青藏高原是世界上最年轻、最高的高原,其演化历史和隆升过程是国内外众多地学研究者关注的热点问题。目前对青藏高原演化已经取得一些重要的共识,如青藏高原是来自冈瓦纳大陆的诸多地体向欧亚大陆不断拼贴而形成(Dewey et al., 1988; Yin and Harrison, 2000; Tapponnier et al., 2001; 许志琴等, 2006a, b; Pan et al., 2012; Zhu et al., 2013)。青藏高原具有“多地体、多岛弧”组成的基本格架,经历了“多洋盆、多俯冲、多碰撞和多造山”等复合过程,涉及到原特提斯、古特提斯和新特提斯各大洋的先后开启、俯冲、闭合以及古大陆的裂解、各地体的漂移、增生和拼合(Zhu et al., 2013),印度-亚洲的碰撞是白垩纪末以来最引人关注的地质事件,最终形成了喜马拉雅造山带和现今的高原(Yin and Harrison, 2000)和高原现今四个主要构造单元(图 1a),即从南向北分别是喜马拉雅、拉萨、羌塘以及可可西里-松潘甘孜各地体,它们依序以印度河-雅鲁藏布江缝合带(IYZSZ)、班公湖-怒江缝合带(BNSZ)和金沙江缝合带(JSSZ)为界(Yin and Harrison, 2000; Zhu et al., 2013)。
![]() |
图 1 拉萨地体地质简图及研究区地质图 (a)青藏高原及拉萨地体构造单元图;(b)拉萨地体中生代岩浆岩分布简图(据Zhu et al., 2011a);(c)南木林南地区地质简图(据胡敬仁等,2014修改). JSSZ:金沙江缝合带; LSSZ:龙木错-双湖缝合带; BNSZ:班公湖-怒江缝合带; IYZSZ:印度河-雅鲁藏布江缝合带; SNMZ:狮泉河-纳木错蛇绿混杂岩带; LMF:洛巴堆-米拉山断裂带 Fig. 1 Geological sketch map of the Lhasa Terrane (a) tectonic framework of the Tibetan Plateau and the Lhasa Terrane in the context of the Tibetan Plateau; (b) simplified Mesozoic magmatic rocks distribution of the Lhasa Terrane (after Zhu et al., 2011a); (c) geological sketch map of south of Namling (modified after Hu et al., 2014). JSSZ: Jinsha suture zone; BNSZ: Bangong-Nujiang suture zone; SNMZ: Shiquan River-Nam Tso Mélange Zone; LMF: Luobadui-Milashan Fault; IYZSZ: Indus-Yarlung Zangbo Suture Zone |
对这些地体的演化历史开展深入研究,对于理解青藏高原形成的具体过程、完善板块构造理论、寻找矿产资源具有十分重要的意义。新特提斯大洋由班公湖-怒江洋、雅鲁藏布洋两个主要洋盆构成(莫宣学和潘桂棠,2006)。其中,拉萨地体的漂移和增生与新特提斯洋的打开、俯冲和关闭息息相关(莫宣学等, 2003;潘桂棠等, 2006;Mo et al., 2007, 2008;Zhu et al., 2013, 2016)。拉萨地体也是揭示印度与亚洲大陆碰撞的最重要的地区,其中广泛发育的俯冲-碰撞-碰撞后岩浆作用记录了这一地区从特提斯洋俯冲消减到印度大陆陆内俯冲的全过程(莫宣学等, 2006; Mo et al., 2007, 2008; Ji et al., 2014)。分布于拉萨地体南部的晚白垩世岩浆岩(100~68Ma)是冈底斯岩浆弧的主体(朱弟成等,2008),关于其岩石成因与动力学机制尚存在不同意见,存在多种模型和解释,包括新特提斯洋平板俯冲或低角度俯冲(Wen et al., 2008a)、正常角度俯冲(Ji et al., 2009)、洋脊俯冲(Zhang et al., 2010; 管琪等, 2010; Zheng et al., 2014)、板片回转(Ma et al., 2013b, c; Jiang et al., 2014, 2015, 2018; Chen et al., 2015; Xu et al., 2015)以及斜向俯冲(高家昊等, 2017)。
本文选择南拉萨地体南木林县南部晚白垩世早期辉长岩体及同期侵入的中基性、酸性脉岩,在野外考察的基础上,采集寄主辉长岩及其中的脉岩样品进行了系统的岩相学、元素地球化学和锆石U-Pb年代学与锆石Hf同位素研究,并结合文献数据,探讨了拉萨地体南缘晚白垩世岩浆岩的成因与深部动力学过程,为揭示新特提斯北向俯冲过程提供新证据。
1 地质背景与样品 1.1 拉萨地体地质概况拉萨地体是印度河-雅鲁藏布缝合带和班公湖-怒江缝合带之间一块近东西向的狭长地域(Dewey et al., 1988; Pierce and Deng, 1988; Yin and Harrison, 2000; Zhu et al., 2013),是一条长约2500km,南北宽150~300km,面积达45万平方千米的巨型构造-岩浆带(莫宣学等, 2005;潘桂棠等, 2006)(图 1b)。拉萨地体可分为北拉萨、中拉萨、南拉萨三个次一级地体(sub-terrane)(Zhu et al., 2009a, b, 2013),依次以狮泉河-纳木错混杂岩带(SNMZ)和洛巴堆-米拉山断裂(LMF)为界。
拉萨地体具有元古代-太古代的结晶基底,主要分布于中拉萨地体(Zhu et al., 2011a),而沉积盖层则包括从寒武纪到晚中生代几乎连续的地层,局部缺失上二叠统(Ji et al., 2009; Zhu et al., 2009a, 2011b)。拉萨地体包含了西藏境内80%的岩浆岩,火山岩类与侵入岩类出露面积大致相同(莫宣学等, 2005, 2009)。南拉萨地体是整个拉萨地体岩浆活动最集中的地区,发育的岩浆岩主要包括早侏罗世的叶巴组火山岩(Zhu et al., 2008),从桑日到谢通门东西延伸超过500km,以安山岩和英安岩为主;晚侏罗世-早白垩世的桑日群火山岩(Zhu et al., 2009c),从加查到达孜延伸超过250km,以玄武岩和酸性熔岩为主;东西向延伸超过1500km、时间尺度跨越三叠纪到中新世的冈底斯岩基(Wen et al., 2008b; Ji et al., 2009; 纪伟强等, 2009),发育有从辉长岩、闪长岩到花岗岩及介于其间的深成岩序列;东西延伸约1500km的同碰撞林子宗火山岩系(LVS)(莫宣学等, 2003, 2005, 2007; Mo et al., 2008),岩性包括从安山岩到流纹岩的多种火山岩。其中,冈底斯岩基也被称作冈底斯岩浆弧。
1.2 采样剖面与样品研究区位于南拉萨地体南木林县城正南方雅鲁藏布江边的山巴村东侧岩体(图 1c),属于冈底斯岩基晚白垩世岩体,该岩体之南即为雅鲁藏布江和日喀则弧前盆地沉积岩带,考察和采样剖面起点GPS点位为29°23′58.6″ N、89°05′40.6″ E,终点为29°26′30.1″N、89°05′39.9″E。岩体以辉长岩为主,结构不均一,包括中细粒石英黑云母辉长岩和细粒辉长岩。岩体内部主要出露暗色辉绿岩脉和浅色花岗细晶岩脉,脉体数量较多,宽度大都10~50cm以内,长十数米到数十米。岩体与脉岩之间、脉岩与脉岩之间虽然岩性界线明显,但接触关系较为复杂(图 2a, b),包括具有明显界线的正常接触关系,暗色脉与浅色脉平行并邻产出(图 2d),花岗细晶岩脉包含椭圆形辉绿岩(图 2c),部分露头寄主岩、浅色脉和暗色脉的接触关系复杂,互相包裹或穿插。野外共采集新鲜岩石样品14件,其中花岗岩脉7件、辉绿岩脉4件、寄主辉长岩3件。
![]() |
图 2 南木林南岩体野外露头 (a)花岗岩脉包裹辉绿岩;(b)花岗岩脉和辉绿岩脉并邻侵位 Fig. 2 The field outcrops of Namling gabbro and dykes (a) granite dyke enwrapped diabase; (b) granitic dyke and diabase dyke intruded into host rock adjacently |
