岩石学报  2018, Vol. 34 Issue (11): 3433-3444   PDF    
稀有气体同位素对岩浆侵入方向的制约:以夏日哈木镍铜硫化物矿床为例
王小东1 , 张铭杰1 , 伏珏蓉1 , 张江伟2 , 李立武3 , 汤庆艳1 , 李中平3     
1. 兰州大学地质科学与矿产资源学院, 甘肃省西部矿产资源重点实验室, 兰州 730000;
2. 中国地质调查局西安地质调查中心, 国土资源部岩浆作用成矿与找矿重点实验室, 西安 710054;
3. 中国科学院地质与地球物理研究所, 甘肃省油气资源研究重点实验室, 兰州 730000
摘要:我国东昆仑造山带新发现的夏日哈木镍铜硫化物矿床是造山带环境产出全球镍资源最大的岩浆镍铜矿床。含矿岩体不同类型岩石中橄榄石和辉石的He、Ne和Ar同位素组成表明:3He/4He(0.39~0.03Ra)和40Ar/36Ar比值(292.0~316.9)较低,20Ne/22Ne和21Ne/22Ne沿放射性成因Ne及大陆地壳线分布,表明岩浆起源演化过程中有大陆地壳组分和大气饱和流体在橄榄石结晶前加入。He和Ar同位素混合模型计算表明岩浆中有7.8%再循环洋壳组分和87.7%大气饱和流体的加入,再循环洋壳可能带入了大气及地壳组分。3He/4He和40Ar/36Ar比值的自西向东系统性降低,以及微量元素、成矿元素和稀有气体同位素的空间协同变化特征表明地壳物质的逐步加入,即岩浆可能自西向东方向侵入,侵位过程中地壳流体的加入促使硫饱和及硫化物的熔离成矿。
关键词: 岩浆侵位方向     稀有气体同位素     超镁铁质岩     镍铜硫化物矿床     夏日哈木    
The magmatic intrusive direction constrains from noble gas isotopic compositions: A case study of the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt, China
WANG XiaoDong1, ZHANG MingJie1, FU JueRong1, ZHANG JiangWei2, LI LiWu3, TANG QingYan1, LI ZhongPing3     
1. Gansu Key Lab of Mineral Resources in Western China, School of Earth Sciences, Lanzhou University, Lanzhou 730000, China;
2. MLR Key Lab of Geneis and Exploration of Magmatic Ore Deposits, Xi'an Center of Geological Survey, CGS, Xi'an 710054, China;
3. Gansu Key Lab of Petroleum Resource Research, Institute of Geology and Geophysics, CAS, Lanzhou 730000, China
Abstract: The newly discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the East Kunlun orogenic belt, western China is the largest one formed in orogenic belt settings. The He, Ne and Ar isotopic compositions from olivine and pyroxene separates of different types of rocks in the Xiarihamu Ni-Cu sulfide deposit have low 3He/4He (0.39~0.03) and 40Ar/36Ar (292.0~316.9) ratios, with their 20Ne/22Ne and 21Ne/22Ne ratios distributed along the line of continental crust evolution, indicating that there are some components of continental crust and air saturated fluid (ASF) added into the ore-forming magma before olivine crystallization in the process of the magma evolution. He and Ar isotope mixing model calculations show that 7.8% recycled oceanic crust and 87.7% ASF are added into the magma. The recycled oceanic crustal materials and saturated air fluid might be brought and added into the magmatic sources by the subducted plate. The spatial variation of 3He/4He and 40Ar/36Ar ratios as well as Ni and Cu contents from west to east part of intrusion suggested that crustal materials were added progressively, i.e., the magma intrusion direction was from west to east. The addition of crustal fluids into the magma during the intruding process results in the sulfur saturation and segregation of sulfide in silicate melt.
Key words: Magma intrusive direction     Noble gas isotopes     Ultramafic intrusion     Ni-Cu sulfide deposit     Xiarihamu, western China    

镍铜铂族金属富集的幔源岩浆中,硫饱和及硫化物熔离是岩浆型铜镍硫化物矿床形成的关键,携带成矿金属的岩浆在岩浆通道至岩浆房过程中分异成矿(Lesher and Campbell, 1993Naldrett et al., 1992; Naldrett,1999Li et al., 2000),因此岩浆侵位方向的确定有助于判断含矿岩浆运移通道及矿体空间位置,对于矿床勘探具有重要的指示意义(Song et al., 2016)。东昆仑造山带的夏日哈木铜镍硫化物矿床是全球造山带环境产出镍资源量最大的超大型岩浆矿床,已探明金属储量达157万吨(Ni金属平均品位0.65%),是我国镍资源量仅次于金川矿床的第二大岩浆型铜镍硫化物矿床(Song et al., 2016)。成矿岩浆起源于辉石岩地幔源区的高镁玄武质岩浆(Song et al., 2016)或玻安质岩浆(Li et al., 2015),携带橄榄石晶体和硫化物珠滴的成矿岩浆可能由西向东侵位至早期辉长岩体中形成该矿床(Song et al., 2016)。

夏日哈木镍铜硫化物矿床Ⅰ号岩体是主要成矿岩体,由早期辉长岩侵入体和后期的超镁铁质岩体组成,主要由橄榄岩相、辉石岩相和苏长-辉长岩相组成,岩石类型为方辉橄榄岩、二辉橄榄岩、橄榄辉石岩、斜方辉石岩和辉长苏长岩等。橄榄岩相和辉石岩相是Ni和Cu的主要赋矿岩相。Ⅰ号超镁铁质岩体中二辉辉石岩锆石U-Pb年龄为406.1±2.7Ma(Song et al., 2016),含斜长石橄榄二辉岩锆石U-Pb年龄411.6±2.4Ma(Li et al., 2015),早期辉长岩侵入体年龄为431.3±2.1Ma(Li et al., 2015)。

夏日哈木镍铜硫化物矿床镁铁质-超镁铁质岩体具有LREE和LILE富集,Nb、Ta、Ti和P亏损的地球化学特征(王冠等,2014Li et al., 2015姜常义等,2015)。(87Sr/86Sr)iεNd(t)分别为0.7064~0.7105和-5.74~-1.97,εHf(t)=0.9~10.9,表明岩浆源区为亏损地幔,可能有俯冲流体交代的富集组分加入,母岩浆经历了约5%~30%的地壳混染(王冠等,2014Li et al., 2015姜常义等,2015Zhang et al., 2017b),δ34S值(+2.2%~+6.8%)位于地壳硫的范围(Li et al., 2015Zhang et al., 2017b)。超镁铁质岩体碳同位素组成揭示存在沉积有机质来源组分(汤庆艳等,2017)。

