岩石学报  2019, Vol. 35 Issue (2): 439-454, doi: 10.18654/1000-0569/2019.02.11   PDF    
藏南冈底斯岩基日多地区花岗岩体形成时代和地球化学特征
王海涛1 , 曾令森1 , 高利娥1 , 胡昭平1 , 王亚飞1 , 赵令浩1,2 , 高家昊1 , 徐倩1     
1. 自然资源部深部动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 中国地质科学院国家地质实验测试中心, 北京 100037
摘要:冈底斯岩基广泛发育三叠纪-中新世的岩浆岩,是研究与新特提斯洋北向俯冲和印度-欧亚大陆碰撞相关的构造岩浆作用特征的天然实验室。日多地区花岗岩体位于藏南墨竹工卡县东侧日多乡附近,其主体为花岗岩,被花岗闪长玢岩脉侵入。锆石U-Pb地质年代学表明:主体花岗岩形成于62.7±0.5Ma,侵入其中的花岗闪长玢岩脉形成于59.5±1.5Ma,并捕获了大量的侏罗纪岩浆岩锆石(155.4±1.8Ma)。日多地区花岗岩体的全岩地球化学特征为:(1)高SiO2、Na2O、Al2O3,低FeOT、MgO、TiO2;(2)富集轻稀土(LREE),亏损重稀土(HREE)及高场强元素Nb、Ta、Ti、P元素;(3)具有Eu负异常,总体显示高钾钙碱性、过铝质花岗岩和岛弧型岩浆岩特征。锆石Hf同位素特征暗示其岩浆源区为基性下地壳物质。花岗闪长玢岩脉裹挟大量侏罗纪岩浆型锆石,表明冈底斯岩基拉萨以东地区可能经历了较广泛的晚侏罗世岩浆作用。
关键词: 冈底斯岩基     新特提斯洋俯冲作用     锆石U-Pb年龄     侏罗纪岩浆作用    
Timing and geochemical characteristics of the Riduo granitic pluton within the Gangdese batholith, southern Tibet
WANG HaiTao1, ZENG LingSen1, GAO LiE1, HU ZhaoPing1, WANG YaFei1, ZHAO LingHao1,2, GAO JiaHao1, XU Qian1     
1. Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Gangdese batholith consists of different magmatic rocks with ages ranging from Late Triassic to Mid-Miocene, which provide important records to investigate the tectono-magmatic processes associated with the northward subduction of the Neo-Tethyan oceanic lithosphere as well as with the Indian-Eurasian continental collision. The Riduo pluton, near the Riduo town to the east of Maizhokunggar County, consists of coarse grained granites and granodoritic dikes. Zircon U-Pb dating reveals that the granite and the dikes were formed at 62.7±0.5Ma and 59.5±1.5Ma, respectively. In addition, the granodoritic dikes captured a number of zircon grains crystallized at 155.4±1.8Ma, probably from the Jurassic magmatic rocks. The Riduo granitic rocks are characterized by:1) high SiO2, Na2O and Al2O3, but low FeOT, MgO and TiO2; 2) enrichment of LREE and LILE, but depletion of HREE and HFSE (Nb, Ta, and Ti); and 3) pronounced Eu negative abnormality. These features indicate that the Riduo granites belong to high-K, calc-alkaline and peraluminous granite with an island arc affinity. Zircon Hf isotopic compositions suggest that they are derived from melting of young lower crustal rocks. Jurassic zircon grains captured by the granodoritic dikes imply that the Gangdese batholith to the east of Lhasa could experience more widespread magmatism during the Jurassic time than those previously thought.
Key words: Gangdese batholith     Neo-Tethyan subduction     Zircon U-Pb age     Jurassic magmatism    

冈底斯岩基位于雅鲁藏布江缝合带北侧,呈东西向展布,长达2000多千米,由各类岩浆岩组成(Schärer et al., 1984Harrison et al., 2000侯增谦等,2006; Chung et al., 2009Wu et al., 2010, 2014Zhu et al., 2013Mo et al., 2015Xu et al., 2015a, b曾令森和高利娥,2017),是研究新特提斯洋演化和印度-欧亚大陆碰撞的关键地区。目前冈底斯岩基已有220 ~10Ma的岩浆记录,且均有年龄报道(Wen et al., 2008aJi et al., 2009Guo et al., 2013Wu et al., 2014)。但是冈底斯岩浆作用详细的时空演化规律依然是人们研究的热点课题,尤其是冈底斯岩基早期形成演化过程目前仍然没有定论(McDermid et al., 2002Chu et al., 2006张宏飞等,2007Wen et al., 2008bJi et al., 2009王莉等,2012Guo et al., 2013Kang et al., 2014Lang et al., 2014黄丰等,2015邱检生等,2015熊秋伟等,2015Wang et al., 2016Wei et al., 2017曾令森和高利娥,2017)。现今冈底斯岩基的岩石露头主要由晚白垩世和古近纪的侵入岩(Quidelleur et al., 1997李皓揚等,2007Wen et al., 2008aJi et al., 2009Jiang et al., 2014Lang et al., 2014Meng et al., 2014Xu et al., 2015aMa et al., 2016)、侏罗纪侵入岩(大竹卡:Wen et al., 2008bJi et al., 2009;泽当岩体:McDermid et al., 2002王莉等,2012;南木林:Chu et al., 2006;雄村:王亮亮等,2006曲晓明等,2007Lang et al., 2014;尼木:张宏飞等,2007Guo et al., 2013;东嘎:邱检生等,2015;汤白:Guo et al., 2013)和侏罗纪桑日群和叶巴组火山岩(董彦辉,2006Kang et al., 2014黄丰等,2015熊秋伟等,2015Wang et al., 2016Ma et al., 2017, 2018Wei et al., 2017)等组成。虽然侏罗纪和早白垩世岩浆岩露头有限(Chu et al., 2006张宏飞等,2007闫晶晶等,2017),但是日喀则弧前盆地沉积岩的碎屑锆石含大量侏罗纪岩浆锆石(Wu et al., 2010),同时该盆地中的早白垩世辉绿岩脉也裹挟了侏罗纪岩浆锆石(曾令森等,2017),表明冈底斯岩基可能经历了广泛的侏罗纪岩浆作用。冈底斯岩基发育大量的辉长/辉绿质-花岗质岩脉,这些岩脉在上侵过程中,常常裹挟来源于源区或围岩的锆石,为揭示现今剥露层次下的岩石组成和地球化学特征提供了重要的证据。日多地区花岗岩体主要由粗粒花岗岩和侵入其中的花岗闪长玢岩脉组成(图 1),是研究日多地区的岩浆作用和深部岩石组成的重要材料。