剖面南部辉长岩为细粒不等粒结构,矿物以斜长石(60%)、角闪石(35%)为主,少量石英、磁铁矿和蚀变矿物绿泥石约5%(图 3a),其中磁铁矿分布在角闪石周围。剖面北部辉长岩为中细粒结构,矿物以斜长石(60%)、角闪石(20%)、黑云母(15%)为主(图 3b),少量石英和不透明矿物约占5%。花岗岩脉呈浅肉红色,连续不等粒结构(图 3c)和细粒结构(图 3e),矿物包括石英(50%)、钾长石(30%)、斜长石(15%)、黑云母及不透明矿物(5%),偶见捕获而来的斜长石大晶体(图 3d)。暗色辉绿岩呈灰黑色、深灰色,黑色斑点散布于灰黑色基质中,为微粒角闪石、磁铁矿组成的聚斑结构(图 3f),基质以针柱状角闪石和半自形斜长石含量各半,形成微晶结构(图 3g);此外,NM1508发现角闪石和磷灰石微晶包含在消光一致的长石大晶体内(图 3h),部分暗色脉还含有斜长石和角闪石捕掳晶,NM1512辉绿岩长石达到细粒级别,自形程度高且包含针状磷灰石微晶(图 3i)。
![]() |
图 3 南木林辉长岩和脉岩的显微照片 采样剖面南部样品NM1501 (a)和北部样品NM1516 (b)显微照片(单偏光);(c-e)花岗岩脉NM1502和NM1506显微照片(正交偏光);(f)、(g)、(h)分别为辉绿岩脉NM1508的聚斑结构、微晶结构(单偏光)和包含结构(正交偏光);(i)细粒辉绿岩NM1512斜长石包含针状磷灰石(单偏光). Amp-普通角闪石;Pl-斜长石;Kfs-钾长石;Qz-石英;Bi-黑云母;Chl-绿泥石;Mag-磁铁矿;Ap-磷灰石 Fig. 3 Microphotographs of Nanmling gabbro and dykes (a), (b) microphotographs of gabbro, southern part (NM1501) and northern part (NM1516) of the sample section, PPL; (c-e) microphotographs of granite dykes (NM1502 and NM1506, CPL); (f), (g) and (h) glomeroporphyritic texture, microlitic texture (PPL) and poikilitic texture (CPL) of diabase NM1508; (i) plagioclase enwrapped needle-like apatite in NM1512. Amp-amphibole; Pl-plagioclase; Kfs-K-feldspar; Qz-quartz; Bt-biotite; Chl-chlorite; Mag-magnetite; Ap-apatite |
为了确定南木林南辉长岩和脉岩的形成时代,本文挑选寄主辉长岩样品2件(NM1501、NM1516)和花岗岩脉样品2件(NM1506、NM1515)进行了锆石U-Pb年龄测试。锆石U-Pb同位素定年样品处理及分析测试流程主要包括:碎样获取锆石颗粒、锆石制靶、通过透反射及CL图像挑选可用于定年的锆石颗粒、上机测试获取U-Pb同位素数据及数据处理等。锆石制靶方法和阴极发光(CL)图像拍照方法详见宋彪等(2002)。锆石U-Pb定年和锆石微量元素测试工作均是在中国地质大学(北京)矿物激光微区分析实验室(Milma Lab)通过LA-ICP-MS方法完成的。使用NewWave 193UC型ArF准分子激光器进行剥蚀取样,Agilent 7900四级杆型等离子质谱仪测试离子信号强度,采用激光束斑直径为25μm,每个点位的分析时间包括20s背景空白、50s样品剥蚀时间和30s信号稳定时间共100s。实验过程中采用NIST 610作为元素含量外标,锆石91500(Wiedenbeck et al., 2004)作为U-Pb同位素比值外标,锆石GJ-1(Jackson et al., 2004)和Plesovice(Sláma et al., 2008)作为未知样品的数据质量监控标来进行分析。数据离线处理(包括对样品信号和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用ICP-MS-DataCal软件(Liu et al., 2008, 2010a, b; Hu et al., 2012),同位素比值及年龄误差均为1σ。普通铅采用Andersen(2002)程序进行校正,谐和图采用Isoplot软件(Ludwig, 2001)进行绘制。
选取锆石U-Pb定年谐和度高的点位进行原位Hf同位素分析。锆石原位Hf同位素测试在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室多接收等离子体质谱实验室完成,MC-ICP-MS仪器型号为Neptune Plus,激光剥蚀系统型号为Analyte G2,激光斑束直径为60μm,测试过程中使用MUD(Woodhead and Hergt, 2005)和Plesovice(Sláma et al., 2008)作为标样监测数据质量,实验方法详见Wu et al. (2006)。
2.2 全岩主、微量元素测试全岩主量元素测试在中国地质大学(北京)科学研究院ICP-OES超净实验室完成,样品分析包括前处理和上机测试,前处理包括溶样和烧失量测试,溶样包括称量、烧熔、溶样、定容等步骤;烧失量测量包括称量、灼烧和再称量等步骤,分析精度优于10%。全岩微量元素测试在中国科学院海洋研究所大洋岩石圈与地幔动力学超净实验室完成,利用型号为Agilent 7700e的ICP-MS进行分析,样品处理过程、分析精密度和准确度见文献(Chen et al., 2017)。
3 分析结果 3.1 锆石U-Pb年代学参与定年的辉长岩及花岗岩脉的锆石U-Pb同位素及年龄数据见表 1。
![]() |
表 1 南木林辉长岩和脉岩的锆石U-Pb年龄数据 Table 1 Zircon U-Pb isotopic data of the Namling gabbro and dykes |
辉长岩锆石颗粒大多在100μm以上(图 4a, b),大多数晶形破碎不完整,可能是在碎样过程中破碎造成的,部分可见环带,CL图像显示锆石为灰白色,成分较均一。样品NM1501和NM1516各挑取16个锆石颗粒用于定年测试。NM1501锆石Th含量为100×10-6~230×10-6,U含量为149×10-6~1482×10-6,Th/U值在0.60~1.18之间,具备岩浆锆石的Th/U特征(Hoskin and Schaltegger, 2003)。剔除其中3个年龄离群的数据,另外13个年龄谐和度均高于90%的锆石年龄数据在90~94Ma之间,得出剖面南部辉长岩的加权平均年龄为92±1Ma (MSWD=1.3)(图 4a)。NM1516锆石Th含量为111.5×10-6~697.1×10-6,U含量为160×10-6~912×10-6,Th/U值在0.65~1.22之间,具备岩浆锆石的Th/U特征,14个年龄谐和度均高于90%的锆石年龄数据在90~92Ma之间,得出剖面北部辉长岩(棉将岩体南缘)的谐和年龄为91±1Ma (MSWD=0.47)(图 4b)。
![]() |
图 4 南木林辉长岩和脉岩的锆石U-Pb年龄谐和图与阴极发光图像 Fig. 4 Concordia diagrams and CL images of zircon from Namling gabbro and dykes |
花岗岩脉锆石大多晶形完好,具有清晰的环带结构,短轴长度在50μm以上。NM1506选取24个锆石颗粒进行定年,锆石Th含量为563×10-6~5313×10-6,U含量为956×10-6~3361×10-6,Th/U值在0.39~1.58之间,12个年龄谐和度均高于90%且相对集中的锆石得出加权平均年龄为91±1Ma (MSWD=0.93)(图 4c)。NM1515选取16个锆石颗粒进行定年,锆石Th含量为92×10-6~432×10-6,U含量为136×10-6~528×10-6,Th/U值在0.31~1.19之间,12个年龄谐和度均高于90%且相对集中的锆石得出谐和年龄为91±1Ma (MSWD=0.19)(图 4d)。