夏日哈木镍铜硫化物矿床豆荚状、似层状矿体主要由斑杂状、块状、海绵陨铁状、浸染状和星点状矿石构成。硫化物矿石以贫PGE和Cu、高Ni和Ni/Cu比值为特征(Song et al., 2016)。硫饱和-硫化物熔离成矿的关键因素在于混染壳源物质或外来硫的加入。由于含矿岩体直接接触的为贫硫围岩,因此其外来硫是来源于深部(Song et al., 2016)还是岩浆房就地结晶时的流体组分(汤庆艳等,2017)尚需进一步的研究来确定,而根据岩浆房几何学特征推断岩浆可能由西部侵入也需要相应的地质地球化学证据来确认(Song et al., 2016)。

稀有气体同位素由于其化学惰性及不同源区同位素组成的显著差异,在岩浆演化过程中不涉及化学过程,可制约岩浆矿床流体来源、侵位和演化等相关的物理过程(Allègre et al., 1987Farley and Neroda, 1998Ozima and Podosek, 2002Zhang et al., 2013, 2017aGuo et al., 2017Nivin and Rundqvist, 2017Gilfillan and Ballentine, 2018)。为此,本文对夏日哈木镍铜硫化物矿床赋矿超镁铁质岩中橄榄石和辉石矿物进行He、Ne和Ar含量及同位素组成分析,确定成矿岩浆作用过程中稀有气体组成特征及其来源,探讨成矿岩浆中混染组分来源及比例、以及成矿岩浆的侵入方向。

1 地质背景 1.1 区域地质背景

夏日哈木镍铜硫化物矿床产出于东昆仑造山带西段的祁漫塔格地区。东昆仑造山带位于青藏高原北部,以昆中区域性断裂为界分为昆北和昆南造山带,西与塔里木板块以阿尔金断裂为界,东与西秦岭造山带接触,北邻柴达木板块(图 1)。新元古代末期Rodinia超大陆裂解时,该区进入到原特提斯洋演化阶段,早古生代早期为沟-弧-盆体系,晚古生代至早中生代为古特提斯北部大陆边缘体系,侏罗纪后为陆内造山阶段(李荣社等,2008)。

图 1 夏日哈木镍铜硫化物矿床大地构造简图(a)、矿区地质图(b)及Ⅰ号岩体地质图(c, 据王冠等,2014) 1-第四系;2-元古宙金水口岩群;3-花岗岩;4-中泥盆世正长花岗岩;5-新元古代二长花岗岩;6-新元古代花岗片麻岩;7-早三叠世闪长岩;8-辉长岩;9-辉绿岩;10-石榴石斜长角闪岩;11-超镁铁质岩体;12-矿体及镍矿露头;13-断层;14-勘探线及编号;15-钻孔号及采样位置 Fig. 1 The sketch tectonic map (a), geological map (b) for the Xiarihamu Ni-Cu sulfide deposit and sketch geological map of the No-Ⅰmafic-ultramafic complex (c, after Wang et al., 2014)

区内地层主要为古元古代金水口岩群白沙河组变质岩系,其主要岩性为黑云斜长片麻岩、云母二长片麻岩、斜长角闪岩和大理岩。本区岩浆活动较强,主要为镁铁质-超镁铁质岩体及闪长岩、二长花岗岩和正长花岗岩侵入体(王冠等,2014)。北部产出正长花岗岩呈岩株状;闪长玢岩呈岩脉状穿插含矿杂岩体,锆石U-Pb年龄为381.7±1.9Ma(奥琮等,2014)。南东部的闪长岩体呈岩脉状、岩株状侵位于白沙河岩组变质地层中,未穿插镁铁质-超镁铁质岩体。区内断裂构造主要有EW、NE和NW向,其中EW向断裂规模最大且形成时间最早,NE和NW向断裂形成时间晚于EW向断裂(王冠等,2014)。

1.2 岩体地质特征

夏日哈木地区内出露有五个镁铁质-超镁铁质岩体。Ⅰ号岩体为主要成矿岩体,由橄榄岩相、辉石岩相和苏长-辉长岩相组成。Ⅱ号岩体主要为辉长岩,含少量辉石岩,有铜镍矿化。Ⅱ号岩体辉长岩锆石U-Pb年龄(424Ma,Peng et al., 2016)与Ⅰ号岩体辉长岩体特征相近。Ⅲ号、Ⅳ号和Ⅴ号岩体(块)均为镁质橄榄岩,主要由蛇纹岩、糜棱岩化辉长岩、榴闪岩及榴辉岩组成,被认为是蛇绿岩套的组成部分。

夏日哈木Ⅰ号岩体长约1.9km、宽约700m、面积约1.33km2,近北东东向分布,走向约60°,向西倾伏,岩体西部隐伏于地下,最大深度可达715m,地表出露面积约0.9km2,岩体侵位于古元古代金水口群变质岩系中(王冠等,2014)。

9号勘探线以西主要由斜方辉石岩、橄榄斜方辉石岩和橄榄岩组成,橄榄斜方辉石岩主要分布于21-11号勘探线之间,呈透镜状向两端减薄至消失。9号勘探线以东主要岩性为斜方辉石岩,厚度较大,为侵入体的主体部分(Song et al., 2016)。

橄榄岩相由纯橄岩、方辉橄榄岩和二辉橄榄岩组成,橄榄石和少量斜方辉石为堆晶相,多数斜方辉石和单斜辉石、普通角闪石为填隙相。辉石岩相由橄榄方辉辉石岩、方辉辉石岩和含长二辉岩组成,橄榄石和自形斜方辉石为堆晶相,他形斜方辉石、单斜辉石、少量普通角闪石和斜长石为填隙相。苏长-辉长岩相由橄榄辉长岩、辉长苏长岩和辉长岩组成,橄榄石和斜方辉石为堆晶相,单斜辉石、普通角闪石和斜长石为填隙相(姜常义等,2015)。

