变质岩石来自地壳至上地幔,是地球较深层次构造-热事件过程的“记录仪”。变质地质学研究基于一些朴素的科学逻辑:(1)变质表壳岩(变质沉积岩、变质火山岩)之所以变质,是因为它们曾经达到过地下较深层次。今天之所以能看到它们,是因为它们又从地下回返到了(近)地表;(2)变质作用过程中,岩石中或多或少有物质的带进或带出,即变质岩石中严格的等化学系列(封闭系统)性质并不能保证;(3)从地下回返到近地表的过程中,变质岩石可以发生退变质作用,也可以未发生退变质作用。后一种情况是,变质岩石虽然经历过退变质条件,未发生退反应的原因在于变质反应动力学因素;(4)同一块变质岩石中如果保留了不少于两个变质世代的矿物组合,说明其构造环境至少发生过一次突变;(5)稳态下地壳环境中形成的麻粒岩,应该为块状构造。具有定向构造(板理、千枚理、片理、片麻理)的各种变质岩石,形成于造山带挤压环境,不能代表稳态下地壳;(6)同一造山带横向、垂向不同部位的变质岩石,记录的变质作用P-T-t轨迹必然有所差异;(7)在进变质、退变质过程中,主量元素、微量元素、同位素体系之间往往存在“脱偶”(decoupling)现象;(8)同一造山旋回中,变质事件、变形事件之间往往也存在着不对应的现象。
变质作用研究已经进行了一百多年,近三十多年来的发展尤为迅速。以Spear (1982)从微分热力学角度(Gibbs方法)研究变质作用的里程碑式论文开始,变质地质学逐渐趋于定量化研究。今天,人们已不仅仅止于描述岩相、确定变质相,还融合了平衡热力学、地质年代学、构造解析、地球化学和地球物理学研究,研究领域从变质岩石学拓展为变质地质学。在辅助解剖造山带构造演化过程方面,变质地质学发挥了越来越大的不可替代的重要作用。但是,变质地质学领域目前还存在着一些尚未解决的重要问题,其中有一些问题甚至是基础的研究方法问题。本文试图论述一些现存问题,希望能起到抛砖引玉的作用。以下的论述中,采用沈其韩(2009)、Whitney and Evans (2010)推荐的矿物代码。
1 判断多期变质作用与多峰变质作用的困难一个变质事件(metamorphic event)被定义为驱动岩石变质再造事件(metamorphic reconstitution)赖以发生、延续、直至终止的变质作用温度、压力、变形事件的连续演变过程,通常一个变质事件是一个加热-降温旋回(Smulikowski et al., 2007)。变质地质学研究的首要问题,是准确判明变质过程是否属于多期/单期变质作用、多峰/单峰变质作用。单期变质作用(monometamorphism)指仅发生一次变质事件的变质过程,多期变质作用(复变质作用,polymetamorphism)指发生过不止一次变质事件的变质过程(Smulikowski et al., 2007),又称为叠加变质作用(superimposed metamorphism)。
在同一期变质事件中,岩石可能经历不止一个加热-降温(或加压-降压)旋回。因此,同一期变质作用又可细分为“单峰变质作用”(monophase metamorphism)和“多峰变质作用”(polyphase metamorphism)两类(Smulikowski et al., 2007)。单峰变质作用是指在变质演化过程中,仅出现过一个温度(或压力)的极值。多峰变质作用是指在变质演化中出现过不止一个的温度(或压力)极值(Smulikowski et al., 2007)。单峰、多峰变质作用的识别,一方面取决于变质反应结构的识别,另一方面取决于温度与压力(P-T)条件反演的准确度。如果P-T条件准确度不够的话,即便岩石经历了多峰变质作用,其历程也难以准确识别。
正确区分多期变质作用,目前还缺少足够的准则可资利用。地质体接触关系能直接说明多期变质作用叠加的现象。如果呈角度不整合接触的上、下两套变质地质体之间,上覆变质地层变质程度达到绿片岩相,下伏古老变质地层早期变质程度达到了麻粒岩相,那么,下伏古老变质地层很可能会受到晚期绿片岩相变质事件的叠加,会发生不同程度的退变质现象,即下伏地层遭受了两期变质作用。此外,地球动力学背景迥然不同的变质事件,必然属于不同期的变质作用。例如,岩石如果先后经历了造山带区域变质作用、热接触变质作用、韧性剪切变质作用,这三种变质动因完全不同的变质事件,无疑属于三期变质作用。
变质过程延续时间过长的变质事件,有可能属于多期变质作用。例如,冀东基性麻粒岩所记录的变质事件,可能属于两期变质作用(Yang and Wei, 2017);大别山黄土岭高温高压变泥质麻粒岩所经历的变质事件(Chen et al., 1998, 2008),可能属于多期变质作用。但是,究竟延续多久才属于多期变质作用,目前也还难以确定。例如,华北克拉通南缘的太华变质杂岩,变质事件开始于至迟~1.97Ga,延续至~1.80Ga(蒋宗胜等, 2011; 王国栋等, 2012, 2013; Lu et al., 2013, 2014, 2015; Wang et al., 2014; 卢俊生等, 2014; Chen et al., 2015a)。尽管变质事件延续长达~0.17Ga,但从岩石中记录的变质反应结构来看,仍然可能属于单期单相变质事件。从变质反应结构和P-T轨迹来看,江苏东海芝麻坊地区出露的石榴橄榄岩经历的变质过程(Yang and Jahn, 2000),可能属于单期三峰变质作用。
2 变质反应结构的解释 2.1 常见的变质反应结构变质反应结构是岩石中曾经发生的矿物-矿物-流体-熔体之间的化学反应所留下的各种迹象。之所以能看到变质反应结构,是因为有突发的其它地质过程使得反应未进行彻底,被“冻结”在了岩石中。常见的变质反应结构总结如下。
(1) 变质矿物包裹体。保存于其它变质矿物(石榴子石、斜长石、锆石等)中的细小包裹体矿物组合,大多数是早期变质阶段历史的记录。高压-超高压变质岩石在降压阶段有可能发生不同程度的退变质,从而“抹去”高压-超高压的印记,而高压-超高压阶段形成的包裹体组合却有可能完好保留下来(Rubatto, 2017),因此包裹体矿物组合对于识别高压-超高压变质过程尤其重要。Ye et al. (2000a)在苏鲁造山带花岗片麻岩锆石中发现了超高压变质阶段形成的柯石英+绿辉石包裹体组合。在整个大别-苏鲁造山带中不同种类变质岩的锆石中,普遍发现有柯石英、绿辉石、硬玉等超高压阶段形成的包裹体矿物组合(Liu and Liou, 2011)。在华北中部造山带北段,由于缺乏进变质阶段的矿物组合,板块俯冲过程显得就不那么直接了。在该造山带中段的赞皇地区(Xiao et al., 2011)以及南段的太华变质杂岩区(Lu et al., 2013, 2014; Wang et al., 2014; Chen et al., 2015a),普遍见到进变质阶段形成的包裹体矿物组合,可能是板块俯冲阶段的直接产物。
(2) 矿物相变反应。相变反应仅发生于端元纯相矿物(而非含有“杂质”的固溶体矿物)之间。常见的相变反应有蓝晶石-红柱石-夕线石相变(Likhanov and Reverdatto, 2002; Wheeler et al., 2004; Sepahi et al., 2004; Habler et al., 2009; 张建新等,2011)、石英-柯石英-斯石英相变(Chopin, 1984; Liu et al., 2007a, 2018a)、石墨-金刚石相变(Korsakov et al., 2010)。如果相变反应未进行彻底,会看到产物矿物“正在”取代反应物矿物的现象。相变反应进行彻底的情况下,产物矿物有时呈反应物矿物的晶型(假象)产出。经过深入研究(Holdaway and Mukhopadhyay, 1993),Al2SiO5矿物(蓝晶石、夕线石、红柱石)相变条件的三相点为504±20℃/0.375±0.025GPa。遗憾的是,直至目前发表的文献中,仍然有一些作者明显夸大了该三相点的P-T条件。
(3) 变质矿物的化学成分环带。不少变质矿物中都记录有常量元素、微量元素的化学成分环带(Tracy, 1982)。石榴子石中容易见到常量元素环带的现象,见于多种变质岩石,包括变质泥质岩(Tracy et al., 1976; Selverstone et al., 1984; 陈能松, 1990; 刘福来, 1994; Chen et al., 1998; Viruete et al., 2000; Cheng et al., 2009; Stowell et al., 2011; Xiao et al., 2011; Sukhorukov et al., 2016; Dempster et al., 2017; Enami et al., 2017; McKay et al., 2017)、斜长角闪岩(Xiao et al., 2011; Faryad et al., 2016; McKay et al., 2017; Wang et al., 2017a)、基性麻粒岩(Wang et al., 2016a, 2018a, b; Marsh and Kelly, 2017)、榴辉岩(Krogh, 1982; O'Brien, 1997; 张泽明等, 1999; Nowlan et al., 2000; Li et al., 2016, 2017; Liu et al., 2017; Zhang et al., 2017)。此外,石榴子石晶体中微量元素的环带(Hickmott et al., 1987; Hallett and Spear, 2015; Zhang et al., 2017)也并非不常见。
变质矿物的化学成分环带分为生长(进变质)环带(prograde zoning, growth zoning)、扩散(退变质)环带(diffusion zoning, retrograde zoning)、混合成因环带(Spear et al., 1990a)。数值模拟发现,在进变质阶段,变质泥质岩中的石榴子石自核心向边部生长过程中,无论其它参数怎么变化,铁铝榴石浓度XFe[=Fe/(Fe+Mg+Ca+Mn)]、铁指数Fe#[=Fe/(Fe+Mg)]自核部到边部逐步降低,剖面上都呈现“挂钟状”,这是判断生长环带的两项重要指标(Spear et al., 1990a)。石榴子石每生长一个“圈层”,除石榴子之外的全岩成分就发生改变,类似于岩浆分离结晶过程的效果(Evans, 2004)。值得注意的是,大多数中-低级变质泥质岩中石榴子石往往可保留化学成分环带,但是变质基性岩中石榴子石的化学成分环带却明显少见,原因尚不明朗。
此外,在角闪石(刘树文等, 1991; Nowlan et al., 2000; 姜文波和张立飞, 2001; Bachmann and Dungan, 2002; Zenk and Schulz, 2004; Li et al., 2016)、斜长石(Anovitz, 1991; White, 1996; Yoshino et al., 1998; Steffen and Selverstone, 2006; Liao et al., 2016; Wang et al., 2016a)、单斜辉石(Anovitz, 1991; Yoshino et al., 1998; Nowlan et al., 2000; Mikhno and Korsakov, 2013; Li et al., 2016; Zhang et al., 2017)、斜方辉石(Harley and Motoyoshi, 2000)、绿帘石(刘树文等, 1998; Li et al., 2016)、多硅白云母(Nowlan et al., 2000)、锆石(Zhao et al., 2010; Das et al., 2011)等常见变质矿物中,也发现有化学成分环带,这些成分环带也是反演变质过程所需的宝贵信息。
(4)“白眼圈”后成合晶(white-eye socket symplectite)。最初是指基性麻粒岩中,围绕石榴子石变斑晶外围发育的斜长石+斜方辉石+单斜辉石退变质矿物组合,代表构造抬升过程中形成的减压反应结构(Ernst, 1988; Harley, 1988, 1989; 王仁民等, 1991; 马军和王仁民, 1994; O'Brien et al., 2005)。这个术语随后又被推广到斜长角闪岩、变质泥质岩(Xiao et al., 2011)中。此类后成合晶组合在全球多种变质岩中广泛发育,包括基性麻粒岩(Harley, 1988, 1989; 王仁民等, 1991, 1994; 金巍等, 1991; Lu and Jin, 1993; 李江海等, 1998; 刘福来, 1998; Zhao et al., 2003; O'Brien et al., 2005; Liu et al., 2007; 张建新等, 2007, 2011; Zhai and Santosh, 2011; Wang et al., 2017b)、斜长角闪岩(Xiao et al., 2011; 肖玲玲等, 2011; Lu et al., 2013, 2014; Wang et al., 2014, 2016a, 2017a, b; Chen et al., 2015a)、变质泥质岩(You et al., 1993; Brandt et al., 2003; 周喜文等, 2010; Xiao et al., 2011)、榴辉岩(Li et al., 2018; Liu et al., 2017a; Yu et al., 2017; Wang et al., 2017b)。不同类型的变质岩中,白眼圈组合一般是围绕石榴子石变斑晶分布的他形细粒交生状矿物组合。在斜长角闪岩中,白眼圈组合一般为斜长石+角闪石+石英组合。在变质泥质岩中,白眼圈组合一般为斜长石+黑云母+石英组合。在榴辉岩中,白眼圈一般为斜长石+角闪石+石英±单斜辉石±黑云母组合。
(5)“双白眼圈”后成合晶(double white-eye socket symplectite)。此类退变质反应结构目前发现于基性麻粒岩中。早期退变质矿物组合一般为斜长石+斜方辉石+单斜辉石,晚期退变质矿物组合一般为角闪石+斜长石+石英。这两期退变质组合中斜长石都为主要矿物,两期退变质矿物组合都为围绕石榴子石变斑晶分布的他形交生状细粒矿物集合体,形成于降压过程中。在华北克拉通多个地区的基性麻粒岩中发现有此类反应结构(翟明国等, 1992; Zhai et al., 1993; Hensen et al., 1995; 刘树文, 1996; Zhao et al., 2000; Guo et al., 2002; Liu et al., 2018b)。马达加斯加超高温变质泥质岩中,甚至保留了多达三个阶段的“白眼圈”后成合晶矿物组合(Goncalves et al., 2004)。
(6)“红眼圈”后成合晶(red-eye socket symplectite)。指基性麻粒岩中退变质阶段发育的后成合晶矿物组合,一般为串珠状石榴子石+石英±单斜辉石±斜方辉石±角闪石,围绕早期的斜方辉石+单斜辉石+斜长石组合外围生长(Harley, 1985, 1989; Liu et al., 1993; 陈能松等, 1994; 王仁民等, 1994; 葛文春等, 1994; 贺高品等, 1994; Abati et al., 2003; Das et al., 2011)。红眼圈组合一般解释为形成于拉张环境下的近等压冷却过程(near isobaric cooling, IBC)过程(Harley, 1985, 1989),可能发生于大陆裂谷底部。
(7)“黑眼圈”后成合晶(black-eye socket symplectite)。这是作者仿照“白眼圈”后成合晶命名的,指的是变泥质麻粒岩中,堇青石±斜长石±石英±尖晶石组成的后成合晶,取代石榴子石边部并环绕石榴石变斑晶的现象(Harris and Holland, 1984; Johnson et al., 2004; álvarez-Valero and Waters, 2010; Wang et al., 2017c)。由于堇青石的出现,此类后成合晶在露头上一般呈现黑色或黑灰色环状矿物组合。“黑眼圈”反应结构也属于典型的降压反应结构。值得注意的是,经历多阶段退变质反应所形成的“黑眼圈”后成合晶,可能并不是简单的降压反应结构,也可能是多阶段降压和降温的综合体现(陈意, 2018, 个人通讯)。
(8) 出溶反应结构。原先成分均匀的固溶体矿物,由于变质作用温度或压力条件的改变,从中析离出的其它矿物(客晶)以微小出溶叶片的形式产出,原有矿物(主晶)成分随之发生改变。出溶结构分为降温、降压过程主导的两种类型。例如,高压、超高压变质岩经历大幅度降压过程中,石榴子石(Ye et al., 2000b; Zhang et al., 2011)、单斜辉石(Liu et al., 2007b; Zhang et al., 2005; Li et al., 2018)、斜方辉石(Liu et al., 2007b)甚至石英(Liu et al., 2007a)中,都可形成出溶结构。经历高温、超高温的变质岩石如果经历大幅度降温过程,在单斜辉石(Xu et al., 2004; Jalowitzki et al., 2017; Li et al., 2018)、斜方辉石(Goncalves et al., 2004; Das et al., 2011; Jalowitzki et al., 2017)、石榴子石(Ague and Eckert, 2012)、碱性长石(Hayob et al., 1989; Jiao and Guo, 2011)、石英(Marsh and Kelly, 2017)甚至夕线石(任留东等, 2008)中,也都可形成出溶结构。
(9) 深熔反应结构。此类反应结构发生于麻粒岩相、超高温麻粒岩相变质岩中,以岩石中存在未结晶的深熔玻璃或从熔体中结晶的微晶质矿物组合为代表(Whittington et al., 1998; 孙德有等, 1998; 程裕淇等, 2000; 曾令森等, 2009; Di Martino et al., 2011)。如果长英质熔体基本在原地结晶,就形成典型的混合岩。
(10)副矿物反应结构。同主矿物一样,副矿物经历变质作用P-T条件的变化时,也可出现反应结构,例如独居石(Finger et al., 1998; Pyle and Spear, 2003; Dini et al., 2004)、磷钇矿(Dini et al., 2004)、金红石(王清海等, 2009)。这些副矿物反应结构是非常宝贵的,据此有希望测得变质演化过程(至少是其中一个阶段)的连续年代数据。
2.2 变质反应结构有可能被错误判读变质反应结构的解释依赖显微岩相观察,准确解读变质反应结构也并非很简单的事情,实际上人们已经注意到对变质反应结构的各种误判现象(Hensen et al., 1995; Nicollet and Goncalves, 2005; Vernon et al., 2008; White and Powell, 2011)。
石榴子石中的细小矿物包裹体矿物组合,大多数为进变质作用中未被完全取代的早期矿物组合残留,能有效记录早期变质作用信息(Liu et al., 2009)。不过,变斑晶中的细小矿物(组合)是否属于包裹体,有时并不能很容易认定。如果贯穿变斑晶的后期裂纹切穿了细小矿物(组合),那么它们有可能是包裹体矿物组合。如果这些细小矿物(组合)是沿着变斑晶中的后期裂纹分布的,那么它们却有可能是流体交代所形成的晚期矿物组合。判断变斑晶中的包裹体组合是否为平衡矿物组合,还至少需从矿物化学成分方面来验证。达到并保持热力学平衡的包裹体组合,其中每一种矿物不同颗粒的化学成分应该相同。此外,包裹体组合被密封于石榴子石中之后,并非进入了“保险箱”。例如,在变质高峰之后的缓慢降温过程中,石榴子石和其中的黑云母包裹体之间还会发生Fe2+-Mg2+离子的再交换(扩散),从而破坏了黑云母包裹体和与之相邻的石榴子石微区的化学成分(Spear et al., 1990b)。
在判断后成合晶矿物组合的性质时,也需要仔细判读。一般来说,“白眼圈”、“红眼圈”后成合晶组合各自形成于不同的构造背景(Harley, 1985, 1988, 1989)。除非它们形成于不同的地质时代,否则,它们几乎不可能同时形成于同一地点。这里列举几个例子(图 1)。河北宣化西望山高压基性麻粒岩中,保存有两个世代的“双白眼圈”组合(翟明国等, 1992; Guo et al., 2002)。在某些薄片中,形成有貌似“红眼圈”的后成合晶(图 1a)。仔细观察就会发现,图 1a中右侧的石榴子石有裂缝。在降压过程中,石榴子石边部、核心部位,同时发生分解,形成了退变质“白眼圈”组合(Pl+Cpx+Opx±Qz),但同时造成了石榴子石为晚期矿物“红眼圈”的假象。此即所谓的“败絮其中”。河北阜平基性麻粒岩(图 1b)、陕西华山变质泥质岩(图 1c)中,也有类似的现象。另外,内蒙古大青山变余辉绿岩(图 1d)中,残存了很多岩浆期结晶的斜长石和单斜辉石。石榴子石为麻粒岩相变质过程中形成的变质矿物,围绕着早期岩浆矿物分布,貌似“红眼圈”,但此种情况下的石榴子石不能作为“红眼圈”看待。
![]() |
图 1 一些貌似“红眼圈”的变质反应结构 (a)河北宣化西望山高压基性麻粒岩中的假红眼圈反应结构(郭敬辉惠赐照片);(b)河北阜平基性麻粒岩中的假红眼圈反应结构;(c)陕西华山变质泥质岩中的假红眼圈反应结构;(d)内蒙古大青山变余辉绿岩中的假红眼圈反应结构(万渝生惠赐照片) Fig. 1 Some fake 'red-eye socket' assemblages (a) mafic granulite from Mt. Xiwangshan, Xuanhua, Hebei, northern China (courtesy of Jinghui Guo); (b) mafic granulite from Fuping, Hebei, northern China; (c) pelitic granulite from Mt. Huashan, Shaanxi, northwestern China; (d) mafic granulite from Mt. Daqingshan, Inner Mongolia, northern China (courtesy of Yusheng Wan) |
为了避免误判变质反应结构,应该对同一个变质地质体中不同种类的变质岩石,开展全方位的变质反应结构研究,以期达到相互校验的目的。最好能找到经历相同变质过程的紧密伴生的“互层状”变质岩石,变质反应结构的正确解释才会有基本保证。
2.3 变质反应结构的论证还缺乏定量解析变质反应结构研究仅仅靠岩相学观察还是不够的。众所周知,除了核反应之外,任何化学反应的反应物组合、产物组合之间,一定存在质量平衡关系。用于判断矿物组合之间是否存在质量平衡关系、从而论证其间是否可能存在变质反应关系的AFM、ACF、AKF、AKF等矿物共生图解,就是基于这个道理。因此,要充分论证变质反应的存在,还需要检验反应物矿物组合、产物矿物组合之间的质量平衡关系是否存在,这方面需要用到代数分析方法。实际上,代数方法已经在定量解释变质反应方面(Greenwood, 1967; Spear et al., 1982)发挥了重要作用。例如,回归分析方法在定量解释等变线(Lang and Rice, 1985; Gordon et al., 1991; Lang, 1991)方面的应用很成功,矩阵奇值分解(singular value decomposition, SVD)也曾被成功用于变质反应的定量论证(Fisher, 1989, 1993)。如果反应物组合、产物组合之间的质量平衡关系缺乏论证,那么,很有可能遗漏反应物或者生成物,从而使得对变质反应结构的解释出现纰漏。遗憾的是,两个不同世代变质矿物组合之间质量平衡关系的定量研究,至今还是罕见。
2.4 变质反应结构构造背景解释的不确定性相变反应、矿物化学成分环带、后成合晶组合既可形成于进变质环境、也可形成于退变变质环境。不过,对常见变质反应结构的解释,也还存在一些不确切之处。
仅就蓝晶石转变为夕线石(Ky→Sil)这一相变反应结构而言,解释就不尽相同。以图 2中标示的P-T轨迹为例。常见的解释是在明显的降压(轨迹[1])或升温(轨迹[2])条件下,蓝晶石转变为夕线石。单就其可能性来说,岩石经历了明显的降温降压过程(轨迹[3])甚或明显的升温升压过程(轨迹[4]),蓝晶石都可转变为夕线石。极致的情况下,如果岩石经历了其它变质过程(例如轨迹[5]),蓝晶石也可以转变为夕线石(尽管这些轨迹的论证是极为困难的)。这么一个简单的相变反应,能发生的过程居然有这么多的可能性。由此看来,即便对简单的变质反应结构构造背景的解读,也不能陷入简单化的模式。
![]() |
图 2 经历不同的变质演化过程(轨迹[1]-[5])蓝晶石都可转变为夕线石 Fig. 2 Kyanite may transform to sillimanite through different metamorphic P-T paths [1]-[5] |
基性麻粒岩中,形成“白眼圈”后成合晶的主要模式反应(Harley, 1988, 1989)包括如下几种(图 3):
![]() |
(1) |
![]() |
(2) |
![]() |
(3) |
![]() |
(4) |
![]() |
图 3 基性麻粒岩中形成“白眼圈”反应结构的两种模式反应 图中(1)-(2)、(3)-(4)分别为天然基性麻粒岩中形成“白眼圈”反应结构的两种模式反应Grt+Qz→Pl+Opx、Grt+Cpx+Qz→Pl+Opx发生的顶、底界线.图中这4条转变反应的平衡条件根据热力学数据库(Holland and Powell, 2011)数据计算,计算中忽略了热容、热膨胀系数和压缩系数.曲线(1)-(2)之间、(3)-(4)之间分别为反应物组合和产物组合能平衡共生的P-T范围 Fig. 3 Two model reactions used to explain formation of the "white-eye socket" assemblage in mafic granulite Reactions (1)-(2) and (3)-(4) are the boundaries of the two model reactions (Grt+Qz→Pl+Opx, Grt+Cpx+Qz→Pl+Opx) to form the "white-eye socket" assemblage in mafic granulite, which P-T conditions are determined by the internally consistent thermodynamic dataset (Holland and Powell, 2011). In the computation, heat capacity, thermal expansion and compressibility coefficients are neglected. The reactant and product assemblages coexist only in between curves (1)-(2) or (3)-(4) |