3.2 锆石Hf同位素参与定年的4件样品中,选取锆石U-Pb年龄谐和度高参与锆石定年计算的51个测点,在定年测试点原位或其环带对称位置进行Hf同位素测试。剔除测试数据中2个误差较大的异常值,对剩余49个数据使用Liu et al. (2014)附件中的计算流程进行数据计算,得到锆石Hf同位素相关数据见表 2。
![]() |
表 2 南木林辉长岩和脉岩的锆石Hf同位素数据 Table 2 Zircon Hf isotopic data of the Namling gabbro and dykes |
辉长岩类锆石的176Yb/177Hf值在0.00645~0.03027之间,176Lu/177Hf值均小于0.002,176Hf/177Hf值范围为0.283006~0.283095,εHf(t)值为+7.8~+11.0,地幔模式年龄(tDM)为217~344Ma,地壳模式年龄(tDMC)为297~493Ma之间。花岗岩脉岩锆石的176Yb/177Hf值在0.00603~0.05339之间,176Lu/177Hf值均小于0.001,176Hf/177Hf值范围为0.283005~0.283109,εHf(t)值为+7.8~+11.4,地幔模式年龄(tDM)为201~355Ma,地壳模式年龄(tDMC)在268~506Ma之间。
3.3 主量与微量元素地球化学南木林辉长岩和脉岩样品主、微量元素测试结果见表 3。各样品主量元素总含量在99.04%~100.17%之间,烧失量(LOI)在0.47%~1.46%之间,大部分小于1.0%,说明样品风化蚀变较弱。
![]() |
表 3 南木林辉长岩和脉岩的主量元素(wt%)和微量元素含量(×10-6) Table 3 Whole-rock major elements (wt%) and trace elements (×10-6) composition of Namling gabbro and dykes |
根据主量元素的特征(图 5a),岩石可以明显分为2类:第一类是中基性岩石,它们以寄主岩或者脉岩的产状出现,岩性包括辉长岩类5件(SiO2=49.60%~52.64%)、闪长岩类2件(SiO2=56.09%~57.99%),这7件样品都具有高MgO(3.19%~4.72%)、高TiO2(0.96~1.25%)、高CaO(5.81%~8.74%)的特征,岩石Mg#为46~50,辉长岩和闪长岩具有成分的连续性。从前文的岩相学特征看,辉长岩主要矿物是角闪石与斜长石,应为角闪辉长岩。为便于本文的讨论,以下把辉长岩和闪长岩统称为辉长岩类,它们应为幔源岩石。辉长岩类均为右倾的稀土元素特征(图 6a),显示Eu负异常到正异常,δEu为0.74~1.06;显示Th、U、K、Pb、Sr等大离子亲石元素明显富集,高场强元素Nb、Ta、Ti等相对亏损。第二类岩石为花岗岩脉,除1个样品SiO2含量为66.02%外,其他样品显示高硅特征(SiO2=70.85%~74.38%),Al2O3含量为13.18%~16.25%,Fe2O3T含量为0.94%~2.95%,Mg#为22~47,里特曼指数为2.25~3.46,全碱含量高(8.06%~9.44%),显示其属于钾玄质系列(图 5b);A/CNK为0.99~1.13,大多数样品为弱过铝质。花岗岩脉稀土元素总量为(58.86×10-6~125.6×10-6,(La/Yb)N为16.2~50.5,中稀土表现出亏损特征,δEu值为0.75~1.91,4个样品表现出Eu的正异常。微量元素中,Th、U、K、Pb、Sr等大离子亲石元素明显富集,而高场强元素Nb、Ta、Ti等相对亏损(图 6b)。
![]() |
图 5 南木林辉长岩和脉岩元素分类图解 (a) TAS图解(底图据Wilson, 2001); (b)全岩主量K2O-SiO2图解(底图据Peccerillo and Taylor, 1976).同岩体文献数据引自Xu et al., 2015; 叶丽娟等, 2015 Fig. 5 Whole rock major element classification diagrams of Namling gabbro and dykes (a) total alkali vs. silica diagram (after Wilson, 2001); (b) whole rock major element K2O vs. SiO2 diagram (after Peccerillo and Taylor, 1976). References data study from Xu et al., 2015; Ye et al., 2015 |
![]() |
图 6 南木林辉长岩和脉岩的球粒陨石标准化稀土元素配分曲线图(a)与原始地幔标准化微量元素蜘蛛图(b)(标准化值据Sun and McDonough, 1989) 南拉萨晚白垩世岩浆岩数据引自Wen et al., 2008a;Zhang et al., 2010; 黄玉等,2010;管琪等, 2010, 2011;Jiang et al., 2012, 2014, 2015; 赵珍等,2013;Zheng et al., 2014; Ma et al., 2013a, c; Xu et al., 2015; Chen et al., 2015; 叶丽娟等,2015;Dong et al., 2018 Fig. 6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace-element spidergrams (b) of Namling gabbro and dykes (normalizing data after Sun and McDonough, 1989) References data of magmatic rocks in southern Lhasa subterrane from Wen et al., 2008a; Zhang et al., 2010; Huang et al., 2010; Guan et al., 2010, 2011; Jiang et al., 2012, 2014, 2015; Zhao et al., 2013; Zheng et al., 2014; Ma et al., 2013a, c; Xu et al., 2015; Chen et al., 2015; Ye et al., 2015; Dong et al., 2018 |
本文获得了剖面南部辉长岩年龄为92±1Ma,剖面北部辉长岩年龄为91±1 Ma,与徐旺春(2010)和Xu et al. (2015)在该岩体定年结果(94.0±0.5Ma)及叶丽娟等(2015)测定的棉将岩体年龄(93.8±0.8Ma)比较一致。徐旺春(2010)将棉将岩体和山巴村岩体归为同一个岩体(南木林南岩体)。结合已有研究,该岩体岩性包括辉长岩、辉长闪长岩、辉绿岩,SiO2含量在51.47%~57.99%之间,属于辉长-闪长质中基性岩,薄片鉴定也进一步说明岩体确实存在结构及成分上的不均一性。从岩体年龄和岩性上来看,本文认为二者应属于同一岩体,形成于91~94Ma,并采用南木林南岩体的名称。
根据寄主岩与脉岩年龄和野外关系,可以判断两类脉岩和寄主岩是晚白垩世早期同时期岩浆活动的产物,脉岩和寄主岩侵位时代十分相近,其中花岗岩脉定年结果为91Ma。在野外露头也显示了同时代形成的野外关系,具体包括:(1)野外露头显示虽然脉岩与寄主岩之间岩性界线截然,但没有显示出冷凝边和烘烤边,说明脉岩侵位时岩体尚未冷凝到很低的温度;(2)花岗岩脉与辉绿岩脉中均包含椭圆形寄主辉长岩块体;(3)花岗岩脉与辉绿玢岩岩脉平行并邻产出(图 2d)、辉绿玢岩岩脉从花岗岩脉内部侵入、花岗岩脉包含拉长的椭圆形辉绿岩包体(图 2a, c)、包体周围的花岗岩脉中含有分散的暗色矿物颗粒或聚斑。这些互相穿插和包裹的现象说明辉绿岩脉与花岗岩脉应为基性岩浆与酸性岩浆近于同时侵位的产物,且在侵位过程中存在基性岩浆与酸性岩浆的相互作用,辉绿岩脉的微晶结构和针状磷灰石是基性岩浆接触到酸性岩浆时淬冷所致。