1.3 矿床学特征

夏日哈木镍铜硫化物矿床钻孔资料表明,该矿床各矿体的形状、品位和矿石构造均具有明显不同。5号勘探线以西赋存的东、西部矿体为两个厚的豆荚状矿体,西部(17-23号勘探线)豆荚状矿体厚度较小,东部(5-17号线)豆荚状矿体较大,厚度可达300m以上,赋存95%的镍金属资源量(图 2)。7号勘探线以东矿体出现明显分支,主要为一些矿石亚层,厚度较小,品位较低,矿体形态主要为似层状、透镜状,局部呈脉状(王冠等,2014Song et al., 2016)。东、西部两个豆荚状矿体主要由稀疏浸染状矿石组成,硫化物含量从北西到南东增加。西部矿体的硫化物熔离分异比东部矿体弱,硫化物Ni含量较高、Pd含量较低(Song et al., 2016)。矿石矿物主要为黄铁矿、镍黄铁矿、黄铜矿及少量的磁铁矿。

图 2 夏日哈木镍铜硫化物矿床剖面地质图(据Song et al., 2016修改) Fig. 2 Cross section of the Xiarihamu Ni-Cu sulfide deposit (after Song et al., 2016)

矿体分布受岩相控制,橄榄岩相和辉石岩相是主要的赋矿岩相,苏长-辉长岩相不含矿或含少量硫化物。9号勘探线以西赋矿岩石为橄榄斜方辉石岩和斜方辉石岩。7号勘探线以东赋矿岩石为斜方辉石岩(Song et al., 2016)。

2 样品和实验方法 2.1 样品及处理

研究样品采自夏日哈木镍铜硫化物矿床不同勘探线的钻孔岩心,对超镁铁质岩体不同位置的岩相单元分别采集样品,采样位置见图 2。岩石样品主要为方辉橄榄岩、二辉橄榄岩、橄榄辉石岩和二辉辉石岩。

在显微岩相学观察基础上,选取较为新鲜的岩石样品,破碎至40~60目,利用双目体视显微镜挑选出纯净的橄榄石和斜方辉石单矿物,随后用0.3mol/L的稀盐酸浸泡24h,以除去矿物样品中可能存在的次生碳酸盐和后期蚀变部分,用蒸馏水反复清洗至中性,然后用分析纯CH2Cl2超声波清洗,除去样品中可能的污染有机质,在110℃条件下烘干后用于测试。

2.2 稀有气体同位素分析

橄榄石和斜方辉石中的稀有气体采用一步加热释气-质谱计测试方法,He、Ne和Ar丰度与同位素组成采用Noblesse SFT稀有气体质谱计在中国科学院地质与地球物理研究所油气资源重点实验室分析。选取约0.5g样品,通过进样装置进入净化系统,抽真空2h左右至压力小于2Pa,在样品炉中一次加热至1000℃释放出气体,利用液氮冷阱-Getter吸附其中的水、高碳烃类、CO2、H2S和SO2等组分,接着用海绵钛炉(300℃)清除样品中的杂质,用冷泵吸附Ar等组分。净化后的气体导入质谱计,进行He和Ne的含量和同位素分析。He和Ne分析完后抽真空,依次升温冷泵(300K)和海绵钛炉(650℃),将冷泵中的Ar送入质谱计后对Ar含量和同位素进行分析。

分析测试中采用兰州市皋兰山顶的大气作实验室标样,每隔3个样品做一次大气标样稀有气体组成分析,大气标样稀有气体含量及同位素组成为:4He=5.24×10-620Ne=16.8×10-640Ar=9310×10-63He/4He=1.1×10-620Ne/22Ne=10.45,21Ne/22Ne=0.025,40Ar/36Ar=296.0,实验数据使用大气标样含量和同位素组成进行校准。

3 结果

夏日哈木镍铜硫化物矿床含矿岩体中岩浆矿物的He、Ne和Ar含量、同位素组成及分析误差列于表 13He/4He以R/Ra表示(Ra为大气的3He/4He值,Ra=1.39×10-6)。

表 1 夏日哈木镍铜硫化物矿床He、Ne和Ar丰度和同位素组成及误差 Table 1 He, Ne and Ar abundances and isotopic compositions with 1σ error in the Xiarihamu Ni-Cu sulfide deposit
3.1 He含量和同位素组成

夏日哈木镍铜硫化物矿床含矿岩体中岩浆矿物的4He含量变化于43.9×10-7~1495×10-7cm3 STP/g(STP为标准温度压力条件,下同),平均为523.9×10-7cm3 STP/g。橄榄石中4He含量(162.2×10-7~1305×10-7cm3 STP/g,平均为595.7×10-7 cm3 STP/g)高于金川镍铜硫化物矿床超镁铁质岩体中橄榄石的(5.15×10-7~93.10×10-7cm3 STP/g,平均为43.31×10-7 cm3 STP/g,Zhang et al., 2013),也明显高于坡北超镁铁质岩体中橄榄石的(0.3×10-7~4.6×10-7cm3 STP/g,平均为1.7×10-7 cm3 STP/g,Zhang et al., 2017a)。夏日哈木斜方辉石中4He含量(43.9×10-7~1495×10-7cm3 STP/g,平均为497.0×10-7cm3 STP/g)高于金川岩体辉石的(2.8×10-7~158.0×10-7cm3 STP/g,平均为64.5×10-7 cm3 STP/g,Zhang et al., 2013)及坡北超镁铁质岩体辉石的(0.7×10-7~10.9×10-7cm3 STP/g,平均为4.8×10-7 cm3 STP/g,Zhang et al., 2017a)。

橄榄石和辉石矿物的3He/4He变化于0.03~0.39Ra,高于大陆地壳的3He/4He值(2×10-8Allègre et al., 1987),低于大气(1Ra,Allègre et al., 1987)、岩石圈地幔(SCLM,6.1Ra,Gautheron and Moreira, 2002)和岛弧相关的火山岩流体(5.37±1.87Ra,Hilton et al., 2002)的3He/4He值。夏日哈木矿床含矿岩体岩浆矿物3He/4He比值略低于金川镍铜硫化物矿床岩浆矿物(0.042~0.379Ra,Zhang et al., 2013),明显低于与地幔柱岩浆作用有关的西伯利亚地区橄榄霞石岩(12.7Ra,Basu et al., 1995)和坡北超镁铁质岩体岩浆矿物(1.13~6.15Ra,Zhang et al., 2017a)。3He/4He和4He图解中,橄榄石和辉石的3He/4He和4He含量的相关性不明显(图 3)。

图 3 夏日哈木镍铜硫化物矿床超镁铁质岩体橄榄石(Ol)和辉石(Pyx)3He/4He-4He含量图解 Fig. 3 Plot of 3He/4He vs. 4He contents of olivine (Ol) and pyroxene (Pyx) separates from ultramafic intrusion in the Xiarihamu Ni-Cu sulfide deposit
3.2 Ne含量和同位素组成

