2. 中国地质大学地球科学与资源学院, 北京 100083
2. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
青藏高原是自古生代以来由多块体、多岛弧经历多期聚合与碰撞拼贴形成的巨型复合碰撞造山带,自北向南依次由昆仑地体、松潘-甘孜地体、羌塘地体、拉萨地体和喜马拉雅造山带组成(Yin and Harrison, 2000; 许志琴等, 2006, 2011)。拉萨地体起源于冈瓦纳超大陆,是印度-亚洲大陆碰撞前最后一个拼贴到亚洲大陆上的块体,经历了长期且复杂的构造-岩浆-变质-成矿作用(莫宣学和潘桂棠, 2006; Zhu et al., 2011; Zhang et al., 2014a; Hou et al., 2015)。
冈底斯岩浆弧位于拉萨地体南部,形成在中生代新特提斯洋俯冲和新生代印度-亚洲大陆碰撞过程中,是研究板块构造、壳-幔相互作用和大陆地壳生长与再造的天然实验室(Zhang et al., 2013; Zhu et al., 2015)。近几十年来,关于冈底斯弧已开展了大量研究,但前人工作更多的聚焦于研究冈底斯带岩浆岩的起源、成因、时空分布(Debon et al., 1986; Ding et al., 2003; 莫宣学等, 2005; Chung et al., 2005; Mo et al., 2007, 2008; Wen et al., 2008; Ji et al., 2009; Zheng et al., 2012, 2014; Ma et al., 2013a, 2013b; Zhu et al., 2013, 2018)和与之相关的金属成矿作用(Hou et al., 2004, 2017; Wang et al., 2015; Yang et al., 2015, 2016),而对冈底斯弧的深部组成、变质-深熔过程、地壳的生长与加厚机制的关注还十分有限(Zhang et al., 2010a, 2013, 2014b, 2015; Searle et al., 2011; 董昕等, 2012; Palin et al., 2014),而这些信息对于限定青藏高原的形成和演化有着重要的意义。
在冈底斯-喜马拉雅造山带东段,即东喜马拉雅构造结,位于造山带深部的高级变质岩被剥露到地表,是揭示冈底斯岩浆弧深部组成与构造演化的窗口(Zhang et al., 2014b)。本文在前人研究的基础上,选择冈底斯弧东段米林地区里龙岩基根部变质辉长岩中的变泥质岩石包体——夕线石榴黑云片岩进行了岩石学和锆石U-Pb年代学研究。通过相平衡模拟限定了岩石多期变质作用的条件与时间,构建了一个顺时针的P-T-t演化轨迹,并探讨了其变质成因与构造意义。
1 地质背景和样品本文的研究区位于青藏高原南部东喜马拉雅构造结。这里主要由3个构造单元组成,即北部的冈底斯岩浆弧(拉萨地体东南部),南部的喜马拉雅带,以及它们之间的新特提斯洋缝合带(图 1)。新特提斯洋缝合带,也叫雅鲁藏布江缝合带,是新特提斯洋闭合后的残余洋壳。新特提斯洋缝合带为蛇绿混杂岩带,主要由低角闪岩相变质的超镁铁质岩、镁铁质岩、石英岩、白云母石英片岩和大理岩组成,局部混有来自缝合带两侧地块的变质岩(Yin and Harrison, 2000; 耿全如等, 2000; 张泽明等, 2009)。喜马拉雅带为印度大陆北缘,在研究区内可划分为特提斯喜马拉雅岩系和高喜马拉雅结晶岩系。特提斯喜马拉雅岩系位于雅江缝合带和高喜马拉雅结晶岩系之间,主要由绿片岩相至绿帘角闪岩的中低级变质岩组成(Zhang et al., 2013)。高喜马拉雅结晶岩系又称南迦巴瓦杂岩,分布于东喜马拉雅构造结的核部,包括片麻岩,斜长角闪岩,片岩,大理岩和混合岩,普遍经历了峰期达高压麻粒岩相的变质和深熔作用(Ding et al., 2001; Guilmette et al., 2011; Zhang et al., 2010a, 2015, 2018)。
|
图 1 冈底斯岩浆弧东段地质简图 Fig. 1 Geological map of the eastern Gangdese magmatic arc |
冈底斯岩浆弧由中、新生代的岩浆岩和古生代至中生代的沉积岩组成,这些岩石又共同经历了中、新生代的变质作用(图 1)。依据变质作用程度的空间变化,可划分为麻粒岩相变质带、角闪岩相变质带和绿片岩相变质带。相关的中高级变质岩包括片麻岩、片岩、斜长角闪岩、石英岩、大理岩,麻粒岩和混合岩等,被统称为林芝杂岩(Dong et al., 2010; 董昕等, 2012; Zhang et al., 2013)。分布于米林至朗县一带的里龙岩基是冈底斯弧晚白垩世岩浆作用的代表,其下部由辉长岩和苏长岩组成,而中、上部由闪长岩、花岗闪长岩和紫苏花岗岩构成(Zhang et al., 2014b)。研究表明,其中的花岗质岩石具有埃达克岩的地球化学特征和高的εHf(t)值,结合同时期的高温变质作用,暗示晚白垩世岩浆作用很可能与新特提斯洋中脊俯冲有关(Zhang et al., 2010b, 2014a; Guo et al., 2013; Zheng et al., 2014)。里龙岩基下部的辉长岩经历了高温和高压麻粒岩相变质作用和部分熔融,已经转变为混合岩化的石榴石角闪岩或基性麻粒岩(王金丽等, 2009; Zhang et al., 2010a, 2014b; Guo et al., 2013)。在这些基性变质岩中有少量的变质表壳岩,包括片岩、片麻岩、大理岩和钙硅酸岩。本文所研究的夕线石榴黑云片岩(T16-77-8)采自米林县城西约15km,其在里龙岩基根部的变质辉长岩(石榴角闪岩)中呈透镜体产出。夕线石榴黑云片岩中含有丰富的、平行面理产出的条痕状长英质浅色体(图 2a),表明岩石经历了部分熔融。
