岩石学报  2018, Vol. 34 Issue (4): 925-939   PDF    
高级变质地体中多期变质事件的甄别:以东南极埃默里地区为例
刘晓春     
中国地质科学院地质力学研究所, 北京 100081
摘要:在多期高级变质地体中确定每期变质事件的性质、时代和P-T轨迹是一项非常困难的研究工作,也是变质地质学研究领域的前沿课题。将精细的地质年代学研究与详细的构造解析和岩石学观察相结合,这是建立同位素年龄与变质事件之间有机联系的最好方法。使用这种方法来甄别东南极埃默里地区格林维尔期和泛非期高级变质事件获得了初步的成功,基本上查明了两期变质事件的影响范围、变质时代和P-T演化,但也存在许多尚未解决的科学问题。一般而言,在同一变质地体中发育两期/多期具有不同构造指向的挤压-伸展变形、保存不同类型(如顺时针和逆时针)或者不连续的P-T演化轨迹以及含有两组/多组变质年龄等可视为存在多期变质事件的标志。当前对多期高级变质作用叠加的研究中还存在两个不清楚的岩石学问题,其一是早期变质作用对晚期变质重结晶施加了什么样的影响?其二是晚期变质作用如何叠加在早期变质矿物组合之上?所以,探索多期高级变质事件的叠加机理、变质行为及控制因素仍是未来岩石学家的艰巨任务。
关键词: 高级变质地体     多期变质叠加     埃默里地区     东南极    
Deciphering multiple metamorphic events in high-grade metamorphic terranes: A case from the Amery area of East Antarctica
LIU XiaoChun     
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
Abstract: It is very difficult to determine the nature, timing and P-T path of each metamorphic event in multiple high-grade metamorphic terranes. This is also a frontier issue in the field of metamorphic geology. Careful geochronology coupled with detailed structural analysis and petrographical observations remains the best way to correlate ages to metamorphic events. Using this method, researchers have successfully deciphered the Grenvillian and Pan-African high-grade metamorphic events in the Amery area of East Antarctica. The affecting ranges, ages and P-T evolutions of two metamorphic events are roughly revealed, but many scientific problems have been not solved yet. In general, the development of two-or multi-phase compressional-extensional deformation cycles with different structural orientations, the preservation of different (clockwise or anticlockwise) or discontinuous P-T paths, and the existence of two-or multigroups of metamorphic ages can be taken as indicators of multiple metamorphism occurring in a metamorphic terrane. There are two unsolved petrological problems on studies of multiple high-grade metamorphic overprinting. The first is what early metamorphism control on late metamorphic recrystallization. The second is how late metamorphism overprint on early metamorphic assemblages. It is obvious that searching the overprinting mechanism, metamorphic behavior and controlling factor of multiple high-grade metamorphic events is a tough task in future for petrologists.
Key words: High-grade metamorphic terranes     Multiple metamorphic overprinting     Amery area     East Antarctica    

当一个相对古老的结晶地块或大陆边缘卷入到相对年轻的造山带中,它们往往被新的变质作用所叠加。所以,多期(或称多相)变质作用是造山带中变质基底的重要特征之一,并且在全球范围内具有普遍性。然而,若想在多期变质地体中确定每期变质事件的性质、时代和P-T轨迹,这将是一项非常困难的研究工作,而这项研究又直接影响到造山带构造演化过程的建立,意义重大。正因为如此,有关多期变质的行为、叠加机理、控制因素、P-T恢复及时代制约一直是变质地质学研究领域的前沿课题,激励了众多岩石学家去探索。本文简要地概述了多期变质叠加的方式、行为及有关问题,并以东南极埃默里地区为例论述了多期高级变质作用叠加的多样性和复杂性,提出了高级变质地体中多期变质事件的识别方法及可能的判别标志。

1 多期变质叠加的方式、行为及有关问题

在多期变质地体中,变质作用叠加的方式可能是多种多样的。当两期变质作用的P-T条件差别很大时,如由低温向高温转变,高温向低温转变,或者由低压向高压转变,高压向低压转变,那么通过变质反应可以实现矿物相的改变。在这种情况下,两期变质在岩相学上较易于识别。而且,只要有新的矿物相形成,那么副矿物也会做相应的调整—分解、改造或生长。所以,在理论上讲,两期变质作用的时代问题也可以得到解决。相对而然,当高级变质作用叠加于低级变质作用之上时(类似于进变质),早期的变质历史常常被抹掉,所以不易获得早期变质事件的信息;但当低级变质作用叠加到高级变质作用之上时(类似于退变质),早期的变质矿物可能会有不同程度的保留,那么通过不同期次矿物组合的温压计算和多种方法的同位素定年就可以获得两期变质作用的P-T条件和时代。这在中外很多造山带的研究中都有非常成功的例子(如Lee and Cho, 2003; Chen et al., 2006; Godard, 2009; Zhang et al., 2010; Rubatto et al., 2011; Liu et al., 2013a; Sarkar and Schenk, 2014; Sarkar et al., 2014)。

然而,当P-T条件差别很小甚至相近的两期变质作用叠加在一起时(相当于repeated metamorphism),情况将会变得相当复杂。这种复杂性在经历了两期或多期高级(麻粒岩相)变质作用叠加的变质地体中显得尤为突出。在高级变质地体中,早期的高温麻粒岩相变质作用已使岩石发生了强烈的脱水和部分熔融,流体相的不足或缺失使岩石在第二期高温变质作用过程中呈现出惰性,不太可能发生变质反应而形成新的矿物组合,同时也阻滞了锆石和独居石等同位素地质年代计的重设(White and Powell, 2002; Tenczer et al., 2006; Phillips et al., 2007a, 2009; Sajeev et al., 2010; Harlov et al., 2011; Wan et al., 2011; Williams et al., 2011; Korhonen et al., 2012; Ma et al., 2012; Morrissey et al., 2016),从而造成大部分岩石中缺少或缺乏第二期变质事件的地质记录。另一方面,在地体的局部部位,由于其它因素如强烈的变形作用和流体流动的影响,岩石也可能会发生完全的重结晶和同位素年龄的重设,从而抹掉了早期变质的证据。在这种情况下,我们会发现在同一个高级变质地体中,看似相似(同)的矿物组合却得到完全不同的定年结果,或者锆石有两期生长,但矿物组合比较单一,这使我们难以判断现存的矿物组合到底形成于哪一期次,并造成每期变质事件性质确定上的困难。这种情况在前寒武纪造山带中是普遍存在的,在我国的典型例子是华北陆块内部的古元古代造山带(如Zhao et al., 2005; Wan et al., 2009; Zhai and Santosh, 2011; Liu et al., 2013b)和华夏陆块中的古元古代变质基底(显生宙变质叠加)(如Yu et al., 2009; Wang et al., 2012; Zhao et al., 2015)。

关于多期高级变质作用的叠加行为存在两个不清楚的问题。其一是早期变质作用对晚期变质重结晶起到了什么样的控制作用?现有的研究表明,因为早期变质脱水和部分熔融所造成的熔流体丢失,残余岩石在随后的变质作用过程中进一步熔融的能力将大大降低;由于避免了熔融所需要的大量热能,所以如果有一个合适热源的存在,那么随后的变质事件在亚固相条件下将很容易达到较高的温度(如超高温)(Vielzeuf et al., 1990; Stüwe, 1995; White and Powell, 2002; Diener et al., 2008; Brown and Korhonen, 2009; Korhonen et al., 2010, 2013; Clark et al., 2011; Morrissey et al., 2014; Walsh et al., 2015)。所以,早期变质作用条件、部分熔融程度以及变质演化过程的差别都将对晚期变质作用的P-T体制和演化起到不同程度的控制作用。其二是晚期变质作用如何叠加在早期变质矿物组合之上?一般来说,在一个多期高级变质地体中,虽然晚期变质事件可能达到了相当高的温度,但可能只有少许变质记录(证据)的保留,这种现象非常普遍(Tenczer et al., 2006; Korhonen et al., 2012)。那么,控制晚期变质作用发生的机理和影响因素是什么?这需要变质岩石学家给出合理的答案。总体而言,若想在一个经历了强烈变质和熔体丢失的多期变质地体中解译出不同期次的变质事件是非常困难的,而确定每一变质事件的性质和P-T演化则难度更大(Hand et al., 1992; Vernon, 1996; Kelsey et al., 2003a)。

在多期高级变质作用叠加研究中的另一个难点是对每期变质事件的精准定年。在常规同位素定年方法中,锆石的U-Pb体系虽具有较高的封闭温度(>900℃;Lee et al., 1997; Cherniak and Watson, 2001),但一次或多次的Pb丢失事件会导致在同一锆石域中获得的视年龄比较分散,并可能造成所谓的“谐和”年龄比真实年龄年轻几十个百万年(Black and Sheraton, 1990; Ashwal et al., 1999; Yoshida, 2007)。而在晚期高级变质事件中,那些已干化脱水的残余麻粒岩常常不利于锆石的再生长,难以形成可用于测年的增生边。对于中高温变质岩石,独居石定年具有独特的优势,特别是由微观结构控制的原位独居石U-Pb法或(U+Th)-Pb化学法定年在近年得到了广泛的应用,但缺点是,独居石的生长仅局限于变泥质岩及其部分熔融所形成的淡色体中,而这种岩石并非总能记录变质反应结构。另一方面,即便是主要矿物组合没有改变时,在有流体流动时独居石也能通过溶解-再沉淀(dissolution-reprecipitation)而生长(Harlov et al., 2011; Williams et al., 2011; Kelly et al., 2012),从而增加了其不稳定性。Lu-Hf、Sm-Nd和Rb-Sr矿物-全岩等时线也经常被用于测定麻粒岩的变质时代,但即便不考虑快速和缓慢冷却同位素封闭温度的不同所造成的年龄差别,多期变质作用的叠加所引起的同位素体系的部分重设常使获得的等时线年龄不具有地质意义。相对而言,由于Lu-Hf体系封闭温度较高(>700℃;Scherer et al., 2000),近年的应用更广泛一些。矿物的40Ar/39Ar年龄只代表岩石冷却到这种矿物的封闭温度的年龄,所以除个别情况外(如仝来喜等, 1998; Tong et al., 2002),一般无法获得早期变质事件的信息。