岩石经历近等温急速降压过程(near isothermal decompression, ITD),似乎最容易形成“白眼圈”反应结构,因此图 3a中P-T轨迹[1]、图 3b中P-T轨迹[5]是最广泛采用的解释。实际上,岩石经历降温降压过程(轨迹[2])或升温降压过程(轨迹[3]),也可能形成“白眼圈”反应结构(图 3a)。甚至岩石经历近等压升温过程(轨迹[4])也能形成“白眼圈”反应结构(图 3a),尽管此类过程的可能性比较低。图 3b中的轨迹[6]-[8]也有类似的解释。
3 反演变质作用P-T轨迹的准则反演变质作用P-T轨迹有三种方法,即分别依据变质岩石中保留的多阶段矿物组合、环带状变斑晶、不同变质阶段形成的流体包裹体,这三种方法分别被称为“岩石学方法”、“矿物学方法”、“流体包裹体方法”(Spear, 1995)。由于流体包裹体形成阶段不易划分,或虽能划分但分开测试有一定难度,因此,流体包裹体方法的应用实例(Touret and Dietvorst, 1983; Santosh et al., 2008)相对较少。
在实际研究中,把相距甚远的不同变质岩石,拼凑在一起构筑变质作用P-T轨迹的作法,无疑会得出错误的结论。这里建议,根据岩石学方法反演变质作用P-T轨迹的优先顺序依次为:(1)根据同一(显微)视域中保留的不同世代变质矿物组合的P-T条件,反演P-T轨迹;(2)根据同一薄片中不同视域中的变质反应结构,反演P-T轨迹;(3)根据同一样品的不同薄片中的变质反应结构,反演P-T轨迹;(4)根据“互层状”产出的不同变质岩石中的变质反应结构,反演P-T轨迹。但是,这样做已经很不容易了,毕竟不同岩石中不同阶段矿物组合的匹配,难度已然很大。
4 变质作用P-T条件估算与P-T轨迹反演方面的问题在估算变质作用温度-压力(P-T)条件、变质作用P-T轨迹反演方面,目前有两种工具可用,即矿物温度计与压力计、热力学视剖面图模拟。它们有各自的长处和短处。
4.1 矿物温度计与压力计变质岩石中的某两种或多种矿物之间两种或多种离子的分配,如果受温度制约程度明显的话,那么,在矿物组合达到热力学平衡时,每种矿物中相关离子的浓度,就基本由温度条件控制了。如果这种平衡状态的矿物成分被“冻结”起来,这些矿物的化学成分就记录了当时的温度条件。把温度制约矿物成分的规律用数学表达式或图件的方式表现出来,就是矿物温度计。矿物压力计的情况类似。限于篇幅,本文仅涉及基于常量元素建立的温度计、压力计,不涉及微量元素温度计、稀土元素温度计,以及基于矿物物理性质建立的压力计、温度计。
只要测得了达到并保持热力学平衡状态的矿物组合中各种矿物的化学成分,根据矿物温度计、压力计表达式或图件,即可获得变质作用的P-T条件。一块变质岩石中,如果保留了两个世代及以上的矿物组合,应用矿物温度计、压力计,就能得到各个世代变质作用P-T条件,进而反演出变质作用P-T轨迹。
常规矿物温度计、压力计可以分为两大类:(a)单平衡温度计、压力计。绝大多数温度计、压力计属于此类,这是基于单一平衡模式反应建立的温度计、压力计,例如石榴子石-黑云母Fe-Mg交换温度计(Ferry and Spear, 1978)、石榴子石-Al2SiO5矿物-斜长石-石英(GASP)纯转变反应压力计(Koziol and Newton, 1988);(b)多平衡温度计-压力计组合。如果矿物组合达到并保持了严格的热力学平衡,不同的温度计、压力计曲线在P-T空间交叉于一个非常小的P-T范围内,经加权处理后交汇于一个点。代表性的温度计-压力计组合有TWQ程序(Berman, 1991)、Thermocalc程序中的平均P-T方法(Powell et al., 1998)。值得说明的是,单平衡温度计、压力计尽管仅仅依赖单个平衡模式反应,其精度并不见得低(Holdaway, 2001)。
根据常量元素建立的准确度较高的常用温度计、压力计,简要列举如下。
(1) 适用于变质泥质岩、长英质变质岩的温度计、压力计:石榴子石-黑云母温度计(Holdaway, 2000)、石榴子石-堇青石温度计(Nichols et al., 1992)、石榴子石-白云母温度计(Wu and Zhao, 2006a)、白云母Ti温度计(Wu and Chen, 2015a)、黑云母Ti温度计(Wu and Chen, 2015b)、二长石温度计(Benisek et al., 2010)、石榴子石-堇青石-斜长石-石英(GCPQ)压力计(Nichols et al., 1992)、石榴子石-Al2SiO5矿物-斜长石-石英(GASP)压力计(Holdaway, 2001)、石榴子石-黑云母-斜长石-石英(GBPQ)压力计(Wu et al., 2004)、石榴子石-白云母-斜长石-石英(GMPQ)压力计(Wu and Zhao, 2006a)、石榴子石-金红石-钛铁矿-斜长石-石英(GRIPS)压力计(Wu and Zhao, 2006b)、石榴子石-金红石-Al2SiO5矿物-钛铁矿-石英(GRAIL)压力计(Bohlen et al., 1983; Koziol and Bohlen, 1992)、石榴子石-黑云母-白云母-斜长石(GBMP)压力计(Wu, 2015)、石榴子石-黑云母-白云母-Al2SiO5矿物-石英(GBMAQ)压力计(Wu and Zhao, 2007a)、石榴子石-黑云母-Al2SiO5矿物-石英(GBAQ)压力计(Wu, 2017)。
(2) 适用于基性变质岩的温度计、压力计:石榴子石-单斜辉石温度计(Ravna, 2000a)、石榴子石-斜方辉石温度计(Lal, 1993; Glebovitsky et al., 2004)、石榴子石-角闪石温度计(Ravna, 2000b)、斜长石-角闪石(-石英)温度计(Holland and Blundy, 1994; Molina et al., 2015)、石榴子石-角闪石-斜长石-石英(GHPQ)压力计(Dale et al., 2000)、石榴子石-单斜辉石-斜长石-石英(GCPQ)压力计(Eckert et al., 1991)、石榴子石-斜方辉石-斜长石-石英(GOPQ)压力计(Lal, 1993)、单斜辉石-斜长石-石英(CPQ)压力计(McCarthy and Patio Douce, 1998)、斜长石-角闪石-石英(HPQ)压力计(Bhadra and Bhattacharya, 2007)。
(3) 适用于超基性变质岩的温度计、压力计:斜方辉石Ca温度计(Brey and Khler, 1990)、二辉石温度计(Taylor, 1998)、石榴子石-橄榄石温度计(Wu and Zhao, 2007b)、石榴子石-单斜辉石压力计(Beyer et al., 2015)、石榴子石-斜方辉石压力计(Taylor, 1998; Glebovitsky et al., 2004)。
矿物温度计、压力计的研究一直在进步,不仅新种类的温度计、压力计(Wu and Chen, 2015a; Wu, 2017)一直在出现,还有不断得到修正的各种温度计、压力计,所以几乎每种温度计、压力计都有多种版本。所以,及时关注人们对温度计、压力计的综合评述(Chipera and Perkins, 1988; Applegate and Hodges, 1994; Carswell, 1991; Nimis, 2002; Maaskant, 2004; 陈意等, 2005; Putirka, 2008; Anderson et al., 2008; Wu and Cheng, 2006; 吴春明, 2009; Wu and Zhao, 2011)非常重要,以便合理选用温度计、压力计准确度高的版本。
有时,某个变质阶段矿物组合的发育不完善,无法采用温度计、压力计估算变质作用P-T条件时,可以估算P-T条件的极大值或极小值(吴春明和陈泓旭, 2013)。这些P-T极值数据尽管不理想,仍然有其科学意义。
4.2 热力学视剖面图模拟Duhem定理指出,封闭系统的热力学自由度正好等于2(Spear, 1993)。因此,变质过程中如果变质岩石没有物质组分的带进、带出,正好有两个独立变量(例如温度、压力)在一定范围内变化的情况下,变质岩石保持其宏观状态不发生变化,包括变质相保持不变、矿物组合保持不变(尽管各种矿物的化学成分会随着P-T条件的变化而自动做出“调整”)。描述变质岩石宏观状态的参数包括温度、压力、全岩化学成分、各种矿物的摩尔数、各种矿物化学组分的浓度。对于变质岩石所处的某个具体深度而言,温度、压力如果都是一定的话(假定温度与压力之间不存在函数关系),这时变质岩石的热力学自由度为0即成为无变度系统,上述各种参数全部为固定不变的。换言之,全岩化学成分保持不变的变质岩中,只要同时知道了具体的P-T数值,变质岩石中应该出现哪些矿物、每种矿物的相对数量(摩尔数)、每种矿物的化学成分,就完全是确定的,因而也是可以预言的。这不仅是Duhem定理对变质相的科学解释,同时也是热力学视剖面图模拟(thermodynamic pseudosection modeling)的理论基础。
目前,热力学视剖面图模拟软件有DOMINO(de Capitani and Brown, 1987; de Capitani, 1994)、Gibbs(Spear, 1988; Spear and Menard, 1989)、Thermocalc(Powell et al., 1998)、Perple_X(Connolly, 2005)、THERIA_G(Gaidies et al., 2008)等五种。其中,THERIA_G用于模拟石榴子石化学成分环带的形成过程,最“流行”的模拟软件是Thermocalc,在模拟不同种类变质岩石变质演化过程中取得了一系列重要成果(Wei et al., 2003, 2004, 2015; Yang and Powell, 2006; Kelsey and Powell, 2011; Chen et al., 2015b; Thakur et al., 2015; Cao et al., 2017; Bhowany et al., 2018; Maldonado et al., 2018; Peixoto et al., 2018)。视剖面图模拟技术堪称变质岩石学领域二十一世纪最初十年的最重要研究进展(魏春景, 2012),可以预期其应用前景今后会更好。
但是,有四个重要的问题是必须注意的。其一,视剖面图模拟的前提条件是变质岩在变质过程中保持化学成分守恒,这一点自然界难以保证;其二,视剖面图模拟属于正演计算,计算结果是岩石在不同阶段达到热力学平衡状态下“应该”出现的情况,包括一定P-T条件下岩石中应该出现什么样的矿物组合、各种矿物的相对数量(摩尔数)、各种矿物的化学成分。应用中,人们将天然变质岩中不同世代的矿物组合、矿物数量、矿物成分和视剖面图对比时,有一个默认的前提条件,即天然岩石也是按照人们计算出的路径在演化的。否则,这个应用的前提就不存在了;其三,在技术层面,计算中往往需要假设流体(H2O、CO2等)的成分与活度。流体活度哪怕改变了±10%,对计算结果也能造成不可忽视的影响;第四,迄今为止,几乎没有人讨论视剖面图模拟的误差问题。如果计算误差比较大的话,模拟的效果是大打折扣的。例如,Thermocalc软件并不能重现一些基性岩相平衡实验数据(Bhadra and Bhattacharya, 2007)。
4.3 热力学视剖面图模拟与矿物温度计-压力计的比较 4.3.1 两者共同之处(1) 两者都是平衡热力学这根“藤”上结出的两个“瓜”。众所周知,热力学研究的是静态系统,不含任何反应动力学因素。也就是说,热力学只能从理论上告诉我们某个反应是否应该发生,而不管其反应速率如何。
(2) 两者既考虑了化学纯物质-矿物端元相(例如石榴子石中的铁铝榴石等)的热力学参数,也充分考虑了含“杂质”的固溶体矿物(例如石榴子石固溶体)的热力学混合性质。因此,两者对所涉及的固溶体矿物的活度,以及镁铁质矿物中Fe3+离子的含量,都需要准确的描述。
(3) 两者都直接依赖于人们对平衡矿物组合及其生成循序的判断,这也是两者都避免不了的巨大风险。如果人们对矿物组合生成顺序的判断出现错误,这两种方法都会造成重大研究失误。尤其是在有化学成分环带的矿物出现时,人为匹配的矿物化学成分对计算结果能否反映客观地质事实,同样是特别值得注意的。
(4) 两者对一些简单的矿物组合(例如,白云母+黑云母+石英、方解石+石英+斜长石、斜长石+黑云母+石英),都无法确定其结晶时的P-T条件。
4.3.2 两者区别之处(1) 在变质作用研究中,应用矿物温度计与压力计属于反演方法(inverse modeling),即根据现今测得的矿物成分,反推变质过程不同阶段的P-T条件。与之明显不同的是,热力学视剖面图模拟属于正演(forward modeling)方法,即计算出岩石中“应该”发生的情况。
(2) 视剖面图模拟能够描述比较复杂的接近天然岩石的化学系统,矿物温度计、压力计考虑的矿物化学组分相对简单。
(3) 视剖面图模拟能预测岩石在不同变质阶段的演化信息(即在一系列具体P-T条件下,岩石中“应该”出现的矿物组合、每种矿物的数量、每种矿物的化学成分),这些是研究变质作用宝贵的参考信息。温度计、压力计没有这个能力。
(4) 视剖面图模拟完全依赖所涉及矿物的热力学基础数据,包括矿物端元相(化学纯物质)的标准摩尔生成焓、熵、体积、热容、热膨胀系数、压缩系数。毋庸讳言,热力学数据的准确度,直接影响了视剖面图模拟结果,这是视剖面图模拟的内在系统误差来源之一。例如,根据最新的内洽热力学数据库(Holland and Powell, 2011),黑云母、白云母之间的Fe2+-Mg2+交换反应的斜率高达21.7MPa/K,暗示这两种矿物之间的Fe2+-Mg2+离子交换几乎完全受温度的控制,应该成为高质量的温度计。但是,实际上这两种矿物之间Fe2+-Mg2+离子交换受温度的影响很小,说明至少是绿磷石(celadonite)、铁绿磷石(Fe-celadonite)的热力学数据有大的误差。因此,现有热力学数据库的误差应该引起足够的重视。虽然温度计、压力计也采用这些热力学基础数据,但往往不是直接从热力学数据库摘取,而是通过相平衡实验或天然岩石数据获取的。
(5) 视剖面图模拟需要保证所研究岩石(或者岩石中微区部分),在变质作用过程要保持化学封闭系统,否则一定会带来错误的结果。因此,有明显交代过程的变质岩石,剖面图模拟是不适用的。与此相对,矿物温度计与压力计只考虑实际见到的各个阶段的矿物组合,无需封闭系统的假设。
(6) 涉及流体时,视剖面图模拟要求预先设定流体成分。矿物温度计、压力计一般与流体无关。
(7) 对于只有一个世代共生矿物组合的变质岩(例如其中没有任何反应结构、也没有矿物化学成分环带的地幔岩石,或地壳内变质形成的只有一个世代矿物组合的麻粒岩),求算其结晶时的P-T条件,矿物温度计-压力计成为唯一的选择。
4.4 变质高峰期后的离子扩散效应的识别人们很早就注意到了麻粒岩P-T条件的“测不准”现象(Frost and Chacko, 1989; Spear and Florence, 1992)。导致这一问题的主要根源,是变质高峰期后缓慢冷却过程中的离子再交换(ion re-exchange)或曰离子扩散(cation diffusion)过程。例如,变泥质麻粒岩中石榴子石和黑云母之间的Fe2+-Mg2+离子扩散(Kohn and Spear, 2000),长英质变质岩中斜长石-钾长石之间的K+-Na+离子扩散(Kroll et al., 1993; Raase, 1998; Jiao and Guo, 2011),基性麻粒岩中石榴子石-紫苏辉石之间的Fe2+-Mg2+离子扩散(Pattison et al., 2003)。离子扩散会造成异样的矿物化学成分环带。进变质阶段生成并保存下来的矿物化学成分环带,会被不同程度地改造。麻粒岩中原本无化学成分环带的矿物,经历离子扩散后,反倒有可能出现扩散环带。
离子扩散进行得不彻底时,可以发现扩散作用的存在。否则,离子扩散效应是看不见的。鉴于高级变质岩中离子扩散现象普遍存在,因此,在估算变质作用P-T条件、反演变质作用P-T轨迹时,需要充分考虑离子扩散的效应,采用合理的方法(Kroll et al., 1993; Fitzsimons and Harley, 1994; Raase, 1998; Kohn and Spear, 2000; Pattison et al., 2003)恢复离子扩散之前的矿物成分。
4.5 两个世代矿物组合之间的所谓热力学“局部平衡”并不存在如前所述,变质岩石中如果保留了不少于两个世代的矿物组合,总体上是不平衡的。但是,每一个世代的矿物组合内部,有可能达到并保持其自身的热力学平衡即“局部平衡”(local equilibrium)。有许多学者认为,不同世代的矿物组合之间,也存在所谓的局部平衡。例如,在论述“红眼圈”后成合晶组合形成于近等压冷却过程、“白眼圈”后成合晶组合代表降压过程时,都将退变质组合和变质高峰期矿物组合“拉”在一起计算退变质组合的P-T条件(Harley, 1985, 1988)。这样做大多数情况下是错误的。原因在于,只有在平衡反应线上,反应物(早期世代矿物组合)、产物(晚期世代矿物组合)才能共生,其间才存在热力学平衡。不过,这种情况下反应物既不会减少,产物也不会增多,反而不可能会出现反应结构了。所以,求算每一世代变质矿物组合形成的P-T条件,只能根据其自身组合的矿物成分来计算(Wu et al., 2014),不能将不同世代矿物组合人为匹配在一起。
4.6 P-T条件突变、P-T-t轨迹明显差异的地质意义如果见到绿片岩相、麻粒岩相变质岩紧邻出露,那么,它们之间要么是断层接触关系,要么是叠加变质关系。实际上,同一地区变质高峰期温度或压力条件的突变,也是识别断裂带的标志之一(Shi and Wang, 2006; 石永红等, 2013, 2014; Wang et al., 2016b)。当然,温度或压力条件的变化要明显,例如压力差别>0.2GPa,或温度差别>100℃(还要排除递增变质带、倒转变质带、热接触变质晕的情况)。如果P-T条件差别在温度计、压力计的误差范围内,就难以判断其是否有地质意义。
同一造山带中范围有限的地域内,不同变质岩(块)P-T-t轨迹的明显差异,也具有重要的构造意义。例如,西南天山高压-超高压变质带(Li et al., 2016; 李继磊等, 2017)、敦煌造山带中-南部地区(Wang et al., 2017b, 2018a, b),都显示“基质夹岩块”的构造-变质混杂带特征,不同岩块和基质岩石P-T-t轨迹差异显著。这些现象可解释为是形成于同一俯冲隧道中不同深度的变质岩石,在构造折返阶段才构造混杂在一起(Shreve and Cloos, 1986)。此外,西南天山造山带的变质岩块在折返阶段,可能还存在俯冲隧道内的上、下环流运动过程(Li et al., 2016; 李继磊等, 2017)。当然,此类情况的解释应该特别谨慎,需查明是否存在多期变质岩混杂的情况。例如,被卷入俯冲带的古老变质岩石,在俯冲带中未遭受明显的变质叠加,之后与俯冲带中新变质的岩石混杂在一起的情况,就值得特别考虑,以免得到错误的结论(陈意和陈艺超, 2018, 个人通讯)。
此外,即便同一个变质地区的变质相系(metamorphic facies series)也不见得一致,这与传统变质相系理论不一致。例如,在敦煌造山带的红柳峡变质-构造混带3km×10km范围内,榴辉岩岩块、高压基性麻粒岩岩块的变质高峰期属于高压变质相系(分别属于榴辉岩相、高压麻粒岩相),斜长角闪岩岩块、变质泥质岩基质的变质高峰期却属于中压变质相系(Wang et al., 2017b)。
5 变质作用“热力学压力”的指向性不明估算了变质岩石的变质压力之后,人们根据静态压力梯度,反推板片俯冲深度,这方面取得了一系列成果。例如,西阿尔卑斯造山带Dora Maira地体蓝片岩中柯石英的发现,使人们认识到板片俯冲深度可深达约80km(Chopin, 1984)。哈萨克斯坦Kokchetav造山带基性麻粒岩、钙硅酸盐、变质泥质岩中金刚石的发现(Sobolev and Shatsky, 1990; Korsakov et al., 2010),以及大别造山带榴辉岩、硬玉岩、辉石岩中金刚石的发现(Xu et al., 1992),把俯冲深度又推向约120km。苏鲁造山带榴辉岩中石榴子石出溶结构的研究,发现板片俯冲深度甚至可达约200km(Ye et al., 2000b)。南阿尔金造山带变质泥质岩中斯石英假象的发现,更进一步把俯冲深度推到了前所未有的350km(Liu et al., 2007a, 2018)。
不过,无论采用什么热力学方法,目前反演出的变质作用压力(往往将之与应力混同了),还是没有方向的,因此把它简单归为静岩压力(σ1=σ2=σ3)。Schmalholz and Podladchikov (2014)给这种无方向的压力起了个别名“热力学压力”(thermodynamic pressure)。把变质作用压力简单地等同于静岩压力的做法,在估算地幔岩石捕虏体的来源深度(刘若新等, 1985; Fan and Hooper, 1989; Fan and Menzies, 1992; Menzies et al., 1993; 林传勇等, 1995; 徐义刚等, 1995; 郑建平和路凤香, 1999; Ying et al., 2010; Su et al., 2009; 隋建立等, 2012)方面似乎是没有问题的。但是,这种做法在高压、超高压变质作用的研究中引起了激烈争论(吕古贤等, 1998, 2017; Moulas et al., 2013; Schmalholz and Podladchikov, 2014)。在俯冲带变质的岩石,除了经受上覆岩石的重力作用外,显然还会经受差异应力。差异应力对总应力贡献的比例究竟有多少,尽管目前还不明确,但已有研究实例说明不可忽视。例如,根据上覆岩层厚度确定的蛇绿岩层序底部的变质底板(metamorphic sole)深度一般 < ~15km,与根据矿物压力计确定的变质环境深度(>~30km)有很大出入(Moulas et al., 2013)。不过,有部分变质底板可能经历了初始俯冲和折返过程,此时不能简单地用上覆岩层厚度来确定其变质环境的最大深度(陈意, 2018, 个人通信)。此外,实验还发现,在1.25GPa的围压条件下,普通石英即可转变为柯石英(Hirth and Tullis, 1994),但热力学研究指出至少需要2.8GPa的压力这个相变才能发生(Schmalholz and Podladchikov, 2014)。也有学者认为,如果剥离构造差异应力,大别山超高压变质岩的形成深度可能介于23~55km(吕古贤等, 2017),远远小于变质地质家的估计(150~200km)。
有的模拟计算表明,差异应力的贡献为总应力的10%左右(Wheeler, 2014),有的模拟计算说明差异应力对总应力的贡献仍然可能是次要的(Duretz and Gerya, 2013; Powell et al., 2018)。至少我们已经知道,单从变质地质学科出发,短期内似乎还看不到解决应力方向这个难题的前景。
6 变质作用P-T-t轨迹很难是圆滑的迹线岩石中保存的多世代变质矿物组合是构筑变质作用P-T-t轨迹的基础,例如保留有三至四个世代变质矿物组合的华北克拉通高压基性麻粒岩(翟明国等1992; Zhai et al., 1993; 刘树文, 1996; Zhao et al., 2001; Guo et al., 2002; Liu et al., 2018b),保留有三个世代变质矿物组合的华北克拉通斜长角闪岩(Xiao et al., 2011; Lu et al., 2013, 2014; Wang et al., 2014; Chen et al., 2015a),以及敦煌造山带榴辉岩、基性麻粒岩、斜长角闪岩(Wang et al., 2016a, 2017a, b, 2018a, b)。目前反演出的这些变质岩的P-T-t轨迹,都是圆滑型的。实际上,全世界发表的P-T-t轨迹,绝大多数都是圆滑型的,例子不胜枚举。值得注意的是,根据岩石中变质反应结构和石榴子石环带,人们已经反演出了一些“膝折状”的变质作用P-T-t轨迹,例如南非Limpopo变质带(Perchuk et al., 2000; Smit et al., 2001)、北极Lapland地区(Perchuk et al., 2000)、西伯利亚东部Kanskiy地区(Gerya and Maresch, 2004)。
理论上,一个达到完全热力学平衡状态的变质岩石,只能保留一个世代的共生矿物组合;保留不少于两个世代共生矿物组合的岩石,总体上是不平衡的。或者说,此类岩石中可能存在一系列“局部平衡”组合,即每一个世代的矿物组合达到了其自身的平衡,不同世代的矿物组合之间并不平衡。可以想见,如果后一世代矿物组合发育得完善的话,那么它必然会完全取代前一世代矿物组合;之所以前一世代矿物组合还保留下来而未被完全取代,很可能是反应时间不够所致。究其原因,应该是变质环境发生了突变。换句话说,从前一世代到后一世代矿物组合之间,岩石一定经历了“过山车”般的运动,从而大幅度改变了变质环境,否则矿物组合的置换必然是彻底的。变质环境的突变意味着P-T-t轨迹一定是非平滑的折线状,此类P-T-t轨迹才更加符合自然界变质演化过程。尽管如此,能否如实地刻画岩石经历的真正P-T-t轨迹,有赖于技术手段的进步。