|
图 2 夕线石榴黑云片岩野外照片(a)和显微照片(b-f) (a)夕线石榴黑云片岩呈片状构造,其中发育平行面理的长英质浅色体;(b)石榴石变斑晶中含有斜长石、黑云母、白云母、石英和金红石包体.石榴石边部呈港湾状,被黑云母+斜长石+石英的后成合晶冠状体替代;(c)石榴石和斜长石变斑晶中富含包体矿物,基质中的长英矿物呈条带状分布;(d)斜长石边缘生长毛发状夕线石;(e)石榴石变斑晶包裹由黑云母+斜长石+石英组成的多相矿物包体.基质中沿斜长石边缘生长的毛发状夕线石;(f)斜长石变斑晶中的绿帘石、黑云母和石英包体.矿物代号:Grt-石榴石;Bt-黑云母;Ms-白云母;Pl-斜长石;Ep-绿帘石;Sil-夕线石;Qz-石英;Rt-金红石;Ilm-钛铁矿 Fig. 2 Field photo (a) and microphotographs (b-f) of the sillimanite-garnet-biotite schist |
全岩主量元素成分在国家地质实验测试中心采用X-ray荧光光谱法分析,分析精度优于5%。矿物化学成分电子探针分析在中国地质科学院地质研究所采用JEOL JXA-8100电子探针分析。实验条件为加速电压15kV,束流20nA。束斑直径3~5μm,ZAF校正。
锆石U-Pb同位素和微量元素分析在武汉上谱分析科技有限责任公司完成,测试仪器为LA-ICP-MS。激光剥蚀系统为GeoLas 2005,激光剥蚀斑束直径为32μm,频率为5Hz。ICP-MS为Agilent 7700。在锆石U-Pb同位素定年实验操作过程中,锆石标准样品使用91500和GJ-1,其中监控标样GJ-1的平均值为603.4±2.0Ma(2σ, n=14),与推荐值(602.1±4.9Ma, Liu et al., 2010)在误差范围内一致。微量元素校正外标采用NIST610,内标为29Si。锆石分析数据的离线处理采用软件ICPMSDataCal(V10.0)完成,详细的仪器操作条件和数据处理方法见Liu et al. (2010)。谐和图绘制和锆石加权平均年龄计算使用Isoplot软件(Ludwig, 2003)完成。
3 岩相学和矿物化学夕线石榴黑云片岩具斑状变晶结构,片状构造,主要由石英、黑云母、白云母、石榴石、斜长石组成,含有少量的夕线石、绿帘石,副矿物锆石、金红石和钛铁矿(图 2b, c)。大颗粒的石榴石和斜长石呈变斑晶,基质由黑云母、白云母、斜长石、石英、夕线石、金红石和钛铁矿组成。定向分布的黑云母和白云母,以及长英质条带构成片理。石榴石变斑晶核部和幔部含有斜长石、黑云母、白云母、石英和金红石包体(图 2b),部分石榴石幔部含由石英+斜长石+黑云母组成的多相矿物包体(图 2e)。在深熔泥质岩石榴石中类似的多相矿物包体被认为是早期熔体包体结晶形成的(Holness and Sawyer, 2008; Rubatto et al., 2013)。部分石榴石边部呈港湾状,被细粒的黑云母+斜长石+石英+钛铁矿组成的后成合晶替代(图 2b, d)。类似的替代特征被认为是退变质过程中石榴石与熔体反应的结果(Waters, 2001; Cenki et al., 2002; Kriegsman and Álvarez-Valero, 2010; Zhang et al., 2015)。斜长石变斑晶核部富含石英、黑云母和绿帘石包裹体(图 2f)。夕线石呈毛发状分布于斜长石的边部(图 2b, c)。
岩相学观察表明,夕线石榴黑云片岩保存了三期矿物组合,早期的进变质矿物组合为变斑晶石榴石和斜长石核部,及其所含的矿物包体,即Grt+Pl+Bt+Ms+Qz+Ep+Rt+Ilm;峰期矿物组合为变斑晶幔部和基质矿物,即Grt+Pl+Bt+Ms+Qz+Rt+Ilm;晚期退变质矿物组合为变斑晶边缘及冠状体矿物,即Grt+Pl+Bt+Sil+Qz+Ilm。石榴石变斑晶中保存的多相矿物包体,基质中的长英质条带,以及石榴石边缘的反应结构都表明,所研究岩石经历了部分熔融,且有熔体存留于岩石之中。
石榴石变斑晶X光成分扫描图(图 3)和电子探针分析结果显示,石榴石发育成分环带(图 4、表 1),从核部到边缘钙铝榴石组分(XCa)降低(0.14~0.07),铁铝榴石组分(XFe)升高(0.50~0.60)。镁铝榴石组分(XMg)从核部到幔略有增加,从幔部到边缘降低(0.37~0.32),锰铝榴石组分(XMn)基本不变(0.01~0.02)。斜长石变斑晶发育弱成分环带,从核部到边部,其An值略有升高(0.33~0.35)。基质中斜长石An变化范围是0.28~0.35;石榴石中的包体斜长石均为中长石,其An变化范围是0.34~0.47(表 2)。不同产状的黑云母具有相似的TiO2含量(1.18%~1.51%),但其XMg值略有差异,基质中黑云母的XMg值(0.65~0.66)略低于石榴石变斑晶中的包体黑云母的XMg值(0.66~0.69),但高于冠状体中黑云母的XMg值(0.59~0.64)。基质中的白云母和石榴石变斑晶中的包体白云母具有相似的SiO2含量(47.07%~49.55%)。斜长石变斑晶中的包体绿帘石的CaO含量变化范围是24.55%~25.66%。