2 东南极埃默里地区多期变质的多样性和复杂性

埃默里地区(Amery area),也称查尔斯王子山-普里兹湾地区(Prince Charles Mountains-Prydz Bay region),是东南极大陆出露面积最大、最连续的结晶基底,其从兰伯特冰川(Lambert Glacier)一直延伸到埃默里冰架(Amery Ice Shelf),长约600km。结晶基底可以划分出六个主要构造单元(Mikhalsky et al., 2001),从南到北分别是:鲁克地体(Ruker Terrane)、兰伯特地体(Lambert Terrane)、费希尔地体(Fisher Terrane)、雷纳杂岩(Rayner Complex)/普里兹造山带(Prydz Belt)、赖于尔群岛(Rauer Group)复合地体和西福尔陆块(Vestfold Block)(图 1)。划分标准主要是依据岩性、结构构造和同位素年代学资料,而它们之间的构造关系尚不清楚。早期的研究认为,普里兹湾和北查尔斯王子山构成了一个统一的格林维尔期(约1000~900Ma)地体,称为雷纳杂岩,不同于南查尔斯王子山的太古宙克拉通陆块。后来,在普里兹湾地区识别出了约550~500Ma的高级变质事件,从而将泛非期地质体(即普里兹造山带)从雷纳杂岩中分解出来(Zhao et al., 1991, 1992, 1995; 赵越等, 1993; Hensen and Zhou, 1995; Carson et al., 1996; Fitzsimons et al., 1997; 仝来喜等, 1998; Tong et al., 2002)。并且认为,泛非期高级变质作用在普里兹造山带中占有支配地位,格林维尔期变质仅表现为局部残留(Fitzsimons, 2003; Harley, 2003; Zhao et al., 2003)。然而,新的研究结果表明,格林维尔期变质事件在埃默里冰架东缘和普里兹湾地区可能广泛存在(Kelsey et al., 2007; Liu et al., 2007a, 2009a, 2014a; Wang et al., 2008; Grew et al., 2012),而泛非事件至少在局部地区并不像以前想象的那样强烈。另一方面,泛非事件不仅仅叠加在普里兹造山带上,而且还影响到了埃默里地区的绝大部分地体(Boger et al., 2001, 2002; Phillips et al., 2007a; Corvino et al., 2008; Liu et al., 2014b; Morrissey et al., 2016)。并且,叠加在不同地体之上的变质级别可能是不同的(Liu et al., 2013c)。

图 1 东南极埃默里地区地质简图(a)及其在~500Ma冈瓦纳超大陆重建中的位置(b)(据Mikhalsky et al., 2001; Fitzsimons, 2003; Liu et al., 2013c; Hokada et al., 2016修改) Fig. 1 Geological sketch map of the Amery area of East Antarctica(a)with inset showing the location of the region in the reconstruction of Gondwana at ~500Ma (b)(modified after Mikhalsky et al., 2001; Fitzsimons, 2003; Liu et al., 2013c; Hokada et al., 2016)
2.1 强变质叠加的埃默里冰架东缘-普里兹湾地区

普里兹湾地区,特别是拉斯曼丘陵(Larsemann Hills)及相邻区域是多期变质叠加研究的最经典地区,泛非事件确切的地质含义也是在这一地区首次被识别出来的(Zhao et al., 1991, 1992, 1995; 赵越等, 1993; Hensen and Zhou, 1995)。该区格林维尔期高级变质事件的主要证据来自于姐妹岛(Sstrene Island)的石榴二辉麻粒岩,石榴石-全岩Sm-Nd同位素定年揭示该麻粒岩的主期矿物组合形成于约990Ma(Hensen and Zhou, 1995)。进一步的研究工作对埃默里冰架东缘-普里兹湾地区的长英质正片麻岩和镁铁质麻粒岩进行了精细的SHRIMP锆石U-Pb定年,结果表明,格林维尔期变质事件在普里兹造山带的基底中广泛存在(Liu et al., 2007a, 2009a; Wang et al., 2008; Grew et al., 2012)(图 2a)。尽管由于后期一次或多次Pb丢失事件的影响,所获得的表面年龄略有分散,但从变质锆石中仍可以区分出两组年龄,分别为1060~970Ma和930~900Ma(Liu et al., 2009a)。特别是在蒙罗克尔山(Munro Kerr Mountains)2个正片麻岩样品中观察到930~900Ma的锆石边生长在>970Ma锆石的区域上,暗示普里兹造山带中可能发生了两幕或两个阶段的格林维尔期变质作用。实际上,第二幕变质作用发生的时间与伯灵恩群岛(Bolingen Islands)变泥质岩的独居石(U+Th)-Pb年龄(915±10Ma~901±11Ma)(Kelsey et al., 2007)近于一致,也与早期在赖因博尔特丘陵(Reinbolt Hills)报道的896Ma的同变质伟晶岩的锆石U-Pb年龄(Grew and Manton, 1981)基本相当。

图 2 埃默里冰架东缘-西南普里兹湾地区地质简图及使用SHRIMP和LA-ICP-MS锆石U-Pb定年方法获得的格林维尔和泛非两期变质事件年龄数据 (a)格林维尔期变质和紫苏花岗岩、花岗岩侵位年龄;(b)泛非期变质和紫苏花岗岩、花岗岩侵位年龄.年龄数据来自于Tingey(1991)Carson et al.(1996)李淼等(2007)Liu et al.(2007a, 2009a, 2014a)、Wang et al.(2008)Grew et al.(2012)Mikhalsky and Kamenev(2013) Fig. 2 Geological sketch map of the eastern Amery Ice Shelf and southwestern Prydz Bay, with a ges of Grenvillian and Pan-African metamorphic events obtained with SHRIMP/LA-ICP-MS U-Pb zircon dating are indicated (a) ages of Grenvillian metamorphism and charnockite and granite intrusion; (b) ages of Pan-African metamorphism and charnockite and granite intrusion. Isotopic data are from Tingey(1991), Carson et al.(1996), Li et al. (2007), Liu et al.(2007a, 2009a, 2014a), Wang et al.(2008), Grew et al.(2012)and Mikhalsky and Kamenev(2013)

由于泛非期强烈变质叠加的影响,埃默里冰架东缘-普里兹湾地区格林维尔期变质作用的P-T演化过程很难恢复。唯一有年代学制约的P-T数据来自于姐妹岛的石榴二辉麻粒岩,估算出的峰期变质P-T条件为980℃、1.0GPa(Thost et al., 1991)(图 3a),是>970Ma变质幕的反映(Hensen and Zhou, 1995)。该岩石在后期经历了两阶段的减压退变,其中第二期退变的P-T条件为850℃、0.7GPa(Thost et al., 1991),与泛非期区域中压麻粒岩相变质作用的条件相吻合。在拉斯曼丘陵变泥质岩、正片麻岩和镁铁质麻粒岩中也曾获得类似的P-T相对较高的结果(850~900℃、0.8~0.95GPa),可能也是早期变质幕的反映(Ren et al., 1992; Tong and Liu, 1997; Tong et al., 2014, 2017; 周信等, 2014),但尚缺乏年代学的制约。这期变质幕还伴有980~955Ma的紫苏花岗岩和花岗岩侵位(Wang et al., 2008; Liu et al., 2009a; Grew et al., 2012; Mikhalsky and Kamenev, 2013),这与北查尔斯王子山地区的雷纳杂岩可以对比。埃默里冰架东缘-普里兹湾地区930~900Ma变质作用的性质虽不清楚,但在赖因博尔特丘陵两个正片麻岩样品中925Ma的锆石区域含有斜方辉石包裹体(Liu et al., 2009a),也指示了麻粒岩相变质条件。与>970Ma的早期变质幕相似,这一晚期变质幕同样伴有同造山到后造山花岗岩和伟晶岩的侵位(Grew and Manton, 1981; Zhao et al., 1995)。格罗夫山地区920~910Ma的大规模双峰式岩浆作用可能与这期变质幕有关(Liu et al., 2007b),尽管在该区尚未发现这一时期的变质作用。

图 3 埃默里地区不同地点格林维尔期(a)和泛非期(b)变质作用的P-T轨迹(据Liu et al., 2013c补充) Fig. 3 P-T paths of Grenvillian and Pan-African metamorphism of different localities in the Amery area(modified after Liu et al., 2013c)

普里兹湾地区泛非期高级变质事件的证据主要来自于正、副片麻岩中517~490Ma的石榴石-全岩Sm-Nd等时线年龄(Hensen and Zhou, 1995))、深熔成因淡色片麻岩中536~527Ma的锆石和独居石U-Pb年龄(Zhang et al., 1996; Fitzsimons et al., 1997)以及同变形花岗岩中516~514Ma的锆石U-Pb年龄(Carson et al., 1996)。进一步的SHRIMP锆石U-Pb定年在埃默里冰架东缘-普里兹湾地区获得大量的546~512Ma的变质年龄数据(Liu et al., 2007a, 2009a, 2014a; Wang et al., 2008; Grew et al., 2012)(图 2b),并在赖因博尔特丘陵的含夕线石伟晶岩中获得536±17Ma的独居石U-Pb年龄(Ziemann et al., 2005),说明泛非期变质事件影响了兰伯特裂谷以东的广大地区。总体而言,这一地区泛非期峰期变质作用发生在~530Ma,但米斯蒂凯利丘陵(Mistichelli Hills)正片麻岩中也获得一个相对较老(582±13Ma;Liu et al., 2009a)的锆石U-Pb年龄,说明变质作用的起始时间发生在新元古代晚期。基于各种不同的地质温压计,对普里兹湾地区不同地点的峰期变质及随后的减压退变条件进行了估算,结果为:布拉特滨海陡崖(Brattstrand Bluffs)从860℃、0.6GPa到740℃、0.4~0.5GPa(Fitzsimons, 1996),拉斯曼丘陵从800℃、0.7GPa到750℃、0.4~0.5GPa再到650℃、0.35GPa(Carson et al., 1997),伯灵恩群岛从760℃、0.6GPa到450℃、< 0.3GPa(Motoyoshi et al., 1991)(图 3b)。因此,人们普遍相信,泛非期区域变质作用只达到了中低压麻粒岩相条件,随后经历了近等温降压的演化过程。然而,Liu et al. (2007a)的研究结果显示,埃默里冰架东缘麦卡斯克尔丘陵(McKaskle Hills)具变质反应结构的石榴二辉麻粒岩(图 4a)记录的泛非期麻粒岩相变质作用发生在880~950℃、0.9~0.95GPa条件下,随后的减压退变条件为700~750℃、0.66~0.72GPa。在赖因博尔特丘陵含夕线石伟晶岩中也获得了类似的,具有年代学约束的P-T结果,为850~950℃、0.8~1.0GPa(Ziemann et al., 2005)。尚需指出,泛非期变质伴随有挤压-伸展变形以及紫苏花岗岩和花岗岩的侵位(Carson et al., 1995, 1996; Dirks and Hand, 1995; 李淼等, 2007; Liu et al., 2009a),代表一个完整的造山旋回。

