N和Nb/Ta比值,并且这些比值之间存在显著的正相关关系。相比之下,松卡闪长岩具有高的MgO(3.14%~6.83%)含量和Mg#(46.4~63.3)值,以及变化较大并且多数样品较高的Cr(9.82×10-6~133×10-6)、Ni(9.85×10-6~63.4×10-6)含量,上述比值之间也不存在正相关关系。此外,在松卡闪长岩εNd(t)-87Sr/86Sr(t)关系图解(图 9)中可以看出,松卡闪长岩并未落入藏南增厚镁铁质下地壳来源的埃达克质岩区域内。因此,以上特征表明松卡埃达克质闪长岩并非由加厚镁铁质下地壳部分熔融产生。

其次,可以排除松卡埃达克质闪长岩是拆沉或俯冲的大陆下地壳部分熔融作用产生的熔体来源。拆沉或俯冲下地壳来源的埃达克质岩石通常具有负εNd(t)值和较高的Sr同位素比值(Xu et al., 2002, 2010; Wang et al., 2006, 2008b)。松卡闪长岩显示出正的εNd(t)和较低的87Sr/86Sr(t)值,与上述机制形成的熔体特征差异较大,与拆沉或俯冲大陆下地壳部分熔融体不一致。该闪长岩形成(97Ma)时期处于新特提斯洋壳向欧亚大陆下俯冲时期,未有大陆岩石圈俯冲的记录,因此可排除拆沉或俯冲大陆下地壳部分熔融作用的成因机制。

此外,由玄武质母岩浆分离结晶产生的岩浆岩一般呈现从玄武质岩石到残留岩浆衍生的长英质岩石的SiO2含量变化较大的连续成分趋势(Castillo et al., 1999; Macpherson et al., 2006),而松卡闪长岩的SiO2含量变化范围较小,为54.27%~57.21%,与上述特征不符。在Zr/Nb-Zr图解(图 10c)中,松卡闪长岩样品显示出了部分熔融而非分离结晶的趋势,也表明分离结晶作用不是该类岩石的主要成因机制。

板片熔体与上覆地幔楔的相互作用是高Mg和高Sr/Y比中性岩石的重要机制(Sen and Dunn, 1994Kelemen,1995Rapp and Watson, 1995; Rapp et al., 1999Wood and Turner, 2009)。大量的研究已表明,藏南冈底斯带白垩纪岩浆作用(100~80Ma)是新特提斯洋向北俯冲的结果(Wen et al., 2008a, bJi et al., 2009a, b; Zhu et al., 2011; Jiang et al., 2014; 高家昊等,2017)。松卡闪长岩的富集LILE、亏损HFSE(Nb、Ta、Zr、Hf)等特征,与弧岩浆岩特征一致。松卡闪长岩具有高Mg,高Sr/Y比,较高的Cr和Ni含量,以及较低Sr但较高的Nd同位素组成,与俯冲板片熔体-地幔楔相互作用形成的岩浆岩的地球化学特征相似(Escuder et al., 2007; Wang et al., 2008a),可能代表着俯冲新特提斯洋壳部分熔融产生的熔体与地幔楔相互作用形成的产物。在Sr-Nd同位素系统特征上(图 9),松卡闪长岩大部分落入了藏南俯冲板片来源的埃达克质岩区域内,个别落入了雅鲁藏布江蛇绿岩范围内。以雅鲁藏布江蛇绿岩和印度洋深海沉积物分别作为玄武质洋壳端元和新特提斯洋沉积物成分端元进行双组份混合模拟计算(高利娥等,2009),结果表明约有90%洋壳和约8%海洋沉积物的贡献,因此推测97Ma松卡闪长岩是由新特提斯洋壳和少量海洋沉积物部分熔融派生熔体在上升过程中与上覆地幔楔发生相互作用产生的岩浆所形成。除了本文报道的闪长岩外,该岩体还包含91Ma的闪长岩(Jiang et al., 2014),与较年轻的岩石相比(图 9图 10d),97Ma的松卡闪长岩具有更高的εNd(t)和Mg#值,更接近白垩纪雅鲁藏布江蛇绿岩,需要更多的地幔物质参与。