|
图 3 石榴石变斑晶X光成分扫描图 图中红线为图 4剖面位置 Fig. 3 X-ray mapping of the porphyroblastic garnet |
|
图 4 石榴石化学成分剖面图 Fig. 4 Garnet compositional profile |
|
|
表 1 夕线石榴黑云片岩中代表性石榴石电子探针分析结果(wt%) Table 1 Representative microprobe analyses of garnet from sillimanite-garnet-biotite schist (wt%) |
|
|
表 2 夕线石榴黑云片岩中代表性斜长石、黑云母和白云母电子探针分析结果(wt%) Table 2 Representative microprobe analyses of plagioclase, biotite and muscovite from sillimanite-garnet-biotite schist (wt%) |
利用相平衡模拟研究方法可定量计算变质岩的变质作用P-T条件、变质与熔融反应等(魏春景, 2016)。本文相平衡模拟使用Perple_X程序(Connolly, 2005, 2018年升级的6.8.4版),数据库选择Holland and Powell (1998)的2011年升级版(Holland and Powell, 2011)。所涉及的矿物及固溶体相的活度-成分关系模型选自Perple_X文件(solution_model.dat),包括石榴石-Gt(W),黑云母-Bi(W),白云母-Mica(W),长石(斜长石和钾长石)-Fsp(C1),堇青石-Crd(W),熔体-melt(W),绿帘石-Ep(HP11)和钛铁矿-Ilm(WPH)。本文相平衡模拟选择接近泥质岩真实成分的MnO-Na2O-CaO-K2O-FeOtotal-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3(MnNCKFMASHTO)体系(White et al., 2014)。考虑到岩石中的P2O5主要赋存于磷灰石中,且在所研究样品中含量很低,因此忽略该组分。模拟采用实测全岩成分:SiO2=59.16%,TiO2=0.93%,Al2O3=15.48%,Fe2O3=1.36%,FeO=7.6%,MnO=0.15%,MgO=5.23%,CaO=2.93%,Na2O=1.81%,K2O=2.33%,H2O=1.73%。
图 5为计算的P-T视剖面图,在计算的4~16kbar和600~900℃温压范围内,石榴石均稳定存在,金红石稳定在压力>9kbar的高压区域,白云母稳定在低温高压区域,夕线石仅稳定于650~750℃,6~8kbar的狭长区域,而绿帘石仅稳定在<650℃和9~13kbar的低温高压部分。体系饱和水固相线位于680~750℃之间,熔体含量随温度的升高而增加。石榴石镁铝榴石组分(XMg)等值线在7kbar以上具有正斜率,并随温度升高而增加;钙铝榴石组分等值线(XCa)与温度轴近平行,并随压力升高而增加(图 5)。
|
图 5 夕线石榴黑云片岩的P-T视剖面图 图中红色虚线表示石榴石XMg等值线,黄色虚线表示XCa等值线,蓝色虚线表示熔体含量等值线.矿物代号:Ab-钠长石;Crd-堇青石;Kfs-钾长石;Ky-蓝晶石;L-熔体;其余矿物代号同图 2 Fig. 5 P-T pseudosection for the sillimanite-garnet-biotite schist |
在计算的P-T视剖面图中,早期进变质矿物组合M1(Ep+Grt+Pl+Bt+Ms+Qz+Rt+Ilm)稳定于600~650℃和9~12.5kbar的范围内,代表了岩石早期进变质条件。峰期矿物组合M2(Grt+Pl+Bt+Ms+Qz+Rt+Ilm)稳定在有熔体存在的700~820℃和13~16kbar区域。晚期退变质矿物组合M3(Grt+Pl+Bt+Sil+Qz+Ilm)稳定于650~720℃和6~8kbar的区域。
如上所述,石榴石具有成分环带,石榴石幔部具有最高的XMg值(0.36~0.37)。相应等值线与峰期矿物组合稳定域相交给出了810~820℃和14~16kbar的温压条件。结合我们在同一采样位置的变质辉长岩(即石榴角闪岩)获得的~820℃和~16.7kbar的峰期变质条件(未发表),我们认为夕线石榴黑云片岩的峰期温压条件为~820℃和~16kbar(即峰期矿物组合稳定域与最高的XMg值相交的右上角区域),峰期条件下的熔体含量约为15%。石榴石边部最低的XMg值(0.32)和最低的XCa值(0.07)交点落在晚期M3矿物组合稳定域附近,所限定的岩石晚期退变质条件为~680℃和~7kbar。
综合早期进变质、峰期和晚期退变质条件,可以限定夕线石榴黑云片岩具有一个顺时针型的变质作用P-T轨迹,其峰期变质作用发生在高压和高温麻粒岩相条件下,并经历了明显的部分熔融,而晚期经历了角闪岩相退变质作用。