7 变质作用P-T-t轨迹构造意义解释的不确定性变质作用P-T-t轨迹在辅助判别造山带构造演化方面发挥了重大作用(England and Richardson, 1977; England and Thompson, 1984; Spear et al., 1984; Harley, 1985, 1988, 1989; Ernst, 1988)。例如,苏鲁造山带芝麻坊石榴橄榄岩所记录的复杂的俯冲-折返过程(Yang and Jahn, 2000),是单纯依靠构造地质学手段难以解析出来的。再例如,根据石榴子石化学成分环带反演出的美国Sevier造山带逆冲-折返-再逆冲构造过程(Hoisch et al., 2002),也是单靠构造地质学手段无法做到的。因此可以说,变质地质学在造山带造山过程解析方面有其独特的不可替代的作用。
一些特征的变质作用P-T-t轨迹(图 4a)的传统解释包括:(1)含有近等压冷却(near isobaric cooling, IBC)退变质过程的逆时针型P-T-t轨迹(轨迹[1]),形成于拉张环境,例如大陆裂谷底部(Harley, 1985, 1989);(2)顺时针型P-T-t轨迹形成于造山(挤压)环境(Harley, 1988, 1989)。以蓝片岩为例,退变质过程P-T-t轨迹与进变质过程P-T-t轨迹近于平行、P-T条件差别不大的情况(“Franciscan型”,轨迹[2]),说明构造抬升速率相对较慢,抬升过程中形成于深部的变质岩得以与浅部地壳层次达到热平衡(Ernst, 1988);蓝片岩退变质阶段P-T-t轨迹为近等温降压(near isothermal decompression, ITD)过程的情况(“西Alps型”,轨迹[3]),说明构造抬升过程相对较快(Ernst, 1988)。这三条解释往往被作为“圭臬”准则使用。
![]() |
图 4 一些特征的变质作用P-T-t轨迹示意图 (a)含有近等压冷却退变质过程的逆时针型P-T-t轨迹[1](Harley, 1985),以及Franciscan型P-T-t轨迹[2]、西Alps型P-T-t轨迹[3](Ernst, 1988);(b)逆时针型P-T-t轨迹[4]及“鱼形”P-T-t轨迹[5]、[6].图中P-T-t轨迹的位置及长度并不确定,仅起示意作用 Fig. 4 Sketch of some typical metamorphic P-T-t paths (a) the counter clockwise P-T-t path with near isobaric cooling (IBC) process [1] is always interpreted to be formed in an extensional environment, whereas the clockwise P-T-t paths [2]-[3] are believed to be formed in an orogenic belt (Harley, 1985). Such P-T-t paths are subdivided to the Franciscan-type [2] and the western Alpine-type [3], which retrograde segments are inferred to record slow or fast tectonic uplift, respectively (Ernst, 1988); (b) the counter clockwise P-T-t path [4] and "fish-shaped" P-T-t paths [5]-[6] may also be formed in the orogenic environment |
但是,毋庸讳言,迄今为止人们对变质作用P-T-t轨迹构造背景的解释,仍然有不确定之处。例如,图 4b中轨迹[4]及“鱼形”P-T-t轨迹[5]、[6],尽管形态为逆时针型,仍然可形成于造山环境。轨迹[4]、[5]表明岩石首先经历了增温增压(逐渐俯冲至深部)的过程,之后经历了构造抬升过程,其退变质阶段的温度条件显著低于变质高峰阶段。因此,此类轨迹恐怕只能被解释为造山带P-T-t轨迹,尽管看起来为逆时针型的。实际上,造山带逆时针型P-T轨迹也并非罕见(Bhowmik and Ao, 2016)。轨迹[6]的退变质后期阶段的温度条件有所“回升”,但未达到变质高峰阶段的温度条件,也可解释为造山带型P-T-t轨迹。除此之外,恐怕还有不少P-T-t轨迹是我们未遇到的,其构造背景需要深入研究。也可以说,关于P-T-t轨迹的构造解释,目前还没有不存在多解性的牛顿定律式的“铁律”。
8 变质作用的定年问题目前,人们往往通过测定变质副矿物锆石、独居石、榍石的U-Pb年龄,或者测定变质矿物的Sm-Nd、Lu-Hf等时线年龄,或者测定含钾变质矿物(角闪石、斜长石、黑云母等)的40Ar/39Ar年龄,来确定变质作用的地质时代。必须认识到的是,任何同位素年龄并不能与变质作用的地质时代划等号。变质作用是一个或长或短的连续地质事件,不可能仅在某一个“时间点”上变质作用就完成了。根据锆石U-Pb定年结果,把变质作用解释为某个时间点上发生的,或者把同一个变质岩石中的变质锆石连续年龄谱的“加权平均值”作为变质作用地质时代的做法,都是不确切的。除了变质锆石、独居石、榍石定年外,辅助以主要变质矿物的定年,例如变质角闪石的40Ar/39Ar定年(王国栋等, 2013; Wang et al., 2017b),得到的数据会更加全面。
人们曾发现变质锆石的Th/U比值往往 < 0.1(Rubatto and Gebauer, 2000; 孙敏和关鸿, 2001; Wan et al., 2006),这个规律在后来许多文献中都有报道,并一再作为判别变质锆石(Th/U < 0.1)和岩浆锆石(Th/U>0.1)的准则使用。实际上,Th/U>0.1的变质锆石也一再被发现(Harley et al., 2007; Wan et al., 2013; Rubatto, 2017)。变质锆石Th/U>0.1的原因可能与变质作用P-T条件、流体、与锆石伴生的其它变质副矿物(独居石、褐帘石)有关(Rubatto, 2017)。
随着仪器和方法的进步,锆石U-Pb定年被普遍用来确定变质时代。即便锆石的U-Pb年龄测定很准确,锆石究竟形成于变质作用的哪一个时段,往往难以弄清楚。近年来的热力学模拟计算表明,一些经历过深熔作用的高级变质岩中,锆石是在退变质阶段才从熔体中结晶的(Kelsey and Powell, 2011; 王伟等, 2014; Zhang et al., 2013; Chen et al., 2015b)。由于石榴子石有富集重稀土元素(HREE)的特性,因此与石榴子石共生的变质锆石的重稀土呈现比较平坦的分布形式(Schaltegger et al., 1999; Rubatto, 2002; Wu et al., 2008a, b; Gauthiez-Putallaz et al., 2016)。但是,规律也并非总是如此。实际上,变质锆石中HREE分布形式还取决于全岩化学成分、岩石中石榴子石数量、斜方辉石数量等因素(Rubatto, 2017),甚至与岩石中的独居石、磷灰石数量乃至变质过程中是否属开放系统等因素也有关(Yakymchuk et al., 2018)。
遗憾的是,迄今为止,三个参数完整配套的变质作用P-T-t轨迹仍然是罕见的。因此,注意对同一块变质岩石中多个变质阶段都有生成的变质副矿物(图 5),进行连续的变质作用定年,显得非常迫切。
![]() |
图 5 发育“白眼圈”后成合晶的高压基性麻粒岩中,三个变质阶段(M1、M2、M3)中都形成有变质锆石、变质榍石 (a)白眼圈后成合晶初步发育;(b)白眼圈后成合晶发育比较宽 Fig. 5 Metamorphic zircon and titanite formed in the prograde (M1), metamorphic peak (M2) and retrograde (M3) stages in a mafic granulite (a) the initially formed "white-eye socket" assemblage; (b) the well-developed "white-eye socket" assemblage. Such metamorphic accessory minerals formed at the different metamorphic stages are ideal targets to determine the continuous metamorphic geochronology |
变形作用对变质岩原岩的改造非常强烈,发育完善的变形面理甚至可以完全抹去原始沉积层理(Bell and Rubenach, 1983)。众所周知,除了热接触变质作用、燃烧变质作用、电击变质作用等特殊变质类型以及热液变质作用、洋底变质作用外,其余的区域变质作用中变形作用从来都不缺席。因此,只有将变质作用与变形作用正确匹配,才能发挥变质作用研究在解析造山过程方面的优势。Zwart (1962)提出了判断变斑晶矿物与片理、片麻理形成先后顺序的普适性准则,在解释变质-变形关系时发挥了重要作用。造山带中变质岩石往往记录有不同方位的构造变形形迹,据此人们可以在大、中、小、微型尺度上,对变质-变形事件进行耦合匹配(Jones, 1994; Li et al., 2005, 2010, 2011; Košuliová and Štípská, 2007; Zhang et al., 2009, 2012; Liu et al., 2012)。值得指出的是,变形事件期次的识别有人为因素。例如,敦煌造山带微型尺度上(图 6a)和中型尺度上(图 6b)三阶段变形形迹的识别,值得慎重对待。
![]() |
图 6 敦煌造山带多坝沟地区变质泥质岩中的“三期”构造形迹 (a)含榴黑云斜长片麻岩中的显微构造形迹;(b)黑云斜长片麻岩中宏观构造形迹 Fig. 6 Three deformational signatures in the Duobagou area, Dunhuang Orogenic Belt in the micropetrographic (a) and medium (b) scales |
区域变质岩中片理、片麻理等可能是俯冲阶段的产物,片理、片麻理的再褶皱过程也许是折返阶段的变形事件(?)。因此,即便是正确解析出的多期变形形迹,也不一定属于多期构造事件的产物,可能形成于同一构造事件的不同阶段(?)。
在小、微型尺度上,经历多期生长过程的变斑晶,可保留不同时间形成的变斑晶区域以及方位不同的包裹体径迹(Rosenfeld, 1970; Bell and Johnson, 1989),包裹体径迹(inclusion trail)一般能免于后期造山事件的影响(游振东, 1996)。在三维空间上,变斑晶矿物中同一期包裹体面理弯折形成的“面理弯折轴”(foliation inflexion axes, FIAs),或两种面理交切所形成的“面理交线轴”(foliation intersection axes, FIAs),被Bell et al. (1995)统称为FIAs。这两种轴迹对于深度解剖造山带的造山过程,具有极为重要的地质意义(Johnson, 1999; 曹汇等, 2013; Ali et al., 2016)。
将变形作用与变质作用、年代学准确匹配,还可反演造山过程中的P-T-t-D(deformation)轨迹(Johnson, 1999)。P-T-t-D轨迹的反演(Jessup et al., 2008; Sayab et al., 2016; Wernert et al., 2016)使得变质地质学研究造山过程的能力上了一个新台阶。
目前,全世界变质反应动力学的研究案例还很罕见,这极大限制了人们对于变质过程的理解。至此,本文仅就作者所能看到的一些问题做了简单阐述,论述也属于浅尝辄止,还有许多科学问题作者尚未领悟到。限于作者水平,其中谬误肯定不少,欢迎各位同行不吝赐教。
致谢 翟明国院士多次鼓励作者撰写本文。郭敬辉教授、陈意副教授提出了许多修改建议,提高了本文的学术水平。作者向他们致以真挚的感谢。恰逢著名变质地质学家、前寒武纪地质学家沈其韩院士九十六华诞,谨向恩师致以崇高的敬意,祝先生健康长寿!
Abati J, Arenas R, Catalán JRM and García FD. 2003. Anticlockwise P-T path of granulites from the Monte Castelo gabbro (órdenes Complex, NW Spain). Journal of Petrology, 44(2): 305-327. DOI:10.1093/petrology/44.2.305 |
Ague JJ and Eckert Jr JO. 2012. Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, U.S.A. American Mineralogist, 97(5-6): 840-855. DOI:10.2138/am.2012.4015 |
Ali A, Yar M, Khan MA and Faisal S. 2016. Interrelationships between deformation and metamorphic events across the western Hinterland zone, NW Pakistan. Journal of Earth Science, 27(4): 584-598. DOI:10.1007/s12583-016-0717-1 |
Álvarez-Valero AM, Waters DJ. 2010. Partially melted crustal xenoliths as a window into sub-volcanic processes: Evidence from the Neogene magmatic province of the Betic Cordillera, SE Spain. Journal of Petrology, 51(5): 973-991. |
Anderson JL, Barth AP, Wooden JL and Mazdab F. 2008. Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1): 121-142. DOI:10.2138/rmg.2008.69.4 |
Anovitz LM. 1991. Al zoning in pyroxene and plagioclase: Window on late prograde to early retrograde P-T paths in granulite terranes. American Mineralogist, 76: 1328-1343. |
Applegate JDR and Hodges KV. 1994. Empirical evaluation of solution models for pelitic minerals and their application to thermobarometry. Contributions to Mineralogy and Petrology, 117(1): 56-65. DOI:10.1007/BF00307729 |
Bachmann O and Dungan MA. 2002. Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. American Mineralogist, 87(8-9): 1062-1076. DOI:10.2138/am-2002-8-903 |
Bell TH and Rubenach MJ. 1983. Sequential porphyroblast growth and crenulation cleavage development during progressive deformation. Tectonophysics, 92(1-3): 171-194. DOI:10.1016/0040-1951(83)90089-6 |
Bell TH and Johnson SE. 1989. Porphyroblast inclusion trails: The key to orogenesis. Journal of Metamorphic Geology, 7(3): 279-310. DOI:10.1111/jmg.1989.7.issue-3 |
Bell TH, Forde A and Wang J. 1995. A new indicator of movement direction during orogenesis: Measurement technique and application to the Alps. Terra Nova, 7(5): 500-508. DOI:10.1111/ter.1995.7.issue-5 |
Benisek A, Dachs E and Kroll H. 2010. A ternary feldspar-mixing model based on calorimetric data: Development and application. Contributions to Mineralogy and Petrology, 160(3): 327-337. DOI:10.1007/s00410-009-0480-8 |
Berman RG. 1991. Thermobarometry using multi-equilibrium calculations: A new technique, with petrological applications. Canadian Mineralogist, 29(4): 833-855. |
Beyer C, Frost DJ and Miyajima N. 2015. Experimental calibration of a garnet-clinopyroxene geobarometer for mantle eclogites. Contributions to Mineralogy and Petrology, 169(2): 18. DOI:10.1007/s00410-015-1113-z |
Bhadra S and Bhattacharya A. 2007. The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92(4): 491-502. DOI:10.2138/am.2007.2067 |
Bhowany K, H, M, Clark C, Kelsey DE, Reddy SM, Pearce MA, Tucker NM and Morrissey LJ. 2018. Phase equilibria modelling constraints on P-T conditions during fluid catalysed conversion of granulite to eclogite in the Bergen Arcs, Norway. Journal of Metamorphic Geology, 36(3): 315-342. DOI:10.1111/jmg.2018.36.issue-3 |
Bhowmik SK and Ao A. 2016. Subduction initiation in the Neo-Tethys: Constraints from counterclockwise P-T paths in amphibolite rocks of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 34(1): 17-44. DOI:10.1111/jmg.2016.34.issue-1 |
Bohlen SR, Wall VJ and Boettcher AL. 1983. Experimental investigations and geological applications of equilibria in the system FeO-TiO2-Al2O3-SiO2-H2O. American Mineralogist, 68(11-12): 1049-1058. |
Brandt S, Klemd R and Okrusch M. 2003. Ultrahigh-temperature metamorphism and multistage evolution of garnet-orthopyroxene granulites from the proterozoic epupa complex, NW Namibia. Journal of Petrology, 44(6): 1121-1144. DOI:10.1093/petrology/44.6.1121 |
Brey GP and Kähler T. 1990. Geothermobarometry in four-phase lherzolites Ⅱ. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31(6): 1353-1378. DOI:10.1093/petrology/31.6.1353 |
Cao DD, Cheng H and Zhang L. 2017. Pseudosection modelling and garnet Lu-Hf geochronology of HP amphibole schists constrain the closure of an ocean basin between the northern and southern Lhasa blocks, central Tibet. Journal of Metamorphic Geology, 35(7): 777-803. DOI:10.1111/jmg.2017.35.issue-7 |
Cao H, Xu ZQ, Li HQ, Cai ZH and Xu CP. 2013. A new method for ascertaining the shape of isoclinal folds in multiply-deformed metamorphic zone: The application of porphyroblast inclusion trails. Acta Petrologica et Mineralogica, 32(5): 751-760. |
Carswell DA. 1991. The garnet-orthopyroxene Al barometer: Problematic application to natural garnet lherzolite assemblages. Mineralogical Magazine, 55(378): 19-31. DOI:10.1180/minmag |
Chen HX, Wang J, Wang H, Wang GD, Peng T, Shi YH, Zhang Q and Wu CM. 2015a. Metamorphism and geochronology of the Luoning metamorphic terrane, southern terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton. Precambrian Research, 264: 156-178. DOI:10.1016/j.precamres.2015.04.013 |
Chen MY. 1990. Metabasic dyke swarms in a high-grade metamorphic terrane: A case study in the Taipingzhai-Jinchangyu area, eastern Hebei Province. Acta Geologica Sinica, 64(2): 157-169. |
Chen NS. 1990. The P-T paths of Qinling Group and their implications for the evolution of metamorphic environment, tectonism and magmatism. Earth Science (Journal of China University of Geosciences), 15(2): 145-155. |
Chen NS, Wang RJ, Shan WL and Zhong ZQ. 1994. Isobaric cooling (IBC) p-T-t path for the western portion of Archaean Miyun complex, Beijing: Constraints and its geodynamic genesis. Scientia Geologica Sinica, 29(4): 355-365. |
Chen NS, Sun M, You ZD and Malpas J. 1998. Well-preserved garnet growth zoning in granulite from the Dabie Mountains, central China. Journal of Metamorphic Geology, 16(2): 213-222. DOI:10.1111/j.1525-1314.1998.00074.x |
Chen RX and Zhang YF. 2017. Metamorphic zirconology of continental subduction zones. Journal of Asian Earth Sciences, 145: 149-176. DOI:10.1016/j.jseaes.2017.04.029 |