图 4 东南极埃默里地区变质岩中发育的典型反应结构 (a)埃默里冰架东缘麦卡斯克尔丘陵石榴二辉麻粒岩中斜方辉石+单斜辉石+斜长石后成合晶取代石榴石和单斜辉石;(b)北查尔斯王子山埃尔瑟台地变泥质岩中堇青石+尖晶石后成合晶取代夕线石和石榴石(据Morrissey et al., 2016);(c)赖于尔群岛超高温变泥质岩中假蓝宝石+斜方辉石、假蓝宝石+堇青石和斜方辉石+堇青石后成合晶取代石榴石(据Kelesy et al., 2007);(d)西福尔丘陵保留原始辉绿结构的辉绿岩脉的麻粒岩化.bi-黑云母; cd-堇青石; cpx-单斜辉石; g-石榴石; hb-普通角闪石; opx-斜方辉石; oq-不透明矿物; pl-斜长石; sa-假蓝宝石; sil-夕线石; sp-尖晶石 Fig. 4 Typical reaction textures in metamorphic rocks from the Amery Ice Shelf, East Antarctica (a) orthopyroxene+clinopyroxene+plagioclase symplectite replacing garnet and cinopyroxene in garnet-two-pyroxene granulite from the McKaskle Hills, eastern Amery Ice Shelf; (b) cordierite+spinel symplectite replacing sillimanite and garnet in metapelite from the Else Platform, northern Prince Charles Mountains(after Morrissey et al., 2016); (c) sapphirine+orthopyroxene, sapphirine+cordierite and orthopyroxene+cordierite symplectites replacing garnet in ultrahigh-temperature metapelite from the Rauer Group(after Kelsey et al., 2007); (d) granulitization of diabase dyke with primary ophitic texture from the Vestfold Hills. bi-biotite; cd-cordierite; cpx-clinopyroxene; g-garnet; hb-hornblende; opx-orthopyroxene; oq-opaque mineral; pl-plagioclase; sa-sapphirine; sil-sillimanite; sp-spinel
2.2 弱变质叠加的北查尔斯王子山和布朗山地区

格林维尔期变质事件在北查尔斯王子山地区占主导地位。以前的研究认为,该区区域麻粒岩相变质、变形作用和大量紫苏花岗岩、花岗岩的侵位主要发生在约1000~980Ma,随后的变形作用和小规模岩浆活动发生在约940~900Ma(Black et al., 1987; Sheraton et al., 1987; Young and Black, 1991; Manton et al., 1992; Kinny et al., 1997; Boger et al., 2000; Carson et al., 2000; Dunkley et al., 2002),所以一些学者提出格林维尔期变质作用代表一个长期的(protracted)变质幕,持续时间超过100Myr(Boger et al., 2000; Dunkley et al., 2002; Halpin et al., 2007a)。但仔细查阅文献发现,他们推断出的约1000~970Ma的峰期变质年龄数据主要来自于紫苏花岗岩、花岗岩、淡色岩和伟晶岩的锆石U-Pb定年,而这一时期的变质锆石生长却非常罕见(图 5)。相反,新的变质锆石和独居石U-Pb定年获得的年龄主要集中在约945~900Ma(Morrissey et al., 2015; Liu et al., 2017),并有一幕约1020Ma的独居石生长。这有可能说明北查尔斯王子山地区格林维尔期变质作用与埃默里冰架以东一样也可能是幕式的,并至少有约1020~970Ma(峰期980Ma)和约945~900Ma(峰期930Ma)两幕(见图 5)。变质程度属于中低压麻粒岩相,峰期变质P-T条件为800~900℃、0.5~0.7GPa,并具有近等压冷却的逆时针演化轨迹(Clarke et al., 1989; Fitzsimons and Harley, 19921994; Thost and Hensen, 1992; Hand et al., 1994; Scrimgeour and Hand, 1997; Stephenson and Cook, 1997; Boger and White, 2003; Halpin et al., 2007a),这与其西侧肯普地(Kemp Land)的变质作用有明显的区别,后者变质级别属于中高压麻粒岩相,其峰期变质条件为850~990℃、0.8~1.0GPa,随后经历了近等温降压或降压冷却的顺时针演化轨迹(Ellis, 1983; Kelly et al., 2000; Kelly and Harley, 2004; Halpin et al., 2007b)(见图 3a)。

图 5 北查尔斯王子山地区已发表的锆石和独居石U-Pb年龄统计(据Liu et al., 2017) Fig. 5 Statistics of published zircon and monazite U-Pb age data from the Northern Prince Charles Mountains (after Liu et al., 2017)

与埃默里冰架东缘-普里兹湾地区相比,北查尔斯王子山地区泛非期变质叠加的迹象不太清晰,所以过去一直认为这期事件并不重要。同位素体系中,Rb-Sr的重设时代在约500Ma (Tingey, 1991; Manton et al., 1992),在北查尔斯王子山东部厘米级石榴石的Sm-Nd同位素年代学也给出了相对年轻(825~555Ma)的年龄(Zhou and Hensen, 1995; Hensen and Zhou, 1997)。然而,多数样品的锆石U-Pb同位素体系仅有少许重设,而没有泛非期的锆石生长(Manton et al., 1992; Kinny et al., 1997)。此外,某些花岗岩和伟晶岩的侵位发生在约550~500Ma(Manton et al., 1992; Carson et al., 2000; Boger et al., 2002),并且局部的岩脉已发生了混合岩化(Hand et al., 1994; Scrimgeour and Hand, 1997)。所有这些迹象都表明北查尔斯王子山地区在泛非期发生了一定量的熔融和较高温度的改造。但总体来说,该区泛非期改造似乎是离散的,以前认为只局限在北东走向的糜棱岩带中,其变质条件大致相当于低角闪岩相(524±20℃、0.76±0.4GPa)(Manton et al., 1992; Carson et al., 2000; Boger et al., 2002)。然而,最新的研究在迪波峰(Depot Peak)、埃尔瑟台地(Else Platform)、泰勒台地(Taylor Platform)、布罗克赫斯特山脊(Brocklehurst Ridge)和梅雷迪斯山(Mount Meredith)的变泥质岩中均识别出格林维尔期和泛非期(介于532±5Ma和504±3Ma之间)两组独居石年龄(见图 5),并且在前两个地点发现了石榴石+夕线石=堇青石+尖晶石的矿物反应结构(图 4b),估算出的泛非期变质条件高达800~870℃、0.55~0.65GPa(Morrissey et al., 2016)。如此看来,尽管在北查尔斯王子山地区泛非期高温麻粒岩相变质叠加的范围及零星分布的机制还不清楚,但与埃默里冰架以东类似的泛非期改造已毋庸置疑。

布朗山(Mount Brown)地区是普里兹湾与登曼冰川(Denman Glacier)之间的唯一陆内露头,以前属于南极地质研究的空白区。我们的调查研究表明,该区主要组成岩石为长英质正片麻岩和镁铁质麻粒岩,其次为经历了深熔作用的副片麻岩和伟晶岩脉。SHRIMP锆石U-Pb定年揭示镁铁质麻粒岩和长英质正片麻岩的原岩形成于1490~1400Ma,副片麻岩的原岩沉积时代小于1250Ma,而高级变质作用及伴随的部分熔融发生在约920~900Ma(Liu et al., 2016),也属于一个典型的格林维尔期变质地体。镁铁质麻粒岩和副片麻岩中的岩相学结构、矿物成分以及相平衡模拟计算表明,格林维尔期麻粒岩相变质作用的峰期P-T条件为830~870℃、0.7~0.8GPa,而后经历近等压冷却至760~830℃、0.7~0.85GPa(Liu et al., 2016)。由此可见,布朗山地区的年代学图谱以及地质事件序列与广泛分布于北查尔斯王子山-普里兹湾地区的雷纳杂岩非常相似,从而支持格林维尔期雷纳造山带向东将延伸到威廉二世地(Wilhelm Ⅱ Land)。为了查明该区是否也遭受到泛非期变质事件的叠加和改造,我们对副片麻岩和伟晶岩中的独居石和金红石进行了U-Pb定年,对黑云母进行了40Ar/39Ar定年。结果表明(我们未发表的资料),产于石榴石内、粒间和反应结构中的独居石U-Pb年龄均主要集中在约900Ma,并有相当一部分测点发生了Pb丢失,而串珠状独居石的生长时代约为650Ma,代表一期流体活动事件。金红石的U-Pb年龄约为515Ma,黑云母的40Ar/39Ar坪年龄也集中在约520~505Ma,说明泛非期构造热事件也影响到了布朗山地区。然而,这一事件似乎只造成了部分同位素体系的重设,其温度级别及性质尚不清楚。

2.3 强/弱变质叠加的古老结晶地块

格林维尔和泛非两期变质作用也广泛地叠加在太古-古元古代古老结晶地块之上,包括赖于尔群岛、西福尔丘陵和兰伯特地体。赖于尔群岛是一个被泛非期变质事件强烈改造的复合高级变质地体,因靠近澳大利亚戴维斯站而被详细的调查和研究。复合高级变质地体主要包含太古宙英云闪长质正片麻岩和中元古代镁铁质-长英质侵入体,间夹少量表壳副片麻岩。在变泥质岩中有1030~820Ma的锆石U-Pb或独居石(U+Th)-Pb年龄的少量报道(Kinny, 1998; Kelsey et al., 2007; Wang et al., 2007)),而绝大多数同位素年龄集中在泛非期(530~510Ma)(Kelsey et al., 2003b, 2007; Harley and Kelly, 2007; Wilson et al., 2007)。由石榴二辉麻粒岩和变质钙硅酸盐岩获得区域麻粒岩相变质作用的峰期P-T条件为860±40℃、0.6~0.85GPa,随后的减压退变质发生在>700~750℃、0.3~0.6GPa(Harley, 1988; Harley and Buick, 1992)。一般认为,主期麻粒岩相变质作用发生在格林维尔期,而减压退变发生在泛非期。然而,在马瑟半岛(Mather Peninsula)等太古宙基底分布区域还产出有含假蓝宝石超高温变泥质岩(图 4c),其变质条件高达950~1050℃、0.95~1.2GPa,而后减压退变至>800~850℃、>0.7GPa(Harley and Fitzsimons, 1991; Harley, 1998; Kelsey et al., 2003c; Tong and Wilson, 2006)。目前,关于超高温变质作用的发生时代尚存争议,虽然由结构控制的原位独居石U-Th-Pb化学定年结果似乎支持超高温变质事件发生在泛非期(>590~580Ma)(Kelsey et al., 2003b, 2007; Harley et al., 2009; Hokada et al., 2016),但SHRIMP锆石U-Pb定年也在锆石幔部获得了格林维尔期的变质年龄(Wang et al., 2007)。

西福尔丘陵是一个独特的新太古-早元古代克拉通残片,其副片麻岩原始沉积物的沉积时代介于2575Ma和2520Ma之间,在2520~2450Ma经历了两幕岩浆侵位和两幕(或延时的一幕)高级变质变形作用(Clark et al., 2012),因而有人推测其来自于华北克拉通(Clark et al., 2012)。西福尔丘陵的一个最重要特征之一是在元古宙(2480~1240Ma)发育一系列基性岩墙群。前人报道西南部的基性岩脉局部发生了角闪岩相重结晶和变形作用(Collerson and Sheraton, 1986; Kuehner and Green, 1991; Passchier et al., 1991),一般认为这一中低级变质事件与赖于尔群岛中的泛非期麻粒岩相变质作用有关(Zulbati and Harley, 2007)。然而,我们的研究表明其变质程度已达麻粒岩相(图 4d),峰期P-T条件为820~870℃、0.84~0.97GPa,变质时代为960~940Ma(Liu et al., 2014b)。结合在西福尔丘陵最东部的一个基性岩脉中获得的锆石U-Pb重设年龄(1025±56Ma;Black et al., 1991),我们推测格林维尔期变质事件可能已叠加在整个西福尔丘陵之上,在基底岩石中局部发育的弱反应结构或重结晶细脉可能是这期变质作用的反映。在某些副片麻岩和镁铁质麻粒岩中获得的锆石U-Pb不一致线下交点年龄集中在约950Ma(Clark et al., 2012; 我们未发表的资料),可为上述假设提供一定的支持。不仅如此,岩脉和围岩的矿物-全岩Sm-Nd等时线年龄(重设年龄?)以及角闪石和黑云母的40Ar/39Ar年龄均在泛非期范围(分别为670~589Ma和526~509Ma;我们未发表的资料),说明西福尔丘陵也未逃脱泛非期构造热事件的改造,尽管尚未发现相应的矿物学响应。