夏日哈木镍铜硫化物矿床含矿岩体中岩浆矿物的20Ne含量变化于0.65×10-7~91.45×10-7cm3 STP/g,平均为33.78×10-7 cm3 STP/g。橄榄石20Ne含量(1.16×10-7~78.86×10-7cm3 STP/g,平均为27.50×10-7cm3 STP/g)明显高于金川镍铜硫化物矿床超镁铁质岩体橄榄石的(0.0128×10-7~0.1670×10-7cm3 STP/g,平均为0.0617×10-7 cm3 STP/g,Zhang et al., 2013)和坡北超镁铁质岩体橄榄石的(0.0005×10-7~0.0995×10-7cm3 STP/g,平均为0.0277×10-7 cm3 STP/g,Zhang et al., 2017a)。辉石20Ne含量(0.65×10-7~91.45×10-7cm3 STP/g,平均为36.13×10-7 cm3 STP/g)明显高于金川矿床辉石的(0.0256×10-7~0.2420×10-7cm3 STP/g,平均0.0626×10-7 cm3 STP/g,Zhang et al., 2013)和坡北超镁铁质岩体辉石的(0.0007×10-7~0.0026×10-7cm3 STP/g,平均为0.0018×10-7 cm3 STP/g,Zhang et al., 2017a)。

夏日哈木岩浆矿物的20Ne/22Ne变化于9.13~10.16,平均为9.59,与地幔值(12.5,Ballentine et al., 2005Mukhopadhyay,2012)相比较低,略高于大气值(9.8,Allègre et al., 1987Sarda et al., 1988, 2000)和地壳值(Ozima and Podosek, 2002)。橄榄石的20Ne/22Ne比值(9.40~10.16,平均9.78)略高于斜方辉石(9.13~10.16,平均9.54)。

夏日哈木岩浆矿物的21Ne/22Ne比值变化于0.023~0.037,平均值为0.030,低于地壳值(0.47)和上地幔值(0.074),与大气值(0.029)和太阳风(0.033,Sarda et al., 1988, 2000Benkert et al., 1993O’Nions and Tolstikhin, 1994Ozima and Podosek, 2002)相近。橄榄石的21Ne/22Ne比值(0.025~0.032,平均为0.029)略低于辉石的(0.023~0.037,平均为0.030)。在20Ne/22Ne-21Ne/22Ne图(图 4)中,主要沿大陆地壳演化线(CC,Ozima and Podosek, 2002)和放射性成因线(Nucl.)分布。

图 4 夏日哈木镍铜硫化物矿床超镁铁质岩体20Ne/22Ne-21Ne/22Ne图解 数据来源:坡北数据(PB)引自Zhang et al., 2017a;金川数据(JC)引自Zhang et al., 2013;MFL-大气Ne质量分馏线(Sarda et al., 1988);Solar-太阳风(Benkert et al., 1993);MORB-大洋中脊玄武岩(Sarda et al., 1988);Nucl.-放射性成因线;CC-大陆地壳线(Ozima and Podosek, 2002);L-K-Loihi-Kilauea演化线(Honda et al., 1991);ATM-大气(Allègre et al., 1987Sarda et al., 1988) Fig. 4 Plot of 20Ne/22Ne vs. 21Ne/22Ne of ultramafic intrusion in the Xiarihamu Ni-Cu sulfide deposit
3.3 Ar含量和同位素组成

夏日哈木岩浆矿物的40Ar含量变化于212.1×10-7~5055×10-7cm3 STP/g,平均为2141×10-7cm3 STP/g,橄榄石中40Ar含量(212.1×10-7~4253×10-7cm3 STP/g,平均为2511×10-7 cm3 STP/g)略低于斜方辉石中40Ar含量(1170×10-7~5055×10-7cm3 STP/g,平均为2002×10-7 cm3 STP/g)。橄榄石和辉石40Ar含量高于金川矿床橄榄石和辉石的(分别为22.5×10-7~372.0×10-7 cm3 STP/g和19.7×10-7~488.0×10-7cm3 STP/g,平均分别为156.5×10-7 cm3 STP/g和164.1×10-7 cm3 STP/g,Zhang et al., 2013)和坡北岩体橄榄石和辉石的(1.4×10-7~4.1×10-7 cm3 STP/g和1.8×10-7~5.0×10-7cm3 STP/g,平均为2.8×10-7 cm3 STP/g和3.1×10-7 cm3 STP/g,Zhang et al., 2017a)。

夏日哈木超镁铁质岩体橄榄石40Ar/36Ar比值(292.0~305.5)与辉石40Ar/36Ar比值(298.4~316.9)变化范围不大,与大气值相近(295.5,Allègre et al., 1987),远低于地壳值(1650~170000)、上地幔值(1000~64000)和下地幔值(295.5~8000)(Staudacher et al., 1989O’Nions and Tolstikhin, 1994Basu et al., 1995Moreira et al., 1998Kendrick et al., 2008)。岩浆矿物40Ar/36Ar比值低于金川矿床岩浆矿物(478~58139,Zhang et al., 2013)和坡北岩体岩浆矿物(326.4~1004,Zhang et al., 2017a)。橄榄石中40Ar/36Ar和40Ar含量呈负相关,辉石中40Ar/36Ar和40Ar含量有弱的正相关(图 5)。

图 5 夏日哈木镍铜硫化物矿床超镁铁质岩体40Ar/36Ar-40Ar含量图解 Fig. 5 Plot of 40Ar/36Ar vs. 40Ar contents in ultramafic intrusion of the Xiarihamu Ni-Cu sulfide deposit
4 讨论 4.1 稀有气体的来源

夏日哈木镍铜硫化物矿床超镁铁质岩体矿物加热释放的稀有气体有潜在的三个来源:(1)岩浆活动期间捕获的稀有气体,包括深部岩浆源区的稀有气体、上升侵位过程中捕获的稀有气体以及围岩中的混入稀有气体;(2)矿物结晶后U、Th和K放射性衰变产生的放射成因稀有气体(Matsumoto et al., 2000);(3)后期变化来源的稀有气体,如后期次生蚀变、区域变质过程中加入的稀有气体,或者是大气混染来源和与太阳风有关的宇宙成因稀有气体(Kurz,1986Staudacher et al., 1986Mohapatra and Honda, 2006)。本研究样品均采自于钻孔岩心,仔细的单矿物分选、HCl浸泡-超声波清洗等系统的样品处理,基本去除了蚀变部分和次生碳酸盐岩成分,以及测试前样品的24h高真空去气等,可以排除大气污染和宇宙成因来源的稀有气体,因此样品释出稀有气体主要为矿物结晶时捕获的稀有气体及放射成因稀有气体的积累,可示踪岩浆中稀有气体的来源。