在SiO2-Mg#关系图(图 10d)中,松卡闪长岩均位于板片熔体(1~4GPa)与高镁安山岩和高镁埃达克岩之间,更靠近高镁安山岩。松卡闪长岩具有比板片熔体(1~4GPa)更高的Mg#值,更接近与亏损地幔橄榄岩反应的板片熔体区域,与源自经历流体交代的地幔楔的朗县早白垩纪闪长岩(王莉等,2013)相重合。另外,和典型埃达克岩(Defant et al., 1992)相比,该岩体具有较高的石榴子石相容元素Sc(≥12.5×10-6)、Y(≥12.7×10-6)和HREE,以及地幔相容元素Cr(多数≥50.1×10-6)、Ni(多数≥25.9×10-6)和Co(≥23.1×10-6),指示熔体—地幔橄榄岩相互作用深度较浅,低于石榴子石稳定深度。上述特征表明松卡闪长岩并非单一的板片熔体,而是经历了不同程度的板片熔体与上覆地幔楔相互作用的产物。

4.2 花岗岩成因

松卡花岗岩稍晚于松卡闪长岩,具有低的Sr同位素比值(0.704601~0.704628)和高的Nd同位素比值(+7.5~+7.8);显示出明显的P、Ti和Eu负异常(图 7a, b),可能是由具有亏损地幔特征的中基性岩浆经过分离结晶作用演化而来(图 8c)(Castillo et al., 1999Jiang et al., 2014)。Sr和Eu在斜长石中分配系数较高,斜长石分离结晶作用是导致残留花岗质岩浆呈现Sr和Eu负异常的主要因素,可能为松卡花岗岩具有Sr和Eu负异常的主要原因;此外,花岗岩具有明显亏损MREE的特征,推测是角闪石分离结晶的结果(Castillo et al., 1999)。因此,松卡花岗岩代表着具有亏损地幔特征的中基性岩浆经历斜长石+角闪石分离结晶作用后的残留岩浆。

5 结论

(1) 藏南松卡岩体闪长岩(粗粒闪长岩和细粒闪长岩)和花岗岩的锆石U-Pb定年结果显示它们的结晶年龄分别为97Ma和93Ma,形成于晚白垩世,与新特提斯洋向北俯冲事件有关。

(2) 松卡晚白垩世闪长岩具有高Sr、低Y和高Sr/Y比的特点,显示出埃达克质岩石的特征;具有高MgO含量和Mg#值,为高镁安山岩;以及较低的87Sr/86Sr(t)(0.704164~0.704239)和高的εNd(t)(+4.6~+8.8)值,代表与地幔楔相互作用过的俯冲新特提斯洋壳和少量海洋沉积物部分熔融形成的岩浆。松卡晚白垩世花岗岩呈脉状出露于闪长岩中,具有较高的SiO2含量和P、Ti、Eu负异常,同样具有较低的87Sr/86Sr(t)(0.704601~0.704628)和较高的εNd(t)(+7.5~+7.8)值,代表具有亏损地幔特征的中基性岩浆演化的产物。

