在洋壳俯冲过程中,常伴随着俯冲板片的脱水及部分熔融作用(Peacock, 1993; Spandler and Pirard, 2013),同时交代上覆地幔楔诱发岛弧岩浆作用(Tatsumi and Eggins, 1995; Schmidt and Poli, 1998)。对于大陆俯冲带,由于俯冲陆壳板片具有相对较为干冷的性质,现有研究尚未发现有俯冲阶段部分熔融作用的证据。而天然样品(Wallis et al., 2005; Liu et al., 2010, 2012; Sawyer, 2010; Zong et al., 2010b; Labrousse et al., 2011; Zheng et al., 2011; Chen et al., 2013a, b; Xu et al., 2013; 续海金等, 2013; Song et al., 2014a, b; Wang et al., 2014)及实验岩石学研究(Hermann and Green, 2001, Hermann, 2002; Schmidt et al., 2004; Auzanneau et al., 2006; Liu et al., 2011; Zhang et al., 2015及其中的参考文献)表明,深俯冲陆壳在峰期变质及折返过程中,一些含水矿物(如多硅白云母)可发生脱水分解,并诱发俯冲板片发生部分熔融作用,形成花岗质熔体(Zheng et al., 2014)。产生的熔流体同时会交代上覆地幔楔,形成镁铁质到超镁铁质地幔交代体(Malaspina et al., 2009; Zheng, 2012),这些交代体可在地幔楔中储存数百万年甚至更久,受热后部分熔融形成同折返碱性岩浆作用(Zhao et al., 2012; Xu et al., 2016)或后碰撞镁铁质岩浆作用(Dai et al., 2011, 2012; Zhao et al., 2011, 2013)。
俯冲折返的大陆地壳部分熔融产生的熔体,可改变俯冲板片的流变性质,加速板片的折返(Hermann et al., 2001; Labrousse et al., 2011),同时与地幔楔发生广泛的壳幔相互作用(Zhao et al., 2015; Xu et al., 2016),这些都显著影响了大陆俯冲碰撞造山带的构造格局(Zheng, 2012; Zheng et al., 2013)。因此,俯冲带部分熔融作用的研究,对于发展俯冲隧道模型及完善板块构造理论有着深刻的科学意义。实验岩石学方面,对泥质岩(Schmidt et al., 2004; Hermann and Spandler, 2008)、杂砂岩(Patiño Douce and Beard, 1996; Schmidt et al., 2004; Auzanneau et al., 2006)、KCMASH体系(Hermann and Green, 2001; Hermann, 2002)、中酸性岩浆岩(Patiño Douce, 2005)和下地壳榴辉岩(Liu et al., 2009)等多种组分的壳源物质,均有高温高压部分熔融实验模拟的报导,这些研究的温压条件主要集中在1.5~5GPa和600~1100℃。上述研究证明,地壳中不同类型岩石的部分熔融,均会产生长英质熔体;高温条件下含水矿物(如多硅白云母)的分解,则是诱发熔体产生的主要因素。在含水矿物分解所主导的部分熔融作用中,所产生的熔体具有弱过铝质、富钾高硅的特点(Schmidt et al., 2004)。而在>2GPa条件下,熔融反应通常会生成石榴子石赋存在残余体中,因而使得熔体具有相对亏损HREE的特点。Auzanneau et al. (2006)通过对变质杂砂岩体系部分熔融的实验,发现在2.5~2.3GPa和800~900℃的温压条件下,随着压力降低熔体比例会迅速增加,熔体产生的同时会生成斜长石及黑云母的共生矿物组合,由此证实了在俯冲陆壳榴辉岩相到角闪岩相减压退变质过程中发生了显著的部分熔融作用。在岩相学上超高压岩石中发现的黑云母与斜长石交互共生生成的多硅白云母假象(Gilotti and Ravna, 2002; Groppo et al., 2010),也证明了这一点。