夏日哈木镍铜硫化物矿床超镁铁质岩体岩浆矿物的40Ar/36Ar和3He/4He位于大气饱和流体与地壳端元混合线上(图 6),较低的40Ar/36Ar比值与大气值相近,表明有大气饱和流体和地壳物质的加入(Yamamoto et al., 2004)。夏日哈木矿床大部分样品具有高的21Ne/22Ne和低的20Ne/22Ne比值,在20Ne/22Ne-21Ne/22Ne图(图 4)中分布于放射性成因组分及大陆地壳演化线(CC,Ozima and Podosek, 2002)上,进一步表明有大气、大陆地壳组分以及放射性成因组分的加入。

图 6 夏日哈木镍铜硫化物矿床超镁铁质岩体40Ar/36Ar-3He/4He图解 数据来源:坡北数据(PB)引自Zhang et al., 2017a;金川数据(JC)引自Zhang et al., 2013;CC-大陆壳(Allègre et al., 1987);UM-上地幔(O’Nions and Tolstikhin, 1994);SCLM-岩石圈地幔(Dunai and Baur, 1995);ASF-大气饱和流体(Ozima and Podosek, 2002) Fig. 6 Plot of 40Ar/36Ar vs. 3He/4He in ultramafic intrusion of the Xiarihamu Ni-Cu sulfide deposit

夏日哈木镍铜硫化物矿床含矿岩体较低的3He/4He比值(0.03~0.39Ra)可能是因为放射性成因4He*的贡献或地壳组分的加入。矿物结晶后U和Th放射性衰变形成放射性成因4He*,并保留在晶体结构中。橄榄岩相和辉石岩相全岩U含量(分别为0.06×10-6~0.32×10-6和0.08×10-6~1.01×10-6,平均为0.17×10-6和0.36×10-6)和Th(0.17×10-6~0.93×10-6和0.24×10-6~1.86×10-6,平均为0.50×10-6和0.82×10-6)含量较低(Li et al., 2015),根据锆石U-Pb年龄(411.6Ma,Li et al., 2015),采用Graham et al.(1987)放射性成因4He*计算公式

4He*=2.80×10-8(4.35+Th/U)[U]×t (cm3 STP/g)

其中t为时间,计算橄榄岩相中放射性成因4He*含量为39.30×10-7~267.6×10-7cm3 STP/g,平均142.9×10-7cm3 STP/g;辉石岩相为67.77×10-7~720.7×10-7cm3 STP/g,平均275.0×10-7 cm3 STP/g。橄榄石和辉石中3He/4He和4He含量的相关性不明显(图 3),表明放射性成因4He*贡献不明显。

放射性成因40Ar*通过12%的40K经K电子捕获形成。橄榄岩相和辉石岩相全岩K含量分别为0.02%~0.67%和0.05%~0.47%,平均为0.14%和0.16%(王冠等,2014Li et al., 2015姜常义等,2015),采用锆石U-Pb年龄(411.6Ma,Li et al., 2015)及Graham(2002)的计算公式:

其中:a为40K的自然丰度,为0.0117%;b为40K经K层电子捕获形成的40Ar*,为0.1048;K为K含量;λ40为衰变常数,0.554Gy-1。计算得出橄榄岩相和辉石岩相中放射性成因40Ar*含量分别为0.34×10-7~11.35×10-7 cm3 STP/g和0.85~7.96×10-7cm3 STP/g,平均值为2.37×10-7 cm3 STP/g和2.71×10-7 cm3 STP/g,远低于40Ar含量测定值。在40Ar/36Ar-40Ar图解(图 5)中,橄榄石和辉石中40Ar/36Ar和40Ar含量相关性不明显,表明放射性成因40Ar*贡献低。

夏日哈木矿床含矿岩体比金川镍铜硫化物矿床(Zhang et al., 2013)和坡北岩体(Zhang et al., 2017a)高的4He和40Ar含量,结合矿物蚀变程度较低等因素,岩浆矿物对稀有气体保持较好的封闭性,He和Ar含量及同位素相关性支持放射性成因来源4He*40Ar*贡献不大的计算结果。扣除放射性成因4He*后,夏日哈木矿床橄榄石3He/4He比值为3.60~4.19Ra,平均3.89Ra,辉石为1.36~4.55Ra,平均2.44Ra,接近岩石圈地幔端元的3He/4He值(6.1Ra,Dunai and Baur, 1995Gautheron and Moreira, 2002),表明夏日哈木镍铜硫化物矿床成矿岩浆起源于岩石圈地幔源区。与Sr-Nd-Hf同位素示踪的亏损地幔岩浆源区一致(王冠等,2014Li et al., 2015Zhang et al., 2017b)。

4.2 大气和地壳来源组分

夏日哈木镍铜硫化物矿床含矿岩体He、Ne和Ar同位素组成表明母岩浆中有大气和大陆地壳组分的加入,Sr-Nd同位素显示母岩浆演化过程中经历了5%~30%地壳混染(姜常义等,2015Zhang et al., 2017b),硫同位素组成位于地壳硫的范围(Li et al., 2015Zhang et al., 2017b)。岩浆经历地壳混染后微量元素Th/Nb和La/Yb比值会显著增加(Baker et al., 1997),夏日哈木矿床岩浆矿物中3He/4He值与Th/Nb和La/Yb具有弱的负相关性(图 7a, b),40Ar/36Ar比值与Th/Nb和La/Yb具有正相关性(图 7c, d),表明3He/4He值的降低与40Ar/36Ar比值的增加可能与地壳混染有关。

图 7 夏日哈木镍铜硫化物矿床超镁铁质岩体全岩Th/Nb和La/Yb与矿物3He/4He和40Ar/36Ar图解全岩微量元素据Li et al.(2015) Fig. 7 Plots of whole rock Th/Nb and La/Yb vs. mineral 3He/4He and 40Ar/36Ar in ultramafic intrusion of the Xiarihamu Ni-Cu sulfide deposit

夏日哈木镁铁-超镁铁质岩体中大气和地壳组分可能是岩浆源区中的俯冲再循环大气和地壳组分,也可能是成矿岩浆上升侵位过程中加入的地壳或围岩混染组分。含矿岩体不同类型岩石中普遍含有橄榄石矿物,认为起源于辉石岩地幔源区的成矿岩浆晶粥中存在橄榄石晶体(Song et al., 2016),即部分橄榄石为侵入现存岩浆房之前早期岩浆结晶形成的。所有橄榄石样品均显示保存大气和地壳组分,应该在岩浆源区或上升途中加入了部分大气和地壳组分。