图 1 青藏高原简化大地构造图(a,据Zhai et al., 2016)和日多地区花岗岩体地质简图(b) KSZ:昆仑缝合带;JSZ:金沙江缝合带; LSSZ:龙木错-双湖缝合带;BNSZ:班公湖-怒江缝合带;IYSZ:印度-雅鲁藏布江缝合带 Fig. 1 Tectonic framework of the Tibet Plateau (a, after Zhai et al., 2016) and geological sketch map of the granitic pluton from the Riduo area (b)

本文就日多花岗岩及岩脉开展了锆石U-Pb年代学、全岩地球化学和锆石Hf同位素的研究,结合区域地质资料,来确定日多花岗岩及其岩脉的形成时代和地球化学特征,探讨冈底斯岩基的早期形成演化特征。

1 地质背景

日多地区花岗岩体出露于西藏拉萨市墨竹工卡县日多乡西侧,大地构造位置上处于雅鲁藏布江缝合带北侧和冈底斯岩基东段(图 1b)。研究区出露的岩浆岩主要包括:晚白垩世花岗闪长岩、英云闪长岩,古新世黑云二长花岗岩及花岗闪长玢岩脉,渐新世钾长花岗岩和晚白垩世-古近纪林子宗组火山岩;沉积岩包括晚侏罗世-早白垩世林布宗组石英砂岩、粉砂岩与泥质板岩互层,早白垩世楚木龙组石英砂岩和第四系沉积物(西藏自治区地质矿产局,1993)。

花岗岩以粗粒花岗岩为主,被宽度为2~3m、近东西向产出的中细粒花岗闪长玢岩脉侵入(图 2a)。花岗闪长玢岩脉为灰白色,斑状结构,斑晶为石英、斜长石(粒径为1~6mm)以及角闪石,角闪石呈针柱状产出,粒径长度为3~8mm,灰黑色,半透明,基质以颗粒细小的石英和长石类矿物居多。组成矿物为石英(20%~25%)、钾长石(15%~25%)、斜长石(20%~30%)、角闪石(>5%)和黑云母(>5%)(图 2c)。偏光显微镜下石英多为半自形-他形粒状。斜长石发生强烈蚀变,晶形已不完整。角闪石呈针柱状产出,自形-半自形。黑云母呈片状,单偏光镜下呈深褐色。其中还可见细粒-微晶条带状白云母以及磁铁矿(图 2e)。花岗岩为浅黄白色,似斑状结构,斑晶为石英、钾长石、斜长石和黑云母,粒径约为5~8 mm,基质主要由细粒的石英、长石类和云母类矿物组成。主要组成矿物为石英(20%~25%)、钾长石(35%~40%)、斜长石(15%~25%)、白云母(>5%)、黑云母(>5%),还可见少量锆石、磷灰石、磁铁矿等副矿物(图 2b)。偏光显微镜下,其中石英多为半自形-他形粒状。斜长石牌号(An)较低,具负突起,呈自形-半自形产出,具聚片双晶,部分斜长石表面可见绢云母和土状物质(如高岭石)等蚀变产物。钾长石多呈自形-半自形产出。白云母多呈片状,具平行消光。黑云母亦呈片状,单偏光镜下呈深褐色,多色性明显(图 2d)。

图 2 日多地区花岗岩体的野外照片和显微照片 (a)花岗闪长玢岩脉穿插在花岗岩中;(b)花岗岩野外露头;(c)花岗闪长玢岩脉野外露头;(d)花岗岩显微照片;(e)花岗闪长玢岩脉显微照片.Q-石英;Pl-斜长石;Kfs-钾长石;Ms-白云母;Bt-黑云母;Hbl-角闪石 Fig. 2 Field photographs and microphotographs of the granitic pluton in the Riduo area, southern Tibet (a) coarse grained granite intruded by granodioritic dikes; (b) outcrop of granite; (c) outcrop of the granodioritic dike; (d) micrograph of granite; (e) micrograph of the granodioritic dike
2 测试方法 2.1 锆石LA-MC-ICP-MS U-Pb测年

为确定日多花岗岩和花岗闪长玢岩脉的形成年代,本次工作采集了代表性花岗闪长玢岩脉(T0889-D)和花岗岩(T0889-G)样品,并从中挑选锆石,经过制靶和抛光过程,再进行阴极发光(CL)和扫描电镜背散射(BSE)成像观察,揭示锆石的内部结构。阴极发光成像在中国地质科学院地质研究所北京离子探针中心进行。在中国地质科学院地质研究所自然资源部深部动力学重点实验室拍摄BSE图像并测试锆石内部包裹体的成分。通过对照阴极发光和BSE图像,鉴别锆石不同生长域差异特征,选取锆石U-Pb测试点。锆石U-Pb同位素定年测试在中国地质科学院矿产资源研究所成矿作用与资源评价重点实验室进行。所用仪器为德国Finnigan公司生产的Neptune型激光多接收等离子体质谱(LA-MC-ICPMS),并结合美国New Wave公司生产的UP213nm激光剥蚀系统,激光剥蚀所用束斑直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,载气为He。U和Th含量以锆石标样M127为外标进行校正。离线处理数据采用软件ICPMSDataCal完成(Liu et al., 2010),锆石年龄谐和图用Isoplot 3.0程序获得(Ludwig,2003)。测试结果见表 1