Chen Y, Ye K and Wu CM. 2005. Reviews on applying common-used geothermobarometers for eclogites. Acta Petrologica Sinica, 21(4): 1067-1080. |
Chen Y, Ye K, Liu JB and Sun M. 2008. Quantitative P-T-X constraints on orthopyroxene-bearing high-pressure granulites in felsic-metapelitic rocks: Evidence from the Huangtuling granulite, Dabieshan Orogen. Journal of Metamorphic Geology, 26(1): 1-15. |
Chen YP, Wei CJ, Zhang JR and Chu H. 2015b. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19): 1698-1707. DOI:10.1007/s11434-015-0890-0 |
Cheng SH, Lai XY and You ZD. 2009. P-T paths derived from garnet growth zoning in Danba domal metamorphic terrain, Sichuan Province, West China. Journal of Earth Science, 20(12): 219-240. |
Cheng YQ, Wan YS, Gao JF and Ma R. 2000. Some anatectic petrographic features of the Neoarchean Fuping Group in the Xiaojue area, Pingshan, Fuping: Micropetrographs. Geology in China, 27(12): 14-16. |
Chipera SJ and Perkins D. 1988. Evaluation of biotite-garnet geothermometers: Application to the English River subprovince, Ontario. Contributions to Mineralogy and Petrology, 98(1): 40-48. DOI:10.1007/BF00371908 |
Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contributions to Mineralogy and Petrology, 86(2): 107-118. DOI:10.1007/BF00381838 |
Connolly JAD. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1-2): 524-541. DOI:10.1016/j.epsl.2005.04.033 |
Dale J, Holland T and Powell R. 2000. Hornblende-garnet-plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology, 140(3): 353-362. DOI:10.1007/s004100000187 |
Das K, Bose S, Karmakar S, Dunkley DJ and Dasgupta S. 2011. Multiple tectonometamorphic imprints in the lower crust: First evidence of ca. 950Ma (zircon U-Pb SHRIMP) compressional reworking of UHT aluminous granulites from the Eastern Ghats Belt, India. Geological Journal, 46(2-3): 217-239. DOI:10.1002/gj.1246 |
Dempster TJ, La Piazza J, Taylor AG, Beaudoin N and Chung P. 2017. Chemical and textural equilibration of garnet during amphibolite facies metamorphism: The influence of coupled dissolution-reprecipitation. Journal of Metamorphic Geology, 35(9): 1111-1130. DOI:10.1111/jmg.2017.35.issue-9 |
Di Martino C, Forni F, Frezzotti ML, Palmeri R, Webster JD, Ayuso RA, Lucchi F and Tranne CA. 2011. Formation of cordierite-bearing lavas during anatexis in the lower crust beneath Lipari Island (Aeolian arc, Italy). Contributions to Mineralogy and Petrology, 162(5): 1011-1030. DOI:10.1007/s00410-011-0637-0 |
Dini A, Rocchi S and Westerman DS. 2004. Reaction microtextures of REE-Y-Th-U accessory minerals in the Monte Capanne pluton (Elba Island, Italy): A possible indicator of hybridization processes. Lithos, 78(1-2): 101-118. DOI:10.1016/j.lithos.2004.04.045 |
Duretz T and Gerya TV. 2013. Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination. Tectonophysics, 602: 124-140. DOI:10.1016/j.tecto.2012.12.024 |
Eckert Jr JO, Newton RC and Kleppa OJ. 1991. The ΔH of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. American Mineralogist, 76(1-2): 148-160. |
Enami M, Nagaya T and Win MM. 2017. An integrated EPMA-EBSD study of metamorphic histories recorded in garnet. American Mineralogist, 102(1): 192-204. DOI:10.2138/am-2017-5666 |
England PC and Richardson SW. 1977. The influence of erosion upon the mineral fades of rocks from different metamorphic environments. Journal of the Geological Society, 134(2): 201-213. DOI:10.1144/gsjgs.134.2.0201 |
England PC and Thompson AB. 1984. Pressure-temperature-time paths of regional metamorphism Ⅰ. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894-928. |
Ernst WG. 1988. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology, 16(12): 1081-1084. DOI:10.1130/0091-7613(1988)016<1081:THOSZI>2.3.CO;2 |
Evans TP. 2004. A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: Implications for isopleth thermobarometry. Journal of Metamorphic Geology, 22(6): 547-557. DOI:10.1111/jmg.2004.22.issue-6 |
Fan QC and Hooper PR. 1989. The mineral chemistry of ultramafic xenoliths of eastern China: Implications for upper mantle composition and the paleogeotherms. Journal of Petrology, 30(5): 1117-1158. DOI:10.1093/petrology/30.5.1117 |
Fan WM and Menzies M. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia, 16: 171-180. |
Faryad SW, Kachlík V, Sláma J and Jedlicka R. 2016. Coincidence of gabbro and granulite formation and their implication for Variscan HT metamorphism in the Moldanubian Zone (Bohemian Massif), example from the Kutná Hora Complex. Lithos, 264: 56-69. DOI:10.1016/j.lithos.2016.08.005 |
Finger F, Broska I, Roberts MP and Schermaier A. 1998. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the Eastern Alps. American Mineralogist, 83(3-4): 248-258. DOI:10.2138/am-1998-3-408 |
Fisher GW. 1989. Matrix analysis of metamorphic mineral assemblages and reactions. Contributions to Mineralogy and Petrology, 102(1): 69-77. DOI:10.1007/BF01160191 |
Fisher GW. 1993. An improved method for algebraic analysis of metamorphic mineral assemblages. American Mineralogist, 78(11-12): 1257-1261. |
Fitzsimons ICW and Harley SL. 1994. The influence of retrograde cation exchange on granulite P-T estimates and a convergence technique for the recovery of peak metamorphic conditions. Journal of Petrology, 35(2): 543-576. DOI:10.1093/petrology/35.2.543 |
Frost BR and Chacko T. 1989. The granulite uncertainty principle: Limitations on thermobarometry in granulites. The Journal of Geology, 97(4): 435-450. DOI:10.1086/629321 |
Gaidies F, de Capitani C and Abart R. 2008. THERIA_G: A software program to numerically model prograde garnet growth. Contributions to Mineralogy and Petrology, 155(5): 657-671. DOI:10.1007/s00410-007-0263-z |
Gauthiez-Putallaz L, Rubatto D and Hermann J. 2016. Dating prograde fluid pulses during subduction by in situ U-Pb and oxygen isotope analysis. Contributions to Mineralogy and Petrology, 171(2): 15. DOI:10.1007/s00410-015-1226-4 |
Ge WC, Sun DY, Wu FY and Lin Q. 1994. The metamorphic PTt path of Archean granulites in Huadian area, Jilin Province. Acta Petrologica et Mineralogica, 13(4): 309-318. |
Gerya TV and Maresch WV. 2004. Metapelites of the Kanskiy granulite complex (eastern Siberia): Kinked P-T paths and geodynamic model. Journal of Petrology, 45(7): 1393-1412. DOI:10.1093/petrology/egh017 |
Glebovitsky VA, Nikitina LP, Khiltova VY and Ovchinnikov NO. 2004. The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths. Lithos, 74(1-2): 1-20. DOI:10.1016/j.lithos.2003.03.001 |
Goncalves P, Nicollet C and Montel JM. 2004. Petrology and in situ U-Th-Pb monazite geochronology of ultrahigh-temperature metamorphism from the Andriamena mafic unit, North-central Madagascar: Significance of a petrographical P-T path in a polymetamorphic context. Journal of Petrology, 45(10): 1923-1957. DOI:10.1093/petrology/egh041 |
Gordon TM, Ghent ED and Stout MZ. 1991. Algebraic analysis of the biotite-sillimanite isograd in the File Lake area, Manitoba. Canadian Mineralogist, 29(4): 673-686. |
Greenwood HJ. 1967. The N-dimensional tie-line problem. Geochimica et Cosmochimica Acta, 31(4): 465-490. DOI:10.1016/0016-7037(67)90029-4 |
Guo JH, O'Brien PJ and Zhai M. 2002. High-pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741-756. DOI:10.1046/j.1525-1314.2002.00401.x |
Habler G, Thäni M and Grasemann B. 2009. Cretaceous metamorphism in the Austroalpine Matsch Unit (Eastern Alps): The interrelation between deformation and chemical equilibration processes. Mineralogy and Petrology, 97(3-4): 149-171. DOI:10.1007/s00710-009-0094-x |
Hallett BW and Spear FS. 2015. Monazite, zircon, and garnet growth in migmatitic pelites as a record of metamorphism and partial melting in the East Humboldt Range, Nevada. American Mineralogist, 100(4): 951-972. DOI:10.2138/am-2015-4839 |
Harley SL. 1985. Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: Metamorphic pressure temperature-time evolution of the Archaean Napier Complex. Journal of Petrology, 26(4): 819-856. DOI:10.1093/petrology/26.4.819 |
Harley SL. 1988. Proterozoic granulites from the Rauer Group, east Antarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic gneisses. Journal of Petrology, 29(5): 1059-1095. DOI:10.1093/petrology/29.5.1059 |
Harley SL. 1989. The origins of granulites: A metamorphic perspective. Geological Magazine, 126(3): 215-247. DOI:10.1017/S0016756800022330 |
Harley SL and Motoyoshi Y. 2000. Al zoning in orthopyroxene in a sapphirine quartzite: Evidence for >1120℃ UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contributions to Mineralogy and Petrology, 138(4): 293-307. DOI:10.1007/s004100050564 |
Harley SL, Kelly NM and Mäller A. 2007. Zircon behaviour and the thermal histories of mountain chains. Elements, 3(1): 25-30. DOI:10.2113/gselements.3.1.25 |
Harris NBW and Holland TJB. 1984. The significance of cordierite-hypersthene assemblages from the Beitbridge region of the central Limpopo Belt: Evidence for rapid decompression in the Archean?. American Mineralogist, 69(11-12): 1036-1049. |
Hayob JL, Essene EJ, Ruiz J, Ortega-Gutiérrez F and Aranda-Gómez JJ. 1989. Young high-temperature granulites from the base of the crust in central Mexico. Nature, 342(6247): 265-268. DOI:10.1038/342265a0 |
He GP, Ye HW and Xia SL. 1994. The evolution of metamorphism and PTt paths of granulite facies terrane in Miyun, Beijing. Acta Petrologica Sinica, 10(1): 14-26. |
Hensen BJ, Zhou B and Thost DE. 1995. Are reaction textures reliable guides to metamorphic histories? Timing constraints from garnet Sm-Nd chronology for 'decompression' textures in granulites from Søstrene Island, Prydz Bay, Antarctica. Geological Journal, 30(3-4): 261-271. DOI:10.1002/(ISSN)1099-1034 |
Hickmott DD, Shimizu N, Spear FS and Selverstone J. 1987. Trace-element zoning in a metamorphic garnet. Geology, 15(6): 573-576. DOI:10.1130/0091-7613(1987)15<573:TZIAMG>2.0.CO;2 |
Hirth G and Tullis J. 1994. The brittle-plastic transition in experimentally deformed quartz aggregates. Journal of Geophysical Research: Solid Earth, 99(B6): 11731-11747. DOI:10.1029/93JB02873 |
Hoisch TD, Wells ML and Hanson LM. 2002. Pressure-temperature paths from garnet-zoning: Evidence for multiple episodes of thrust burial in the hinterland of the Sevier orogenic belt. American Mineralogist, 87(1): 115-131. DOI:10.2138/am-2002-0113 |
Holdaway MJ and Mukhopadhyay B. 1993. A re-evaluation of the stability relations of andalusite: Thermochemical data and phase diagram for the aluminum silicates. American Mineralogist, 78(3-4): 298-315. |
Holdaway MJ. 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist, 85(7-8): 881-892. DOI:10.2138/am-2000-0701 |
Holdaway MJ. 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10): 1117-1129. DOI:10.2138/am-2001-1001 |
Holland T and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433-447. DOI:10.1007/BF00310910 |
Holland TJB and Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333-383. DOI:10.1111/jmg.2011.29.issue-3 |
Jalowitzki T, Gervasoni F, Conceição RV, Orihashi Y, Bertotto GW, Sumino H, Schilling ME, Nagao K, Morata D and Sylvester P. 2017. Slab-derived components in the subcontinental lithospheric mantle beneath Chilean Patagonia: Geochemistry and Sr-Nd-Pb isotopes of mantle xenoliths and host basalt. Lithos, 292-293: 179-197. DOI:10.1016/j.lithos.2017.09.008 |