兰伯特地体是一个古元古代结晶基底,主要由花岗质-花岗闪长质正片麻岩和变沉积岩构成,其火成岩原岩的主要形成时间在2490~2420Ma和2180~2080Ma期间(Mikhalsky et al., 2006, 2010; Corvino et al., 2008),变沉积岩中最小的碎屑锆石年龄为2500Ma,因而推测其沉积时代应在晚太古代到古元古代早期之间(Phillips et al., 2006)。早期变质作用的时代被确定为2065Ma(Mikhalsky et al., 2006),但变质级别并不清楚。格林维尔期变质事件的确定主要来自于变质岩和同构造伟晶岩脉930~900Ma的锆石U-Pb年龄(Corvino et al., 2005, 2008; Mikhalsky et al., 2010)以及范围更宽的独居石(U+Th)-Pb年龄(1000~900Ma;Phillips et al., 2009),估算的变质峰期温压条件为750~810℃、0.5~0.7GPa(Phillips et al., 2009; Corvino et al., 2011)。该地体也经历了泛非期的透入性变形和高角闪岩相变质作用,泛非期变质主要记录在独居石中,而无锆石生长(Corvino et al., 2008, 2011; Phillips et al., 2009),估算出的峰期P-T条件为630~700℃、0.6~0.7GPa,并伴有顺时针的减压退变P-T轨迹(Boger and Wilson, 2005; Phillips et al., 2009)。与此相比,在其南侧出露的鲁克地体中,泛非期变质作用广泛发育于新元古代的盖层(Sodruzhestvo群)之中,并伴有褶皱变形;但在太古宙基底(鲁克杂岩)中,泛非期变质作用仅局限在高应变区内。变质作用的P-T演化以增温、增压为特征,从450~500℃、< 0.35GPa变化到变质峰期的565~640℃、0.4~0.52GPa(Phillips et al., 2007a, b),与低角闪岩相矿物组合的稳定区域相吻合。然而,该地体中并未发现格林维尔期变质作用存在的证据。

2.4 已解决和未解决的科学问题

通过多年的不断探索和多学科综合研究,对东南极埃默里地区多期变质作用的研究已经取得一些共识,但也存在许多尚未解决的科学问题。就格林维尔期变质事件而言,已取得的主要共识包括:(1)格林维尔期变质作用普遍存在于区域广布的中元古代雷纳杂岩以及西福尔丘陵和兰伯特地体两个古老结晶地块,而南部的格罗夫山地区和南查尔斯王子山鲁克地体缺失这期变质记录;(2)雷纳杂岩的格林维尔期区域变质作用的时代限定为约1020~900Ma,变质条件达中压麻粒岩相(800~900℃、0.5~0.8GPa),并具有逆时针演化的P-T轨迹;(3)卷入到格林维尔期雷纳造山作用的北部古老结晶地块的变质时代相对年轻(约960~900Ma),其麻粒岩相变质P-T条件相对较高(820~990℃、0.8~1.0GPa),并具有顺时针P-T演化轨迹。尚未解决的科学问题包括:(1)埃默里地区不同地质体中格林维尔期高级变质作用的时代为什么不一致?反映是一幕持续变质(1020~900Ma)还是两幕变质(1020~970Ma和960~900Ma)?(2)在普里兹湾地区的雷纳杂岩中,既报道有顺时针P-T轨迹(Thost et al., 1991; Hensen and Zhou, 1995; 周信等, 2014),也有逆时针P-T轨迹(Tong and Liu, 1997; Tong et al., 2014),这是真实的存在还是因泛非期变质叠加造成的推导上的失误?(3)在赖于尔群岛与格林维尔期地质体紧密伴生的太古宙基底中,目前尚未识别出格林维尔期变质事件,是缺失还是没有鉴别出来?

关于泛非期变质事件,目前取得的主要共识包括:(1)在埃默里地区,几乎所有的地质体都遭受到泛非期变质事件的影响,或为完全的变质矿物重结晶,或为部分重结晶,或仅仅表现为同位素体系的重设;(2)泛非期变质作用的发生时间大致在590~500Ma的范围,其中北查尔斯王子山-普里兹湾地区的雷纳杂岩叠加变质时间约535~500Ma,格罗夫山单相泛非期变质时间约560~540Ma(王伟等, 2016; Wang et al., 2016),而在赖于尔群岛超高温变质岩中获得的泛非期变质时间为>590~580Ma;(3)在变质级别上,主体以麻粒岩相为主,但相对较低级的绿片岩相(如西福尔丘陵东南部的冰下古太古代地块)、低角闪岩相(如鲁克地体)和高角闪岩相(如兰伯特地体)也出现在东北和西南区域,而且局部还产出有比较特殊的高压麻粒岩(格罗夫山冰下高地)和超高温变质岩(赖于尔群岛),但无论什么变质级别,都记录了顺时针演化的P-T轨迹。尚未解决的科学问题包括:(1)变形作用、流体活动和矿物的成核与结晶行为是控制变质反应能否发生的重要因素,但其到底如何控制变质反应,是造成部分重结晶、完全重结晶还是保持亚稳定状态?这就造成我们很难判断岩石中现存的矿物组合到底形成于哪一期次,特别是在北查尔斯王子山地区,泛非期变质作用只零星叠加在格林维尔期基底之上(又称patchy metamorphism;Morrissey et al., 2016)的机制并不清楚;(2)泛非期变质时代从590Ma一直延续到500Ma,这是幕式变质、穿时变质还是同位素测年的误差造成?变质时代较早的超高温变质作用在赖于尔群岛中的影响范围有多大?其与其它高级变质杂岩的关系是什么?(3)泛非期不同级别的变质相在空间上是怎么分布的?它们之间具有怎样的关联?是代表连续的变质相带还是构造分割的不同地质体?

南极大陆曾遭受到格林维尔和泛非两期高级变质事件的广泛影响,而且,所有的格林维尔期构造带都至少局部受到了泛非期变质作用的改造,而几乎在所有的泛非期构造带中也都能找到格林维尔期变质作用的残留(Harley et al., 2013)。因此,南极大陆是开展多期高级变质作用叠加研究的理想场所。实际上,在变质作用P-T-t轨迹研究中的一项非常著名的工作即来自于普里兹湾地区姐妹岛石榴二辉麻粒岩的研究,其两幕变质并非形成于同一期变质事件,所以不能简单地将二者连接成一个近等温减压的P-T轨迹(Thost et al., 1991; Hensen and Zhou, 1995, 1997)。这一结论曾被作为经典广泛地引用,而以普里兹湾地区为代表的普里兹造山带也被认为是一个典型的多期变质叠加造山带(Dirks and Wilson, 1995; Kelsey et al., 2008)。如上所述,有关这一地区两期叠加变质事件的范围、性质、时代和P-T演化还存在诸多问题,进一步探索和解决这些问题将会促使这一地区成为多期变质叠加研究的经典地区,为变质作用理论研究提供重要参考。

3 多期变质事件的识别方法及判别标志 3.1 构造解析方法

详细的野外地质调查结合典型构造域(包括强变质叠加域和弱变质叠加域)的大比例尺构造地质填图可以查明多期变质地体的构造变形格架以及几何学、运动学和动力学特征,精准地划分出构造幕和变形演化序列,再配合同变形淡色岩、伟晶岩以及同变形矿物的定年来区分多期变形事件的世代及叠加和改造过程。一般来说,在弱变质叠加域有可能找到早期变质变形事件的残留,而强变质叠加域常常是晚期变质变形事件的反映。反映在东南极埃默里地区,格林维尔期的变形序列主要是在弱变质叠加的北查尔斯王子山地区建立的(Boger et al., 2000),而泛非期的变形历史主要是在强变质叠加的普里兹湾地区建立的(Dirks et al., 1993)。必须强调,对每幕变形事件的样式和性质(如挤压、伸展、走滑)的确定对多期变质事件(构造旋回)的识别是至关重要的。同时,与变质变形和深熔作用密切相关,并可提供年代学制约的淡色岩和伟晶岩的变形分析也非常关键,因为离开了同位素年代学的约束,将很难确定变形幕的发生时代。

3.2 变质岩石学方法

使用变质岩石学方法划分变质期次的先决条件是岩石中发育变质反应结构,而能够保存这种结构的岩石多为变质基性岩、变质泥质岩和变质钙硅酸盐岩,所以这三种岩石也经常被用于确定变质作用的P-T-t轨迹。一般的研究步骤是,在显微镜下鉴定和结构分析的基础上,确定岩石的矿物共生次序,对发育变质反应结构的样品可以通过背散射图像进行更详细的观察和成图(mapping),对铝硅酸盐矿物(红柱石/蓝晶石/夕线石)可借助于拉曼光谱进行鉴别。对常见变质矿物,特别是特征矿物进行系统的电子探针分析,确定各种矿物的化学成分及同种矿物在不同演化阶段的化学变化,重点矿物(如石榴石)做出成分环带图案。通过各种温压测量手段,包括常规地质温压计和相平衡模拟计算可以获得岩石连续的,或不连续的P-T演化轨迹。需要指出的是,判别变质期次必须要与同位素年代学密切配合,否则难以确定变质反应结构是形成于两期变质事件还是一次变质事件的两个不同阶段。

3.3 同位素年代学方法

同位素定年是识别多期变质事件的最直接方法。经常使用的确定变质时代的同位素定年方法包括锆石U-Pb分析、独居石U-Th-Pb化学或同位素分析、矿物-全岩Lu-Hf和Sm-Nd分析以及单矿物40Ar/39Ar分析等方法,其中原位锆石和独居石定年与这两种矿物及共生石榴石的微量元素分析相结合的技术手段较好,将不同方法配套使用效果更佳,从而获得不同地质事件以及同一地质事件不同演化阶段的精确年龄。

(1) 锆石U-Pb定年与微量元素分析:锆石U-Pb定年的对象比较宽阔,不受岩石类型的限制,并且可以同时获得原岩和变质作用的精准时代。为了获得锆石变质年龄与矿物组合的对应关系,可以使用拉曼光谱和电子探针分析方法对锆石不同部位的矿物微粒包裹体进行鉴定。这种方法对含有较多矿物包体的高压/超高压变质锆石比较成功(如Liu and Liou, 2011),但对麻粒岩效果不理想,因为麻粒岩相变质锆石中的矿物包裹体很少。近年来,以锆石和石榴石间REE分配系数来确定它们之间的共存关系的方法获得了广泛的应用(如Rubatto, 2002; Whitehouse and Platt, 2003; Harley and Kelly, 2007),取得了较好的效果。