表 1 藏南日多地区花岗岩体锆石LA-ICP-MS U-Pb同位素测试结果 Table 1 LA-ICP-MS zircon U-Pb analytical results for the granites from the Riduo area, southern Tibet
2.2 全岩地球化学分析

主量元素和微量元素的测试在自然资源部国家地质实验测试中心进行。主量元素通过XRF(X荧光光谱仪3080E)方法测试,分析精度为5%。微量元素和稀土元素(REE)通过等离子质谱仪(ICP-MS-Excell)分析,含量大于10×10-6的元素的测试精度为5%,而小于10×10-6的元素精度为10%。个别在样品中含量低的元素,测试误差大于10 %。测试结果见表 2

表 2 藏南日多地区花岗岩体主量元素(wt%)、微量元素(×10-6)分析结果 Table 2 Analysis results of major element (wt%) and trace element (×10-6) for the granites from the Riduo area, southern Tibet
2.3 锆石Hf同位素测试

锆石Hf同位素测试是在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室Neptune多接收等离子质谱和Newwave UP213紫外激光剥蚀系统(LA-MC-ICP-MS)上完成的,实验室采用He作为剥蚀物质载气,根据锆石大小选择剥蚀直径为55mm或40mm,测定时所用参考物质为锆石国际标样GJ1和Plesovice,测试点与U-Pb定年测试点在同一位置。相关仪器运行条件及详细分析流程见侯可军等(2007)。测试结果见表 3

表 3 藏南日多地区花岗岩体锆石Hf同位素分析结果 Table 3 Analytical results of zircon Hf isotopic compositions of the granite from the Riduo areas, southern Tibet
3 数据与结果 3.1 锆石U-Pb年代学结果

本次选取的花岗闪长玢岩脉(T0889-D)中锆石呈自形-半自形,短柱状或粒状,长为80~200μm,长短轴比为1:1~2:1。CL图像显示锆石发育典型的岩浆成因震荡环带,且环带较宽,部分锆石保留有残留核和变质边( <20μm),所有测点均位于震荡环带上(图 3a)。锆石主要有两组加权平均年龄:第一组(年轻组)锆石Th和U含量分别为160×10-6~506×10-6和110×10-6~1459×10-6,Th/U值介于0.3~1.8之间;第二组(较老组)锆石Th和U含量分别为116×10-6~377×10-6和149×10-6~578×10-6,Th/U值介于0.4~1.1之间,这两组锆石均具有岩浆成因锆石特征(Hoskin and Schaltegger, 2003)。第一组年龄的测试部位多为边部环带(图 3a),锆石206Pb/238U加权平均年龄为59.5±1.5Ma(N=8,MSWD=1.4)(图 4a, b)。第二组年龄的测试部位以锆石幔部的震荡环带为主,少量点分布于核部(图 3a),锆石206Pb/238U加权平均年龄为155.4±1.8Ma(N=14,MSWD=2.6)(图 4c, d)。此外,少量锆石核部记录较老的年龄,谐和度均大于95%,可能代表早期的岩浆记录。由于岩脉中锆石颗粒小,且边部较薄,少量点谐和度小于95%,为无效混合年龄。

图 3 日多地区花岗岩体T0889-D(a)和T0889-G(b)中锆石的阴极发光照片 实线小圆圈表示206Pb/238U年龄分析点,虚线大圆圈表示Hf同位素分析点 Fig. 3 Cathodoluminescence (CL) showing the texture, spot, and respective age of zircon U-Pb dating for the granitic pluton T0889-D (a) and T0889-G (b) from the Riduo area Solid and dashed circles show the locations of U-Pb dating and Hf analyses, respectively

图 4 日多地区花岗岩体T0889-D(a-d)和T0889-G(e、f)中锆石LA-ICP-MS U-Pb定年谐和图和对应的加权平均年龄 Fig. 4 U-Pb concordia diagrams and weighted average age diagrams for the granitic pluton T0889-D (a-d) and T0889-G (e, f) from the Riduo area

花岗岩(T0889-G)中锆石呈自形-半自形,短柱状或粒状,长为100~200μm,长短轴比为1:1~2:1。CL图像显示锆石发育典型的岩浆成因震荡环带,所有测点均位于震荡环带上(图 3b)。锆石Th和U含量分别为58.2×10-6~361×10-6和70.9×10-6~631×10-6,Th/U值介于0.6~3.3之间,均大于0.1,具有岩浆成因锆石特征(Hoskin and Schaltegger, 2003)。花岗岩中获得锆石206Pb/238U加权平均年龄为62.7±0.5Ma(N=18,MSWD=1.17)(图 4e, f),代表该岩石的结晶年龄。

3.2 全岩地球化学结果

花岗闪长玢岩脉(T0889-D和T0889-15)具有以下地球化学特征:(1)SiO2含量在68.3%~69.9%之间,Al2O3含量较高,为15.5%~16.1%(图 5b);(2)FeOT(2.01%~2.20%)、MgO(0.62%~0.73%)、TiO2(0.34%~0.36%)的含量均较高(图 5a, c, e);(3)CaO(2.19%~2.75%)和Na2O(4.05%~5.15%)的含量较高(图 5f, i),K2O的含量较低,为2.48%~3.17%(图 5h);(4)Mg#(=MgO/(FeO+MgO))介于33.4~38.0之间;(4)稀土元素总量为99×10-6~139×10-6,轻重稀土分馏明显((La/Yb)N=8.06~12.2),富集轻稀土(LREE),相对亏损重稀土(HREE),但是HREE曲线相对平直((Gd/Yb)N=1.31~1.62)(图 6);(5)Eu/Eu*值介于0.75~0.84之间,具有微弱的Eu负异常;(6)Ba(534×10-6~664×10-6)、Sr(270×10-6~419×10-6)和La(19.7×10-6~32.5×10-6)含量较高,但是Y(14.7×10-6~17.9×10-6)、Yb(1.70×10-6~1.90×10-6)和Sc(2.90×10-6~3.33×10-6)含量较低;(7)Sr/Y(17.5~26.4)和La/Yb(11.5~17.3)比值较高;(8)富集Rb、Ba、Th、U、K等大离子亲石元素,Nb、Ta、Ti、P等高场强元素含量较低,具有明显的Nb、Ti、P负异常。Zr/Hf值(35.0~44.8)与球粒陨石相近,Nb/Ta值(10.7~12.5)比球粒陨石低。