俯冲洋壳中蚀变沉积物饱和大气组分,具有极低的3He/4He(小于0.1Ra)和相对低的40Ar/36Ar(350),是携带大气组分再循环进入地幔的最佳载体(Yamamoto et al., 2004Czuppon et al., 2009)。夏日哈木矿床橄榄石与辉石较低的3He/4He和40Ar/36Ar比值可能与俯冲再循环洋壳携带大气进入地幔源区有关。夏日哈木镍铜硫化物矿床含矿岩体岩浆源区在早期大洋俯冲过程中发生了再循环洋壳的流体交代作用(王冠等,2014Zhang et al., 2017b)。流体挥发份碳同位素也表明有大洋沉积有机质热裂解成因来源组分的加入(汤庆艳等,2017)。

夏日哈木镁铁-超镁铁质岩体He和Ar同位素揭示成矿母岩浆中存在岩石圈地幔、地壳和大气组分不同来源的稀有气体,其比例通过He和Ar同位素质量平衡混合模型进行估算。由于大气中He含量极低,滞留时间较短(约1~10Myr),且升温条件下极易逃逸,再循环进入地幔的大气来源He可以忽略不计(Porcelli and Wasserburg, 1995)。因此可用岩石圈地幔(SCLM,3He/4He=6.1Ra)、再循环洋壳(3He/4He=0.005Ra,40Ar/36Ar=350)和大气饱和流体(ASF,40Ar/36Ar=295.5)(Staudacher and Allègre,1988)作为混合端元来计算各端元成分的混入比例。扣除了放射性成因的贡献,计算结果表明大气饱和流体、俯冲洋壳和岩石圈地幔的贡献比例分别为87.7%、7.8%和4.5%。幔源岩浆的特征被后期放射性成因组分、大气饱和流体和地壳组分的信息所掩盖。

4.3 岩浆侵位成矿机制

幔源成矿岩浆分离结晶、岩浆混合、富硅物质的混染和外来硫的加入等是硫饱和、硫化物熔离形成岩浆矿床的重要因素。夏日哈木镍铜硫化物矿床成矿岩浆硫饱和、硫化物熔离成矿的重要因素是地壳混染和外来硫的加入,从岩体西部至东部全岩Ni和Cu含量总体呈升高的趋势(见后文,Song et al., 2016Zhang et al., 2017b)。与地壳混染有关的3He/4He比值与Ni、Cu含量呈负相关(图 8a, b),40Ar/36Ar比值与Ni、Cu含量呈正相关(图 8c, d),表明地壳物质的加入可能是硫化物熔离成矿的重要因素。

图 8 夏日哈木镍铜硫化物矿床超镁铁质岩体全岩Ni和Cu与矿物3He/4He和40Ar/36Ar图解 Ni、Cu元素含量据Song et al., 2016Zhang et al., 2017b Fig. 8 Plots of whole rock Ni and Cu contents vs. mineral 3He/4He and40Ar/36Ar in ultramafic intrusion of the Xiarihamu Ni-Cu sulfide deposit

Song et al. (2016)通过夏日哈木镍铜硫化物矿体特征认为岩浆经由西向东的岩浆通道侵位,并携带橄榄石晶体和硫化物珠滴,岩浆形成不同方向的分支,后分别形成了两个豆荚状矿体。夏日哈木镍铜硫化物矿床不同位置(勘探线)岩浆矿物稀有气体同位素组成表明,从岩体西部至东部3He/4He比值降低、40Ar/36Ar比值升高(图 9a, b)。3He/4He和40Ar/36Ar比值的空间变化特征表明4He和40Ar由西向东增加,即地壳(围岩)物质是在岩浆侵入过程中不断加入的,即岩浆可能自西向东侵入。

图 9 夏日哈木矿床岩浆镍铜硫化物矿床岩浆矿物稀有气体同位素(a、b)、挥发份组成(c)、碳同位素组成(d)、全岩Ni元素(e)和Cu元素(f)空间变化特征 挥发份组成和碳同位素组成据汤庆艳等,2017;Ni、Cu元素含量据Song et al., 2016Zhang et al., 2017b Fig. 9 The spatial variations of mineral noble gas isotopic compositions (a, b), volatile contents (c), carbon isotopic compositions (d) and whole rock metal contents (e, f) in the Xiarihamu Ni-Cu sulfide deposit

夏日哈木镍铜硫化物矿床流体化学组成研究结果表明岩体H2S含量和δ13CCO2值(汤庆艳等,2017)由西至东明显增加(图 9c, d),推断加入的地壳物质可能富集H2S和CO2组分。当岩浆中富集CO2流体组分时,岩浆的氧逸度会增加(Osborn,1959Hill and Roeder, 1974)。而氧逸度与硫化物的溶解度为负相关关系(Haughton et al., 1974),fO2的增加将降低成矿岩浆中硫的溶解度,从而导致不混熔硫化物的熔离。富集H2S和CO2的地壳流体的加入是促使硫化物就地熔离堆积的主要因素。

5 结论

夏日哈木镍铜硫化物矿床超镁铁质岩体不同类型岩石He、Ne和Ar同位素组成表明:

(1) 夏日哈木矿床橄榄石和辉石3He/4He比值(0.03~0.39)较低,20Ne/22Ne-21Ne/22Ne沿大陆地壳及放射性成因演化线分布,40Ar/36Ar比值与大气值相近,表明存在大陆地壳组分、大气饱和流体的加入。扣除放射性成因的贡献后3He/4He比值接近岩石圈地幔。

(2) He和Ar同位素混合模型计算表明成矿岩浆中有87.7%大气组分加入,再循环洋壳物质占7.8%,岩石圈地幔物质占4.5%。岩浆地幔源区中再循环洋壳物质携带大量的大气饱和流体加入。

(3) 岩体自西部至东部3He/4He比值降低和40Ar/36Ar比值升高,与成矿元素具有协变特征,揭示岩浆侵入方向自西向东,侵位过程中地壳物质的加入是促使硫化物就地熔离的主要因素。