Jessup MJ, Cottle JM, Searle MP, Law RD, Newell DL, Tracy RJ and Waters DJ. 2008. P-T-t-D paths of Everest Series schist, Nepal. Journal of Metamorphic Geology, 26(7): 717-739. DOI:10.1111/jmg.2008.26.issue-7 |
Jiang WB and Zhang LF. 2001. The PTt path calculation of blueschists on the compositional zonings of sodic amphiboles: An example from Aksu Precambrian blueschists of Xinjiang. Acta Petrologica Sinica, 17(3): 469-475. |
Jiang ZS, Wang GD, Xiao LL, Diwu CR, Lu JS and Wu CM. 2011. Paleoproterozoic metamorphic P-T-t path and tectonic significance of the Luoning metamorphic complex at the southern terminal of the Trans-North China Orogen, Henan Province. Acta Petrologica Sinica, 27(12): 3701-3717. |
Jiao SJ and Guo JH. 2011. Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China craton and its implications. American Mineralogist, 96(2-3): 250-260. DOI:10.2138/am.2011.3500 |
Jin W, Li SX and Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamorphic dynamics. Acta Petrologica Sinica, 7(4): 27-35. |
Johnson SE. 1999. Porphyroblast microstructures: A review of current and future trends. American Mineralogist, 84(11-12): 1711-1726. DOI:10.2138/am-1999-11-1202 |
Johnson T, Brown M, Gibson R and Wing B. 2004. Spinel-cordierite symplectites replacing andalusite: Evidence for melt-assisted diapirism in the Bushveld Complex, South Africa. Journal of Metamorphic Geology, 22(6): 529-545. DOI:10.1111/jmg.2004.22.issue-6 |
Jones KA. 1994. Progressive metamorphism in a crustal-scale shear zone: An example from the Léon region, North-West Brittany, France. Journal of Metamorphic Geology, 12(1): 69-88. DOI:10.1111/jmg.1994.12.issue-1 |
Kelsey DE and Powell R. 2011. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: A thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system. Journal of Metamorphic Geology, 29(1): 151-166. DOI:10.1111/jmg.2010.29.issue-1 |
Kohn MJ and Spear F. 2000. Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology, 28(12): 1127-1130. DOI:10.1130/0091-7613(2000)28<1127:RNTRIF>2.0.CO;2 |
Korsakov AV, Perraki M, Zedgenizov DA, Bindi L, Vandenabeele P, Suzuki A and Kagi H. 2010. Diamond-graphite relationships in ultrahigh-pressure metamorphic rocks from the Kokchetav Massif, northern Kazakhstan. Journal of Petrology, 51(3): 763-783. DOI:10.1093/petrology/egq001 |
Košuliová M and Štípská P. 2007. Variations in the transient prograde geothermal gradient from chloritoid-staurolite equilibria: A case study from the Barrovian and Buchan-type domains in the Bohemian Massif. Journal of Metamorphic Geology, 25(1): 19-36. DOI:10.1111/jmg.2007.25.issue-1 |
Koziol AM and Newton RC. 1988. Redetermination of the anorthite breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz geobarometer. American Mineralogist, 73(3-4): 216-223. |
Koziol AM and Bohlen SR. 1992. Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments. American Mineralogist, 77(7-8): 765-773. |
Krogh EJ. 1982. Metamorphic evolution of Norwegian country-rock eclogites, as deduced from mineral inclusions and compositional zoning in garnets. Lithos, 15(4): 305-321. DOI:10.1016/0024-4937(82)90021-4 |
Kroll H, Evangelakakis C and Voll G. 1993. Two-feldspar Geothermometry: A review and revision for slowly cooled rocks. Contributions to Mineralogy and Petrology, 114(4): 510-518. DOI:10.1007/BF00321755 |
Lal RK. 1993. Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet-orthopyroxene-plagioclase-quartz assemblages and their application to the South Indian granulites. Journal of Metamorphic Geology, 11(6): 855-866. DOI:10.1111/jmg.1993.11.issue-6 |
Lang HM and Rice JM. 1985. Regression modelling of metamorphic reactions in metapelites, Snow Peak, northern Idaho. Journal of Petrology, 26(4): 857-887. DOI:10.1093/petrology/26.4.857 |
Lang HM. 1991. Quantitative interpretation of within-outcrop variation in metamorphic assemblage in staurolite-kyanite-grade metapelites, Baltimore, Maryland. Canadian Mineralogist, 29(4): 655-671. |
Li BT, Massonne HJ and Opitz J. 2017. Clockwise and anticlockwise P-T paths of high-pressure rocks from the 'La Pioza' eclogite body of the Malpica-Tuy Complex, NW Spain. Journal of Petrology, 58(7): 1363-1392. DOI:10.1093/petrology/egx057 |
Li JH, Zhai MG, Li YG and Zhang YG. 1998. The discovery of Neoarchean high-pressure granulites in Luanping-Chengde area, northern Hebei, and their tectono-geological implication. Acta Petrologica Sinica, 14(1): 34-41. |
Li JL, Klemd R, Gao J and John T. 2016. Poly-cyclic metamorphic evolution of eclogite: Evidence for multistage burial-exhumation cycling in a subduction channel. Journal of Petrology, 57(1): 119-146. DOI:10.1093/petrology/egw002 |
Li JL, Gao J and Wang XS. 2016. A subduction channel model for exhumation of oceanic-type high-to ultrahigh-pressure eclogite-facies metamorphic rocks in SW Tianshan, China. Science China (Earth Sciences), 59(12): 2339-2354. DOI:10.1007/s11430-016-5103-7 |
Li SZ, Zhao GC, Sun M, Han ZZ, Luo Y, Hao DF and Xia XP. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5): 659-674. DOI:10.1016/j.jseaes.2003.11.008 |
Li SZ, Zhao GC, Wilde SA, Zhang J, Sun M, Zhang GW and Dai LM. 2010. Deformation history of the Hengshan-Wutai-Fuping complexes: Implications for the evolution of the Trans-North China Orogen. Gondwana Research, 18(4): 611-631. DOI:10.1016/j.gr.2010.03.003 |
Li SZ, Zhao GC, Santosh M, Liu X and Dai LM. 2011. Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji Belt, North China Craton: A review. Geological Journal, 46(6): 525-543. DOI:10.1002/gj.1282 |
Li XL, Zhang LF, Wei CJ, Slabunov AI and Bader T. 2018. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites. Journal of Metamorphic Geology, 36(1): 1-22. DOI:10.1111/jmg.2018.36.issue-1 |
Liao XY, Liu L, Wang YW, Cao YT, Chen DL and Dong YP. 2016. Multi-stage metamorphic evolution of retrograde eclogite with a granulite-facies overprint in the Zhaigen area of the North Qinling Belt, China. Gondwana Research, 30: 79-96. DOI:10.1016/j.gr.2015.09.012 |
Likhanov Ⅱ and Reverdatto VV. 2002. Mass transfer during andalusite replacement by kyanite in Al-and Fe-rich metapelites Yenisey range. Petrology, 10: 479-494. |
Lin CY, Shi LB, Chen XD, Zhang XO, Xu YG, Mercier JCC and Ross JV. 1995. Rheological features of garnet lherzolite xenoliths from Xinchang, Zhejiang Province, China and their geological implications. Acta Petrologica Sinica, 11(1): 55-64. |
Liu FL. 1994. The compositional zoning of garnet of Precambrian khondalite series and its application to temperature-pressure estimation in Zhuozi, Inner Mongolia. Journal of Changchun University of Earth Sciences, 24(3): 259-264. |
Liu FL. 1998. Metamorphic reaction-mineral evolution series of mafic garnet granulites in the Manqinggou region. Journal of Changchun University of Science and Technology, 28(1): 16-22. |
Liu FL, Gerdes A, Liou J and Liu PH. 2009. Unique coesite-bearing zircon from allanite-bearing gneisses: U-Pb, REE and Lu-Hf properties and implications for the evolution of the Sulu UHP terrane, China. European Journal of Mineralogy, 21(6): 1225-1250. DOI:10.1127/0935-1221/2009/0021-1965 |
Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39. DOI:10.1016/j.jseaes.2010.08.007 |
Liu FL, Zhang LF, Li XL, Slabunov AI, Wei CJ and Bader T. 2017. The metamorphic evolution of Paleoproterozoic eclogites in Kuru-Vaara, northern Belomorian Province, Russia: Constraints from P-T pseudosections and zircon dating. Precambrian Research, 289: 31-47. DOI:10.1016/j.precamres.2016.11.011 |
Liu JH, Zhang QWL, Zhang HCG, Wang HYC, Chen HX, Pham VT, Peng T and Wu CM. 2018b. Metamorphic evolution and SHRIMP U-Pb geochronology of mafic granulites with double symplectites in the Fuping metamorphic complex, Middle Palaeoproterozoic Trans-North China Orogen. Precambrian Research. DOI:10.1016/j.precamres.2017.11.009 |
Liu JL, Tang Y, Tran MD, Cao SY, Zhao L, Zhang ZC, Zhao ZD and Chen W. 2012. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. Journal of Asian Earth Sciences, 47: 231-251. DOI:10.1016/j.jseaes.2011.10.020 |
Liu L, Zhang JF, Green Ⅱ HW, Jin ZM and Bozhilov KN. 2007a. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350km. Earth and Planetary Science Letters, 263(3-4): 180-191. DOI:10.1016/j.epsl.2007.08.010 |
Liu L, Zhang JF, Cao YT, Green Ⅱ HW, Yang WQ, Xu HJ, Liao XY and Kang L. 2018a. Evidence of former stishovite in UHP eclogite from the South Altyn Tagh, western China. Earth and Planetary Science Letters, 484: 353-362. DOI:10.1016/j.epsl.2017.12.023 |
Liu RX, Fan QC and Sun JZ. 1985. Study on garnet lherzolite xenoliths from eastern China. Acta Petrologica Sinica, 1(4): 24-33. |
Liu SW, Lin Q and Cao L. 1991. The P-T-t trajectory recorded by the compositional zonations of amphibole in eastern Hebei Province. Journal of Changchun University of Earth Science, 21(2): 129-142. |
Liu SW. 1996. Study on the P-T path of granulites in Fuping area, Hebei Province. Geological Journal of Universities, 2(1): 75-84. |
Liu SW, Zhang JJ and Zheng YD. 1998. Syn-deformation P-T paths of Xiaoqinling metamorphic core complex. Chinese Science Bulletin, 43(22): 1927-1934. DOI:10.1007/BF02883474 |
Liu XC, Zhao Y, Zhao GC, Jian P and Xu G. 2007b. Petrology and geochronology of granulites from the McKaskle Hills, eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz Belt. Journal of Petrology, 48(8): 1443-1470. DOI:10.1093/petrology/egm024 |
Liu XS, Jin W, Li SX and Xu XC. 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 499-510. DOI:10.1111/jmg.1993.11.issue-4 |
Lu JS, Wang GD, Wang H, Chen HX and Wu CM. 2013. Metamorphic P-T-t paths retrieved from the amphibolites, Lushan terrane, Henan Province and reappraisal of the Paleoproterozoic tectonic evolution of the Trans-North China Orogen. Precambrian Research, 238: 61-77. DOI:10.1016/j.precamres.2013.09.019 |
Lu JS, Wang GD, Wang H, Chen HX and Wu CM. 2014. Palaeoproterozoic metamorphic evolution and geochronology of the Wugang block, southeastern terminal of the Trans-North China Orogen. Precambrian Research, 251: 197-211. DOI:10.1016/j.precamres.2014.06.015 |
Lu JS, Wang GD, Wang H, Chen HX and Wu CM. 2014. Metamorphic evolution of the Lushan terrane in the Precambrian Taihua complex, Henan Province. Acta Petrologica Sinica, 30(10): 3062-3074. |
Lu JS, Wang GD, Wang H, Chen HX, Peng T and Wu CM. 2015. Zircon SIMS U-Pb geochronology of the Lushan terrane: Dating metamorphism of the southwestern terminal of the Palaeoproterozoic Trans-North China Orogen. Geological Magazine, 152(2): 367-377. DOI:10.1017/S0016756814000430 |
Lu LZ and Jin SQ. 1993. P-T-t paths and tectonic history of an Early Precambrian granulite facies terrane, Jining district, south-east Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 483-498. DOI:10.1111/jmg.1993.11.issue-4 |
Lü GX, Chen J, Li XB and Liu RX. 1998. On tectonic additional hydrostatic pressure and estimation of formation depth of coesite-bearing eclogite. Chinese Sciences Bulletin, 43: 2590-2602. |
Lü GX, Hu BQ, Luo YT, Liu RX, Wang FZ, Li BH and Wang ZY. 2017. Studies on the deep crustal "gravity and tectonic force composite pressure state" and the formation depth calculation of Dabie-Sulu ultrahigh-pressure metamorphic (UHPM) belt. Earth Science Frontiers, 24(2): 1-15. |