图 5 日多地区花岗岩体T0889系列的TiO2 (a)、Al2O3 (b)、FeOT (c)、MnO (d)、MgO (e)、CaO (f)、P2O5 (g)、K2O (h)、Na2O (i)与SiO2的关系图解 Fig. 5 Major oxides of TiO2 (a), Al2O3 (b), FeOT (c), MnO (d), MgO (e), CaO (f), P2O5 (g), K2O(h) and Na2O(i) plotted against SiO2 for the granitic pluton T0889 series from the Riduo area

图 6 日多地区花岗岩体T0889系列球粒陨石标准化稀土元素配分图解(a)和原始地幔标准化蜘蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized rare earth element distribution patterns (a) and primitive mantle-normalized trace element (b) for the granitic pluton T0889 series from the Riduo area (normalization values after Sun and McDonough, 1989)

与花岗闪长玢岩脉相比,花岗岩(T0889-G)在主量元素具有以下地球化学特征(图 5):(1)SiO2含量较高,在74.2%~76.9%之间,Al2O3为12.5%~13.8%;(2)FeOT(0.67%~0.76%)、MgO(0.16%~0.20%)、TiO2(0.10%~0.12%)都较花岗闪长玢岩脉低;(3)Na2O(3.49%~4.18%)和K2O(3.63%~4.34%)较高,CaO(0.28%~0.13%)的含量较低;(4)Mg#介于27.3~33.7之间。微量元素地球化学特征如下(图 6):(1)稀土元素总量为58.2×10-6~71.9×10-6,轻重稀土分馏明显((La/Yb)N =3.34~5.06),富集轻稀土(LREE),相对亏损重稀土(HREE),但是HREE曲线相对平直((Gd/Yb)N =0.92~1.08);(2)明显的Eu负异常(Eu/Eu*=0.32~0.41);(3)Ba(362×10-6~493×10-6)、Y(16.3×10-6~23.7×10-6)和Yb(1.72×10-6~2.51×10-6)含量较高,但是Sr(65.0×10-6~117×10-6)、La(10.7×10-6~14.3×10-6)和Sc(3.27×10-6~4.37×10-6)含量较低;(4)较低的Sr/Y(3.98~6.38)和La/Yb(4.74~7.19);(5)富集Rb、Ba、Th、U、K等大离子亲石元素,Nb、Ti、P等高场强元素含量较低,具有明显的Nb、Ta、Zr、Ti、P负异常。Zr/Hf值(21.9~23.7)和Nb/Ta值(9.03~12.0)较低。

3.3 锆石Hf同位素结果

由于花岗闪长玢岩脉锆石最后一期增生边较窄,只有少数边部锆石可以获取有效的Hf同位素组成。T0889-D样品中锆石的两组加权平均年龄和对应的Hf同位素值如下(图 7):第一组,年龄为59.5±1.5Ma,176Lu/177Hf值为0.001723~0.002180,具有正的εHf(t)值(+7.4~+9.4),锆石Hf同位素的两阶段模式tDMC为530~660Ma。第二组,年龄为155.4±1.8Ma,176Lu/177Hf值为0.001440~0.002939,具有正的εHf(t)值(+5.4~+6.4),锆石Hf同位素的两阶段模式tDMC为795~858Ma。几颗老锆石的176Lu/177Hf值较小,具有负的εHf(t)值,两阶段模式年龄为早-中元古代。

图 7 藏南冈底斯带花岗岩εHf(t)-年龄图解 (a)日多地区花岗岩体;(b)晚三叠世-古新世花岗岩 Fig. 7 Plots of εHf(t) vs. U-Pb ages for granites of Gangdese batholith from southern Tibet (a) diagram of Riduo granitic pluton; (b) diagram of granites from Late Triassic to Paleocene

花岗岩T0889-G的加权平均年龄为62.7±0.5Ma,176Lu/177Hf值为0.001224~0.003543,具有正的εHf(t)值(+4.1~+8.2)(图 7),锆石Hf同位素的两阶段模式年龄较老,tDMC=611~872Ma。

4 讨论 4.1 日多花岗岩和花岗闪长玢岩脉的形成时代

前人对日多地区花岗岩体尚未开展系统研究,但是对冈底斯南缘花岗岩开展了大量年代学及地质、地球化学方面的研究(Copeland et al., 1987Hou et al., 2004Dong et al., 2005Kapp et al., 2005莫宣学等, 2005Chu et al., 2006张宏飞等, 2007Wen et al., 2008bZhu et al., 2008Chung et al., 2009Ji et al., 2009Guo et al., 2013Lang et al., 2014Jiang et al., 2014Xu et al., 2015aMa et al., 2016)。本文锆石U-Pb年代学结果表明:日多花岗岩和花岗闪长玢岩脉形成年龄分别为62.7±0.5Ma和59.5±1.5Ma,代表着新特提斯洋北向俯冲背景下产生的两次岩浆侵入作用。花岗闪长玢岩脉包含侏罗纪岩浆岩(155.4±1.8Ma)的锆石年龄记录,表明日多地区除了~180Ma叶巴组火山岩(熊秋伟等,2015)为代表的弧岩浆作用外,还经历了晚侏罗世岩浆作用。在南冈底斯的其他地区也有大量晚三叠世-侏罗纪花岗岩露头(大竹卡: 152~205Ma,Ji et al., 2009;170Ma,Guo et al., 2013;泽当岩体: 163~152Ma,McDermid et al., 2002;157Ma,王莉等,2012;南木林: 188Ma,Chu et al., 2006;雄村: 172~161Ma,Lang et al., 2014;195~175Ma,曲晓明等,2007;尼木: 180Ma,Guo et al., 2013;178Ma,张宏飞等,2007;东嘎: 180~177Ma,邱检生等,2015;汤白,174~168Ma,Guo et al., 2013),暗示这期岩浆活动从晚三叠世开始一直持续到晚侏罗世。