致谢      杨启安、张照伟、王亚磊、曹春辉等在野外考察、实验分析及论文撰写中给予了指导和帮助,在此表示衷心的感谢。

参考文献
Allègre CJ, Staudacher T and Sarda P. 1987. Rare gas systematics:Formation of the atmosphere, evolution and structure of the Earth's mantle. Earth and Planetary Science Letters, 81(2-3): 127-150. DOI:10.1016/0012-821X(87)90151-8
Ao C, Sun FY, Li BL, Li SJ and Wang G. 2014. Geochemistry, zircon U-Pb dating and geological significance of diorite porphyrite in Xiarihamu deposit, Eastern Kunlun orogenic belt, Qinghai. Northwestern Geology, 47(1): 96-106.
Baker JA, Menzies MA, Thirlwall MF and MacPherson CG. 1997. Petrogenesis of quaternary intraplate volcanism, Sana'a, Yemen:Implications for plume-lithosphere interaction and polybaric melt hybridization. Journal of Petrology, 38(10): 1359-1390. DOI:10.1093/petroj/38.10.1359
Ballentine CJ, Marty B, Lollar BS and Cassidy M. 2005. Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature, 433(7021): 33-38. DOI:10.1038/nature03182
Basu AR, Poreda RJ, Renne PR, Teichmann F, Vasiliev YR, Sobolev NV and Turrin BD. 1995. High-3He plume origin and temporal-spatial evolution of the Siberian flood basalts. Science, 269(5225): 822-825. DOI:10.1126/science.269.5225.822
Benkert JP, Baur H, Signer P and Wieler R. 1993. He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. Journal of Geophysical Research, 98(E7): 13147-13162. DOI:10.1029/93JE01460
Correale A, Rizzo AL, Barry PH, Lu JG and Zheng JP. 2016. Refertilization of lithospheric mantle beneath the Yangtze craton in south-east China:Evidence from noble gases geochemistry. Gondwana Research, 38: 289-303. DOI:10.1016/j.gr.2016.01.003
Czuppon G, Matsumoto T, Handler MR and Matsuda JI. 2009. Noble gases in spinel peridotite xenoliths from Mt Quincan, North Queensland, Australia:Undisturbed MORB-type noble gases in the subcontinental lithospheric mantle. Chemical Geology, 266(1-2): 19-28. DOI:10.1016/j.chemgeo.2009.03.029
Dunai TJ and Baur H. 1995. Helium, neon, and argon systematics of the European subcontinental mantle:Implications for its geochemical evolution. Geochimica et Cosmochimica Acta, 59(13): 2767-2783. DOI:10.1016/0016-7037(95)00172-V
Farley KA and Neroda E. 1998. Noble gases in the Earth's mantle. Annual Review of Earth and Planetary Sciences, 26: 189-218. DOI:10.1146/annurev.earth.26.1.189
Gautheron C and Moreira M. 2002. Helium signature of the subcontinental lithospheric mantle. Earth and Planetary Science Letters, 199(1-2): 39-47. DOI:10.1016/S0012-821X(02)00563-0
Gilfillan SMV and Ballentine CJ. 2018. He, Ne and Ar 'snapshot' of the subcontinental lithospheric mantle from CO2 well gases. Chemical Geology, 480: 116-127. DOI:10.1016/j.chemgeo.2017.09.028
Graham DW, Jenkins WJ, Kurz MD and Batiza R. 1987. Helium isotope disequilibrium and geochronology of glassy submarine basalts. Nature, 326(6111): 384-386. DOI:10.1038/326384a0
Graham DW. 2002. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts:Characterization of mantle source reservoirs. Reviews in Mineralogy and Geochemistry, 47(1): 247-317. DOI:10.2138/rmg.2002.47.8
Guo W, He HY, Hilton DR, Zheng YF, Su F, Liu Y and Zhu RX. 2017. Recycled noble gases preserved in podiform chromitites from Luobusa, Tibet. Chemical Geology, 469: 97-109. DOI:10.1016/j.chemgeo.2017.03.026
Haughton DR, Roeder PL and Skinner BJ. 1974. Solubility of sulfur in mafic magmas. Economic Geology, 69(4): 451-467. DOI:10.2113/gsecongeo.69.4.451
Hill R and Roeder P. 1974. The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. Journal of Geology, 82(6): 709-729. DOI:10.1086/628026
Hilton DR, Fischer TP and Marty B. 2002. Noble gases and volatile recycling at subduction zones. Reviews in Mineralogy and Geochemistry, 47(1): 319-370. DOI:10.2138/rmg.2002.47.9
Honda M, McDougall I, Patterson DB, Doulgeris A and Clague DA. 1991. Possible solar noble-gas component in Hawaiian basalts. Nature, 349(6305): 149-151. DOI:10.1038/349149a0
Jiang CY, Ling JL, Zhou W, Du W, Wang ZX, Fan YZ, Song YF and Song ZB. 2015. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun:Implications for its extensional island arc environment. Acta Petrologica Sinica, 31(4): 1117-1136.
Kendrick MA, Honda M, Gillen D, Baker T and Phillips D. 2008. New constraints on regional brecciation in the Wernecke Mountains, Canada, from He, Ne, Ar, Kr, Xe, Cl, Br and I in fluid inclusions. Chemical Geology, 255(1-2): 33-46. DOI:10.1016/j.chemgeo.2008.05.021
Kurz MD. 1986. Cosmogenic helium in a terrestrial igneous rock. Nature, 320(6061): 435-439. DOI:10.1038/320435a0
Lesher CM and Campbell IH. 1993. Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia. Economic Geology, 88(4): 804-816. DOI:10.2113/gsecongeo.88.4.804
Li C, Lightfoot PC, Amelin Y and Naldrett AJ. 2000. Contrasting petrological and geochemical relationships in the Voisey's Bay and Mushuau intrusions, Labrador, Canada:Implications for ore genesis. Economic Geology, 95(4): 771-799.
Li C, Zhang ZW, Li WY, Wang YL, Sun T and Ripley EM. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet Plateau, western China. Lithos, 216-217: 224-240. DOI:10.1016/j.lithos.2015.01.003
Li RS, Ji WH, Yang YC, Yu PS, Zhao ZM, Chen SJ, Meng Y, Pan XP, Shi BD, Zhang WJ, Li H and Luo CY. 2008. Kunlun Mountains and Its Adjacent Area Geology. Beijing: Geological Publishing House: 15-309.
Matsumoto T, Honda M, McDougall I, O'Reilly SY, Norman M and Yaxley G. 2000. Noble gases in pyroxenites and metasomatised peridotites from the Newer Volcanics, southeastern Australia:Implications for mantle metasomatism. Chemical Geology, 168(1-2): 49-73. DOI:10.1016/S0009-2541(00)00181-9