5 锆石U-Pb年代学夕线石榴黑云片岩中锆石U-Pb定年和微量元素原位分析结果见表 3和表 4。岩石中的锆石呈粒状或短柱状,粒径在80~120μm之间。阴极发光图像显示,部分锆石颗粒发育核-边结构,具一个小的继承核和宽的增生边;多数锆石颗粒无继承核。锆石增生边和无继承核锆石具有弱同心环状环带,或具有补丁状分带(图 6)。U-Pb定年结果显示,锆石增生边和无继承核锆石具有可变的206Pb/238U年龄,其变化范围是82.2~97.9Ma,13个分析点的加权平均年龄为89.3±1.7Ma(2σ, MSWD=2.4, 图 7a)。这些分析点具有较低的重稀土(HREE=35×10-6~130×10-6)和Y(50×10-6~284×10-6)含量,低的Th/U比值(0.028~0.139),表明它们是变质成因锆石(吴元保和郑永飞, 2004)。锆石的稀土元素配分模式表现为平坦或亏损的HREE形式,并具有明显的Eu负异常(图 7b),表明在这些锆石域生长过程中有石榴石和斜长石存在(Corfu et al., 2003; Hoskin and Schaltegger, 2003; Rubatto, 2002; Rubatto and Hermann, 2007)。因此,所获得的锆石U-Pb年龄应代表夕线石榴黑云片岩的变质年龄。
|
|
表 3 夕线石榴黑云片岩中锆石U-Pb定年结果 Table 3 Zircon U-Pb data for sillimanite-garnet-biotite schist |
|
|
表 4 夕线石榴黑云片岩中锆石稀土元素(×10-6) Table 4 The REE analysis of zircon for sillimanite-garnet-biotite schist (×10-6) |
|
图 6 锆石阴极发光图像,示分析点位和年龄(Ma) Fig. 6 Cathodoluminescence images of representative zircon grains, showing the analytical spots and related ages (in Ma) |
|
图 7 锆石U-Pb谐和图(a)和球粒陨石标准化稀土元素配分模式(b) Fig. 7 U-Pb concordia diagram (a) and chondrite-normalized REE patterns (b) of zircons |
研究表明,晚白垩世是冈底斯弧岩浆作用的一个明显峰期,位于冈底斯弧东段,朗县至米林一带的里龙岩基是该时期岩浆岩的代表。里龙岩基下部的辉长岩、苏长岩和中、上部的闪长岩、花岗闪长岩以及紫苏花岗岩共同构成了一个20~30km深的岩浆弧地壳剖面,其下部的辉长岩代表了冈底斯岩浆弧根部下地壳,它经历了近同侵入期的麻粒岩相变质作用和深熔作用,已转变为混合岩化的石榴角闪岩或基性麻粒岩(Zhang et al., 2014b)。目前关于冈底斯弧下地壳岩石晚白垩世的变质作用条件仍存在争议,王金丽等(2009)通过对该地区石榴二辉麻粒岩的研究认为,岩石的峰期矿物组合是石榴石+单斜辉石+斜方辉石+拉长石+富钛角闪石+黑云母,并通过多种矿物对温压计计算将其峰期条件限定在747~834℃和9~13.5kbar。Guo et al. (2013)研究认为,含石榴石基性麻粒岩的峰期矿物组合是石榴石+斜方辉石+高钛角闪石+斜长石+石英+金红石,所估算的峰期变质作用温度为803~924℃。Zhang et al. (2014b)的研究表明,里龙岩基根部变辉长岩的峰期变质条件为830~900℃和9~13kbar。本文所研究的夕线石榴黑云片岩作为变质辉长岩(即石榴角闪岩)中的包体产出,与变质辉长岩共生。相平衡模拟显示,夕线石榴黑云片岩的峰期变质作用温度为~820℃,压力可达~16kbar,达到了高压麻粒岩相变质条件,这表明冈底斯弧地壳至少加厚到53km。而且,本研究结果表明冈底斯弧根的变泥质岩石经历了明显的部分熔融,峰变质条件下的熔体含量达到15%。
Zhang et al. (2014b)的研究表明,里龙岩基根部的变辉长岩的原岩年龄是95~82Ma,经历了稍晚期(77~68Ma)的麻粒岩相变质作用和部分熔融。Guo et al. (2013)对含石榴石基性麻粒岩和大理岩中的锆石定年都得到了~81Ma的变质年龄,表明里龙岩基深部的基性侵入岩和其中裹挟的表壳岩共同经历了晚白垩世(~81Ma)高温麻粒岩相变质作用,并认为这期变质作用与晚白垩世新特提斯洋中脊俯冲有关。而王金丽等(2009)通过与石榴二辉麻粒岩共生的斜长角闪岩和大理岩中的锆石定年获得了90~85Ma变质年龄。本文通过对变质表壳岩(即夕线石榴黑云片岩)中的锆石定年获得了相对较老(~89Ma)的变质年龄,结合已有的资料,共同表明冈底斯弧加厚下地壳经历了晚白垩世的麻粒岩相变质与部分熔融。而且,本文获得的变质年龄接近变质辉长岩的原岩结晶年龄(95~90Ma, Guo et al., 2013; Zhang et al., 2014b),这进一步证明晚白垩世辉长岩经历了近同侵入期的变质作用。
6.2 变质作用P-T轨迹与构造意义冈底斯弧的岩浆岩形成在中生代新特提斯洋岩石圈向北部的拉萨地体之下俯冲过程中,并在随后的大陆碰撞过程中叠加了新生代的岩浆作用,是典型的大陆岩浆弧(莫宣学等, 2005; 潘桂棠等, 2006; Zhu et al., 2011, 2018)。大量研究表明,冈底斯弧中生代岩浆岩中的锆石具有正的且高的εHf(t)值,而且很多侏罗纪-白垩纪的花岗质岩石表现出埃达克岩的地球化学特征,这表明该时期的基性岩起源于亏损地幔,而花岗质岩石是新生下地壳或俯冲板片部分熔融的产物,冈底斯弧在中生代经历了显著的新生地壳生长和地壳加厚(Mo et al., 2007, 2008; Wen et al., 2008; Ji et al., 2009; Zhu et al., 2009, 2011, 2013; Zhang et al., 2013; Ma et al., 2013a, 2013b; Hou et al., 2015),而岩浆弧加厚下地壳的一个典型特征是发生麻粒岩相的变质作用与深熔作用(Bohlen, 1987; Zhang et al., 2014b)。