4.2 岩石成因

研究区花岗闪长玢岩脉SiO2含量小于69.9%,K2O的含量(2.48%~3.17%)较低,CaO(2.19%~2.75%)和Na2O(4.05%~5.15%)的含量较高,K2O/Na2O<1,Al2O3为15.5%~16.1%(图 5),A/CNK>1.0(仅1个样品为0.99),具有高钾钙碱性、过铝质花岗岩的特征(图 8a, b)。微量元素方面,富集Rb、Ba、Th、U、K等大离子亲石元素,亏损Nb、Ta、Ti、P等高场强元素(图 6b),表现出弧型钙碱性岩浆作用的特征。稀土元素球粒陨石标准化图解显示LREE分馏明显而HREE分馏不明显,具有Eu的弱负异常(图 6a)。Sr和Eu元素含量较低可能与斜长石分离结晶或源区残留有关。P的亏损主要受磷灰石等富磷矿物分离结晶作用的影响(图 5g)。日多花岗闪长玢岩脉具有高Ba(534×10-6~664×10-6)、Sr(270×10-6~419×10-6)和低Rb(76.7×10-6~111×10-6)的特征,Rb/Sr值与Ba含量无相关关系(图 8c),较低的Rb/Sr比值和富集Ba元素暗示上地壳物质并非花岗闪长玢岩脉的岩浆源区,同时正的εHf(t)值(图 7b)暗示源岩为基性岩,可能为下地壳物质。Zr和Hf呈正相关关系,且Zr/Hf比值(35.0~44.8)总体上与球粒陨石相近(图 8d, e),表明源区成分以基性岩为主,且在后期演化过程没有发生明显分馏。Nb/Ta比值(10.7~12.5)低于球粒陨石(图 8d, f),Nb和Ta贮存于富Ti矿物(如角闪石和黑云母)中(Stepanov and Hermann, 2013Gao et al., 2017高利娥等,2017),发生部分熔融时Ta比Nb更容易进入熔体,导致Nb/Ta比值降低。以上分析得出,花岗玢岩脉形成于基性下地壳的部分熔融,并伴有锆石、磷灰石、角闪石和黑云母的分离结晶作用。

图 8 日多地区花岗岩体T0889系列的A/NK-A/CNK (a)、K2O-SiO2(b)、Rb/Sr-Ba (c)、Nb/Ta-Zr/Hf (d)、Hf-Zr (e)和Ta-Nb(f)的关系图解 Fig. 8 Major and trace elements concentrations and ratios of A/NK vs. A/CNK (a), K2O vs. SiO2(b), Rb/Sr vs. Ba (c), Nb/Ta vs. Zr/Hf (d), Hf vs. Zr (e) and Ta vs. Nb (f) for the granitic pluton T0889 series from the Riduo area

与花岗闪长玢岩脉相比,花岗岩(SiO2>74.2%)表现出高硅演化花岗岩的特征,除K2O以外,其它主量元素含量均低于花岗闪长玢岩脉。轻重稀土分馏程度较低,其特征与花岗闪长玢岩脉相似,同时具有明显Eu负异常(图 6a),微量元素的特征与花岗闪长玢岩脉相似(图 6b)。花岗岩中Zr/Hf比值较均匀,为21.9~23.7,但明显低于花岗闪长玢岩脉和球粒陨石。郭春丽等(2017)对比分析普通花岗岩和含矿花岗岩的Zr、Hf含量和Zr/Hf比值的差异,认为随着岩浆分异作用的不断增强,花岗质岩浆结构不断变化,在达到熔体—流体相互作用阶段时,锆石和铪石的溶解性为也会发生变化,虽然Zr和Hf在高硅演化花岗质岩浆中的溶解度都升高,但是Hf溶解度明显高于Zr的溶解度(Linnen and Keppler, 2002),导致熔体的Zr/Hf比值逐渐变低(图 8d, e)。花岗岩的Nb/Ta比值(9.03~12.0)低于球粒陨石(图 8d, f),但高于高硅演化花岗质岩石(高利娥等,2017)。在花岗质岩浆演化过程中,Nb和Ta的含量及其系统关系主要受富Ti矿物(如角闪石和黑云母)控制(Stepanov and Hermann, 2013Gao et al., 2017高利娥等,2017)。随着花岗质岩浆逐渐向高硅演化过程中,富Ti矿物的分异作用逐渐增强,Ta比Nb更容易进入熔体,导致Nb/Ta比值降低。以上分析得出,花岗岩具有高硅演化花岗岩的特征,岩浆经历了磷灰石、角闪石和黑云母的分离结晶作用。

4.3 源区特征

日多花岗闪长玢岩脉的Ba、Sr和Rb的含量与Rb/Sr比值暗示花岗闪长玢岩脉源区并非上地壳物质(图 8c)。花岗闪长玢岩脉裹挟的晚侏罗世锆石与其他侏罗纪花岗岩锆石均具有正的εHf(t)值(Ji et al., 2009Wu et al., 2010Guo et al., 2013邱检生等,2015),但日多花岗闪长玢岩脉的侏罗纪锆石εHf(t)值(+5.4~+6.4)略低,两阶段模式年龄(tDMC=759~858Ma)略高,可能是基性下地壳在部分熔融过程中混入少量沉积岩组分。若以t=59.5Ma来重新计算晚侏罗世(第二组)锆石εHf(t)值,发现其演化趋势与冈底斯带花岗岩一致(图 7b),εHf(t)值都是从老到新逐渐减小,因此我们认为晚侏罗世岩浆岩可能是~60Ma花岗岩的源区。