(3) 与91Ma松卡埃达克质岩石相比,97Ma松卡埃达克质闪长岩的形成具有更多地幔物质的参与。

致谢      感谢吴才来研究员和戚学祥研究员仔细审阅稿件,并提出众多建设性修改意见。

参考文献
Aitchison JC, Davis AM, Liu JB, Luo H, Malpas JG, McDermid IRC, Wu HY, Ziabrev SV and Zhou MF. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183(1-2): 231-244. DOI:10.1016/S0012-821X(00)00287-9
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146. DOI:10.1038/362144a0
Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. DOI:10.1007/s004100050467
Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135: 304-316. DOI:10.1016/j.lithos.2011.09.013
Chen FK, Siebel W, Satir M, Terzioǧlu M and Saka K. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences, 91(3): 469-481. DOI:10.1007/s00531-001-0239-6
Chen FK, Li XH, Wang XL, Li QL and Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179-1194. DOI:10.1007/s00531-006-0146-y
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024. DOI:10.1130/G19796.1
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196.
Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY and Lo CH. 2009. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36-48. DOI:10.1016/j.tecto.2009.08.008
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665. DOI:10.1038/347662a0
Defant MJ, Jackson TE, Drummond MS, De Boer JZ, Bellon H, Feigenson MD, Maury RC and Stewart RH. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica:An overview. Journal of the Geological Society, 149(4): 569-579. DOI:10.1144/gsjgs.149.4.0569
Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q and Xiao L. 2002. Adakites:Some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142.
Escuder Viruete J, Contreras F, Stein G, Urien P, Joubert M, Pérez-Estaún A, Friedman R and Ullrich T. 2007. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola:Record of a major change in the Caribbean island arc magma sources. Lithos, 99(3-4): 151-177.
Fowler MB, Kocks H, Darbyshire DPF and Greenwood PB. 2008. Petrogenesis of high Ba-Sr plutons from the northern highlands Terrane of the British Caledonian Province. Lithos, 105(1-2): 129-148.
Gao JH, Zeng LS, Guo CL, Li QL and Wang YY. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, Southern Tibet:A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa. Acta Petrologica Sinica, 33(8): 2412-2436.
Gao LE, Zeng LS, Liu J and Xie KJ. 2009. Early Oligocene Na-rich peraluminous leucogranites in the Yardoi gneiss dome, southern Tibet:Formation mechanism and tectonic implications. Acta Petrologica Sinica, 25(9): 2289-2302.
Gao YF, Hou ZQ and Wei RH. 2003. Neogene porphyries from Gangdese:Petrological, geochemical characteristics and geodynamic significances. Acta Petrologica Sinica, 19(3): 418-428.
Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K and Wu FY. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang:Implications for ridge subduction. Chemical Geology, 266(3-4): 364-389. DOI:10.1016/j.chemgeo.2009.07.001
Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS and Yuan HL. 2012. Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese batholith. Gondwana Research, 21(1): 88-99. DOI:10.1016/j.gr.2011.07.004
He YS, Li SG, Hoefs J, Huang F, Liu SA and Hou ZH. 2011. Post-collisional granitoids from the Dabie orogen:New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. DOI:10.1016/j.gca.2011.04.011
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. DOI:10.1016/S0012-821X(04)00007-X
Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD and McCuaig TC. 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. DOI:10.2113/econgeo.110.6.1541
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009a. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245. DOI:10.1016/j.chemgeo.2009.01.020
Ji WQ, Wu FY, Liu CZ and Chung SL. 2009b. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D), 52(9): 1240-1261. DOI:10.1007/s11430-009-0131-y
Jiang ZQ, Wang Q, Wyman DA, Tang GJ, Jia XH, Yang YH and Yu HX.. 2011. Origin of~30Ma Chongmuda adakitic intrusive rocks in the southern Gangdese region, southern Tibet:Partial melting of the northward subducted Indian continent crust?. Geochimica, 40(2): 126-146.
Jiang ZQ, Wang Q, Li ZX, Wyman DA, Tang GJ, Jia XH and Yang YH. 2012. . 90Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet):Slab melting and implications for Cu-Au mineralization.. Journal of Asian Earth Sciences, 53: 67-81. DOI:10.1016/j.jseaes.2012.02.010