Ma J and Wang RM. 1994. Reviews in garnet-clinopyroxene geothermometers and geobarometers with their application to granulite: The comparison of Miyun (Zunhua) and Xuanhua granulite forming condition. In: Qian XL and Wang RM (eds. ). Geological Evolution of the Granulite Belt in North Part of North China Craton. Beijing: Seismological Press, 71-78 (in Chinese)
|
Maaskant P. 2004. Thermobarometry of the Furua granulites, Tanzania: A comparative study. Neues Jahrbuch für Mineralogie-Abhandlungen, 180(1): 65-100. DOI:10.1127/0077-7757/2004/0180-0065 |
Maldonado R, Weber B, Ortega-Gutiérrez F and Solari LA. 2018. High-pressure metamorphic evolution of eclogite and associated metapelite from the Chuacús complex (Guatemala Suture Zone): Constraints from phase equilibria modelling coupled with Lu-Hf and U-Pb geochronology. Journal of Metamorphic Geology, 36(1): 95-124. DOI:10.1111/jmg.2018.36.issue-1 |
Marsh JH and Kelly ED. 2017. Petrogenetic relations among titanium-rich minerals in an anatectic high-P mafic granulite. Journal of Metamorphic Geology, 35(7): 717-738. DOI:10.1111/jmg.2017.35.issue-7 |
McCarthy TC and Patiño Douce AE. 1998. Empirical calibration of the silica-Ca-tschermak's-anorthite (SCAn) geobarometer. Journal of Metamorphic Geology, 16(5): 675-686. DOI:10.1111/j.1525-1314.1998.00164.x |
McKay MP, Bollen EM, Gray KD, Stowell HH and Schwartz JJ. 2017. Prolonged metamorphism during long-lived terrane accretion: Sm-Nd garnet and U-Pb zircon geochronology and pressure-temperature paths from the Salmon River suture zone, west-central Idaho, USA. Lithosphere, 9(5): 683-701. |
Menzies MA, Fan WM and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds. ) Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publications, 76(1): 71-81
|
Mikhno AO and Korsakov AV. 2013. K2O prograde zoning pattern in clinopyroxene from the Kokchetav diamond-grade metamorphic rocks: Missing part of metamorphic history and location of second critical end point for calc-silicate system. Gondwana Research, 23(3): 920-930. DOI:10.1016/j.gr.2012.07.020 |
Molina JF, Moreno JA, Castro A, Rodríguez C and Fershtater GB. 2015. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232: 286-305. DOI:10.1016/j.lithos.2015.06.027 |
Moulas E, Podladchikov YY, Aranovich LY and Kostopoulos D. 2013. The problem of depth in geology: When pressure does not translate into depth. Petrology, 21(6): 527-538. DOI:10.1134/S0869591113060052 |
Nichols GT, Berry RF and Green DH. 1992. Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: Geothermobarometry and applications. Contributions to Mineralogy and Petrology, 111(3): 362-377. DOI:10.1007/BF00311197 |
Nicollet C and Goncalves P. 2005. Two contrasted P-T-time paths of coronitic metanorites of the French Massif Central: Are reaction textures reliable guides to metamorphic histories?. Journal of Metamorphic Geology, 23(2): 97-105. DOI:10.1111/jmg.2005.23.issue-2 |
Nimis P. 2002. The pressures and temperatures of formation of diamond based on thermobarometry of chromian diopside inclusions. Canadian Mineralogist, 40(3): 871-884. DOI:10.2113/gscanmin.40.3.871 |
Nowlan EU, Schertl HP and Schreyer W. 2000. Garnet-omphacite-phengite thermobarometry of eclogites from the coesite-bearing unit of the southern Dora-Maira Massif, Western Alps. Lithos, 52(1-4): 197-214. DOI:10.1016/S0024-4937(99)00091-2 |
O'Brien PJ. 1997. Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: A record of their thermal history during exhumation. Lithos, 41(1-3): 119-133. DOI:10.1016/S0024-4937(97)82008-7 |
O'Brien PJ, Walte N and Li JH. 2005. The petrology of two distinct granulite types in the Hengshan Mts. , China, and tectonic implications. Journal of Asian Earth Sciences, 24(5): 615-627. |
Pattison DRM, Chacko T, Farquhar J and McFarlane CRM. 2003. Temperatures of granulite-facies metamorphism: Constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology, 44(5): 867-900. DOI:10.1093/petrology/44.5.867 |
Peixoto E, Alkmim FF, Pedrosa-Soares A, Lana C and Chaves AO. 2018. Metamorphic record of collision and collapse in the Ediacaran-Cambrian Arauaí orogen, SE-Brazil: Insights from P-T pseudosections and monazite dating. Journal of Metamorphic Geology, 36(2): 147-172. DOI:10.1111/jmg.2018.36.issue-2 |
Peng T, Wang H, Chen HX, Meng J, Lu JS, Wang GD and Wu CM. 2014. Preliminary report on the metamorphic evolution of the Guanyingou amphibolites, Dunhuang Metamorphic Complex, NW China. Acta Petrologica Sinica, 30(2): 503-511. |
Perchuk LL, Gerya TV, van Reenen DD, Krotov AV, Safonov OG, Smit CA and Shur MY. 2000. Comparative petrology and metamorphic evolution of the Limpopo (South Africa) and Lapland (Fennoscandia) high-grade terrains. Mineralogy and Petrology, 69(1): 69-107. DOI:10.1007/s007100050019 |
Powell R, Holland T and Worley B. 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4): 577-588. DOI:10.1111/j.1525-1314.1998.00157.x |
Powell R, Evans KA, Green ECR and White RW. 2018. On equilibrium in non-hydrostatic metamorphic systems. Journal of Metamorphic Geology. DOI:10.1111/jmg.12298 |
Putirka KD. 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1): 61-120. DOI:10.2138/rmg.2008.69.3 |
Pyle JM and Spear FS. 2003. Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. American Mineralogist, 88(2-3): 338-351. DOI:10.2138/am-2003-2-311 |
Raase P. 1998. Feldspar thermometry: A valuable tool for deciphering the thermal history of granulite-facies rocks, as illustrated with metapelites from Sri Lanka. Canadian Mineralogist, 36(1): 67-86. |
Ravna EK. 2000a. The garnet-clinopyroxene Fe2+-Mg geothermometer: An updated calibration. Journal of Metamorphic Geology, 18(2): 211-219. DOI:10.1046/j.1525-1314.2000.00247.x |
Ravna EK. 2000b. Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: An empirical calibration of the garnet-hornblende Fe-Mg geothermometer. Lithos, 53(3-4): 265-277. DOI:10.1016/S0024-4937(00)00029-3 |
Ren LD, Wang YB, Liu XC and Zho Y. 2008. The exsolution assemblage of sillimanite in quartzofeldspathic gneiss of the Larsemann Hills, East Antarctica. Acta Petrologica et Mineralogica, 27(6): 524-528. |
Rosenfeld JL. 1970. Rotated Garnets in Metamorphic Rocks. Geological Society of America Special Paper, 129: 105. |
Rubatto D and Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds. ) Cathodoluminescence in Geosciences. Berlin Heidelberg and New York: Springer, 373-400
|
Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138. DOI:10.1016/S0009-2541(01)00355-2 |
Rubatto D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261-295. |
Santosh M, Tsunogae T, Ohyama H, Sato K, Li JH and Liu SJ. 2008. Carbonic metamorphism at ultrahigh-temperatures: Evidence from North China Craton. Earth and Planetary Science Letters, 266(1-2): 149-165. DOI:10.1016/j.epsl.2007.10.058 |
Sayab M, Shah SZ and Aerden D. 2016. Metamorphic record of the NW Himalayan orogeny between the Indian plate-Kohistan Ladakh Arc and Asia: Revelations from foliation intersection axis (FIA) controlled P-T-t-d paths. Tectonophysics, 671: 110-126. DOI:10.1016/j.tecto.2015.12.032 |
Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K and Gebauer D. 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 134(2-3): 186-201. DOI:10.1007/s004100050478 |
Schmalholz SM and Podladchikov Y. 2014. Metamorphism under stress: The problem of relating minerals to depth. Geology, 42(8): 733-734. DOI:10.1130/focus0822014.1 |
Selverstone J, Spear FS, Franz G and Morteani G. 1984. High-pressure metamorphism in the SW Tauern Window, Austria: P-T paths from hornblende-kyanite-staurolite schists. Journal of Petrology, 25(2): 501-531. DOI:10.1093/petrology/25.2.501 |
Sepahi AA, Whitney DL and Baharifar AA. 2004. Petrogenesis of andalusite-kyanite-sillimanite veins and host rocks, Sanandaj-Sirjan metamorphic belt, Hamadan, Iran. Journal of Metamorphic Geology, 22(2): 119-134. DOI:10.1111/j.1525-1314.2004.00502.x |
Shen QH. 2009. The recommendation of a systematic list of mineral abbreviations. Acta Petrologica et Mineralogica, 28(5): 495-500. |
Shi Y and Wang Q. 2006. Variation in peak P-T conditions across the upper contact of the UHP terrane, Dabieshan, China: Gradational or abrupt?. Journal of Metamorphic Geology, 24: 803-822. |
Shi YH, Wang J, Li QL and Lin W. 2013. The analysis of the temperature and pressure structure for metamorphic rocks in Dabie collision orogen. Chinese Science Bulletin, 58(22): 2145-2152. |
Shi YH, Cao S, Wang J, Nie F and Kang T. 2014. Analysis of petrology, geochronology for Beihuaiyang metamorphic unit, and discussion about the suture of Dabie Orogen. Chinese Journal of Geology, 49(2): 378-393. |
Shreve RL and Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. Journal of Geophysical Research: Solid Earth, 91(B10): 10229-10245. DOI:10.1029/JB091iB10p10229 |
Smit CA, Van Reenen DD, Gerya TV and Perchuk LL. 2001. P-T conditions of decompression of the Limpopo high-grade terrane: Record from shear zones. Journal of Metamorphic Geology, 19(3): 249-268. DOI:10.1046/j.0263-4929.2000.00310.x |
Smulikowski W, Desmons J, Fettes DJ, Harte B, Sassi FP and Schmid R. 2007. Types, grade and facies of metamorphism. In: Fettes D and Desmons J (eds. ) Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks. Cambridge: Cambridge University Press, 16-23
|
Sobolev NV and Shatsky VS. 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343(6260): 742-746. DOI:10.1038/343742a0 |
Song SG, Niu YL, Su L and Xia XH. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Research, 23(4): 1378-1401. DOI:10.1016/j.gr.2012.02.004 |
Spear FS, Ferry JM and Rumble D. 1982a. Analytical formulation of phase equilibria: The Gibbs' method. Reviews in Mineralogy, 10(1): 105-152. |
Spear FS, Rumble D and Ferry JM. 1982b. Linear algebraic manipulation of n-dimensional composition space. Reviews in Mineralogy, 10(1): 53-104. |
Spear FS and Selverstone J. 1983. Quantitative P-T paths from zoned minerals: Theory and tectonic applications. Contributions to Mineralogy and Petrology, 83(3-4): 348-357. DOI:10.1007/BF00371203 |
Spear FS, Selverstone J, Hickmott D, Crowley P and Hodges KV. 1984. P-T paths from garnet zoning: A new technique for deciphering tectonic processes in crystalline terranes. Geology, 12(2): 87-90. DOI:10.1130/0091-7613(1984)12<87:PPFGZA>2.0.CO;2 |
Spear FS. 1988. The Gibbs method and Duhem's theorem: The quantitative relationships among P, T, chemical potential, phase composition and reaction progress in igneous and metamorphic systems. Contributions to Mineralogy and Petrology, 99(2): 249-256. DOI:10.1007/BF00371465 |
Spear FS and Menard T. 1989. Program GIBBS: A generalized Gibbs method algorithm. American Mineralogist, 74(7-8): 942-943. |
Spear FS, Kohn MJ, Florence FP and Menard T. 1990a. A model for garnet and plagioclase growth in pelitic schists: Implications for thermobarometry and P-T path determinations. Journal of Metamorphic Geology, 8(6): 683-696. DOI:10.1111/jmg.1990.8.issue-6 |
Spear FS, Hickmott DD and Selverstone J. 1990b. Metamorphic consequences of thrust emplacement, Fall Mountain, New Hampshire. GSA Bulletin, 102(10): 1344-1360. DOI:10.1130/0016-7606(1990)102<1344:MCOTEF>2.3.CO;2 |
Spear FS and Florence FP. 1992. Thermobarometry in granulites: Pitfalls and new approaches. Precambrian Research, 55(1-4): 209-241. DOI:10.1016/0301-9268(92)90025-J |
Spear FS. 1995. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. 2nd Edition. Washington DC: Mineralogical Society of America.