此外,日多地区侏罗纪花岗岩尚未剥露出地表,而日喀则侏罗纪花岗岩已经剥蚀殆尽,仅在弧前盆地碎屑岩和辉绿岩脉中保留侏罗纪岩浆锆石(Wu et al., 2010曾令森和高利娥,2017),可见冈底斯岩基经历了差异剥蚀作用,因此,推测日多地区花岗岩体下部可能存在晚侏罗世岩浆岩体。

冈底斯岩基不同时代和不同地球化学特征的岩浆岩是新特提斯洋北向俯冲及印度-亚洲大陆碰撞相关深部构造岩浆作用的结果。从晚三叠世-侏罗纪(220~150Ma),新特提斯洋向北俯冲引发地幔楔及其上覆基性下地壳部分熔融和岩浆演化,形成辉长岩-花岗岩一系列岩浆岩(Chu et al., 2006董彦辉等,2006曲晓明等,2007张宏飞等,2007Zhu et al., 2008杨志明等,2008; Ji et al., 2009Tafti et al., 2009Guo et al., 2013邱检生等,2015)。冈底斯东段日多地区古新世岩脉(59.5Ma)中裹挟了侏罗纪锆石年龄信息(155.4Ma),与日喀则盆地内日喀则群碎屑锆石中获得的岩浆作用年龄(Wu et al., 2010)时代一致,说明冈底斯岩基可能存在较广泛的侏罗纪岩浆岩体。在冈底斯岩基东段(如日多地区)和中段(如日喀则盆地)中间是否存在晚侏罗世花岗岩露头,需要开展进一步的研究。

5 结论

(1) 日多地区花岗岩的形成时代为62.7±0.5Ma,其中的花岗闪长玢岩脉形成于59.5±1.5Ma,并包含侏罗纪岩浆锆石(155.4±1.8Ma)。

(2) 花岗闪长玢岩脉均为高钾钙碱性、过铝质花岗岩,具有岛弧型岩浆岩特征,源岩主要为基性下地壳物质,岩浆经历了锆石、磷灰石、角闪石和黑云母的分离结晶作用。花岗岩具有高硅演化花岗岩的特征,源岩以基性下地壳物质为主,且熔体也经历了磷灰石、角闪石和黑云母的分离结晶作用。