(2) 独居石U-Th-Pb定年与微量元素分析:独居石的U-Th-Pb原位化学或SHRIMP/LA-ICP-MS定年已被证明是确定多相变质地体变质演化时代的最有效方法。独居石一般在十字石级变泥质岩中就开始生长,而在麻粒岩相变泥质岩中则非常普遍。并且,高级变泥质岩中常发育变质反应结构,所以使用由微观结构控制的独居石原位定年可获得多期(多阶段)变质的精确时代。此外,由于高Y含量的独居石常在石榴石被吸收(resorption)时生长(Pyle and Spear, 1999; Pyle et al., 2001; Foster and Parrish, 2003; Kelly et al., 2012),所以通过独居石和石榴石的微量元素分析和Y含量成图(mapping)可以确定它们之间的共存关系,为独居石的年龄解释提供进一步的支持证据。

(3) Lu-Hf和Sm-Nd定年:石榴石常具有较高的母子体176Lu/176Hf和147Sm/144Nd比值,往往能构筑高质量的等时线,所以石榴石成为Lu-Hf和Sm-Nd定年的首选矿物。一般地质条件下石榴石的Nd同位素封闭温度在700~750℃(Ganguly et al., 1998),Lu-Hf同位素体系封闭温度则>700℃(Scherer et al., 2000)。所以,以石榴石为基础的矿物-全岩Lu-Hf和Sm-Nd等时线也常被用于测定高级岩石的变质时代,其优势是直接测定变质矿物的年龄。我们在南极埃默里地区的实验检验表明,当锆石在泛非期生长时,锆石U-Pb和石榴石Sm-Nd等时线年龄基本吻合(Liu et al., 2007a, 2009b),但锆石在泛非期不生长时,石榴石Sm-Nd等时线年龄则跨度较大,常位于格林维尔期和泛非期之间(我们未发表的资料),可能是Sm-Nd同位素部分重设的结果。在这种情况下,该年龄可能不具有地质意义。

(4) 40Ar/39Ar定年:一般来说,矿物的40Ar/39Ar坪年龄反映其通过矿物Ar同位素封闭温度的冷却时间。变质岩中常被用于40Ar/39Ar定年的矿物主要有角闪石、白云母和黑云母,其中角闪石的封闭温度为535±50℃(Harrison, 1982; McDougall and Harrison, 1999),白云母的封闭温度为350±30℃(Harrison et al., 1985),而黑云母的封闭温度为320±30℃(McDougall and Harrison, 1999)。所以,40Ar/39Ar定年一般可以限定最晚期变质或变形作用的时代上限,而在多数情况下,难以获得早期变质事件的年龄信息。在40Ar/39Ar同位素体系未完全重设的情况下,在多期变质地体中使用这种方法也有可能获得没有地质意义的中间年龄。

3.4 多期变质事件的判别标志

根据国内外高级变质地体的研究结果及我们自己的研究经验,可视为存在多期变质的标志简要概括如下。(1)构造地质学标志:在同一变质地体中发育两期/多期具有不同构造指向的挤压-伸展变形;(2)变质岩石学标志:在同一变质地体中保存了不同类型(如顺时针和逆时针),或者不连续的P-T演化轨迹;(3)同位素年代学标志:在同一变质地体中含有两组/多组变质年龄。

4 结语

在多期高级变质地体中甄别每期变质事件的特点、时代和P-T-t演化是困难的,但精细的地质年代学研究与详细的构造解析和岩石学观察相结合,可以建立多期高级变质地体中同位素年龄与变质事件之间的有机联系。对东南极遭受格林维尔和泛非两期高级变质作用叠加的埃默里地区的实地调查研究表明,多期变质叠加的改造常常是强弱不均的,那么在弱变质叠加地区就可以重建早期变质事件的演化历史,而在强变质叠加地区则能够揭示晚期变质事件的演化过程,由此可基本上查明两期变质事件的影响范围、变质时代和P-T演化。然而,在有关细节上,还有许多问题尚未得到解决,特别是关于多期高级变质事件的叠加机理、变质行为及控制因素都不十分清楚,这需要岩石学家在未来去努力探索。