4.2 辉长岩类和花岗岩脉的岩石成因如前所述,本文岩石分为两类(图 5、图 7),即以辉长岩和辉绿岩脉为代表的辉长岩类和以花岗岩脉为代表的酸性岩类,在哈克图解上(图 7a-e),TiO2、Fe2O3T、Al2O3、CaO、P2O5等均明显分为两组,缺乏连续的中间组分,这说明两类岩石不具有演化关系,代表着不同体系岩浆的产物。花岗岩脉中的离群数据(SiO2=66.02%)可能是基性和酸性脉岩岩浆发生混合的结果。
![]() |
图 7 南木林辉长岩和脉岩主、微量元素协变图解与判别图解 (a-f)主量元素哈克图解,(f)底图据Karsli et al. (2012);(g) Ni-Mg#图解, 图内区域引自Zheng et al. (2014);(h) (La/Yb)N-YbN和(i) Sr/Y-Y判别图解, 图内区域引自Martin(1986)和Defant and Drummond (1990), 标准化值据Sun and McDonough (1989).同岩体文献数据引自Xu et al., 2015; 叶丽娟等, 2015 Fig. 7 Harker diagrams and discrimination diagrams of Namling gabbro and dykes (a-f) Harker diagrams of major elements, field in (f) after Karsli et al. (2012); (g) plot of Ni vs. Mg# (after Zheng et al., 2014); (h) (La/Yb)N vs. YbN and (i) Sr/Y vs. Y discrimination diagrams showing data for adakites and normal calc-alkaline rocks (after Martin, 1986; Defant and Drummond, 1990). Normalizing data after Sun and McDonough, (1989). References data of same rock section with this study from Xu et al., 2015; Ye et al., 2015 |
辉长岩类主体偏基性(SiO2=49.60%~52.64%),为高钾钙碱性岩石系列,MgO含量为3.19%~4.72%,Mg#为45~50,接近于幔源原生岩浆特征。较高的Al2O3含量和不显示明显Eu负异常与岩石的CaO含量吻合,代表了辉长岩总体特征,其较低的Cr(16×10-6~61×10-6)和Ni(15×10-6~26×10-6)含量,说明可能经历了镁铁质矿物的分离结晶。在玄武岩-辉长岩系统中,橄榄石、辉石、角闪石和磁铁矿都是强相容Cr、Ni的矿物(Dostal et al., 1983; Bacon and Druitt, 1988; Sisson, 1994; Esperança et al., 1997),它们的分离结晶会导致残余岩浆具有较低的Cr、Ni含量。辉绿岩脉中的角闪石、磁铁矿聚斑(图 3f)可能代表着寄主岩基性岩浆在岩浆房下部结晶的产物,被上侵的基性脉岩岩浆捕获。辉长岩类的[Nb/La]PM(0.25~0.37)远低于大陆下地壳值((Nb/La)PM=0.6),且几乎都低于上地壳值((Nb/La)PM=0.37,Rudnick and Gao, 2014),说明未经历或者很少的地壳同化混染。
辉长岩类的微量元素特征(轻重稀土分馏、富集LILEs、亏损HFSEs)说明岩石形成于和俯冲相关的岩浆弧环境,这也和晚白垩世南拉萨地体经历新特提斯洋俯冲的背景相符。锆石均显示正的εHf(t)值(+7.8~+11.0),表明其具有亏损的源区,以弧下地幔楔为代表。εHf(t)有3~5个ε单位的变化,说明源区组成有微弱的不均一性或发生了很小规模的岩浆混合。辉长岩类具有较年轻的Hf同位素地幔模式年龄(tDM=217~344Ma)和地壳模式年龄(tDMC=297~493Ma),说明其源于地幔物质新近的部分熔融作用(吴福元等, 2007)。辉长岩类较低的Nb/U (4.0~16.3)和Ce/Pb (4.8~9.4),略高于全球平均大洋沉积物(GLOSS)的比值(Nb/U=5.3和Ce/Pb=2.9,Plank and Langmuir, 1998),明显低于洋中脊和洋岛玄武岩(分别是47和27,Hofmann et al., 1986),表明岩浆源区有来自俯冲板片的沉积物的贡献,即来源于受流体交代的地幔楔。
花岗岩脉属于钾玄质岩石系列,微量元素同样表现出大离子亲石元素富集、高场强元素亏损的特征,表明花岗岩岩浆也来源于俯冲环境。但其究竟是幔源基性岩浆分异的产物,还是受部分熔融影响的壳源岩浆?钙碱性原始玄武质岩浆在温度较低时,可以通过角闪石、斜长石和Fe-Ti氧化物在跨度达280℃的温度范围内连续分离结晶导致熔体SiO2从53%连续上升到78%(Nandedkar et al., 2014),但本文的脉岩快速侵位,显然没有足够的时间进行分离结晶。多数样品显示的Eu正异常和Sr相对富集也不支持斜长石分离结晶。过铝质花岗岩体系(Mahood and Hildreth, 1983; Stix and Gorton, 1990)与高硅流纹质岩浆体系(Bea et al., 1994)中钾长石对Eu的相容性可以解释其正异常。此外,花岗岩脉具有较高的Sr/Y比值和(La/Yb)N比值,显示了埃达克质岩石的地球化学特征(图 7h, i),浅部地壳的部分熔融因斜长石较稳定难以产生较高的Sr含量和Sr/Y比值(Ji et al., 2014),因而可能来自较深部地壳的部分熔融;对MgO和Ni含量特征的进一步判别,表明岩浆可能来自加厚下地壳的部分熔融(图 7f, g)。花岗岩脉的中稀土和重稀土元素的明显亏损(图 6a),可能代表源区有角闪石和石榴石残留。岛弧发育早期的玄武质岩浆底垫作用形成陆缘弧的基底构成新生下地壳,再发生加厚,这种新生下地壳部分熔融即可产生SiO2含量大于70%的岩浆(Atherton and Petford, 1993),花岗岩脉年轻的锆石Hf同位素地幔模式年龄(tDM=201~355Ma)和地壳模式年龄(tDMC=268~506Ma),亏损的锆石Hf同位素特征(εHf(t)=+7.8~+11.4),进一步支持幔源的玄武质岩浆底垫形成新生下地壳再熔融产生花岗岩的模型。
综上所述,辉长岩的源区应为受流体交代的俯冲带弧下的地幔楔,岩浆形成后可能经历过以角闪石为主的分离结晶作用;花岗岩脉代表的酸性岩浆不是由辉长质岩浆分离结晶而来,而是单独来源于弧下新生地壳的部分熔融,这一结果与冈底斯带和三江地区新生代埃达克岩与成矿作用研究结果一致(Hou et al., 2015, 2017)。
4.3 南拉萨地体晚白垩世岩浆岩与新特提斯俯冲演化南拉萨地体晚白垩世岩浆岩是冈底斯岩基的重要组成部分,可以拉萨市为界分为东、西两段(Ji et al., 2014),报道的岩石类型包括辉长岩、辉绿岩、闪长岩、英云闪长岩、花岗闪长岩和花岗岩,时间跨度从103Ma到68Ma(Wen et al., 2008b; 纪伟强等, 2009; Zhu et al., 2013; Ji et al., 2014; 高家昊等, 2017)。