(3) 古新世岩浆作用代表着新特提斯洋持续北向俯冲背景下产生的两次岩浆侵入作用。日多地区花岗岩体下部可能存在晚侏罗世岩浆岩体。

致谢      感谢吴才来研究员和戚学祥研究员详细审稿并对本文提出宝贵修改意见。

参考文献
Bureau of Geology and Mineral Resources of Tibet Autonomous Region. 1993. Regional Geology of Tibet Autonomous Region. Beijing: Geological Publishing House.
Chu MF, Chung SL, Song B, Liu DY, O'Reilly SY, Pearson NJ, Ji JQ and Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748. DOI:10.1130/G22725.1
Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY and Lo CH. 2009. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36-48. DOI:10.1016/j.tecto.2009.08.008
Copeland P, Harrison TM, Kidd WSF, Xu RH and Zhang YQ. 1987. Rapid Early Miocene acceleration of uplift in the Gangdese Belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India-Asia collision. Earth and Planetary Science Letters, 86(2-4): 240-252. DOI:10.1016/0012-821X(87)90224-X
Dong GC, Mo XX, Zhao ZD, Guo TY, Wang LL and Chen T. 2005. Geochronologic constraints on the magmatic underplating of the gangdisê belt in the india-eurasia collision:Evidence of shrimp Ⅱ zircon U-Pb dating. Acta Geologica Sinica, 79(6): 787-794. DOI:10.1111/acgs.2005.79.issue-6
Dong YH, Xu JF, Zeng QG, Wang Q, Mao GZ and Li J. 2006. Is there a Neo-Tethys' subduction record earlier than arc volcanic rocks in the Sangri Group?. Acta Petrologica Sinica, 22(3): 661-668.
Gao LE, Zeng LS and Asimow PD. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources:The Himalayan leucogranites. Geology, 45(1): 39-42.
Gao LE, Gao JH, Zhao LH, Hou KJ and Tang SH. 2017. The Miocene leucogranite in the Nariyongcuo Gneiss Dome, southern Tibet:Products from melting metapelite and fractional crystallization. Acta Petrologica Sinica, 33(8): 2395-2411.
Guo CL, Zeng LS, Gao LE, Su HZ, Ma XH and Yin B. 2017. Highly fractionated grantitic minerals and whole-rock geochemistry prospecting markers in hetian, Fujian Province. Acta Geologica Sinica, 91(8): 1796-1817.
Guo LS, Liu YL, Liu SW, Cawood PA, Wang ZH and Liu HF. 2013. Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet:Implications for early history of the Neo-Tethys. Lithos, 179: 320-333. DOI:10.1016/j.lithos.2013.06.011
Harrison TM, Yin A, Grove M, Lovera OM, Ryerson FJ and Zhou XH. 2000. The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet. Journal of Geophysical Research, 105(B8): 19211-19230. DOI:10.1029/2000JB900078
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62.
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604.
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. DOI:10.1016/S0012-821X(04)00007-X
Hou ZQ, Qu XM, Yang ZS, Meng XJ, Li ZQ, Yang ZM, Zheng MP, Zheng YY, Nie FJ, Gao YF, Jiang SH and Li GM. 2006. Metallogenesis in Tibetan collisional orogenic belt:Ⅲ.Mineralization in post-collisional extension setting. Mineral Deposits, 25(6): 629-651.
Huang F, Xu JF, Chen JL, Kang ZQ and Dong YH. 2015. Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group:Products of continental marginal arc and intra-oceanic arc during the subduction of Neo-Tethys Ocean?. Acta Petrologica Sinica, 31(7): 2089-2100.
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245. DOI:10.1016/j.chemgeo.2009.01.020
Jiang ZQ, Wang Q, Wyman DA, Li ZX, Yang JH, Shi XB, Ma L, Tang GJ, Gou GN, Jia XH and Guo HF. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet:Evidence from the Late Cretaceous-Early Oligocene (91~30Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213-231. DOI:10.1016/j.lithos.2014.03.001
Kang ZQ, Xu JF, Wilde SA, Feng ZH, Chen JL, Wang BD, Fu WC and Pan HB. 2014. Geochronology and geochemistry of the Sangri Group volcanic rocks, Southern Lhasa Terrane:Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200-201: 157-168. DOI:10.1016/j.lithos.2014.04.019
Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bulletin, 117(7-8): 865-878.
Lang XH, Tang JX, Li ZJ, Huang Y, Ding F, Yang HH, Xie FW, Zhang L, Wang Q and Zhou Y. 2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622. DOI:10.1016/j.jseaes.2013.08.009
Lee HY, Chung SL, Wang YB, Zhu DC, Yang JH, Song B, Liu DY and Wu FY. 2007. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet:Evidence from zircon U-Pb dates and Hf isotopes. Acta Petrologica Sinica, 23(2): 493-500.
Linnen RL and Keppler H. 2002. Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66(18): 3293-3301. DOI:10.1016/S0016-7037(02)00924-9
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082
Ludwig KR. 2003. User's manual for ISOPLOT3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, No.4: 1-70
Ma XX, Xu ZQ and Meert JG. 2016. Eocene slab breakoff of Neotethys as suggested by dioritic dykes in the Gangdese magmatic belt, southern Tibet. Lithos, 248-251: 55-65. DOI:10.1016/j.lithos.2016.01.008
Ma XX, Xu ZQ, Chen XJ, Meert JG, He ZY, Liang FH, Meng YK and Ma SW. 2017. The origin and tectonic significance of the volcanic rocks of the Yeba Formation in the Gangdese magmatic belt, South Tibet. Journal of Earth Science, 28(2): 265-282. DOI:10.1007/s12583-016-0925-8
Ma XX, Meert J, Xu ZQ and Zhao ZB. 2018. The Jurassic Yeba Formation in the Gangdese arc of S. Tibet:Implications for upper plate extension in the Lhasa terrane. International Geology Review. DOI:10.1080/00206814.2018.1434835
McDermid IRC, Aitchison JC, Davis AM, Harrison TM and Grove M. 2002. The Zedong terrane:A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187(3-4): 267-277. DOI:10.1016/S0009-2541(02)00040-2
Meng FY, Zhao ZD, Zhu DC, Mo XX, Guan Q, Huang Y, Dong GC, Zhou S, Depaolo DJ, Harrison TM, Zhang ZC, Liu JL, Liu YS, Hu ZC and Yuan HL. 2014. Late Cretaceous magmatism in Mamba area, central Lhasa subterrane:Products of back-arc extension of Neo-Tethyan Ocean?. Gondwana Research, 26(2): 505-520. DOI:10.1016/j.gr.2013.07.017
Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290.
Mo XX, Dong GC, Zhao ZD, Guo TY, Wang LL and Chen T. 2015. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asia collision:Zircon SHRIMP U-Pb dating. Acta Geologica Sinica, 79(1): 66-76.
Qiu JS, Wang RQ, Zhao JL and Yu SB. 2015. Petrogenesis of the Early Jurassic gabbro-granite complex in the middle segment of the Gangdese belt and its implications for tectonic evolution of Neo-Tethys:A case study of the Dongga pluton in Xi'gaze. Acta Petrologica Sinica, 31(12): 3569-3580.
Qu XM, Xin HB and Xu WY. 2007. Collation of age of Ore-hosting volcanics in Xiongcun superlarge Cu-Au deposit on basis of three zircon U-Pb SHRIMP ages. Mineral Deposits, 26(5): 512-518.