|
Steffen KJ and Selverstone J. 2006. Retrieval of P-T information from shear zones: Thermobarometric consequences of changes in plagioclase deformation mechanisms. Contributions to Mineralogy and Petrology, 151(5): 600-614. DOI:10.1007/s00410-006-0073-8 |
Stowell H, Zuluaga C, Boyle A and Bulman G. 2011. Garnet sector and oscillatory zoning linked with changes in crystal morphology during rapid growth, North Cascades, Washington. American Mineralogist, 96(8-9): 1354-1362. DOI:10.2138/am.2011.3759 |
Su BX, Zhang HF, Ying JF, Xiao Y and Zhao XM. 2009. Nature and processes of the lithospheric mantle beneath the western Qinling: Evidence from deformed peridotitic xenoliths in Cenozoic kamafugite from Haoti, Gansu Province, China. Journal of Asian Earth Sciences, 34(3): 258-274. DOI:10.1016/j.jseaes.2008.05.009 |
Sui JL, Fan QC and Xu YG. 2012. Discovery of peridotite xenoliths from the Nuomin river Quaternary volcanic field, the Great Xing'an Range, and its geological significance. Acta Petrologica Sinica, 28(4): 1130-1138. |
Sukhorukov VP, Polyansky OP, Krylov AA and Zinoviev SV. 2016. Reconstruction of the metamorphic P-T path from the garnet zoning in aluminous schists from the Tsogt Block, Mongolian Altai. Petrology, 24(4): 409-432. DOI:10.1134/S0869591116040068 |
Sun DY, Lin Q, Wu FY and Ge WC. 1998. Anatexis and segregation accumulation of the Archean tonalitic trondhjemetic granitic rocks in south Jilin Province. Liaoning Geology, 1998(1): 20-27. |
Sun M and Guan H. 2001. Zircon U-Pb ages of the Fuping Complex and their implications: Some comments on the geochronological study of the Precambrian high-grade metamorphic terranes. Acta Petrologica Sinica, 17(1): 145-156. |
Taylor WR. 1998. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch für Mineralogie-Abhandlungen, 172(2-3): 381-408. |
Thakur SS, Patel SC and Singh AK. 2015. A P-T pseudosection modelling approach to understand metamorphic evolution of the Main Central Thrust Zone in the Alaknanda valley, NW Himalaya. Contributions to Mineralogy and Petrology, 170(1): 2. DOI:10.1007/s00410-015-1159-y |
Touret J and Dietvorst P. 1983. Fluid inclusions in high-grade anatectic metamorphites. Journal of the Geological Society, 140(4): 635-649. DOI:10.1144/gsjgs.140.4.0635 |
Tracy RJ, Robinson P and Thompson AB. 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. American Mineralogist, 61(7-8): 762-775. |
Tracy RJ. 1982. Compositional zoning and inclusions in metamorphic minerals. Reviews in Mineralogy, 10(1): 355-397. |
Vernon RH, White RW and Clarke GL. 2008. False metamorphic events inferred from misinterpretation of microstructural evidence and P-T data. Journal of Metamorphic Geology, 26(4): 437-449. DOI:10.1111/j.1525-1314.2008.00762.x |
Viruete JE, Indares A and Arenas R. 2000. P-T paths derived from garnet growth zoning in an extensional setting: An example from the Tormes Gneiss Dome (Iberian Massif, Spain). Journal of Petrology, 41(10): 1489-1515. DOI:10.1093/petrology/41.10.1489 |
Vry JK, Powell R and Williams J. 2008. Establishing the P-T path for Alpine schist, Southern Alps near Hokitika, New Zealand. Journal of Metamorphic Geology, 26(1): 81-97. |
Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271. DOI:10.1016/j.precamres.2006.06.006 |
Wan YS, Xu ZY, Dong CY, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC and Cu H. 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93. DOI:10.1016/j.precamres.2012.09.014 |
Wang GD, Wang H, Chen HX, Lu JS, Xiao LL and Wu CM. 2012. U-Pb dating of zircons from metamorphic rocks of the Taihua Metamorphic Complex, Mt. Huashan, southern margin of the Trans-North China Orogen. Acta Geologica Sinica, 86(9): 1541-1551. |
Wang GD, Lu JS, Wang H, Chen HX, Xiao LL, Diwu CR, Ji JQ and Wu CM. 2013. LA-ICP-MS U-Pb dating of zircons and 40Ar/39Ar dating of amphiboles of the Taihua Metamorphic Complex, Mt. Huashan, southern terminal of the Palaeoprotorozoic Trans-North China Orogen. Acta Petrologica Sinica, 29(9): 3099-3114. |
Wang GD, Wang H, Chen HX, Lu JS and Wu CM. 2014. Metamorphic evolution and zircon U-Pb geochronology of the Mts. Huashan amphibolites: Insights into the Palaeoproterozoic amalgamation of the North China Craton. Precambrian Research, 245: 100-114. |
Wang HYC, Chen HX, Lu JS, Wang GD, Peng T, Zhang HCG, Yan QR, Hou QL, Zhang Q and Wu CM. 2016a. Metamorphic evolution and SIMS U-Pb geochronology of the Qingshigou area, Dunhuang block, NW China: Tectonic implications of the southernmost Central Asian orogenic belt. Lithosphere, 8(5): 463-479. DOI:10.1130/L528.1 |
Wang HYC, Wang J, Wang GD, Lu JS, Chen HX, Peng T, Zhang HCG, Zhang QWL, Xiao WJ, Hou QL, Yan QR, Zhang Q and Wu CM. 2017a. Metamorphic evolution and geochronology of the Dunhuang orogenic belt in the Hongliuxia area, northwestern China. Journal of Asian Earth Sciences, 135: 51-69. DOI:10.1016/j.jseaes.2016.12.014 |
Wang HYC, Chen HX, Zhang QWL, Shi MY, Yan QR, Hou QL, Zhang Q, Kusky T and Wu CM. 2017b. Tectonic mélange records the Silurian-Devonian subduction-metamorphic process of the southern Dunhuang terrane, southernmost Central Asian Orogenic Belt. Geology, 45(5): 427-430. DOI:10.1130/G38834.1 |
Wang HYC, Zhang QWL, Chen HX, Liu JH, Zhang HCG, Pham VT, Peng T and Wu CM. 2018a. Paleozoic subduction of the southern Dunhuang Orogenic Belt, northwest China: Metamorphism and geochronology of the Shuixiakou area. Geodinamica Acta, 30(1): 63-83. DOI:10.1080/09853111.2018.1427407 |
Wang HYC, Zhang QWL, Lu JS, Chen HX, Liu JH, Zhang HCG, Pham VT, Peng T and Wu CM. 2018b. Metamorphic evolution and geochronology of the tectonic mélange of the Dongbatu and Mogutai blocks, middle Dunhuang orogenic belt, northwestern China. Geosphere, 14: 883-906. DOI:10.1130/GES01514.1 |
Wang JM, Zhang JJ, Liu K, Zhang B, Wang XX, Rai SM and Scheltens M. 2016b. Spatial and temporal evolution of tectonometamorphic discontinuities in the central Himalaya: Constraints from P-T paths and geochronology. Tectonophysics, 679: 41-60. DOI:10.1016/j.tecto.2016.04.035 |
Wang JM, Wu FY, Rubatto D, Liu SR, Zhang JJ, Liu XC and Yang L. 2017c. Monazite behaviour during isothermal decompression in pelitic granulites: A case study from Dinggye, Tibetan Himalaya. Contributions to Mineralogy and Petrology, 172(10): 81. DOI:10.1007/s00410-017-1400-y |
Wang QH, Xu WL, Pei FP, Yang DB and Yu Y. 2009. Zr-in-rutile thermometry and geochemical characteristics of trace element in rutile from eclogite inclusions of Mesozoic intrusive complexes in Xuzhou-Huainan area. Acta Petrologica Sinica, 25(9): 2132-2140. |
Wang RM, Chen ZZ and Chen F. 1991. Grey tonalitic gneiss and high-pressure granulite inclusions in Hengshan, Shanxi Province, and their geological significance. Acta Petrologica Sinica, 7(4): 36-45. |
Wang RM, Lai XY, Dong WD, Ma J and Tang B. 1994. Some evidence of the late Archean collision zone in northwest Hebei province. In: Qian XL and Wang RM (eds. ). Geological Evolution of the Granulite Belt in North Part of North China Craton. Beijing: Seismological Press, 7-20 (in Chinese)
|
Wang W, Wei CJ, Liu XC, Zhao Y, Gao L, Lou YX, Chu H and Zhang YH. 2014. Modelling of melt composition and zircon behaviour during anatexis. Acta Petrologica Sinica, 30(10): 3075-3084. |
Wei CJ, Powell R and Zhang LF. 2003. Eclogites from the south Tianshan, NW China: Petrological characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O system. Journal of Metamorphic Geology, 21(2): 163-179. DOI:10.1046/j.1525-1314.2003.00435.x |
Wei CJ, Powell R and Clarke GL. 2004. Calculated phase equilibria for low-and medium-pressure metapelites in the KFMASH and KMnFMASH systems. Journal of Metamorphic Geology, 22(5): 495-508. DOI:10.1111/jmg.2004.22.issue-5 |
Wei CJ. 2012. Advance of metamorphic petrology during the first decade of the 21st century. Bulletin of Mineralogy, Petrology and Geochemistry, 31(5): 415-427. |
Wei CJ, Cui Y and Tian ZL. 2015. Metamorphic evolution of LT-UHP eclogite from the south Dabie orogen, central China: An insight from phase equilibria modeling. Journal of Asian Earth Sciences, 111: 966-980. DOI:10.1016/j.jseaes.2015.08.015 |
Wernert P, Schulmann K, Chopin F, Štípská P, Bosch D and El Houicha M. 2016. Tectonometamorphic evolution of an intracontinental orogeny inferred from P-T-t-d paths of the metapelites from the Rehamna massif (Morocco). Journal of Metamorphic Geology, 34(9): 917-940. DOI:10.1111/jmg.2016.34.issue-9 |
Wheeler J, Mangan LS and Prior DJ. 2004. Disequilibrium in the Ross of Mull contact metamorphic aureole, Scotland: A consequence of polymetamorphism. Journal of Petrology, 45(4): 835-853. DOI:10.1093/petrology/egg113 |
Wheeler J. 2014. Dramatic effects of stress on metamorphic reactions. Geology, 42(8): 647-650. DOI:10.1130/G35718.1 |
White RW and Powell R. 2011. On the interpretation of retrograde reaction textures in granulite facies rocks. Journal of Metamorphic Geology, 29(1): 131-149. DOI:10.1111/jmg.2010.29.issue-1 |
White S. 1996. Composition and zoning of garnet and plagioclase in Haast schist, Northwest Otago, New Zealand: Implications for progressive regional metamorphism. New Zealand Journal of Geology and Geophysics, 39(4): 515-531. DOI:10.1080/00288306.1996.9514730 |
Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187. DOI:10.2138/am.2010.3371 |
Whittington A, Harris N and Baker J. 1998. Low-pressure crustal anatexis: The significance of spinel and cordierite from metapelitic assemblages at Nanga Parbat, northern Parkistan. In: Treloar PJ and O'Brien PJ (eds. ). What Drives Metamorphism and Metamorphic Reactions? Geological Society, London, Special Publications, 138(1): 183-198
|
Wu CM, Pan YS and Wang KY. 1999. Refinement of the biotite-orthopyroxene geothermometer with applications. Acta Petrologica Sinica, 15(3): 463-468. |
Wu CM, Zhang J and Ren LD. 2004. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium-to high-grade metapelites. Journal of Petrology, 45(1): 1907-1921. |
Wu CM and Cheng BH. 2006. Valid garnet-biotite (GB) geothermometry and garnet-aluminum silicate-plagioclase-quartz (GASP) geobarometry in metapelitic rocks. Lithos, 89(1-2): 1-23. DOI:10.1016/j.lithos.2005.09.002 |
Wu CM and Zhao GC. 2006a. Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages. Journal of Petrology, 47(12): 2357-2368. DOI:10.1093/petrology/egl047 |
Wu CM and Zhao GC. 2006b. The applicability of the GRIPS geobarometry in metapelitic assemblages. Journal of Metamorphic Geology, 24(4): 297-307. DOI:10.1111/jmg.2006.24.issue-4 |
Wu CM and Zhao GC. 2007a. The metapelitic garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) geobarometer. Lithos, 97(3-4): 365-372. DOI:10.1016/j.lithos.2007.01.003 |
Wu CM and Zhao GC. 2007b. A recalibration of the garnet-olivine geothermometer and a new geobarometer for garnet peridotites and garnet-olivine-plagioclase-bearing granulites. Journal of Metamorphic Geology, 25(5): 497-505. DOI:10.1111/jmg.2007.25.issue-5 |
Wu CM, Xiao LL and Ni SQ. 2007. Main geothermometers and geobarometers in metapelites. Earth Science Frontiers, 14(1): 144-150. |
Wu CM. 2009. On the validity of the geobarometers in mantle rocks. Acta Petrologica Sinica, 25(9): 2089-2112. |
Wu CM and Zhao GC. 2011. The applicability of garnet-orthopyroxene geobarometry in mantle xenoliths. Lithos, 125(1-2): 1-9. DOI:10.1016/j.lithos.2011.02.018 |
Wu CM and Chen HX. 2013. Estimation of minimum or maximum pressure or temperature conditions in metamorphic rocks. Acta Petrologica Sinica, 29(5): 1499-1510. |
Wu CM, Lu JS and Wang GD. 2014. Determination of pressure-temperature conditions of retrograde symplectic assemblages in granulites and amphibolites. Global Journal of Earth Science and Engineering, 1(2): 71-83. DOI:10.15377/2409-5710.2014.01.02.3 |
Wu CM. 2015. Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. Journal of Metamorphic Geology, 33(2): 167-176. DOI:10.1111/jmg.12115 |
Wu CM and Chen HX. 2015a. Calibration of a Ti-in-muscovite geothermometer for ilmenite-and Al2SiO5-bearing metapelites. Lithos, 212-215: 122-127. DOI:10.1016/j.lithos.2014.11.008 |
Wu CM and Chen HX. 2015b. Revised Ti-in-biotite geothermometer for ilmenite-or rutile-bearing crustal metapelites. Science Bulletin, 60(1): 116-121. DOI:10.1007/s11434-014-0674-y |
Wu CM. 2017. Calibration of the garnet-biotite-Al2SiO5-quartz geobarometer for metapelites. Journal of Metamorphic Geology, 35(9): 983-998. DOI:10.1111/jmg.2017.35.issue-9 |
Wu ML, Zhao GC, Sun M, Yin CQ, Li SZ and Tam PY. 2012. Petrology and P-T path of the Yishui mafic granulites: Implications for tectonothermal evolution of the western Shandong Complex in the Eastern Block of the North China Craton. Precambrian Research, 222-223: 312-324. DOI:10.1016/j.precamres.2011.08.008 |