Mohapatra RK and Honda M. 2006. "Recycled" volatiles in mantle-derived diamonds:Evidence from nitrogen and noble gas isotopic data. Earth and Planetary Science Letters, 252(1-2): 215-219.
Moreira M, Kunz J and Allègre CJ. 1998. Rare gas systematics in popping rock:Isotopic and elemental compositions in the upper mantle. Science, 279(5354): 1178-1181. DOI:10.1126/science.279.5354.1178
Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486(7401): 101-104. DOI:10.1038/nature11141
Naldrett AJ, Lightfoot PC, Fedorenko V, Doherty W and Gorbachev NS. 1992. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores. Economic Geology, 87(4): 975-1004. DOI:10.2113/gsecongeo.87.4.975
Naldrett AJ. 1999. World-class Ni-Cu-PGE deposits:Key factors in their genesis. Mineralium Deposita, 34(3): 227-240. DOI:10.1007/s001260050200
Nivin VA and Rundqvist TV. 2017. Formation of Pt-bearing Western Pana pluton on the Kola Peninsula:Fluid regime as deduced from helium and argon isotopic compositions. Geology of Ore Deposits, 59(1): 36-55. DOI:10.1134/S1075701517010068
O'Nions RK and Tolstikhin IN. 1994. Behaviour and residence times of lithophile and rare gas tracers in the upper mantle. Earth and Planetary Science Letters, 124(1-4): 131-138. DOI:10.1016/0012-821X(94)00070-0
Osborn EF. 1959. Role of oxygen pressure in the crystallization and differentiation of basaltic magmas. American Journal of Science, 257(9): 609-647. DOI:10.2475/ajs.257.9.609
Ozima M and Podosek FA. 2002. Noble Gas Geochemistry. Cambridge:Cambridge University Press, 1-281
Peng B, Sun FY, Li BL, Wang G, Li SJ, Zhao TF, Li L and Zhi YB. 2016. The geochemistry and geochronology of the Xiarihamu Ⅱ mafic-ultramafic complex, Eastern Kunlun, Qinghai Province, China:Implications for the genesis of magmatic Ni-Cu sulfide deposits. Ore Geology Reviews, 73: 13-28. DOI:10.1016/j.oregeorev.2015.10.014
Porcelli D and Wasserburg GJ. 1995. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochimica et Cosmochimica Acta, 59(23): 4921-4937. DOI:10.1016/0016-7037(95)00336-3
Sarda P, Staudacher T and Allègre CJ. 1988. Neon isotopes in submarine basalts. Earth and Planetary Science Letters, 91(1-2): 73-88. DOI:10.1016/0012-821X(88)90152-5
Sarda P, Moreira M, Staudacher T, Schilling JG and Allègre CJ. 2000. Rare gas systematics on the southernmost Mid-Atlantic ridge:Constraints on the lower mantle and the Dupal source. Journal of Geophysical Research, 105(B3): 5973-5996. DOI:10.1029/1999JB900282
Song XY, Yi JN, Chen LM, She YW, Liu CZ, Dang XY, Yang QA and Wu SK. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun orogenic belt, Northern Tibet Plateau, China. Economic Geology, 111(1): 29-55. DOI:10.2113/econgeo.111.1.29
Staudacher T, Kurz MD and Allègre CJ. 1986. New noble-gas data on glass samples from Loihi seamount and Hualalai and on dunite samples from Loihi and Réunion Island. Chemical Geology, 56(3-4): 193-205. DOI:10.1016/0009-2541(86)90003-3
Staudacher T and Allègre CJ. 1988. Recycling of oceanic crust and sediments:The noble gas subduction barrier. Earth and Planetary Science Letters, 89(2): 173-183. DOI:10.1016/0012-821X(88)90170-7
Staudacher T, Sarda P, Richardson SH, Allègre CJ, Sagna I and Dmitriev LV. 1989. Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14°N:Geodynamic consequences. Earth and Planetary Science Letters, 96(1-2): 119-133. DOI:10.1016/0012-821X(89)90127-1
Tang QY, Li JP, Zhang MJ, Song Z, Dang YX and Du L. 2017. The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt, western China:Constraints from chemical and carbon isotopic compositions of volatiles. Acta Petrologica Sinica, 33(1): 104-114.
Wang G, Sun FY, Li BL, Li SJ, Zhao JW, Ao C and Yang QA. 2014. Petrography, zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun, with implications for geodynamic setting. Earth Science Frontiers, 21(6): 381-401.
Yamamoto J, Kaneoka I, Nakai S, Kagi H, Prikhod'ko VS and Arai S. 2004. Evidence for subduction-related components in the subcontinental mantle from low 3He/4He and 40Ar/36Ar ratio in mantle xenoliths from Far Eastern Russia. Chemical Geology, 207(3-4): 237-259. DOI:10.1016/j.chemgeo.2004.03.007
Zhang MJ, Tang QY, Hu PQ, Ye XR and Cong YN. 2013. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China. Chemical Geology, 339: 301-312. DOI:10.1016/j.chemgeo.2012.07.023
Zhang MJ, Tang QY, Cao CH, Li WY, Wang H, Li ZP, Yu M and Feng PY. 2017a. The origin of Permian Pobei ultramafic complex in the northeastern Tarim craton, western China:Evidences from chemical and C-He-Ne-Ar isotopic compositions of volatiles. Chemical Geology, 469: 85-96. DOI:10.1016/j.chemgeo.2017.06.006
Zhang ZW, Tang QY, Li CS, Wang YL and Ripley EM. 2017b. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet Plateau, China. Mineralium Deposita, 52(1): 51-68. DOI:10.1007/s00126-016-0645-0
奥琮, 孙丰月, 李碧乐, 李世金, 王冠. 2014. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U-Pb年代学、地球化学及其地质意义. 西北地质, 47(1): 96-106. DOI:10.3969/j.issn.1009-6248.2014.01.007
姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景. 岩石学报, 31(4): 1117-1136.
李荣社, 计文化, 杨永成, 于浦生, 赵振明, 陈守建, 孟勇, 潘晓平, 史秉德, 张维吉, 李行, 洛长义. 2008. 昆仑山及邻区地质. 北京: 地质出版社.
汤庆艳, 李建平, 张铭杰, 宋哲, 党永西, 杜丽. 2017. 东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件:流体挥发份化学组成与碳同位素组成制约. 岩石学报, 33(1): 104-114.
王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 奥琮, 杨启安. 2014. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义. 地学前缘, 21(6): 381-401.