Quidelleur X, Grove M, Lovera OM, Harrison TM, Yin A and Ryerson FJ. 1997. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet. Journal of Geophysical Research, 102(B2): 2659-2679. DOI:10.1029/96JD02483
Schärer U, Xu RH and Allègre CJ. 1984. U-Pb geochronology of Gangdese (Trans-Himalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth and Planetary Science Letters, 69(2): 311-320. DOI:10.1016/0012-821X(84)90190-0
Stepanov AS and Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite:Implications for the "missing Nb paradox". Geology, 41(3): 303-306. DOI:10.1130/G33781.1
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1):313-345
Tafti R, Mortensen JK, Lang JR, Rebagliati M and Oliver JL. 2009. Jurassic U-Pb and Re-Os ages for the newly discovered Xietongmen Cu-Au Porphyry district, Tibet, PRC:Implications for metallogenic epochs in the southern Gangdese belt. Economic Geology, 104(1): 127-136. DOI:10.2113/gsecongeo.104.1.127
Wang C, Ding L, Zhang LY, Kapp P, Pullen A and Yue YH. 2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane:Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320-333. DOI:10.1016/j.lithos.2016.07.021
Wang L, Zeng LS, Gao LE, Tang SH and Hu GY. 2012. Remnant Jurassic intra-oceanic arc system in Southern Tibet:Grochemistry and tectonic implication. Acta Petrologica Sinica, 28(6): 1741-1754.
Wang LL, Mo XX, Li B, Dong GC and Zhao ZD. 2006. Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu (Mo) Ore deposit, Tibet. Acta Petrologica Sinica, 22(4): 1001-1008.
Wei YQ, Zhao ZD, Niu YL, Zhu DC, Liu D, Wang Q, Hou ZQ, Mo XX and Wei JC. 2017. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet:Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 278-281: 477-490. DOI:10.1016/j.lithos.2017.02.013
Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji QJ, Liu DY and Gallet S. 2008a. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11.
Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008b. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201. DOI:10.1016/j.chemgeo.2008.03.003
Wu FY, Ji WQ, Liu CZ and Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271(1-2): 13-25. DOI:10.1016/j.chemgeo.2009.12.007
Wu FY, Ji WQ, Wang JG, Liu CZ, Chung SL and Clift PD. 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. American Journal of Science, 314(2): 548-579. DOI:10.2475/02.2014.04
Xiong QW, Chen JL, Xu JF, Huang F, Chen XF, Zeng YC and Lei M. 2015. LA-ICP-Ms zircon U-Pb geochronology, geochemical characteristics and genetic study of Yeba Formation lavas in Demingding area, southern Tibet. Geological Bulletin of China, 34(9): 1645-1655.
Xu WC, Zhang HF, Luo BJ, Guo L and Yang H. 2015a. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas:An example from the Late Cretaceous magmatism in Gangdese belt, South Tibet. Lithos, 232: 197-210. DOI:10.1016/j.lithos.2015.07.001
Xu ZQ, Dilek Y, Cao H, Yang JS, Robinson P, Ma CQ, Li HQ, Jolivet M, Roger F and Chen XJ. 2015b. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105: 320-337. DOI:10.1016/j.jseaes.2015.01.021
Yan JJ, Zhao ZD, Liu D, Wang ZZ and Tang Y. 2017. Geochemistry and petrogenesis of the Late Jurassic Xuru Tso batholith in central Lhasa Terrane, Tibet. Acta Petrologica Sinica, 33(8): 2437-2453.
Yang ZM, Hou ZQ, Xia DX, Song YC and Li Z. 2008. Relationship between western porphyry and mineralization in Qulong copper deposit of Tibet and its enlightenment to further exploration. Mineral Deposits, 27(1): 28-36.
Zeng LS and Gao LE. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrologica Sinica, 33(5): 1420-1444.
Zeng LS, Gao LE, Guo CL, Hou KJ and Wang Q. 2017. Early Cretaceous forearc extension of the Gangdese continental arc, southern Tibet. Acta Petrologica Sinica, 33(8): 2377-2394.
Zhai QG, Jahn BM, Wang J, Hu PY, Chung SL, Lee HY, Tang SH and Tang Y. 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. GSA Bulletin, 128(3-4): 355-373. DOI:10.1130/B31296.1
Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM and Yuan HL. 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet:Evidence for Early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347-1353.
Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ and Li GM. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. DOI:10.2747/0020-6814.50.5.442
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. DOI:10.1016/j.gr.2012.02.002
董彦辉, 许继峰, 曾庆高, 王强, 毛国政, 李杰. 2006. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?. 岩石学报, 22(3): 661-668.
高利娥, 高家昊, 赵令浩, 侯可军, 唐索寒. 2017. 藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用. 岩石学报, 33(8): 2395-2411.
郭春丽, 曾令森, 高利娥, 苏红中, 马星华, 尹冰. 2017. 福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究. 地质学报, 91(8): 1796-1817. DOI:10.3969/j.issn.0001-5717.2017.08.010
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
侯增谦, 曲晓明, 杨竹森, 孟祥金, 李振清, 杨志明, 郑绵平, 郑有业, 聂凤军, 高永丰, 江思宏, 李光明. 2006. 青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用. 矿床地质, 25(6): 629-651.
黄丰, 许继峰, 陈建林, 康志强, 董彦辉. 2015. 早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?. 岩石学报, 31(7): 2089-2100.
李皓揚, 锺孙霖, 王彦斌, 朱弟成, 杨进辉, 宋彪, 刘敦一, 吴福元. 2007. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据. 岩石学报, 23(2): 493-500.
莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. DOI:10.3969/j.issn.1006-7493.2005.03.001
邱检生, 王睿强, 赵姣龙, 喻思斌. 2015. 冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示:以日喀则东嘎岩体为例. 岩石学报, 31(12): 3569-3580.
曲晓明, 辛洪波, 徐文艺. 2007. 三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定. 矿床地质, 26(5): 512-518. DOI:10.3969/j.issn.0258-7106.2007.05.003
王莉, 曾令森, 高利娥, 唐索寒, 胡古月. 2012. 藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义. 岩石学报, 28(6): 1741-1754.
王亮亮, 莫宣学, 李冰, 董国臣, 赵志丹. 2006. 西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学. 岩石学报, 22(4): 1001-1008.
西藏自治区地质矿产局. 1993. 西藏自治区区域地质志. 北京: 地质出版社.
熊秋伟, 陈建林, 许继峰, 黄丰, 陈雪峰, 曾云川, 雷鸣. 2015. 拉萨地块南部得明顶地区叶巴组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因. 地质通报, 34(9): 1645-1655. DOI:10.3969/j.issn.1671-2552.2015.09.006
闫晶晶, 赵志丹, 刘栋, 王珍珍, 唐演. 2017. 西藏中拉萨地块晚侏罗世许如错花岗岩地球化学与岩石成因. 岩石学报, 33(8): 2437-2453.
杨志明, 侯增谦, 夏代详, 宋玉财, 李政. 2008. 西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示. 矿床地质, 27(1): 28-36. DOI:10.3969/j.issn.0258-7106.2008.01.003
曾令森, 高利娥. 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩. 岩石学报, 33(5): 1420-1444.
曾令森, 高利娥, 郭春丽, 侯可军, 王倩. 2017. 西藏南部冈底斯大陆弧早白垩纪弧前伸展作用. 岩石学报, 33(8): 2377-2394.
张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347-1353. DOI:10.3969/j.issn.1000-0569.2007.06.011