冈底斯岩基拉萨-林芝段的晚白垩世岩浆岩研究较为深入。在朗县-米林一带,分布有含岩浆成因绿帘石的花岗闪长岩(约80Ma,Wen et al., 2008a)、紫苏花岗岩(90~86Ma,Zhang et al., 2010)、花岗岩类(二长花岗岩、花岗闪长岩和英云闪长岩等,84~78Ma,管琪等, 2010)、角闪辉长岩(98~88Ma,管琪等, 2011)、米林苏长岩和含紫苏辉石普通角闪石岩(约93Ma,Ma et al., 2013b)和埃达克质镁质紫苏花岗岩(100~89Ma,Ma et al., 2013c)、朗县火成岩系(煌斑岩岩墙+二云母花岗、镁铁质包体+花岗闪长岩,96~76Ma,Zheng et al., 2014)、高硅花岗岩类(79~73Ma,Ji et al., 2014)。在桑日-泽当-扎囊一带,包括桑日东部增噶辉长岩-闪长岩系列(约94Ma,Ma et al., 2013a)、桑日花岗岩(67~66Ma,王珍珍等, 2017)、克鲁地区石英二长岩和闪长岩(约90Ma,Jiang et al., 2012)、花岗闪长岩(91Ma,Jiang et al., 2014)、桑布加拉岩体(92Ma,梁华英等, 2010;赵珍等, 2013)、泽当附近的赤康岩体(92Ma,Jiang et al., 2015)、洛木闪长岩(77Ma,Jiang et al., 2014)、努日地区的埃达克质石英闪长玢岩(91Ma,Chen et al., 2015; 代作文等, 2018)。此外还包括日多花岗岩类(68~60Ma,Lü et al., 2015; Ji et al., 2014)和白堆复合岩体及中、基性岩脉群(85~68Ma,高家昊等, 2017)。这一区段,在95~85Ma之间普遍存在岩浆大爆发(Wen et al., 2008b; 管琪等, 2010; Zhang et al., 2010; Zhu et al., 2011a, 2018)(图 8a),85Ma之前以中基性岩类为主,而85Ma之后则以花岗岩类为主(管琪等, 2011; Ji et al., 2014)(图 8b),都具有亏损的锆石Hf同位素特征(图 8c)。
![]() |
图 8 南拉萨地体晚白垩世岩浆岩的锆石年龄-经度图(a)、全岩SiO2(b)与εHf(t)(c)随年龄演化图解 (a)、(b)文献数据与图 6同; (c)中文献数据底图据Ji et al. (2014),叶巴组火山岩锆石Hf数据引自Wei et al. (2017) Fig. 8 Plots of zircon age vs. longitude (a), whole rock SiO2 vs. age (b) and εHf(t) vs. age (c) of Late Cretaceous igneous rocks in southern Lhasa sub-terrane References data of (a) and (b) are the same as those in Fig. 6; Fig. 8c after Ji et al. (2014) and data of Yeba Formation volcanic rocks from Wei et al. (2017) |
曲水-尼木-日喀则段,以晚白垩世早期(95~80Ma)岩浆岩为主,如仁布岩体(82Ma,黄玉等, 2010),尼木辉长岩(86Ma,Dong et al., 2018)、辉长质闪长岩(90Ma)和花岗闪长岩(87Ma)(Xu et al., 2015)、南木林辉长岩(94Ma,Xu et al., 2015; 叶丽娟等, 2015)、南木林辉长岩类及花岗岩脉(92~91Ma,本文)。昂仁-措勤-狮泉河段报道的主要为晚白垩世晚期岩浆岩(82~64Ma),研究程度不高,包括狮泉河西岩体(80Ma,董昕, 2008)、霍尔东北部岩体(81Ma,Zhu et al., 2011a),以及诺仓花岗斑岩(72Ma)和82~64Ma典中组火山岩及同期侵入岩(Jiang et al., 2018)。此外,冈底斯岩浆弧西段札达地区的达机翁组弧前沉积(孙高远等, 2018)和日喀则弧前盆地沉积(Wu et al., 2010; An et al., 2014)中均发现了来源为冈底斯岩浆弧的90Ma碎屑锆石年龄峰,这说明虽然在冈底斯岩浆弧西段直接报道的晚白垩世早期岩浆岩较少,但该时期岩浆活动曾广泛发育。
综上可知,南拉萨地体晚白垩世(100~65Ma)岩浆活动活跃,不存在传统认为的间歇期(Wen et al., 2008b; 纪伟强等, 2009),且90Ma左右岩浆大爆发事件在整个冈底斯岩基广泛存在(Wen et al., 2008b; Zhu et al., 2011a, 2018)。
对南拉萨晚白垩世早期(100~85Ma)的岩浆作用,为了解释该时期埃达克质岩石和同期镁铁质岩石的成因,前人提出了新特提斯洋正常角度俯冲(Wen et al., 2008b; 管琪等, 2010)、板片回转(Ma et al., 2013b, c; Jiang et al., 2014, 2015; Chen et al., 2015; Xu et al., 2015)、洋脊俯冲(管琪等, 2010; Zhang et al., 2010; Zhu et al., 2018)多个模型。正常角度俯冲不足以解释大规模的岩浆爆发事件,可以排除。洋脊俯冲除了会产生埃达克岩之外,还经常伴随高温变质作用、紫苏花岗岩和斑岩金-铜-锌矿化(Windley and Xiao, 2018),冈底斯岩基晚白垩世高温变质岩和紫苏花岗岩(Zhang et al., 2010, 2011)主要分布在东段朗县-米林地区,因而使用洋脊俯冲模型解释整个冈底斯岩基90±5Ma的岩浆爆发需要慎重。此外近平行于海沟的洋脊俯冲无法持续较长的时间,因而无法解释晚白垩世早期持续15Myr的埃达克质岩浆活动(Xu et al., 2015),这同时也说明,如果东段真的存在洋脊俯冲,洋脊可能也并不平行于海沟,新特提斯洋俯冲在不同区段的深部动力学过程可能并不一致。Ji et al. (2014)和Xu et al. (2015)认为对于报道的众多埃达克质岩石,可以通过地幔楔熔出的基性岩浆经历以角闪石为主的分离结晶而得到。Ji et al. (2014)认为拉萨地体在晚白垩世期间经历了持续地地壳增厚,随后85~73Ma埃达克质花岗岩类来源于增厚地壳的部分熔融。本文发现的具埃达克特征的花岗岩脉(91Ma)说明晚白垩世早期拉萨地体南缘地壳已经开始加厚,Dong et al. (2018)对尼木辉长岩(86Ma)及同期角闪岩相变质岩的研究也支持地壳加厚。本文认为,板片回转是一个相对来说条件不那么苛刻的模型,板片回转可以引发软流圈地幔角流,同时洋壳板片大量脱水产生流体交代地幔楔,地幔楔受到软流圈角流加热而发生部分熔融,产生的镁铁质岩浆底侵导致地壳部分熔融。该模型可以提供足够的水和热流导致地幔楔和下地壳发生部分熔融,且符合角闪石分离结晶所需的富水岩浆环境(Xu et al., 2015)。此外,板片回转还可以导致上覆板片发生伸展,为脉岩侵位提供条件。因此本文认为晚白垩世早期北向俯冲的新特提斯洋发生了板片回转。
5 结论通过南木林南辉长岩岩体和酸性脉岩的综合研究,得到以下认识:
(1) 南木林辉长岩寄主岩侵位时代约为92Ma,酸性脉岩侵位于约91Ma,辉长岩类来自受流体交代的弧下地幔楔的部分熔融,酸性脉岩可能为加厚新生下地壳的部分熔融,说明晚白垩世早期拉萨地体南缘已经出现特提斯洋俯冲导致的下地壳加厚。
(2) 南拉萨地体晚白垩世早期95~85Ma岩浆活动呈带状分布于整个冈底斯岩基,很可能是北向俯冲的新特提斯洋板片回转的结果。
致谢 主量元素测试过程中得到了中国地质大学(北京)秦虹老师的帮助;中国科学院地质与地球物理研究所纪伟强副研究员、中国地质大学(北京)黄丰博士、张亮亮博士为论文提出了宝贵的修改意见;论文写作过程中得到了罗照华教授在岩相学方面的指导;论文写作过程中与雷杭山等进行了有益的探讨;作者在此一并表示感谢。
An W, Hu XM, Garzanti E, BouDagher-Fadel MK, Wang JG and Sun GY. 2014. Xigaze forearc basin revisited (South Tibet):Provenance changes and origin of the Xigaze ophiolite. GSA Bulletin, 126(11-12): 1595-1613. DOI:10.1130/B31020.1 |
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. DOI:10.1016/S0009-2541(02)00195-X |
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146. DOI:10.1038/362144a0 |