对于不同超高压变质地体,其不同的俯冲折返P-T轨迹是制约部分熔融作用的最大因素,一些超高压地体的P-T轨迹(Schertl et al., 1991; Zhang et al., 1995; Carswell et al., 1997; Wu and Wang, 2018)始终在实验岩石学标定的多硅白云母稳定域内(T<700~750℃)(Hermann, 2002; Hermann et al., 2006),因而并未发现部分熔融现象。已有研究表明,苏鲁超高压地体尤其北部威海地区经历了降压升温的折返过程(Wang et al., 1993; Banno et al., 2000; Zong et al., 2010b; Xu et al., 2013),温度可达到>800℃,已明显超过多硅白云母的稳定域,因而发生了明显的部分熔融作用。苏鲁超高压地体峰期变质年龄主要集中在236~227Ma之间(Liu et al., 2004a, b, 2006c; Tang et al., 2008; Zheng, 2008),部分熔融发生的时代为228~215 Ma(Wallis et al., 2005; Liu et al., 2010, 2012; Xu et al., 2012, 2013; Chen et al., 2013a, b; 续海金等, 2013; Li et al., 2016)。越来越多的研究表明,部分熔融作用可追溯至超高压地体折返之初或早期。例如,Chen et al. (2013b)在苏鲁东海花岗质片麻岩深熔锆石中找到柯石英包裹体,认为部分熔融发生在折返之初的超高压榴辉岩相阶段;Wang et al. (2014)同样也在苏鲁仰口地区UHP榴辉岩中发现了钾长石+石英的填隙矿物组合以及钾长石脉体等指示部分熔融现象的指标,认为部分熔融发生在高压榴辉岩相阶段;Xu et al.(2012, 2013)通过对苏鲁混合岩的研究,认为部分熔融发生在折返早期的高压榴辉岩相-麻粒岩相阶段,同时通过锆石Ti温度计得到了最高850℃的熔体结晶温度,认为部分熔融温度下限应高于850℃;Li et al. (2016)在苏鲁地区识别出了两阶段的部分熔融现象,并将早期表层变沉积岩熔融限定在230~227Ma的超高压榴辉岩相阶段,而后期变花岗岩的熔融则发生于折返阶段800~850℃、1.0~1.5GPa麻粒岩相变质阶段。总而言之,对于苏鲁地区俯冲板片部分熔融的时代及温压条件已有较多研究。而如何厘定深俯冲陆壳部分熔融产生的初始熔体,也即未发生结晶分异的熔体成分,却是一直面临的难题。宏观尺度上长英质脉体普遍经历了熔体的迁移汇聚以及结晶分异过程,无法直接代表源岩熔融形成的熔体;而微观尺度上观察到的部分熔融现象以及熔体包裹体则可反应出初始熔体的特征。例如,Chen et al. (2013b)在苏鲁仰口等地区花岗质片麻岩中显微尺度上发现了诸如矿物颗粒边界和三联点处填充的尖锐长石颗粒,钾长石+石英构成的长英质脉体、串珠状构造等多种指示部分熔融作用的现象(Sawyer, 1999),可反映出初始熔体富钾高硅的特征,Zeng et al. (2009)和Liu et al. (2012)通过对大别-苏鲁超高压榴辉岩中的多相矿物包裹体研究,认为初始熔体主要由钾长石+斜长石+石英组成,但微观尺度上矿物的相对含量和其他组分,以及初始熔体的化学组成却无法确定。
在苏鲁超高压地体中,不仅出露超高压榴辉岩,而且广泛发育深俯冲陆壳部分熔融形成的混合岩(Wallis et al., 2005; Liu et al., 2012; Chen et al., 2013b; Xu et al., 2013; Li et al., 2014; Song et al., 2014a)。从混合岩中识别出的熔体主要有三种类型:(1)富斜长石的浅色条带(主要矿物组成为斜长石+石英±钾长石),与暗色条带呈互层产出(Xu et al., 2013);(2)富钾长石的伟晶岩脉(主要矿物组成为钾长石+石英±斜长石),呈脉状或团块状产出(Liu et al., 2010; Xu et al., 2013; Song et al., 2014a);(3)富钾长石的浅色条带(主要矿物组成为钾长石+斜长石+石英),与暗色条带呈互层产出(Song et al., 2014a)。究竟那种熔体更能代表初始熔体组成,却长期存在争议。本文以苏鲁超高压地体中荣成混合岩中浅色体条带为研究对象,通过详细的野外研究,结合岩相学观察,以及浅色体主微量元素,锆石CL图像、U-Pb定年和微量元素分析等方法,识别出了深俯冲陆壳部分熔融形成的初始熔体,并厘定了其矿物组成和化学成分。