以前的大量研究认为,大陆岩浆弧下地壳的变质岩通常具有逆时针型的变质作用P-T演化轨迹,以早期的升温升压和晚期的近等压降温为特征(Bohlen, 1987; Harley, 1989; Zhao, 2007)。这是因为幔源岩浆的底侵会导致明显的温度升高,以及峰期变质后的冷却过程。但是,也有个别研究揭示,以明显地壳加厚为特征的岩浆弧下地壳会经历了顺时针型的变质作用P-T轨迹,如喜马拉雅造山带西段的科伊期坦弧(Yoshino and Okudaira, 2004)。
本研究成果第一次揭示,冈底斯岩浆弧加厚下地壳的晚白垩世变质岩具有顺时针型的P-T轨迹。我们认为,研究区晚白垩世大体积幔源岩浆岩的底侵和增生导致岩浆弧发生了显著的地壳加厚,使岩浆弧根部的辉长岩及其捕获的变质表壳岩包体一起被加厚到~53km深度,发生了高压和高温麻粒岩相变质作用与部分熔融。这之后加厚下地壳或弧根可能经历了相对缓慢的抬升过程。值得注意的是,所研究的夕线石榴黑云片岩经历了早期相对低温、高压变质作用,这很可能暗示,在大规模幔源岩浆侵位之前,地表岩石已经被埋藏至正常下地壳深度。
7 结论(1) 冈底斯弧东段的夕线石榴黑云片岩经历了高压和高温麻粒岩相峰期变质作用与部分熔融,其峰期变质条件为~820℃和~16kbar,并具有顺时针型的P-T演化轨迹,其早期进变质作用以增温与增压为特征,晚期退变质作用可能为降温与降压过程。
(2) 夕线石榴黑云片岩的变质作用发生在~89Ma的晚白垩世,接近寄主岩石变质辉长岩的结晶时间。这进一步表明里龙岩基根部经历了近同侵入期的变质作用,为冈底斯岩浆弧晚白垩世地壳加厚提供了重要证据。
(3) 与多数岩浆弧下地壳变质岩通常经历高温麻粒岩相变质作用,并具有逆时针型的P-T轨迹不同,以大体积幔源岩浆底垫与增生为特征的岩浆弧加厚下地壳会发生高压麻粒岩相变质作用,并具有顺时针型的变质作用P-T轨迹。
致谢 感谢张贵宾、张聪和向华博士审阅全文并提出重要修改意见。
Bohlen SR. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. The Journal of Geology, 95(5): 617-632. DOI:10.1086/629159 |
Cenki B, Kriegsman LM and Braun I. 2002. Melt-producing and melt-consuming reactions in the Achankovil cordierite gneisses, South India. Journal of Metamorphic Geology, 20(6): 543-561. DOI:10.1046/j.1525-1314.2002.00388.x |
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196. |
Connolly JAD. 2005. Computation of phase equilibria by linear programming:A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2): 524-541. DOI:10.1016/j.epsl.2005.04.033 |
Corfu F, Hanchar JM, Hoskin PWO and Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. |
Debon F, Le Fort P, Sheppard SMF and Sonet J. 1986. The four plutonic belts of the Transhimalaya-Himalaya:A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. Journal of Petrology, 27(1): 219-250. DOI:10.1093/petrology/27.1.219 |
Ding L, Zhong DL, Yin A, Kapp P and Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423-438. DOI:10.1016/S0012-821X(01)00463-0 |
Ding L, Kapp P, Zhong DL and Deng WM. 2003. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10): 1833-1865. DOI:10.1093/petrology/egg061 |
Dong X, Zhang ZM and Santosh M. 2010. Zircon U-Pb chronology of the Nyingtri Group, southern Lhasa terrane, Tibetan Plateau:Implications for Grenvillian and Pan-African provenance and Mesozoic-Cenozoic metamorphism. The Journal of Geology, 118(6): 677-690. DOI:10.1086/656355 |