致谢 审稿人任留东研究员、仝来喜研究员和专辑特约组稿人万渝生研究员提出了宝贵的修改意见,在此感谢!谨以此文敬贺沈其韩院士96华诞!
参考文献
Ashwal LD, Tucker RD and Zinner EK. 1999. Slow cooling of deep crustal granulites and Pb-loss in zircon. Geochimica et Cosmochimica Acta, 63(18): 2839-2851. DOI:10.1016/S0016-7037(99)00166-0
Black LP, Harley SL, Sun SS and McCulloch MT. 1987. The Rayner Complex of East Antarctica: Complex isotopic systematics within a Proterozoic mobile belt. Journal of Metamorphic Geology, 5(1): 1-26. DOI:10.1111/jmg.1987.5.issue-1
Black LP and Sheraton JW. 1990. The influence of Precambrian source components on the U-Pb zircon age of a Palaeozoic granite from Northern Victoria Land, Antarctica. Precambrian Research, 46(4): 275-293. DOI:10.1016/0301-9268(90)90016-J
Black LP, Kinny PD and Sheraton JW. 1991. The difficulties of dating mafic dykes: An Antarctic example. Contributions to Mineralogy and Petrology, 109(2): 183-194. DOI:10.1007/BF00306478
Boger SD, Carson CJ, Wilson CJL and Fanning CM. 2000. Neoproterozoic deformation in the Radok Lake region of the Northern Prince Charles Mountains, East Antarctica: Evidence for a single protracted orogenic event. Precambrian Research, 104(1-2): 1-24. DOI:10.1016/S0301-9268(00)00079-6
Boger SD, Wilson CJL and Fanning CM. 2001. Early Paleozoic tectonism within the East Antarctic craton: The final suture between east and west Gondwana?. Geology, 29(5): 463-466. DOI:10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2
Boger SD, Carson CJ, Fanning CM, Hergt JM, Wilson CJL and Woodhead JD. 2002. Pan-African intraplate deformation in the Northern Prince Charles Mountains, East Antarctica. Earth and Planetary Science Letters, 195(3-4): 195-210. DOI:10.1016/S0012-821X(01)00587-8
Boger SD and White RW. 2003. The metamorphic evolution of metapelitic granulites from Radok Lake, Northern Prince Charles Mountains, East Antarctica: Evidence for an anticlockwise P-T path. Journal of Metamorphic Geology, 21(3): 285-298. DOI:10.1046/j.1525-1314.2003.00442.x
Boger SD and Wilson CJL. 2005. Early Cambrian crustal shortening and a clockwise P-T-t path from the Southern Prince Charles Mountains, East Antarctica: Implications for the formation of Gondwana. Journal of Metamorphic Geology, 23(7): 603-623. DOI:10.1111/j.1525-1314.2005.00598.x
Brown M and Korhonen FJ. 2009. Some remarks on melting and extreme metamorphism of crustal rocks. In: Gupta AK and Dasgupta S (eds. ). Physics and Chemistry of the Earth's Interior: Crust, Mantle and Core. New Delhi: Springer, 67-87
Carson CJ, Dirks PGHM, Hand M, Sims JP and Wilson CJL. 1995. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geological Magazine, 132(2): 151-170. DOI:10.1017/S0016756800011729
Carson CJ, Fanning CM and Wilson CJL. 1996. Timing of the progress granite, Larsemann Hills: Additional evidence for Early Palaeozoic orogenesis within the East Antarctic Shield and implications for Gondwana assembly. Australian Journal of Earth Sciences, 43(5): 539-553. DOI:10.1080/08120099608728275
Carson CJ, Powell P, Wilson CJL and Dirks PHGM. 1997. Partial melting during tectonic exhumation of a granulite terrane: An example from the Larsemann Hills, East Antarctica. Journal of Metamorphic Geology, 15(1): 105-126. DOI:10.1111/j.1525-1314.1997.00059.x
Carson CJ, Boger SD, Fanning CM, Wilson CJL and Thost DE. 2000. SHRIMP U-Pb geochronology from Mount Kirkby, Northern Prince Charles Mountains, East Antarctica. Antarctic Science, 12(4): 429-442.
Chen Y, Ye K, Liu JB and Sun M. 2006. Multistage metamorphism of the Huangtuling granulite, Northern Dabie Orogen, eastern China: Implications for the tectonometamorphic evolution of subducted lower continental crust. Journal of Metamorphic Geology, 24(7): 633-654. DOI:10.1111/jmg.2006.24.issue-7
Cherniak DJ and Watson EB. 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2): 5-24. DOI:10.1016/S0009-2541(00)00233-3
Clark C, Fitzsimons ICW, Healy D and Harley SL. 2011. How does the continental crust get really hot?. Elements, 7(4): 235-240. DOI:10.2113/gselements.7.4.235
Clark C, Kinny PD and Harley SL. 2012. Sedimentary provenance and age of metamorphism of the Vestfold Hills, East Antarctica: Evidence for a piece of Chinese Antarctica?. Precambrian Research, 196-197: 23-45. DOI:10.1016/j.precamres.2011.11.001
Clarke GL, Powell R and Guiraud M. 1989. Low-pressure granulite facies metapelitic assemblages and corona textures from MacRobertson Land, East Antarctica: The importance of Fe2O3 and TiO2 in accounting for spinel-bearing assemblages. Journal of Metamorphic Geology, 7(3): 323-335. DOI:10.1111/jmg.1989.7.issue-3
Collerson KD and Sheraton JW. 1986. Age and geochemical characteristics of a mafic dyke swarm in the Archaean Vestfold Block, Antarctica: Inferences about Proterozoic dyke emplacement in Gondwana. Journal of Petrology, 27(4): 853-886. DOI:10.1093/petrology/27.4.853
Corvino AF, Boger SD, Wilson CJL and Fitzsimons ICW. 2005. Geology and SHRIMP U-Pb zircon chronology of the Clemence Massif, Central Prince Charles Mountains, East Antarctica. Terra Antartica, 12(2): 55-68.
Corvino AF, Boger SD, Henjes-Kunst F, Wilson CJL and Fitzsimons ICW. 2008. Superimposed tectonic events at 2450Ma, 2100Ma, 900Ma and 500Ma in the North Mawson Escarpment, Antarctic Prince Charles Mountains. Precambrian Research, 167(3-4): 281-302. DOI:10.1016/j.precamres.2008.09.001
Corvino AF, Wilson CJL and Boger SD. 2011. The structural and tectonic evolution of a Rodinian continental fragment in the Mawson Escarpment, Prince Charles Mountains, Antarctica. Precambrian Research, 184(1-4): 70-92. DOI:10.1016/j.precamres.2010.11.001
Diener JFA, White RW and Powell R. 2008. Granulite facies metamorphism and subsolidus fluid-absent reworking, Strangways Range, Arunta Block, central Australia. Journal of Metamorphic Geology, 26(6): 603-622. DOI:10.1111/jmg.2008.26.issue-6
Dirks PHGM, Carson CJ and Wilson CJL. 1993. The deformational history of the Larsemann Hills, Prydz Bay: The importance of the Pan-African (500Ma) in East Antarctica. Antarctic Science, 5(2): 179-192.
Dirks PHGM and Hand M. 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica. Australian Journal of Earth Sciences, 42(2): 157-172. DOI:10.1080/08120099508728189
Dirks PHGM and Wilson CJL. 1995. Crustal evolution of the East Antarctic mobile belt in Prydz Bay: Continental collision at 500Ma?. Precambrian Research, 75(3-4): 189-207. DOI:10.1016/0301-9268(95)80006-4
Dunkley DJ, Clarke GL and White RW. 2002. Structural and metamorphic evolution of the mid-late Proterozoic Rayner Complex, Cape Bruce, East Antarctica. In: Gamble JA, Skinner DNB and Henrys S (eds. ). Antarctica at the Close of a Millennium. Wellington: The Royal Society of New Zealand, 31-42
Ellis DJ. 1983. The Napier and rayner complexes of Enderby Land Antarctica: Contrasting styles of metamorphism and tectonism. In: Oliver RL, James PR and Jago JB (eds. ). Antarctic Earth Science. Canberra: Australian Academy of Sciences, 20-24
Fitzsimons ICW and Harley SL. 1992. Mineral reaction textures in high-grade gneisses: Evidence for contrasting pressure-temperature paths in the Proterozoic complex of East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds. ). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing Company, 103-111
Fitzsimons ICW and Harley SL. 1994. Garnet coronas in scapolite-wollastonite calc-silicates from East Antarctica: The application and limitations of activity-corrected grids. Journal of Metamorphic Geology, 12(6): 761-777. DOI:10.1111/jmg.1994.12.issue-6
Fitzsimons ICW. 1996. Metapelitic migmatites from Brattstrand Bluffs, East Antarctica-metamorphism, melting and exhumation of the mid crust. Journal of Petrology, 37(2): 395-414. DOI:10.1093/petrology/37.2.395
Fitzsimons ICW, Kinny PD and Harley SL. 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova, 9(1): 47-51. DOI:10.1046/j.1365-3121.1997.d01-8.x
Fitzsimons ICW. 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. In: Yoshida M, Windley BE and Dasgupta S (eds. ). Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 93-130
Foster G and Parrish RR. 2003. Metamorphic monazite and the generation of P-T-t paths. In: Vance D, Müller W and Villa IM (eds. ). Geochronology: Linking the Isotopic Record with Petrology and Textures. Geological Society, London, Special Publications, 220(1): 25-47
Ganguly J, Tirone M and Hervig RL. 1998. Diffusion kinetics of samarium and neodymium in garnet, and a method for determining cooling rates of rocks. Science, 281(5378): 805-807. DOI:10.1126/science.281.5378.805
Godard G. 2009. Two orogenic cycles recorded in eclogite-facies gneiss from the southern Armorican Massif (France). European Journal of Mineralogy, 21(6): 1173-1190. DOI:10.1127/0935-1221/2009/0021-1984
Grew ES and Manton WI. 1981. Geochronologic studies in East Antarctica: Ages of rocks at Reinbolt Hills and Molodezhnaya Station. Antarctic Journal, 16(5): 5-7.
Grew ES, Carson CJ, Christy AG, Maas R, Yaxley GM, Boger SD and Fanning CM. 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica. Precambrian Research, 206-207: 87-108. DOI:10.1016/j.precamres.2012.02.016
Halpin JA, Clarke GL, White RW and Kelsey DE. 2007a. Contrasting P-T-t Paths for Neoproterozoic metamorphism in MacRobertson and Kemp Lands, East Antarctica. Journal of Metamorphic Geology, 25(6): 683-701. DOI:10.1111/jmg.2007.25.issue-6
Halpin JA, White RW, Clarke GL and Kelsey DE. 2007b. The Proterozoic P-T-t evolution of the Kemp Land coast, East Antarctica: Constraints from Si-saturated and Si-undersaturated metapelites. Journal of Petrology, 48(7): 1321-1349. DOI:10.1093/petrology/egm020
Hand M, Dirks PHGM, Powell R and Buick IS. 1992. How well established is isobaric cooling in Proterozoic orogenic belts? An example from the Arunta Inlier, central Australia. Geology, 20(7): 649-652. DOI:10.1130/0091-7613(1992)020<0649:HWEIIC>2.3.CO;2
Hand M, Wilson CJL, Scrimgeour I, Stüwe K and Arne D. 1994. Geological observations in high-grade Mid-Proterozoic rocks from Else Platform, Northern Prince Charles Mountains region, East Antarctica. Australian Journal of Earth Sciences, 41(4): 311-329. DOI:10.1080/08120099408728141
Harley SL. 1988. Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic gneisses. Journal of Petrology, 29(5): 1059-1095. DOI:10.1093/petrology/29.5.1059
Harley SL and Fitzsimons ICW. 1991. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: The Rauer Group, East Antarctica. Journal of Metamorphic Geology, 9(3): 231-243. DOI:10.1111/jmg.1991.9.issue-3
Harley SL and Buick IS. 1992. Wollastonite-scapolite assemblages as indicators of granulite pressure-temperature-fluid histories: the Rauer Group, East Antarctica. Journal of Petrology, 33(3): 693-728. DOI:10.1093/petrology/33.3.693
Harley SL. 1998. Ultrahigh temperature granulite metamorphism (1050℃, 12kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, East Antarctica. Journal of Metamorphic Geology, 16(4): 541-562. DOI:10.1111/j.1525-1314.1998.00155.x
Harley SL. 2003. Archaean-Cambrian crustal development of East Antarctica: Metamorphic characteristics and tectonic implications. In: Yoshida M, Windley BE and Dasgupta S (eds. ). Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 203-230
Harley SL and Kelly NM. 2007. The impact of zircon-garnet REE distribution data on the interpretation of zircon U-Pb ages in complex high-grade terrains: An example from the Rauer Islands, East Antarctica. Chemical Geology, 241(1-2): 62-87. DOI:10.1016/j.chemgeo.2007.02.011
Harley SL, Hokada T, Montel JM and Parseval P. 2009. Sapphirine + quartz in the Rauer Islands, Antarctica: Evidence for 590Ma UHT metamorphism and melting. Abstract of Granulites & Granulites Conference.
Harley SL, Fitzsimons ICW and Zhao Y. 2013. Antarctica and supercontinent evolution: Historical perspectives, recent advances and unresolved issues. In: Harley SL, Fitzsimons ICW and Zhao Y (eds. ). Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 383(1): 1-34