Bacon CR and Druitt TH. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256. DOI:10.1007/BF00402114 |
Bea F, Pereira MD and Stroh A. 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4): 291-312. DOI:10.1016/0009-2541(94)90133-3 |
Chen L, Qin KZ, Li GM, Li JX, Xiao B, Zhao JX and Fan X. 2015. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet:Constraints on timing, petrogenesis, and tectonic transformation. Lithos, 212-215: 379-396. DOI:10.1016/j.lithos.2014.11.014 |
Chen S, Wang XH, Niu YL, Sun P, Duan M, Xiao YY, Guo PY, Gong HM, Wang GD and Xue QQ. 2017. Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS. Science Bulletin, 62(4): 277-289. DOI:10.1016/j.scib.2017.01.004 |
Dai ZW, Li GM, Ding J, Huang Y and Cao HW. 2018. Late Cretaceous adakite in Nuri area, Tibet:Products of ridge subduction. Earth Science, 43(8): 2727-2741. |
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665. DOI:10.1038/347662a0 |
Dewey JF, Shackleton RM, Chang CF, Sun YY, Chang CF, Shackleton RM, Dewey JF and Yin JX. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 379-413. DOI:10.1098/rsta.1988.0135 |
Dong X. 2008. The geochronology and geochemistry of the Mesozoic and Cenozoic granitoids from southwestern Gangdese belt, Tibet. Master Degree Thesis. Beijing: China University of Geosciences, 1-94 (in Chinese with English summary)
|
Dong X, Zhang ZM, Klemd R, He ZY and Tian ZL. 2018. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet:Consequence of a Mesozoic Andean-type orogeny. Tectonophysics, 730: 100-113. DOI:10.1016/j.tecto.2018.03.001 |
Dostal J, Dupuy C, Carron JP, Le Guen De Kerneizon M and Maury RC. 1983. Partition coefficients of trace elements:Application to volcanic rocks of St. Vincent, West Indies. Geochimica et Cosmochimica Acta, 47(3): 525-533. DOI:10.1016/0016-7037(83)90275-2 |
Esperança S, Carlson RW, Shirey SB and Smith D. 1997. Dating crust-mantle separation:Re-OS isotopic study of mafic xenoliths from central Arizona. Geology, 25(7): 651-654. DOI:10.1130/0091-7613(1997)025<0651:DCMSRO>2.3.CO;2 |
Gao JH, Zeng LS, Guo CL, Li QL and Wang YY. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, Southern Tibet:A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa. Acta Petrologica Sinica, 33(8): 2412-2436. |
Guan Q, Zhu DC, Zhao ZD, Zhang LL, Liu M, Li XW, Yu F and Mo XX. 2010. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet:Products of Neo-Tethyan ridge subduction?. Acta Petrologica Sinica, 26(7): 2165-2179. |
Guan Q, Zhu DC, Zhao ZD, Dong GC, Mo XX, Liu YS, Hu ZC and Yuan HL. 2011. Zircon U-Pb chronology, geochemistry of the Late Cretaceous mafic magnatism in the southern Lhasa Terrane and its implications. Acta Petrologica Sinica, 27(7): 2083-2094. |
Hofmann AW, Jochum KP, Seufert M and White WM. 1986. Nb and Pb in oceanic basalts:New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33-45. DOI:10.1016/0012-821X(86)90038-5 |
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. |
Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD and McCuaig TC. 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. DOI:10.2113/econgeo.110.6.1541 |
Hou ZQ, Zhou Y, Wang R, Zheng YC, He WY, Zhao M, Evans NJ and Weinberg RF. 2017. Recycling of metal-fertilized lower continental crust:Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 45(6): 563-566. DOI:10.1130/G38619.1 |
Hu JR, Fan YC, Nima CR and Chen GJ. 2014. Regional Geological Survey Report of the People's Republic of China, Xigaze City (H45C003004), Scale 1:250000. Wuhan: China University of Geosciences Press: 1-247.