1 地质背景及样品采集苏鲁变质带位于中国东部,是秦岭-桐柏-红安-大别-苏鲁造山带的东段,整体呈近北东-南西向分布。北以五莲-青岛-烟台断裂为界与华北克拉通相邻,南以嘉山-响水断裂为界与扬子板块相连,西以郯庐断裂带为界(图 1a)。该变质带为三叠纪扬子板块俯冲至华北板块之下形成,之后又被中生代左行走滑的郯庐断裂带错开约500km,形成了现今的构造格局。它包含有西南部小部分高压地体以及北部大面积超高压地体两部分(Xu et al., 2006)(图 1b)。在北部超高压变质带中,岩性以正副片麻岩(Liu et al., 2004a, b, 2012; Wallis et al., 2005; Zong et al., 2010b)为主,夹有少量的榴辉岩(Zhang and Liou, 1997; Zhao et al., 2005; Wu and Wang, 2018)、大理岩(Liu et al., 2006a; Tang et al., 2006)、橄榄岩(Zhang et al., 2005a; Zheng et al., 2006)及石英岩(Frezzotti et al., 2007; Chen et al., 2013a)。榴辉岩中柯石英的发现(Hirajima et al., 1990; Wang et al., 1993)证明其俯冲深度至少曾达到了80km并经历了超高压变质作用。之后又陆续在片麻岩锆石中发现了柯石英包裹体(Ye et al., 2000; Liu et al., 2010),进一步证明了超高压变质的榴辉岩与其围岩片麻岩均经历了超高压变质作用。
![]() |
图 1 苏鲁地区地质简图(据Liu et al., 2010; Xu et al., 2013修改) JXF-嘉山-响水断裂;WQF-五莲-青岛断裂;QYF-青岛-烟台断裂;MF-米山断裂 Fig. 1 Geological sketch map of Sulu terrane in eastern China (modified after Liu et al., 2010; Xu et al., 2013) JXF-Jiashan-Xiangshui Fault; WQF-Wulian-Qingdao Fault; QYF-Qingdao-Yantai Fault; MF-Mishan Fault |
在扬子板块深俯冲折返的过程中,苏鲁超高压地体先后经历了超高压榴辉岩相进变质、麻粒岩相变质叠加以及角闪岩相退变质几个过程。利用不同矿物对温度压力计的计算,研究认为榴辉岩相峰期变质的温压条件约在2.8~4GPa、660~800℃(Wang et al., 1993; Ebanu and Nagasaki, 1999; Banno et al., 2000; Nakamura and Hirajima, 2000; Zhang et al., 2005b, 2009a),同时对含柯石英包裹体的锆石年代学研究将峰期变质的年龄限定在236~227Ma之间(Liu et al., 2004a, b, 2006b; Tang et al., 2008; Zheng, 2008; Liu and Liou, 2011)。俯冲至最大深度后,由于早期俯冲洋壳板片的断离以及俯冲陆壳浮力较大等原因,陆壳板片整体开始发生折返(Zheng, 2012)。Wang et al. (1993)、Banno et al. (2000)以及Nakamura and Hirajima (2000)等通过对苏鲁地区北部威海地区麻粒岩相叠加的榴辉岩的研究认为,麻粒岩相叠加的温压条件约为700~850℃、1~2GPa,早期折返速率最大可达17mm/y(Zhang et al., 2009b),折返初期从榴辉岩相超高压变质到麻粒岩相变质叠加阶段,经历了一个降压升温的过程,部分熔融也即发生在此阶段。随着板片的折返,温度及压力条件均逐渐降低,由麻粒岩相的高温叠加向角闪岩相退变质开始转变。Liu et al. (2010)通过苏鲁地区伟晶岩脉中岩浆锆石边部年龄的研究认为角闪岩相退变质过程发生在200Ma左右,而温压条件约在530~770℃之间(Xu et al., 2012)。在整个苏鲁地区,麻粒岩相及角闪岩相退变质现象广泛发育,使得超高压变质的证据保存较少。