Harlov DE, Wirth R and Hetherington CJ. 2011. Fluid-mediated partial alteration in monazite: The role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162(2): 329-348. DOI:10.1007/s00410-010-0599-7
Harrison TM. 1982. Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology, 78(3): 324-331. DOI:10.1007/BF00398927
Harrison TM, Duncan I and McDougall I. 1985. Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11): 2461-2468. DOI:10.1016/0016-7037(85)90246-7
Hensen BJ and Zhou B. 1995. A Pan-African granulite facies metamorphic episode in Prydz Bay, Antarctica: Evidence from Sm-Nd garnet dating. Australian Journal of Earth Sciences, 42(3): 249-258. DOI:10.1080/08120099508728199
Hensen BJ and Zhou B. 1997. East Gondwana amalgamation by Pan-African collision? Evidence from Prydz Bay, East Antarctica. In: Ricci CA (ed. ). The Antarctic Region: Geological Evolution and Processes. Siena: Terra Antarctic Publication, 115-119
Hokada T, Harley SL, Dunkley DJ, Kelly NM and Yokoyama K. 2016. Peak and post-peak development of UHT metamorphism at Mather Peninsula, Rauer Islands: Zircon and monazite U-Th-Pb and REE chemistry constraints. Journal of Mineralogical and Petrological Sciences, 111(2): 89-103. DOI:10.2465/jmps.150829
Kelly NM, Clarke GL, Carson CJ and White RW. 2000. Thrusting in the lower crust: Evidence from the Oygarden Islands, Kemp Land, East Antarctica. Geological Magazine, 137(3): 219-234. DOI:10.1017/S0016756800004027
Kelly NM and Harley SL. 2004. Orthopyroxene-corundum in Mg-Al-rich granulites from the Oygarden Islands, East Antarctica. Journal of Petrology, 45(7): 1481-1512. DOI:10.1093/petrology/egh023
Kelly NM, Harley SL and Möller A. 2012. Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chemical Geology, 322-323: 192-208. DOI:10.1016/j.chemgeo.2012.07.001
Kelsey DE, White RW, Powell R, Wilson CJL and Quinn CD. 2003a. New constraints on metamorphism in the Rauer Group, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 21(8): 739-759. DOI:10.1046/j.1525-1314.2003.00476.x
Kelsey DE, Powell R, Wilson CJL and Steele DA. 2003b. (Th+U)-Pb monazite ages from Al-Mg-rich metapelites, Rauer Group, East Antarctica. Contributions to Mineralogy and Petrology, 146(3): 326-340. DOI:10.1007/s00410-003-0497-3
Kelsey DE, White RW and Powell R. 2003c. Orthopyroxene-sillimanite-quartz assemblages: Distribution, petrology, quantitative P-T-X constraints and P-T paths. Journal of Metamorphic Geology, 21(5): 439-453. DOI:10.1046/j.1525-1314.2003.00456.x
Kelsey DE, Hand M, Clark C and Wilson CJL. 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850℃) polymetamorphic granulites from Prydz Bay, East Antarctica. Journal of the Geological Society, 164(3): 667-683. DOI:10.1144/0016-76492006-013
Kelsey DE, Wade BP, Collins AS, Hand M, Sealing CR and Netting A. 2008. Discovery of a Neoproterozoic basin in the Prydz belt in East Antarctica and its implications for Gondwana assembly and ultrahigh temperature metamorphism. Precambrian Research, 161(3-4): 355-388. DOI:10.1016/j.precamres.2007.09.003
Kinny PD, Black LP and Sheraton JW. 1997. Zircon U-Pb ages and geochemistry of igneous and metamorphic rocks in the Northern Prince Charles Mountains, Antarctica. AGSO Journal of Australian Geology and Geophysics, 16(5): 637-654.
Kinny PD. 1998. Monazite U-Pb ages from East Antarctic granulites: Comparisons with zircon U-Pb and garnet Sm-Nd ages. Geological Society of Australia, Abstracts, 49: 250.
Korhonen FJ, Saito S, Brown M and Siddoway CS. 2010. Modeling multiple melt loss events in the evolution of an active continental margin. Lithos, 116(3-4): 230-248. DOI:10.1016/j.lithos.2009.09.004
Korhonen FJ, Brown M, Grove M, Siddoway CS, Baxter EF and Inglis JD. 2012. Separating metamorphic events in the Fosdick migmatite-granite complex, West Antarctica. Journal of Metamorphic Geology, 30(2): 165-192. DOI:10.1111/jmg.2012.30.issue-2
Korhonen FJ, Brown M, Clark C and Bhattacharya S. 2013. Osumilite-melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P-T-t evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881-907. DOI:10.1111/jmg.2013.31.issue-8
Kuehner SM and Green DH. 1991. Uplift history of the East Antarctic Shield: Constraints imposed by high-pressure experimental studies of Proterozoic mafic dykes. In: Thomson MRA, Crame JA and Thomson JW (eds. ). Geological Evolution of Antarctica. Cambridge: Cambridge University Press, 1-6
Lee JKW, Williams IS and Ellis DJ. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390(6656): 159-162. DOI:10.1038/36554
Lee SR and Cho M. 2003. Metamorphic and tectonic evolution of the Hwacheon Granulite Complex, central Korea: Composite P-T path resulting from two distinct crustal-thickening events. Journal of Petrology, 44(2): 197-226. DOI:10.1093/petrology/44.2.197
Li M, Liu XC and Zhao Y. 2007. Zircon U-Pb ages and geochemistry of granitoids from Prydz Bay, East Antarctica, and their tectonic significance. Acta Petrologica Sinica, 23(5): 1055-1066.
Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39. DOI:10.1016/j.jseaes.2010.08.007
Liu FL, Wang F, Liu PH and Liu CH. 2013a. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Research, 24(1): 429-450. DOI:10.1016/j.gr.2012.10.016
Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F and Meng E. 2013b. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 2013.
Liu PH, Liu FL, Liu CH, Liu JH, Wang F, Xiao LL, Cai J and Shi JR. 2014c. Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 246: 334-357. DOI:10.1016/j.precamres.2014.02.015
Liu XC, Zhao Y, Zhao GC, Jian P and Xu G. 2007a. Petrology and geochronology of granulites from the McKaskle Hills, eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz Belt. Journal of Petrology, 48(8): 1443-1470. DOI:10.1093/petrology/egm024
Liu XC, Jahn BM, Zhao Y, Zhao GC and Liu XH. 2007b. Geochemistry and geochronology of high-grade rocks from the Grove Mountains, East Antarctica: Evidence for an Early Neoproterozoic basement metamorphosed during a single Late Neoproterozoic/Cambrian tectonic cycle. Precambrian Research, 158(1-2): 93-118. DOI:10.1016/j.precamres.2007.04.005
Liu XC, Zhao Y, Song B, Liu J and Cui JJ. 2009a. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly. Gondwana Research, 16(2): 342-361. DOI:10.1016/j.gr.2009.02.003
Liu XC, Hu JM, Zhao Y, Lou YX, Wei CJ and Liu XH. 2009b. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, East Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana. Precambrian Research, 174(1-2): 181-199. DOI:10.1016/j.precamres.2009.07.001
Liu XC, Zhao Y and Hu JM. 2013c. The c. 1000~900Ma and c. 550~500Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution. In: Harley SL, Fitzsimons ICW and Zhao Y (eds. ). Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 383(1): 95-112
Liu XC, Jahn BM, Zhao Y, Liu J and Ren LD. 2014a. Geochemistry and geochronology of Mesoproterozoic basement rocks from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Implications for a long-lived magmatic accretion in a continental arc. American Journal of Science, 314(2): 508-547. DOI:10.2475/02.2014.03
Liu XC, Wang W, Zhao Y, Liu J and Song B. 2014b. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, East Antarctica. Journal of Metamorphic Geology, 32(9): 1041-1062. DOI:10.1111/jmg.12106
Liu XC, Wang W, Zhao Y, Liu J, Chen H, Cui YC and Song B. 2016. Early Mesoproterozoic arc magmatism followed by Early Neoproterozoic granulite facies metamorphism with a near-isobaric cooling path at Mount Brown, Princess Elizabeth Land, East Antarctica. Precambrian Research, 284: 30-48. DOI:10.1016/j.precamres.2016.08.003
Liu XC, Zhao Y, Chen H and Song B. 2017. New zircon U-Pb and Hf-Nd isotopic constraints on the timing of magmatism, sedimentation and metamorphism in the Northern Prince Charles Mountains, East Antarctica. Precambrian Research, 299: 15-33. DOI:10.1016/j.precamres.2017.07.012
Ma MZ, Wan YS, Santosh M, Xu ZY, Xie HQ, Dong CY and Liu DY. 2012. Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Research, 22(3-4): 810-827. DOI:10.1016/j.gr.2012.02.020
Manton WI, Grew ES, Hofmann J and Sheraton JW. 1992. Granitic rocks of the Jetty Peninsula, Amery Ice Shelf area, East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds. ). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing Company, 179-189
McDougall I and Harrison TM. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. 2nd Edition. Oxford: Oxford University Press: 1-269.
Mikhalsky EV, Sheraton JW, Laiba AA, Tingey RJ, Thost DE, Kamenev EN and Fedorov LV. 2001. Geology of the Prince Charles Mountains, Antarctica. AGSO-Geoscience Australia Bulletin, 247: 1-209.
Mikhalsky EV, Beliatsky BV, Sheraton JW and Roland NW. 2006. Two distinct Precambrian terranes in the Southern Prince Charles Mountains, East Antarctica: SHRIMP dating and geochemical constraints. Gondwana Research, 9(3): 291-309. DOI:10.1016/j.gr.2005.10.002
Mikhalsky EV, Henjes-Kunst F, Belyatsky BV, Roland NW and Sergeev SA. 2010. New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the Southern Prince Charles Mountains (East Antarctica) and its tectonic implications. Precambrian Research, 182(1-2): 101-123. DOI:10.1016/j.precamres.2010.07.004
Mikhalsky EV and Kamenev IA. 2013. Recurrent transitional group charnockites in the East Amery Ice Shelf coast (East Antarctica): Petrogenesis and implications on tectonic evolution. Lithos, 175-176: 230-243. DOI:10.1016/j.lithos.2013.05.004
Morrissey LJ, Hand M, Raimondo T and Kelsey DE. 2014. Long-lived high-T, low-P granulite facies metamorphism in the Arunta Region, central Australia. Journal of Metamorphic Geology, 32(1): 25-47. DOI:10.1111/jmg.2013.32.issue-1
Morrissey LJ, Hand M and Kelsey DE. 2015. Multi-stage metamorphism in the Rayner-Eastern Ghats Terrane: P-T-t constraints from the Northern Prince Charles Mountains, East Antarctica. Precambrian Research, 267: 137-163. DOI:10.1016/j.precamres.2015.06.003
Morrissey LJ, Hand M, Kelsey DE and Wade BP. 2016. Cambrian high-temperature reworking of the Rayner-Eastern Ghats Terrane: Constraints from the Northern Prince Charles Mountains region, East Antarctica. Journal of Petrology, 57(1): 53-92. DOI:10.1093/petrology/egv082
Motoyoshi Y, Thost DE and Hensen BJ. 1991. Reaction textures in calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica: Implications for the retrograde P-T path. Journal of Metamorphic Geology, 9(3): 293-300. DOI:10.1111/jmg.1991.9.issue-3
Passchier CW, Bekendam RF, Hoek JD, Dirks PGHM and de Boorder H. 1991. Proterozoic geological evolution of the northern Vestfold Hills, Antarctica. Geological Magazine, 128(4): 307-318. DOI:10.1017/S0016756800017581
Phillips G, Wilson CJL, Campbell IH and Allen CM. 2006. U-Th-Pb detrital zircon geochronology from the Southern Prince Charles Mountains, East Antarctica: Defining the Archaean to Neoproterozoic Ruker Province. Precambrian Research, 148(3-4): 292-306. DOI:10.1016/j.precamres.2006.05.001
Phillips G, White RW and Wilson CJL. 2007a. On the roles of deformation and fluid during rejuvenation of a polymetamorphic terrane: Inferences on the geodynamic evolution of the Ruker Province, East Antarctica. Journal of Metamorphic Geology, 25(8): 855-871. DOI:10.1111/j.1525-1314.2007.00732.x
Phillips G, Wilson CJL, Phillips D and Szczepanski SK. 2007b. Thermochronological (40Ar/39Ar) evidence of Early Palaeozoic basin inversion within the Southern Prince Charles Mountains, East Antarctica: Implications for East Gondwana. Journal of the Geological Society, 164(4): 771-784. DOI:10.1144/0016-76492006-073
Phillips G, Kelsey DE, Corvino AF and Dutch RA. 2009. Continental reworking during overprinting orogenic events, Southern Prince Charles Mountains, East Antarctica. Journal of Petrology, 50(11): 2017-2041. DOI:10.1093/petrology/egp065