|
Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L and Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. DOI:10.1039/c2ja30078h |
Huang Y, Zhao ZD, Zhang FQ, Zhu DC, Dong GC, Zhou S and Mo XX. 2010. Geochemistry and implication of the Gangdese batholiths from Renbu and Lhasa areas in southern Gangdese, Tibet. Acta Petrologica Sinica, 26(10): 3131-3142. |
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69. DOI:10.1016/j.chemgeo.2004.06.017 |
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245. DOI:10.1016/j.chemgeo.2009.01.020 |
Ji WQ, Wu FY, Zhong SL and Liu CZ. 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D), 39(7): 849-871. |
Ji WQ, Wu FY, Chung SL and Liu CZ. 2014. The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos, 210-211: 168-180. DOI:10.1016/j.lithos.2014.10.001 |
Jiang JS, Zheng YY, Gao SB, Zhang YC, Huang J, Liu J, Wu S, Xu J and Huang LL. 2018. The newly-discovered Late Cretaceous igneous rocks in the Nuocang district:Products of ancient crust melting trigged by Neo-Tethyan slab rollback in the western Gangdese. Lithos, 308-309: 294-315. DOI:10.1016/j.lithos.2018.03.009 |
Jiang ZQ, Wang Q, Li ZX, Wyman DA, Tang GJ, Jia XH and Yang YH. 2012. Late Cretaceous (ca.90Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet):Slab melting and implications for Cu-Au mineralization. Journal of Asian Earth Sciences, 53: 67-81. DOI:10.1016/j.jseaes.2012.02.010 |
Jiang ZQ, Wang Q, Wyman DA, Li ZX, Yang JH, Shi XB, Ma L, Tang GJ, Gou GN, Jia XH and Guo HF. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet:Evidence from the Late Cretaceous-Early Oligocene (ca.91~30Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213-231. DOI:10.1016/j.lithos.2014.03.001 |
Jiang ZQ, Wang Q, Wyman DA, Shi XB, Yang JH, Ma L and Gou GN. 2015. Zircon U-Pb geochronology and geochemistry of Late Cretaceous-Early Eocene granodiorites in the southern Gangdese batholith of Tibet:Petrogenesis and implications for geodynamics and Cu ±Au ±Mo mineralization. International Geology Review, 57(3): 373-392. DOI:10.1080/00206814.2015.1009503 |
Liang HY, Wei QR, Xu JF, Hu GQ and Allen C. 2010. Study on zircon LA-ICP-MS U-Pb age of skarn Cu mineralization related intrusion in the southern margin of the Gangdese ore belt, Tibet and its geological implication. Acta Petrologica Sinica, 26(6): 1692-1698. |
Karsli O, Dokuz A, Uysal I, Aydin F, Kandemir R and Wijbrans J. 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey:Implications for crustal thickening to delamination. Lithos, 114(1-2): 109-120. |
Liu D, Zhao ZD, Zhu DC, Niu YL, DePaolo DJ, Harrison TM, Mo XX, Dong GC, Zhou S, Sun CG, Zhang ZC and Liu JL. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet:Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 207-231. DOI:10.1016/j.gca.2014.03.031 |
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43. DOI:10.1016/j.chemgeo.2008.08.004 |
Liu YS, Gao S, Hu ZX, Gao CG, Zong KQ and Wang DB. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082 |
Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. DOI:10.1007/s11434-010-3052-4 |
Ludwig KR. 2001. Users' manual for isoplot/Ex (rev.2.49). California: Berkeley Geochronology Center Special Publication: 1-55.
|
Lü X, Wang ZH, Liu YL, Liu HF, Xu KF and Zhang JS. 2015. Geochronology and geochemistry of the Late Cretaceous to Paleocene intrusions in East Gangdese, Lhasa, Tibet and their tectonic significances. Acta Geologica Sinica, 89(2): 441-466. DOI:10.1111/1755-6724.12440 |
Ma L, Wang Q, Wyman DA, Jiang ZQ, Yang JH, Li QL, Gou GN and Guo HF. 2013a. Late Cretaceous crustal growth in the Gangdese area, southern Tibet:Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro. Chemical Geology, 349-350: 54-70. DOI:10.1016/j.chemgeo.2013.04.005 |
Ma L, Wang Q, Li ZX, Wyman DA, Jiang ZQ, Yang JH, Gou GN and Guo HF. 2013b. Early Late Cretaceous (ca.93Ma) norites and hornblendites in the Milin area, eastern Gangdese:Lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100~80Ma) magmatic "flare-up" in southern Lhasa (Tibet). Lithos, 172-172: 17-30. |
Ma L, Wang Q, Wyman DA, Li ZX, Jiang ZQ, Yang JH, Gou GN and Guo HF. 2013c. Late Cretaceous (100~89Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese:Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175-176: 315-332. DOI:10.1016/j.lithos.2013.04.006 |
Mahood G and Hildreth W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11-30. DOI:10.1016/0016-7037(83)90087-X |
Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756. DOI:10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2 |
Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148. |
Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290. |
Mo XX and Pan GT. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau:Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43-51. |
Mo XX, Zhao ZD, DePaolo DJ, Zhou S and Dong GC. 2006. Three types of collisional and post-collisional magmatism in the Lhasa block, Tibet and implications for India intra-continental subduction and mineralization:Evidence from Sr-Nd isotopes. Acta Petrologica Sinica, 22(4): 795-803. |
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242. |
Mo XX, Zhao ZD, Zhou S, Dong GC and Liao ZL. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240-1244. |
Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 250(1-4): 49-67. DOI:10.1016/j.chemgeo.2008.02.003 |
Mo XX, Zhao ZD, Zhu DC, Yu XH, Dong GC and Zhou S. 2009. On the lithosphere of Indo-Asia collision zone in southern Tibet:Petrological and geochemical constraints. Earth Science (Journal of China University of Geosciences), 34(1): 17-27. DOI:10.3799/dqkx.2009.003 |
Nandedkar RH, Ulmer P and Müntener O. 2014. Fractional crystallization of primitive, hydrous arc magmas:An experimental study at 0. 7GPa. Contributions to Mineralogy and Petrology, 167(6): 1015. DOI:10.1007/s00410-014-1015-5 |
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533. |
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. DOI:10.1016/j.jseaes.2011.12.018 |
Pearce JA and Deng WM. 1988. The ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 215-238. DOI:10.1098/rsta.1988.0127 |
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745 |
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394. DOI:10.1016/S0009-2541(97)00150-2 |
Rudnick RL and Gao S. 2014. Composition of the continental crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. 2nd Edition. Amsterdam: Elsevier, 1-51
|
Sisson TW. 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. Chemical Geology, 117(1-4): 331-344. DOI:10.1016/0009-2541(94)90135-X |
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35. DOI:10.1016/j.chemgeo.2007.11.005 |
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26-30. |
Stix J and Gorton MP. 1990. Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico:Effects of composition, temperature, and volatiles. Geochimica et Cosmochimica Acta, 54(10): 2697-2708. DOI:10.1016/0016-7037(90)90005-6 |
Sun GY, Wang JG, Hu XM and BouDagher-Fadal MK. 2018. Upper Cretaceous-Lower Eocene Dajiweng Formation in the Zhada area, southern Tibet:Implications for the Trans-Himalayan forearc baisn evolution. Acta Petrologica Sinica, 34(6): 1847-1861. |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
|
Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang JS. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. DOI:10.1126/science.105978 |
Wang ZZ, Liu D, Zhao ZD, Yan JJ, Shi QS and Mo XX. 2017. The Sangri highly fractionated Ⅰ-type granites in southern Gangdese:Petrogenesis and dynamic implication. Acta Petrologica Sinica, 33(8): 2479-2493. |
Wei YQ, Zhao ZD, Niu YL, Zhu DC, Liu D, Wang Q, Hou ZQ, Mo XX and Wei JC. 2017. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet:Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 278-81: 477-490. |
Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008a. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201. DOI:10.1016/j.chemgeo.2008.03.003 |
Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji JQ, Liu DY and Gallet S. 2008b. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11. |
Wiedenbeck M, Hanchar JM, Peck WH, Sylveste P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår O, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q and Zheng YF. 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9-39. DOI:10.1111/ggr.2004.28.issue-1 |
Wilson M. 2001. Igneous Petrogenesis. London: Kluwer Academic Publishers.