Wu YB, Gao S, Zhang HF, Yang SH, Jiao WF, Liu YS and Yuan HL. 2008a. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China: Evidence from zircon U-Pb age, trace element and Hf isotope composition. Contributions to Mineralogy and Petrology, 155(1): 123-133. |
Wu YB, Zheng YF, Gao S, Jiao WF and Liu YS. 2008b. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101(3-4): 308-322. DOI:10.1016/j.lithos.2007.07.008 |
Xiao LL, Wu CM, Zhao GC, Guo JH and Ren LD. 2011. Metamorphic P-T paths of the Zanhuang amphibolites and metapelites: Constraints on the tectonic evolution of the Paleoproterozoic Trans-North China Orogen. International Journal of Earth Sciences, 100(4): 717-739. DOI:10.1007/s00531-010-0522-5 |
Xiao LL, Jiang ZS, Wang GD, Wan YS, Wang T and Wu CM. 2011. Metamorphic reaction textures and metamorphic P-T-t loops of the Precambrian Zanhuang metamorphic complex, Hebei, North China. Acta Petrologica Sinica, 27(4): 980-1002. |
Xu ST, Su W, Liu YC, Jiang LL, Ji SY, Okay AI and Sengär AMC. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256(5053): 80-82. DOI:10.1126/science.256.5053.80 |
Xu W, Liu X, Wang Q, Lin J and Wang D. 2004. Garnet exsolution in garnet clinopyroxenite and clinopyroxenite xenoliths in Early Cretaceous intrusions from the Xuzhou region, eastern China. Mineralogical Magazine, 68(3): 443-453. DOI:10.1180/0026461046830198 |
Xu YG, Lin CY, Shi LB, Mercier JCC and Ross JV. 1995. Upper mantle geotherm for eastern China and its geological implications. Science in China (Series B), 38(13): 1482-1492. |
Yakymchuk C, Kirkl CL and Clark C. 2018. Th/U ratios in metamorphic zircon. Journal of Metamorphic Geology. DOI:10.1111/jmg.12307 |
Yang C and Wei CJ. 2017. Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: Records from mafic granulites. Precambrian Research, 301: 49-64. DOI:10.1016/j.precamres.2017.09.005 |
Yang JJ and Jahn BM. 2000. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. Journal of Metamorphic Geology, 18(2): 167-180. DOI:10.1046/j.1525-1314.2000.00249.x |
Yang JJ and Powell R. 2006. Calculated phase relations in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with applications to UHP eclogites and whiteschists. Journal of Petrology, 47(10): 2047-2071. DOI:10.1093/petrology/egl036 |
Ye K, Yao YP, Katayama I, Cong BL, Wang QC and Maruyama S. 2000a. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: New implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 52(1-4): 157-164. DOI:10.1016/S0024-4937(99)00089-4 |
Ye K, Cong BL and Ye DN. 2000b. The possible subduction of continental material to depths greater than 200km. Nature, 407(6805): 734-736. DOI:10.1038/35037566 |
Ying JF, Zhang HF and Tang YJ. 2010. Lower crustal xenoliths from Junan, Shandong Province and their bearing on the nature of the lower crust beneath the North China Craton. Lithos, 119(3-4): 363-376. DOI:10.1016/j.lithos.2010.07.015 |
Yoshino T, Yamamoto H, Okudaira T and Oriumi M. 1998. Crustal thickening of the lower crust of the Kohistan arc (N.Pakistan) deduced from Al zoning in clinopyroxene and plagioclase. Journal of Metamorphic Geology, 16(6): 729-748. DOI:10.1111/j.1525-1314.1998.00168.x |
You ZD, Han YJ, Suo ST, Chen NS and Zhong ZQ. 1993. Metamorphic history and tectonic evolution of the Qinling Complex, eastern Qinling Mountains, China. Journal of Metamorphic Geology, 11(4): 549-560. DOI:10.1111/jmg.1993.11.issue-4 |
You ZD. 1996. Porphyroblast inclusion microstructures: A new way to interpret metamorphic deformational history. Geological Science and Technology Information, 15(4): 45-50. |
Yu HL, Zhang LF, Wei CJ, Li XL and Guo JH. 2017. Age and P-T conditions of the Gridino-type eclogite in the Belomorian Province, Russia. Journal of Metamorphic Geology, 35(8): 855-869. DOI:10.1111/jmg.2017.35.issue-8 |
Zeng LS, Liu J, Gao LE, Xie KJ and Wen L. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(1): 104-112. DOI:10.1007/s11434-008-0362-x |
Zenk M and Schulz B. 2004. Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine, 68(5): 769-786. DOI:10.1180/0026461046850218 |
Zhai MG, Guo JH, Yan YH, Han XL and Li YG. 1992. Discovery and preliminary study of Archean high-pressure mafic granulite in North China. Science in China (Series B), 22(12): 1325-1330. |
Zhai MG, Guo JH, Yan YH, Li YG and Han XL. 1993. Discovery of high-pressure basic granulite terrain in North China Archaean Craton and preliminary study. Science in China (Chemistry), 36(11): 1402-1408. |
Zhang J, Zhao GC, Li SZ, Sun M, Wilde SA, Liu SW and Yin CQ. 2009. Polyphase deformation of the Fuping complex, Trans-North China Orogen: Structures, SHRIMP U-Pb zircon ages and tectonic implications. Journal of Structural Geology, 31(2): 177-193. DOI:10.1016/j.jsg.2008.11.008 |
Zhang J, Zhao GC, Li SZ, Sun M, Chan LS, Shen WL and Liu SW. 2012. Structural pattern of the Wutai Complex and its constraints on the tectonic framework of the Trans-North China Orogen. Precambrian Research, 222-223: 212-229. DOI:10.1016/j.precamres.2011.08.009 |
Zhang JF, Xu HJ, Liu Q, Green Ⅱ HW and Dobrzhinetskaya LF. 2011. Pyroxene exsolution topotaxy in majoritic garnet from 250 to 300 km depth. Journal of Metamorphic Geology, 29(7): 741-751. DOI:10.1111/j.1525-1314.2011.00939.x |
Zhang JX, Meng FC, Yu SY and Qi XX. 2007. Metamorphic history recorded in high pressure mafic granulites in the Luliangshan Mountains to the north of Qaidam Basin, Northwest China: Evidence from petrology and zircon SHRIMP geochronology. Earth Science Frontiers, 14(1): 85-97. |
Zhang JX, Yu SY and Meng FC. 2011. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt. Acta Petrologica Sinica, 27(4): 1179-1190. |
Zhang LF, Song SG, Liou JG, Ai YL and Li XP. 2005. Relict coesite exsolution in omphacite from Western Tianshan eclogites, China. American Mineralogist, 90(1): 181-186. DOI:10.2138/am.2005.1587 |
Zhang LJ, Chu C, Zhang LF and Du JX. 2017. Phase equilibria modelling using major and trace element compositions of zoned garnet and clinopyroxene from southwestern Tianshan eclogites, China. Journal of Asian Earth Sciences, 145: 408-423. DOI:10.1016/j.jseaes.2017.05.002 |
Zhang YH, Wei CJ, Tian W and Zhou XW. 2013. Reinterpretation of metamorphic age of the Hengshan Complex, North China Craton. Chinese Science Bulletin, 58(34): 4300-4307. DOI:10.1007/s11434-013-5993-x |
Zhang ZM, Yang Y and Zhang JX. 1999. Chemical zoning of garnet in eclogites and its dynamics in the west Altyn. Chinese Science Bulletin, 44(16): 1769-1773. |
Zhao GC, Cawood P and Lu LZ. 1999. Petrology and P-T history of the Wutai amphibolites: Implications for tectonic evolution of the Wutai Complex, China. Precambrian Research, 93(2-3): 181-199. DOI:10.1016/S0301-9268(98)00090-4 |
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 2000. Petrology and P-T path of the Fuping mafic granulites: Implications for tectonic evolution of the central zone of the North China Craton. Journal of Metamorphic Geology, 18(4): 375-391. |
Zhao GC, Cawood PA, Wilde SA and Lu LZ. 2001. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. Journal of Petrology, 42(6): 1141-1170. DOI:10.1093/petrology/42.6.1141 |
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792. |
Zhao GC, Wilde SA, Guo JH, Cawood PA, Sun M and Li XP. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research, 177(3-4): 266-276. DOI:10.1016/j.precamres.2009.12.007 |
Zhao Y, Liu XH, Liu XC and Song B. 2003. Pan-African events in Prydz Bay, East Antarctica, and their implications for East Gondwana tectonics. In: Yoshida M, Windley BE and Dasgupta S (eds. ). Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 231-245
|
Zheng JP and Lu FX. 1999. Mantle xenoliths from kimberlites, Shandong and Liaoning: Paleozoic mantle character and its heterogeneity. Acta Petrologica Sinica, 15(1): 65-74. |
Zhou XW, Zhao GC and Geng YS. 2010. Helanshan high pressure pelitic granulite: Petrologic evidence for collision event in the western block of the North China Craton. Acta Petrologica Sinica, 26(7): 2113-2121. |
Zwart HJ. 1962. On the determination of polymetamorphic mineral associations, and its application to the Bosost area (Central Pyrenees). Geologische Rundschau, 52(1): 38-65. DOI:10.1007/BF01840064 |
曹汇, 许志琴, 李化启, 蔡志慧, 许翠萍. 2013. 复杂变质带褶皱形态判定新方法——变斑晶包裹物迹线应用研究. 岩石矿物学杂志, 32(5): 751-760. |
陈曼云. 1990. 高级变质区变基性岩脉群的研究——以太平寨-金厂峪地区为例. 地质学报, 64(2): 157-169. |
陈能松. 1990. 豫西蛇尾秦岭群P-T轨迹定量计算及其地质意义. 地球科学—中国地质大学学报, 15(2): 145-155. |
陈能松, 王人镜, 单文琅, 钟增球. 1994. 密云杂岩西段等压冷却P-T-t轨迹确定及地球动力学成因. 地质科学, 29(4): 355-365. |
陈意, 叶凯, 吴春明. 2005. 榴辉岩常用温压计在应用中应注意的问题. 岩石学报, 21(4): 1067-1080. |
程裕淇, 万渝生, 高吉凤, 马瑞. 2000. 河北平山小觉地区新太古代阜平岩群中变质岩所显示深熔改造的一些岩相学特征——介绍一组显示深熔特征的显微镜照片. 中国地质, 27(12): 14-16. DOI:10.3969/j.issn.1000-3657.2000.12.005 |
葛文春, 孙德有, 吴福元, 林强. 1994. 吉林桦甸地区太古宙麻粒岩变质作用的PTt轨迹. 岩石矿物学杂志, 13(4): 309-318. |
贺高品, 叶慧文, 夏胜利. 1994. 北京密云麻粒岩相区变质作用演化及PTt轨迹的研究. 岩石学报, 10(1): 14-26. |
姜文波, 张立飞. 2001. 利用钠质角闪石成分环带计算蓝片岩的PTt轨迹——以新疆阿克苏前寒武纪蓝片岩为例. 岩石学报, 17(3): 469-475. |
蒋宗胜, 王国栋, 肖玲玲, 第五春荣, 卢俊生, 吴春明. 2011. 河南洛宁太华变质杂岩区早元古代变质作用P-T-t轨迹及其大地构造意义. 岩石学报, 27(12): 3701-3717. |
金巍, 李树勋, 刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 7(4): 27-35. |
李江海, 翟明国, 李永刚, 张毅刚. 1998. 冀北滦平-承德一带晚太古代高压麻粒岩的发现及其构造地质意义. 岩石学报, 14(1): 34-41. |
李继磊, 高俊, 王信水. 2017. 西南天山洋壳高压-超高压变质岩石的俯冲隧道折返机制. 中国科学(地球科学), 47(1): 23-39. |
林传勇, 史兰斌, 陈孝德, 张小鸥, 徐义刚, Mercier JCC, Ross JV. 1995. 浙江新昌石榴石二辉橄榄岩包体的流变特征及其地质意义. 岩石学报, 11(1): 55-64. |
刘福来. 1994. 内蒙古卓资孔兹岩系中石榴石成分环带及其在温压估算中的应用. 长春地质学院学报, 24(3): 259-264. |
刘福来. 1998. 蔓箐沟一带石榴基性麻粒岩变质反应与矿物演化. 长春科技大学学报, 28(1): 16-22. |
刘若新, 樊祺诚, 孙建中. 1985. 中国几个地方的石榴石二辉橄榄岩捕虏体研究. 岩石学报, 1(4): 24-33. |
刘树文, 林强, 曹林. 1991. 冀东角闪石成分环带记录的P-T-t轨迹. 长春地质学院学报, 21(2): 129-142. |
刘树文. 1996. 阜平地区麻粒岩的P-T路径研究. 高校地质学报, 2(1): 75-84. |
刘树文, 张进江, 郑亚东. 1998. 小秦岭变质核杂岩同变形期的P-T路径. 科学通报, 43(3): 312-318. |
卢俊生, 王国栋, 王浩, 陈泓旭, 吴春明. 2014. 河南鲁山太华变质杂岩前寒武纪变质作用. 岩石学报, 30(10): 3062-3074. |
吕古贤, 陈晶, 李晓波, 刘瑞珣. 1998. 构造附加静水压力研究与含柯石英榴辉岩成岩深度测算. 科学通报, 43(24): 2590-2602. DOI:10.3321/j.issn:0023-074X.1998.24.003 |
吕古贤, 胡宝群, 罗毅甜, 刘瑞珣, 王方正, 李勃辉, 王宗永. 2017. 地壳深部"重力-构造力复合压力状态"研究和大别-苏鲁超高压变质形成深度的测算. 地学前缘, 24(2): 1-15. |
马军, 王仁民. 1994. 石榴子石-辉石温度计、压力计综述及应用: 密云(遵化)、宣化两地麻粒岩形成条件对比. 见: 钱祥麟, 王仁民编. 华北北部麻粒岩带地质演化. 北京: 地震出版社, 71-78
|
彭涛, 王浩, 陈泓旭, 孟洁, 卢俊生, 王国栋, 吴春明. 2014. 甘肃敦煌观音沟地区变质作用初步研究. 岩石学报, 30(2): 503-511. |
任留东, 王彦斌, 刘晓春, 赵越. 2008. 南极拉斯曼丘陵长英质片麻岩中夕线石的出溶现象. 岩石矿物学杂志, 27(6): 524-528. |
沈其韩. 2009. 推荐一个系统的矿物缩写表. 岩石矿物学杂志, 28(5): 495-500. |
石永红, 王娟, 李秋立, 林伟. 2013. 大别造山带变质岩温度压力结构研究. 科学通报, 58(22): 2145-2152. |
石永红, 曹晟, 王娟, 聂峰, 康涛. 2014. 北淮阳变质单元岩石学、年代学分析及对大别造山带构造缝合线位置的探究. 地质科学, 49(2): 378-393. |
隋建立, 樊祺诚, 徐义刚. 2012. 大兴安岭诺敏河石榴石橄榄岩捕虏体的发现及其地质意义. 岩石学报, 28(4): 1130-1138. |
孙德有, 林强, 吴福元, 葛文春. 1998. 吉林南部太古宙TTG岩类的深熔作用及深熔熔体的分凝聚集. 辽宁地质, (1): 20-27. |
孙敏, 关鸿. 2001. 阜平杂岩年龄及其地质意义:兼论前寒武高级变质地体的定年问题. 岩石学报, 17(1): 145-156. |
王国栋, 王浩, 陈泓旭, 卢俊生, 肖玲玲, 吴春明. 2012. 华北中部造山带南缘华山地区太华变质杂岩中锆石U-Pb定年. 地质学报, 86(9): 1541-1551. |
王国栋, 卢俊生, 王浩, 陈泓旭, 肖玲玲, 第五春荣, 季建清, 吴春明. 2013. 华山太华变质杂岩中LA-ICP-MS锆石U-Pb定年及角闪石40Ar/39Ar定年. 岩石学报, 29(9): 3099-3114. |
王清海, 许文良, 裴福萍, 杨德彬, 于洋. 2009. 金红石中锆含量温度计及其微量元素地球化学特征——来自徐淮地区中生代侵入杂岩中榴辉岩类包体的信息. 岩石学报, 25(9): 2132-2140. |
王仁民, 陈珍珍, 陈飞. 1991. 恒山灰色片麻岩和高压麻粒岩包体及其地质意义. 岩石学报, 7(4): 36-45. |
王仁民, 赖兴运, 董卫东, 马军, 唐滨. 1994. 冀西北晚太古宙碰撞带的一些证据. 见: 钱祥麟, 王仁民编. 华北北部麻粒岩带地质演化. 北京: 地震出版社, 7-20
|
王伟, 魏春景, 刘晓春, 赵越, 高亮, 娄玉行, 初航, 张颖慧. 2014. 深熔过程中熔体成分与锆石行为模拟计算. 岩石学报, 30(10): 3075-3084. |
魏春景. 2012. 21世纪最初十年变质岩石学研究进展. 矿物岩石地球化学通报, 31(5): 415-427. |
吴春明, 潘裕生, 王凯怡. 1999. 黑云母-斜方辉石温度计的重新标度及其应用. 岩石学报, 15(3): 463-468. |
吴春明, 肖玲玲, 倪善芹. 2007. 泥质变质岩系主要的矿物温度计与压力计. 地学前缘, 14(1): 144-150. |
吴春明. 2009. 地幔岩矿物压力计评述. 岩石学报, 25(9): 2089-2112. |
吴春明, 陈泓旭. 2013. 变质作用温度与压力极限值的估算方法. 岩石学报, 29(5): 1499-1510. |
肖玲玲, 蒋宗胜, 王国栋, 万渝生, 王涛, 吴春明. 2011. 赞皇前寒武纪变质杂岩区变质反应结构与变质作用P-T-t轨迹. 岩石学报, 27(4): 980-1002. |
徐义刚, 林传勇, 史兰斌, Mercier JCC, Ross JV. 1995. 中国东部上地幔地温线及其地质意义. 中国科学(B辑), 25(8): 874-881. |
游振东. 1996. 利用变斑晶中包裹物结构型式研究变质变形史的新方法. 地质科技情报, 15(4): 45-50. |
曾令森, 刘静, 高利娥, 谢克家, 文力. 2009. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 54(3): 373-381. |
翟明国, 郭敬辉, 阎月华, 韩秀伶, 李永刚. 1992. 中国华北太古宙高压基性麻粒岩的发现及初步研究. 中国科学(B辑), 22(12): 1325-1330. |
张建新, 孟繁聪, 于胜尧, 戚学祥. 2007. 柴北缘绿梁山高压基性麻粒岩的变质演化历史:岩石学及锆石SHRIMP年代学证据. 地学前缘, 14(1): 85-97. |
张建新, 于胜尧, 孟繁聪. 2011. 北秦岭造山带的早古生代多期变质作用. 岩石学报, 27(4): 1179-1190. |
张泽明, 杨勇, 张建新. 1999. 阿尔金西段榴辉岩中石榴石的成分环带及其动力学意义. 科学通报, 44(16): 1769-1773. DOI:10.3321/j.issn:0023-074X.1999.16.019 |
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792. |
郑建平, 路凤香. 1999. 胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性. 岩石学报, 15(1): 65-74. |
周喜文, 赵国春, 耿元生. 2010. 贺兰山高压泥质麻粒岩——华北克拉通西部陆块拼合的岩石学证据. 岩石学报, 26(7): 2113-2121. |