Jiang ZQ, Wang Q, Wyman DA, Li ZX, Yang JH, Shi XB, Ma L, Tang GJ, Gou GL, Jia XH and Guo HF. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet:Evidence from the Late Cretaceous-Early Oligocene (ca.91~30Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213-231. DOI:10.1016/j.lithos.2014.03.001
Kay SM, Ramos VA and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in Southern South America. The Journal of Geology, 101(6): 703-714. DOI:10.1086/648269
Kelemen PB. 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. DOI:10.1007/BF00311004
Kushiro I. 1972. Determination of liquidus relations in synthetic silicate systems with electron probe analysis:The system forsterite-diopside-silica at 1 atmosphere. American Mineralogist, 57(7-8): 1260-1271.
Le Fort P. 1988. Granites in the tectonic evolution of the Himalaya, Karakoram and southern Tibet. Philosophical Transactions of the Royal Society, London, Series A, 326(1589): 281-299. DOI:10.1098/rsta.1988.0088
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082
Loucks RR. 2000. Report 1: Development of petrochemical discriminants of metallogenically fertile calc-alkalic igneous suites and their application to regional assessments of gold and copper prospectivity of Neogene and Quaternary volcano-plutonic centers througout Chile and in southwestern Bolivia. Unpublished Report for Industry-sponsored Research Project: Predictive Guides to Copper and Gold Mineralisation at Circum-Pacific Convergent Plate Margins, 1-73
Loucks RR. 2014. Distinctive composition of copper-ore-forming arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16. DOI:10.1080/08120099.2013.865676
Macpherson CG, Dreher ST and Thirlwall MF. 2006. Adakites without slab melting:High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. DOI:10.1016/j.epsl.2005.12.034
Martin H. 1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429.
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24.
Martin H, Moyen JF and Rapp R. 2009. The sanukitoid series:Magmatism at the Archaean-Proterozoic transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 15-33. DOI:10.1017/S1755691009016120
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242.
Nicolas A, Girardeau J, Marcoux J, Dupre B, Wang XB, Cao YG, Zheng HX and Xiao XC. 1981. The Xigaze ophiolite (Tibet):A peculiar oceanic lithosphere. Nature, 294(5840): 414-417. DOI:10.1038/294414a0
Niu XL, Zhao ZD, Mo XX, DePaolo DJ, Dong GC, Zhang SQ, Zhu DC and Guo TY. 2006. Elemental and Sr-Nd-Pb isotopic geochemistry for basic rocks from Decun-Angren ophiolites in Xigaze area, Tibet:Implications for the characteristics of the Tethyan upper mantle domain. Acta Petrologica Sinica, 22(12): 2875-2888.
Othman DB, White WM and Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94(1-2): 1-21. DOI:10.1016/0012-821X(89)90079-4
Pearce JA, Stern RJ, Bloomer SH and Fryer P. 2005. Geochemical mapping of the Mariana arc-basin system:Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006.
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356. DOI:10.1016/S0009-2541(99)00106-0
Schärer U, Xu RH and Allègre CJ. 1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth and Planetary Science Letters, 69(2): 311-320. DOI:10.1016/0012-821X(84)90190-0
Sen C and Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0GPa:Implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. DOI:10.1007/BF00307273
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tapponnier P, Mercier JL, Proust F, Andrieux J, Armijo R, Bassoullet JP, Brunel M, Burg JP, Colchen M, Dupré B, Girardeau J, Marcoux J, Mascle G, Matte P, Nicolas A, Li TD, Xiao XC, Chang CF, Lin PY, Li GC, Wang NW, Chen GM, Han TL, Wang XB, Den WM, Zhen HX, Sheng HB, Cao YG, Zhou J and Qiu HR. 1981. The Tibetan side of the India-Eurasia collision. Nature, 294(5840): 405-410. DOI:10.1038/294405a0
Tarney J and Jones CE. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society, 151(5): 855-868. DOI:10.1144/gsjgs.151.5.0855
Tatsumi Y and Ishizaka K. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, Southwest Japan:Ⅰ. Petrographical and chemical characteristics. Earth & Planetary Science Letters, 60(2): 293-304.
Wang L, Zeng LS, Gao LE, Tang SH and Hu GY. 2012. Remnant Jurassic intra-oceanic arc system in Southern Tibet:Geochemistry and tectonic implications. Acta Petrologica Sinica, 28(6): 1741-1754.
Wang L, Zeng LS, Gao LE and Chen ZY. 2013. Early Cretaceous high Mg# and high Sr/Y clinopyroxene-bearing diorite in the Southeast Gangdese batholith, Southern Tibet. Acta Petrologica Sinica, 29(6): 1977-1994.