|
Windley BF and Xiao WJ. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt:Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61: 73-87. DOI:10.1016/j.gr.2018.05.003 |
Woodhead JD and Hergt JM. 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 29(2): 183-195. DOI:10.1111/ggr.2005.29.issue-2 |
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126. DOI:10.1016/j.chemgeo.2006.05.003 |
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220. |
Wu FY, Ji WQ, Liu CZ and Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271(1-2): 13-25. DOI:10.1016/j.chemgeo.2009.12.007 |
Xu WC. 2010. Spatial variation of zircon U-Pb ages and Hf isotopic compositions of the Gangdese granitoids and its geologic implications. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-185 (in Chinese with English summary)
|
Xu WC, Zhang HF, Luo BJ, Guo L and Yang H. 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas:An example from the Late Cretaceous magmatism in Gangdese belt, South Tibet. Lithos, 232: 197-210. DOI:10.1016/j.lithos.2015.07.001 |
Xu ZQ, Li HB and Yang JS. 2006a. An orogenic plateau:The orogenic collage and orogenic types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17. |
Xu ZQ, Yang JS, Li HB, Zhang JX, Zeng LS and Jiang M. 2006b. The Qinghai-Tibet Plateau and continental dynamics:A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China, 33(2): 221-238. |
Ye LJ, Zhao ZD, Liu D, Zhu DC, Dong GC, Mo XX, Hu ZC and Liu YS. 2015. Late Cretaceous diabase and granite dike in Namling, Tibet:Petrogenesis and implications for extension. Acta Petrologica Sinica, 31(5): 1298-1312. |
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. DOI:10.1146/annurev.earth.28.1.211 |
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17(4): 615-631. DOI:10.1016/j.gr.2009.10.007 |
Zhang ZM, Shen K, Santosh M and Dong X. 2011. High density carbonic ffluids in a slab window:Evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet. Journal of Asian Earth Sciences, 42(3): 515-524. DOI:10.1016/j.jseaes.2011.03.017 |
Zhao Z, Hu DG, Lu L and Wu ZH. 2013. Discovery and metallogenic significance of the late Cretacous adakites from Zetang, Tibet. Journal of Geomechanics, 19(1): 45-52, 112. |
Zheng YC, Hou ZQ, Gong YL, Liang W, Sun QZ, Zhang S, Fu Q, Huang KX, Li QY and Li W. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet:Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190-191: 240-263. DOI:10.1016/j.lithos.2013.12.013 |
Zhu DC, Pan GT, Wang LQ, Mo XX, Zhao ZD, Zhou CY, Liao ZL, Dong GC and Yuan SH. 2008. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geological Bulletin of China, 27(9): 1535-1550. |
Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ and Li GM. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. DOI:10.2747/0020-6814.50.5.442 |
Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Pan GT and Wu FY. 2009a. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet:Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 469(1-4): 48-60. DOI:10.1016/j.tecto.2009.01.017 |
Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS and Wu FY. 2009b. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312. DOI:10.1016/j.chemgeo.2009.09.008 |
Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC and Liu B. 2009c. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?. ournal of Asian Earth Sciences, 34(3): 298-309. DOI:10.1016/j.jseaes.2008.05.003 |
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011a. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255. DOI:10.1016/j.epsl.2010.11.005 |
Zhu DC, Zhao ZD, Niu YL, Dilek Y and Mo XX. 2011b. Lhasa terrane in southern Tibet came from Australia. Geology, 39(8): 727-730. DOI:10.1130/G31895.1 |
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. DOI:10.1016/j.gr.2012.02.002 |
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17. DOI:10.1016/j.lithos.2015.06.023 |
Zhu DC, Wang Q, Chung SL, Cawood PA and Zhao ZD. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120Ma. Geological Society, London, Special Publications, SP483.14
|
代作文, 李光明, 丁俊, 黄勇, 曹华文. 2018. 西藏努日晚白垩世埃达克岩:洋脊俯冲的产物. 地球科学, 43(8): 2727-2741. |
董昕. 2008.西藏冈底斯带西南部中新生代花岗岩年代学与地球化学.硕士学位论文.北京: 中国地质大学, 1-94
|
高家昊, 曾令森, 郭春丽, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用:以拉萨白堆复合岩体中-基性岩脉群为例. 岩石学报, 33(8): 2412-2436. |
管琪, 朱弟成, 赵志丹, 张亮亮, 刘敏, 李小伟, 于枫, 莫宣学. 2010. 西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?. 岩石学报, 26(7): 2165-2179. |
管琪, 朱弟成, 赵志丹, 董国臣, 莫宣学, 刘勇胜, 胡兆初, 袁洪林. 2011. 西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义. 岩石学报, 27(7): 2083-2094. |
胡敬仁, 范跃春, 尼玛次仁, 陈国结. 2014.中华人民共和国区域地质调查报告——日喀则市幅(H45C003004)比例尺1: 250000.武汉: 中国地质大学出版社, 1-247
|
黄玉, 赵志丹, 张凤琴, 朱弟成, 董国臣, 周肃, 莫宣学. 2010. 西藏冈底斯仁布-拉萨一带花岗岩基的地球化学及其意义. 岩石学报, 26(10): 3131-3142. |
纪伟强, 吴福元, 锺孙霖, 刘传周. 2009. 西藏南部冈底斯岩基花岗岩时代与岩石成因. 中国科学(D辑), 39(7): 849-871. |
梁华英, 魏启荣, 许继峰, 胡光黔, Allen C. 2010. 西藏冈底斯矿带南缘矽卡岩型铜矿床含矿岩体锆石U-Pb年龄及意义. 岩石学报, 26(6): 1692-1698. |
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. DOI:10.3321/j.issn:1005-2321.2003.03.013 |
莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. DOI:10.3969/j.issn.1006-7493.2005.03.001 |
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成:构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. DOI:10.3321/j.issn:1005-2321.2006.06.007 |
莫宣学, 赵志丹, DePaolo DJ, 周肃, 董国臣. 2006. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据. 岩石学报, 22(4): 795-803. |
莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240-1244. DOI:10.3969/j.issn.1671-2552.2007.10.002 |
莫宣学, 赵志丹, 朱弟成, 喻学惠, 董国臣, 周肃. 2009. 西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束. 地球科学-中国地质大学学报, 34(1): 17-27. DOI:10.3321/j.issn:1000-2383.2009.01.003 |
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. |
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增): 26-30. |
孙高远, 王建刚, 胡修棉, BouDagher-Fadal MK. 2018. 西藏札达地区上白垩统-下始新统达机翁组:对冈底斯弧前盆地演化的制约. 岩石学报, 34(6): 1847-1861. |
王珍珍, 刘栋, 赵志丹, 闫晶晶, 石卿尚, 莫宣学. 2017. 冈底斯带南部桑日高分异Ⅰ型花岗岩的岩石成因及其动力学意义. 岩石学报, 33(8): 2479-2493. |
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. |
徐旺春. 2010.西藏冈底斯花岗岩类锆石U-Pb年龄和Hf同位素组成的空间变化及其地质意义.博士学位论文.北京: 中国地质大学, 1-185
|
许志琴, 李海兵, 杨经绥. 2006a. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17. |
许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006b. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238. |
叶丽娟, 赵志丹, 刘栋, 朱弟成, 董国臣, 莫宣学, 胡兆初, 刘勇胜. 2015. 西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景. 岩石学报, 31(5): 1298-1312. |
赵珍, 胡道功, 陆露, 吴珍汉. 2013. 西藏泽当地区晚白垩世埃达克岩的发现及其成矿意义. 地质力学学报, 19(1): 45-52, 112. DOI:10.3969/j.issn.1006-6616.2013.01.005 |
朱弟成, 潘桂棠, 王立全, 莫宣学, 赵志丹, 周长勇, 廖忠礼, 董国臣, 袁四化. 2008. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论. 地质通报, 27(9): 1535-1550. DOI:10.3969/j.issn.1671-2552.2008.09.013 |