Dong X, Zhang ZM, Liu F, Wang W, Yu F, Lin YH, Jiang HY and He ZY. 2012. Genesis of the metamorphic rock from southeastern Lhasa terrane and the Mesozoic-Cenozoic orogenesis. Acta Petrologica Sinica, 28(6): 1765-1784. |
Geng QR, Pan GT, Liu YP and Zheng LL. 2000. The preliminary study of the ophiolitic melanges along the Yarlung Zangbo Grand Canyon, Xizang. Sedimentary Geology and Tethyan Geology, 20(1): 28-43. |
Guilmette C, Indares A and Hébert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos, 124(1-2): 66-81. |
Guo L, Zhang HF, Harris N, Pan FB and Xu WC. 2013. Late Cretaceous (~81Ma) high-temperature metamorphism in the southeastern Lhasa terrane:Implication for the Neo-Tethys ocean ridge subduction. Tectonophysics, 608: 112-126. DOI:10.1016/j.tecto.2013.10.007 |
Harley SL. 1989. The origins of granulites:A metamorphic perspective. Geological Magazine, 126(3): 215-247. DOI:10.1017/S0016756800022330 |
Holland TJB and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309-343. |
Holland TJB and Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333-383. DOI:10.1111/jmg.2011.29.issue-3 |
Holness MB and Sawyer EW. 2008. On the pseudomorphing of melt-filled pores during the crystallization of migmatites. Journal of Petrology, 49(7): 1343-1363. DOI:10.1093/petrology/egn028 |
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. |
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. DOI:10.1016/S0012-821X(04)00007-X |
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS and Duan LF. 2015. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250. |
Hou ZQ, Zhou Y, Wang R, Zheng YC, He WY, Zhao M, Evans NJ and Weinberg RF. 2017. Recycling of metal-fertilized lower continental crust:Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 45(6): 563-566. DOI:10.1130/G38619.1 |
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245. DOI:10.1016/j.chemgeo.2009.01.020 |
Kriegsman LM and Álvarez-Valero AM. 2010. Melt-producing versus melt-consuming reactions in pelitic xenoliths and migmatites. Lithos, 116(3-4): 310-320. |
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082 |
Ludwig KR. 2003. User's manual for Isoplot/Ex version 3.0:A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publications: 1-73.