Pyle JM and Spear FS. 1999. Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions. Geological Materials Research, 1(6): 1-49.
Pyle JM, Spear FS, Rudnick RL and McDonough WF. 2001. Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. Journal of Petrology, 42(11): 2083-2107. DOI:10.1093/petrology/42.11.2083
Ren L, Zhao Y, Liu X and Chen T. 1992. Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds. ). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing Company, 145-154
Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138. DOI:10.1016/S0009-2541(01)00355-2
Rubatto D, Regis D, Hermann J, Boston K, Engi M, Beltrando M and McAlpine SRB. 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nature Geoscience, 4(5): 338-342. DOI:10.1038/ngeo1124
Sajeev K, Williams IS and Osanai Y. 2010. Sensitive high-resolution ion microprobe U-Pb dating of prograde and retrograde ultrahigh-temperature metamorphism as exemplified by Sri Lankan granulites. Geology, 38(11): 971-974. DOI:10.1130/G31251.1
Sarkar T and Schenk V. 2014. Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 1. Petrology and pressure-temperature evolution. Precambrian Research, 255: 485-509. DOI:10.1016/j.precamres.2014.07.026
Sarkar T, Schenk V, Appel P, Berndt J and Sengupta P. 2014. Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 2. LA-ICP-MS zircon dating and texturally controlled in-situ monazite dating. Precambrian Research, 255: 467-484. DOI:10.1016/j.precamres.2014.05.024
Scherer EE, Cameron KL and Blichert-Toft J. 2000. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432. DOI:10.1016/S0016-7037(00)00440-3
Scrimgeour I and Hand M. 1997. A metamorphic perspective on the Pan African overprint in the Amery area of Mac. Robertson Land, East Antarctica. Antarctic Science, 9(3): 313-335.
Sheraton JW, Tingey RJ, Black LP, Offe LA and Ellis DJ. 1987. Geology of an unusual Precambrian high-grade metamorphic Terrane: Enderby Land and western Kemp Land, Antarctica. Bureau of Mineral Resources, Geology & Geophysics, Bulletin, 223: 1-51.
Stephenson NCN and Cook NDJ. 1997. Metamorphic evolution of calcsilicate granulites near Battye Glacier, Northern Prince Charles Mountains, East Antarctica. Journal of Metamorphic Geology, 15(3): 361-378. DOI:10.1111/j.1525-1314.1997.00024.x
Stüwe K. 1995. Thermal buffering effects at the solidus: Implications for the equilibration of partially melted metamorphic rocks. Tectonophysics, 248(1-2): 39-51. DOI:10.1016/0040-1951(94)00282-E
Tenczer V, Powell R and Stüwe K. 2006. Evolution of H2O content in a polymetamorphic terrane: The Plattengneiss Shear Zone (Koralpe, Austria). Journal of Metamorphic Geology, 24(4): 281-295. DOI:10.1111/jmg.2006.24.issue-4
Thost DE, Hensen BJ and Motoyoshi Y. 1991. Two-stage decompression in garnet-bearing mafic granulites from Sstrene Island, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 9(3): 245-256. DOI:10.1111/jmg.1991.9.issue-3
Thost DE and Hensen BJ. 1992. Gneisses of the Porthos and Athos Ranges, northern Prince Charles Mountains, East Antarctica: Constraints on the prograde and retrograde P-T path. In: Yoshida Y, Kaminuma K and Shiraishi K (eds. ). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing Company, 93-102
Tingey RJ. 1991. The regional geology of Archaean and Proterozoic rocks in Antarctica. In: Tingey RJ (ed. ). The Geology of Antarctica. Oxford: Oxford University Press, 1-73
Tong LX and Liu XH. 1997. The prograde metamorphism of the Larsemann Hills, East Antarctica: Evidence for an anticlockwise P-T path. In: Ricci CA (ed. ). The Antarctic Region: Geological Evolution and Processes. Siena: Terra Antarctica Publication, 105-114
Tong LX, Liu XH, Zhang LS, Chen HH, Chen FK, Wang YB and Ren LD. 1998. The 40Ar/39Ar ages of hornblendes in GRT-PL-bearing amphibolite from the Larsemann Hills, East Antarctica and their geological implications. Chinese Journal of Polar Research, 10(3): 4-14.
Tong LX, Wilson CJL and Liu XH. 2002. A high-grade event of ~1100Ma preserved within the ~500Ma mobile belt of the Larsemann Hills, East Antarctica: Further evidence from 40Ar-39Ar dating. Terra Antartica, 9(2): 73-86.
Tong LX and Wilson CJL. 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, East Antarctica. Precambrian Research, 149(1-2): 1-20. DOI:10.1016/j.precamres.2006.04.004
Tong LX, Liu XH, Wang YB and Liang XR. 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica. Lithos, 192-195: 102-115. DOI:10.1016/j.lithos.2014.01.013
Tong LX, Liu Z, Li ZX, Liu XH and Zhou X. 2017. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: P-T path, U-Pb ages and tectonic implications. Precambrian Research. DOI:10.1016/j.precamres.2017.12.045
Vernon RH. 1996. Problems with inferring P-T-t paths in low-P granulite facies rocks. Journal of Metamorphic Geology, 14(2): 143-153. DOI:10.1046/j.1525-1314.1996.05814.x
Vielzeuf D, Clemens JD, Pin C and Moinet E. 1990. Granites, granulites, and crustal differentiation. In: Vielzeuf D and Vidal P (eds. ). Granulites and Crustal Evolution. Dordrecht, Netherlands: Springer, 59-85
Walsh AK, Kelsey DE, Kirkland CL, Hand M, Smithies RH, Clark C and Howard HM. 2015. P-T-t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia. Gondwana Research, 28(2): 531-564. DOI:10.1016/j.gr.2014.05.012
Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. In: Reddy SM, Mazumder R, Evans DAD and Collins AS (eds. ). Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London, Special Publications, 323(1): 73-97
Wan YS, Liu DY, Dong CY, Liu SJ, Wang SJ and Yang EX. 2011. U-Th-Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong. Geoscience Frontiers, 2(2): 137-146. DOI:10.1016/j.gsf.2011.02.004
Wang W, Liu XC, Zhao Y, Zheng GG and Chen LY. 2016. U-Pb zircon ages and Hf isotopic compositions of metasedimentary rocks from the Grove Subglacial Highlands, East Antarctica: Constraints on the provenance of protoliths and timing of sedimentation and metamorphism. Precambrian Research, 275: 135-150. DOI:10.1016/j.precamres.2015.12.018
Wang W, Liu XC, Zhao Y, Zheng GG and Chen LY. 2016. U-Pb zircon chronology of high-pressure granulites and orthogneisses from glacial moraines in the Grove Mountains, East Antarctica. Chinese Journal of Polar Research, 28(2): 159-180.
Wang YB, Tong LX and Liu DY. 2007. Zircon U-Pb ages from an ultra-high temperature metapelite, Rauer Group, East Antarctica: Implications for overprints by Grenvillian and Pan-African events. In: Cooper AK, Raymond CR and The 10th ISAES Editorial Team (eds. ). A Keystone in a Changing World-Online Proceedings of the 10th ISAES. USGS Open-File Report 2007-1047, Short Research Paper 023. Reston, VA: U. S Geological Survey, 4
Wang YB, Liu DY, Chung SL, Tong LX and Ren LD. 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a Late Mesoproterozoic to Early Neoproterozoic tectono-thermal event in East Antarctica. American Journal of Science, 308(4): 573-617. DOI:10.2475/04.2008.07
Wang YJ, Wu CM, Zhang AM, Fan WM, Zhang YH, Zhang YZ, Peng TP and Yin CQ. 2012. Kwangsian and Indosinian reworking of the eastern South China Block: Constraints on zircon U-Pb geochronology and metamorphism of amphibolites and granulites. Lithos, 150: 227-242. DOI:10.1016/j.lithos.2012.04.022
White RW and Powell R. 2002. Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology, 20(7): 621-632.
Whitehouse MJ and Platt JP. 2003. Dating high-grade metamorphism-constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology, 145(1): 61-74. DOI:10.1007/s00410-002-0432-z
Williams ML, Jercinovic MJ, Harlov DE, Budzyń B and Hetherington CJ. 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology, 283(3-4): 218-225. DOI:10.1016/j.chemgeo.2011.01.019
Wilson CJL, Quinn C, Tong LX and Phillips D. 2007. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by 40Ar/39Ar thermochronology. Antarctic Science, 19(3): 339-353. DOI:10.1017/S0954102007000478
Yoshida M. 2007. Geochronological data evaluation: Implications for the Proterozoic tectonics of East Gondwana. Gondwana Research, 12(3): 228-241. DOI:10.1016/j.gr.2006.10.013
Young DN and Black LP. 1991. U-Pb zircon dating of Proterozoic igneous charnockites from the Mawson Coast, East Antarctica. Antarctic Science, 3(2): 205-216.
Yu JH, Wang LJ, O'Reilly SY, Griffin WL, Zhang M, Li CZ and Shu LS. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174(3-4): 347-363. DOI:10.1016/j.precamres.2009.08.009
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25. DOI:10.1016/j.gr.2011.02.005
Zhang L, Tong LX, Liu XH and Scharer U. 1996. Conventional U-Pb age of the high-grade metamorphic rocks in the Larsemann Hills, East Antarctica. In: Pang ZH, Zhang JD and Sun JH (eds. ). Advances in Solid Earth Sciences. Beijing: Science Press, 27-35
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Liou JG. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet: petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719-733.
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
Zhao L, Zhou XW, Zhai MG, Santosh M and Geng YS. 2015. Zircon U-Th-Pb-Hf isotopes of the basement rocks in northeastern Cathaysia block, South China: Implications for Phanerozoic multiple metamorphic reworking of a Paleoproterozoic terrane. Gondwana Research, 28(1): 246-261. DOI:10.1016/j.gr.2014.03.019
Zhao Y, Song B, Wang YB, Ren LD, Li JL and Chen TY. 1991. Geochronological study of the metamorphic and igneous rocks of the Larsemann Hills, East Antarctica. Proceedings of the 6th ISAES (Abstract), Tokyo. National Institute for Polar Research, Japan: 662-663.
Zhao Y, Song B, Wang YB, Ren LD, Li JL and Chen TY. 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds. ). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing Company, 155-162
Zhao Y, Song B, Zhang ZQ, Fu YL, Chen TY, Wang YB, Ren LD, Yao YP, Li JL and Liu XH. 1993. Early Paleozoic (Pan African) thermal event of the Larsemann Hills and its neighbours, Prydz Bay, East Antarctica. Science in China (Series B), 23(9): 1001-1008.
Zhao Y, Liu XH, Song B, Zhang ZQ, Li J, Yao YP and Wang YB. 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: Possible implications for Neoproterozoic tectonics. Precambrian Research, 75(3-4): 175-188. DOI:10.1016/0301-9268(95)80005-3
Zhao Y, Liu XH, Liu XC and Song B. 2003. Pan-African events in Prydz Bay, East Antarctica and its inference on East Gondwana tectonics. In: Yoshida M, Windley B and Dasgupta S (eds. ). Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206: 231-245
Zhou B and Hensen BJ. 1995. Inherited Sm/Nd isotope components preserved in monazite inclusions within garnets in leucogneiss from East Antarctica and implications for closure temperature studies. Chemical Geology, 121(1-4): 317-326. DOI:10.1016/0009-2541(94)00130-Z
Zhou X, Tong LX, Liu XH, Wang YB and Chen YB. 2014. Metamorphism evolution of mafic granulite from the Larsemann Hills, East Antarctica. Acta Petrologica Sinica, 30(6): 1731-1747.
Ziemann MA, Förster HJ, Harlov DE and Frei D. 2005. Origin of fluorapatite-monazite assemblages in a metamorphosed, sillimanitebearing pegmatoid, Reinbolt Hills, East Antarctica. European Journal of Mineralogy, 17(4): 567-580. DOI:10.1127/0935-1221/2005/0017-0567
Zulbati F and Harley SL. 2007. Late Archaean granulite facies metamorphism in the Vestfold Hills, East Antarctica. Lithos, 93(1-2): 39-67. DOI:10.1016/j.lithos.2006.04.004
李淼, 刘晓春, 赵越. 2007. 东南极普里兹湾地区花岗岩类的锆石U-Pb年龄、地球化学特征及其构造意义. 岩石学报, 23(5): 1055-1066.
仝来喜, 刘小汉, 张连生, 陈海泓, 陈福坤, 王彦斌, 任留东. 1998. 东南极拉斯曼丘陵石榴斜长角闪岩中角闪石的40Ar/39Ar年龄及其地质意义. 极地研究, 10(3): 4-14.
王伟, 刘晓春, 赵越, 郑光高, 陈龙耀. 2016. 东南极格罗夫山地区冰碛石碎石带中高压麻粒岩和正片麻岩的锆石年代学研究及其构造意义. 极地研究, 28(2): 159-180.
赵越, 宋彪, 张宗清, 富云莲, 陈廷愚, 王彦斌, 任留东, 姚玉鹏, 李继亮, 刘小汉. 1993. 东南极拉斯曼丘陵及其邻区的泛非热事件. 中国科学(B辑), 23(9): 1001-1008.
周信, 仝来喜, 刘小汉, 王彦斌, 陈义兵. 2014. 东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化. 岩石学报, 30(6): 1731-1747.