Wang Q, McDermott F, Xu JF, Bellon H and Zhu YT. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting. Geology, 33(6): 465-468. DOI:10.1130/G21522.1
Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144. DOI:10.1093/petrology/egi070
Wang Q, Wyman DA, Xu JF, Wan YS, Li CF, Zi F, Jiang ZQ, Qiu HN, Chu ZY, Zhao ZH and Dong YH. 2008a. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet):Evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490. DOI:10.1007/s00410-007-0253-1
Wang Q, Wyman DA, Xu JF, Dong YH, Vasconcelos PM, Pearson N, Wan YS, Dong H, Li CF, Yu YS, Zhu TX, Feng XT, Zhang QY, Zi F and Chu ZY. 2008b. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171. DOI:10.1016/j.epsl.2008.04.034
Wang W, Zeng LS, Gao LE, Wang Q, Guo CL, Hou KJ and Zeng LJ. 2018. Eocene-Oligocene potassic high Ba-Sr granitoids in the Southeastern Tibet:Petrogenesis and tectonic implications. Lithos, 322: 38-51. DOI:10.1016/j.lithos.2018.10.008
Wang YY, Zeng LS, Chen FK, Cai JH, Yan GH, Hou KJ and Wang Q. 2017. The evolution of high Ba-Sr granitoid magmatism from "crust-mantle" interaction:A record from the Laoshan and Huyanshan complexes in the central North China Craton. Acta Petrologica Sinica, 33(12): 3873-3896.
Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008a. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201. DOI:10.1016/j.chemgeo.2008.03.003
Wen DR, Chung SL, Song B, Lizuka Y, Yang HJ, Ji JQ, Liu DY and Gallet S. 2008b. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11.
Wood BJ and Turner SP. 2009. Origin of primitive high-Mg andesite:Constraints from natural examples and experiments. Earth and Planetary Science Letters, 283(1-4): 59-66. DOI:10.1016/j.epsl.2009.03.032
Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China:Partial melting of delaminated lower continental crust?. Geology, 30(12): 1111-1114. DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Xu JF and Castillo PR. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere:Implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393(1-4): 9-27. DOI:10.1016/j.tecto.2004.07.028
Xu WC, Zhang HF, Guo L and Yuan HL. 2010. Miocene high Sr/Y magmatism, south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293-306.
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. DOI:10.1146/annurev.earth.28.1.211
Zeng LS, Gao LE, Xie KJ and Jing LZ. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266. DOI:10.1016/j.epsl.2011.01.005
Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM and Yuan HL. 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdise belt, Tibet:Evidence for Early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347-1353.
Zhang SQ, Mahoney JJ, Mo XX, Ghazi AM, Milani L, Crawford AJ, Guo TY and Zhao ZD. 2005. Evidence for a widespread Tethyan upper mantle with Indian-Ocean-type isotopic characteristics. Journal of Petrology, 46(4): 829-858. DOI:10.1093/petrology/egi002
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17(4): 615-631. DOI:10.1016/j.gr.2009.10.007
Zhang ZM, Dong X, Liu F, Lin YH, Yan R and Santosh M. 2012. Tectonic evolution of the Amdo Terrane, Central Tibet:Petrochemistry and zircon U-Pb geochronology. Journal of Geology, 120(4): 431-451. DOI:10.1086/665799
Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC and Liu B. 2009. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. DOI:10.1016/j.jseaes.2008.05.003
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255. DOI:10.1016/j.epsl.2010.11.005
高家昊, 曾令森, 高利娥, 赵令浩, 郭春丽, 侯可军, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用:以拉萨白堆复合岩体中-基性岩脉群为例. 岩石学报, 33(8): 2412-2436.
高利娥, 曾令森, 刘静, 谢克家. 2009. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 25(9): 2289-2302.
高永丰, 侯增谦, 魏瑞华. 2003. 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义. 岩石学报, 19(3): 418-428.
姜子琦, 王强, Wyman DA, 唐功建, 贾小辉, 杨岳衡, 喻亨祥. 2011. 西藏冈底斯南缘冲木达约30Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?. 地球化学, 40(2): 126-146.
牛晓露, 赵志丹, 莫宣学, DePaolo DJ, 董国臣, 张双全, 朱弟成, 郭铁鹰. 2006. 西藏日喀则地区德村-昂仁蛇绿岩内基性岩的元素与Sr-Nd-Pb同位素地球化学及其揭示的特提斯地幔域特征. 岩石学报, 22(12): 2875-2888.
王莉, 曾令森, 高利娥, 唐索寒, 胡古月. 2012. 藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义. 岩石学报, 28(6): 1741-1754.
王莉, 曾令森, 高利娥, 陈振宇. 2013. 藏南冈底斯岩基东南缘早白垩世高镁-高Sr/Y含单斜辉石闪长岩. 岩石学报, 29(6): 1977-1994.
王亚莹, 曾令森, 陈福坤, 蔡剑辉, 阎国翰, 侯可军, 王倩. 2017. "壳-幔"混合成因高Ba-Sr花岗质岩浆演化——以华北克拉通中部带老山和狐偃山岩体为例. 岩石学报, 33(12): 3873-3896.
张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347-1353. DOI:10.3969/j.issn.1000-0569.2007.06.011