|
Ma L, Wang Q, Li ZX, Wyman DA, Jiang ZQ, Yang JH, Gou GN and Guo HF. 2013a. Early Late Cretaceous (ca.93Ma) norites and hornblendites in the Milin area, eastern Gangdese:Lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100~80Ma) magmatic "flare-up" in southern Lhasa (Tibet). Lithos, 172-173: 17-30. DOI:10.1016/j.lithos.2013.03.007 |
Ma L, Wang Q, Wyman DA, Li ZX, Jiang ZQ, Yang JH, Gou GN and Guo HF. 2013b. Late Cretaceous (100~89Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese:Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175-176: 315-332. DOI:10.1016/j.lithos.2013.04.006 |
Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290. |
Mo XX and Pan GT. 2006. From the Tethys to the formation of the Qinghai Tibet Plateau:Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43-51. |
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242. |
Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 250(1-4): 49-67. DOI:10.1016/j.chemgeo.2008.02.003 |
Palin RM, Searle MP, St-Onge MR, Waters DJ, Roberts NMW, Horstwood MSA, Parrish RR, Weller O, Chen S and Yang J. 2014. Monazite geochronology and petrology of kyanite-and sillimanite-grade migmatites from the northwestern flank of the eastern Himalayan syntaxis. Gondwana Research, 26(1): 323-347. DOI:10.1016/j.gr.2013.06.022 |
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533. |
Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138. DOI:10.1016/S0009-2541(01)00355-2 |
Rubatto D and Hermann J. 2007. Zircon behaviour in deeply subducted rocks. Elements, 3(1): 31-35. |
Rubatto D, Chakraborty S and Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165(2): 349-372. DOI:10.1007/s00410-012-0812-y |
Searle MP, Elliott JR, Phillips RJ and Chung SL. 2011. Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, 168(3): 633-672. DOI:10.1144/0016-76492010-139 |
Wang JL, Zhang ZM, Dong X, Liu F, Wang W, Xu FJ and Shen K. 2009. Discovery of Late Cretaceous garnet two-pyroxene granulite in the southern Lhasa terrane, Tibet and its tectonic significances. Acta Petrologica Sinica, 25(7): 1695-1706. |
Wang R, Richards JP, Zhou LM, Hou ZQ, Stern RA, Creaser RA and Zhu JJ. 2015. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 150: 68-94. DOI:10.1016/j.earscirev.2015.07.003 |
Waters DJ. 2001. The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks. Lithos, 56(1): 97-110. |
Wei CJ. 2016. Granulite facies metamorphism and petrogenesis of granite (Ⅱ):Quantitative modeling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite. Acta Petrologica Sinica, 32(6): 1625-1643. |
Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji JQ, Liu DY and Gallet S. 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11. |
White RW, Powell R, Holland TJB, Johnson TE and Green ECR. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261-286. DOI:10.1111/jmg.2014.32.issue-3 |
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569. DOI:10.1007/BF03184122 |
Xu ZQ, Li HB and Yang JS. 2006. An orogenic plateau:The orogenic collage and orogenic types of Qinghai-Tibet Plateau. Earth Science Frontiers. 2006, 13(4): 1-17. |
Xu ZQ, Yang JS, Li HB, Ji SC, Zhang ZM and Liu Y. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica, 85(1): 1-33. DOI:10.1111/acgs.2011.85.issue-1 |
Yang ZM, Lu YJ, Hou ZQ and Chang ZS. 2015. High-Mg diorite from Qulong in southern Tibet:Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, 56(2): 227-254. DOI:10.1093/petrology/egu076 |
Yang ZM, Hou ZQ, Chang ZS, Li QY, Liu YF, Qu HC, Sun MY and Xu B. 2016. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet:Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 245: 243-257. DOI:10.1016/j.lithos.2015.04.002 |
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. DOI:10.1146/annurev.earth.28.1.211 |
Yoshino T and Okudaira T. 2004. Crustal growth by magmatic accretion constrained by metamorphic P-T paths and thermal models of the Kohistan arc, NW Himalayas. Journal of Petrology, 45(11): 2287-2302. DOI:10.1093/petrology/egh056 |
Zhang ZM, Wang JL, Dong X, Zhao GC, Yu F, Wang W, Liu F and Geng GS. 2009. Petrology and geochronology of the charnockite from the southern Gangdese belt, Tibet:Evidence for the Andean-type orogen. Acta Petrologica Sinica, 25(7): 1707-1720. |
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Liou JG. 2010a. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719-733. |
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010b. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17(4): 615-631. DOI:10.1016/j.gr.2009.10.007 |
Zhang ZM, Dong X, Xiang H, Liou JG and Santosh M. 2013. Building of the deep Gangdese arc, South Tibet:Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54(12): 2547-2580. DOI:10.1093/petrology/egt056 |
Zhang ZM, Dong X, Santosh M and Zhao GC. 2014a. Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet. Gondwana Research, 25(1): 170-189. DOI:10.1016/j.gr.2012.08.024 |
Zhang ZM, Dong X, Xiang H, He ZY and Liou JG. 2014b. Metagabbros of the Gangdese arc root, South Tibet:Implications for the growth of continental crust. Geochimica et Cosmochimica Acta, 143: 268-284. DOI:10.1016/j.gca.2014.01.045 |
Zhang ZM, Xiang H, Dong X, Ding HX and He ZY. 2015. Long-lived high-temperature granulite-facies metamorphism in the eastern Himalayan orogen, south Tibet. Lithos, 212-215: 1-15. DOI:10.1016/j.lithos.2014.10.009 |
Zhang ZM, Ding HX, Dong X, Tian ZL, Kang DY, Mu HC, Qin SK, Jiang YY and Li MM. 2018. High-temperature metamorphism, anataxis and tectonic evolution of a mafic granulite from the eastern Himalayan orogen. Journal of Earth Science, 29(5): 1010-1025. DOI:10.1007/s12583-018-0852-y |
Zhao GC. 2007. When did plate tectonics begin on the North China Craton? Insights from metamorphism. Earth Science Frontiers, 14(1): 19-32. DOI:10.1016/S1872-5791(07)60002-5 |
Zheng YC, Hou ZQ, Li QY, Sun QZ, Liang W, Fu Q, Li W and Huang KX. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane:Evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296-311. DOI:10.1016/j.lithos.2012.05.026 |
Zheng YC, Hou ZQ, Gong YL, Liang W, Sun QZ, Zhang S, Fu Q, Huang KX, Li QY and Li W. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet:Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190. |
Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC and Liu B. 2009. Early Cretaceous subduction-related adakite-like rocks of the Gangdese belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. DOI:10.1016/j.jseaes.2008.05.003 |
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255. DOI:10.1016/j.epsl.2010.11.005 |
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. DOI:10.1016/j.gr.2012.02.002 |
Zhu DC, Wang Q, Zhao ZD, Chung SL, Cawood PA, Niu Y, Liu SA, Wu FY and Mo XX. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5: 14289. DOI:10.1038/srep14289 |
Zhu DC, Wang Q, Chung SL, Cawood PA and Zhao ZD. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120Ma. Geological Society, London, Special Publications: 483. DOI:10.1144/SP483.14 |
董昕, 张泽明, 刘峰, 王伟, 于飞, 林彦蒿, 姜洪颖, 贺振宇. 2012. 拉萨地体东南部变质岩的成因与中-新生代造山作用. 岩石学报, 28(6): 1765-1784. |
耿全如, 潘桂棠, 刘宇平, 郑来林. 2000. 雅鲁藏布大峡谷地区蛇绿混杂岩带初步研究. 沉积与特提斯地质, 20(1): 28-43. DOI:10.3969/j.issn.1009-3850.2000.01.002 |
莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. DOI:10.3969/j.issn.1006-7493.2005.03.001 |
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成:构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. DOI:10.3321/j.issn:1005-2321.2006.06.007 |
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. |
王金丽, 张泽明, 董昕, 刘峰, 于飞, 王伟, 徐方建, 沈昆. 2009. 西藏拉萨地体南部晚白垩纪石榴石二辉麻粒岩的发现及其构造意义. 岩石学报, 25(7): 1695-1706. |
魏春景. 2016. 麻粒岩相变质作用与花岗岩成因-Ⅱ:变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟. 岩石学报, 32(6): 1625-1643. |
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002 |
许志琴, 李海兵, 杨经绥. 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17. DOI:10.3321/j.issn:1005-2321.2006.04.002 |
许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1-33. |
张泽明, 王金丽, 董昕, 赵国春, 于飞, 王伟, 刘峰, 耿官升. 2009. 青藏高原冈底斯带南部的紫苏花岗岩:安第斯型造山作用的证据. 岩石学报, 25(7): 1707-1720. |
2019, Vol. 35