在本文所研究的苏鲁超高压地体北部威海地区,混合岩化现象极为发育(Liu et al., 2010; Xu et al., 2013; 续海金等, 2013; Song et al., 2014a),在花岗质片麻岩的原岩之中,多发育有混合岩化顺层产出的浅色熔体的顺层条带以及切穿片麻理的长英质脉体。现有研究已对部分熔融混合岩化形成时代、温压条件(Liu et al., 2010; Xu et al., 2012; 续海金等, 2013, Li et al., 2014)以及熔体的运移、分离结晶(Xu et al., 2013; Song et al., 2014a, b; Xu and Zhang, 2018)等问题作出了详细的研究,然而熔融形成的初始熔体成分尚未有明确报导。对此科学问题,本文选取了威海荣成地区崂山镇(GPS坐标:37°05.941′N、122°25.971′E)混合岩进行了研究。所采集样品浅色体及暗色体呈明显的互层状产出(图 2a, b),其中,浅色体条带宽度一般数毫米至数厘米,其主要矿物组合为斜长石+钾长石+石英,可见少量残余体暗色矿物组分如黑云母和角闪石,其中斜长石自形程度较好,为最早结晶,钾长石及石英多呈半自形-他形填充在斜长石之间(图 2c),局部可见钾长石熔蚀斜长石呈港湾状(图 2d);暗色体条带宽度为毫米到厘米级,其主要矿物组合为斜长石+石英+角闪石+黑云母,副矿物可见榍石、锆石、独居石及磁铁矿(图 2e, f)。相对含量上,浅色体约占混合岩全岩的10%~30%,该比例的熔体含量可明显的改变俯冲板片的流变性质(Rosenberg and Handy, 2005; Wang et al., 2016),进而加速板片的折返。
![]() |
图 2 崂山镇混合岩野外(a、b)及浅色体(c、d)和暗色残余体(e、f)镜下特征 矿物缩写:Qtz-石英;Pl-斜长石;Kfs-钾长石;Amp-角闪石;Bt-黑云母;Ttn-榍石;Zrn-锆石;Mnz-独居石;Mt-磁铁矿 Fig. 2 The field features (a, b) of migmatites and photomicrographs of leucosome (c, d) and restite (e, f) in Laoshan town Abbreviation: Qtz-quartz; Pl-plagioclase; Kfs-K-feldspar; Amp-amphibole; Bt-biotite; Ttn-titanite; Zrn-zircon; Mnz-monazite; Mt-magnetite |
利用细砂轮将混合岩中浅色熔体部分仔细挑选出来,将其粉碎研磨后进行淘洗和重磁分选,分离出重矿物,然后在双目镜下挑选出晶形较好、相对透明的锆石颗粒,置于环氧树脂中,并将其抛光直至锆石内部结构暴露,制成锆石靶。
锆石的CL图像拍摄在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,采用的仪器为Gatan MonoCL4+阴极荧光谱仪,将其组装在FEI Quanta 450 FEG扫描电镜中使用,工作电压为10kV,通过CL图像可揭示出锆石内部结构,以便于对其进行原位定年及微量元素分析。
2.2 锆石U-Pb同位素定年及微量元素分析锆石U-Pb同位素定年及微量元素的测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室通过LA-ICP-MS同时完成,激光剥蚀系统为GeoLas2005,Agilent 7500a作为ICP-MS仪器来获得离子信号。所采用激光束斑设定为32μm;激光剥蚀过程中采用氦气作为载气,氩气作为补偿气,二者在进入ICP之前通过一个T型接头混合,同时在中心气流中加入少量氮气,以此来降低检测限,提高分辨率及灵敏度(Hu et al., 2008)。为保证获得最高208Pb灵敏度,以及保持较低的ThO/Th比值,载气和补偿气需首先剥蚀NIST 610。之后对于每个点的分析,包括有大约20~30s的空白信号及50s的样品信号。对分析数据的离线处理(对样品和空白信号的选择、仪器灵敏度的漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal(Liu et al., 2008)进行。
锆石91500在U-Pb年龄测试中作为外标进行同位素分馏校正。每6个样品进行两次91500的分析。对于与分析时间有关的U-Th-Pb同位素比值漂移,通过91500的变化对每6个分析采用线性内插法来进行了校正(2次锆石标准91500+6次样品分析+2次锆石标准91500)(Liu et al., 2008)。锆石标准91500的U-Th-Pb同位素比值推荐值据Wiedenbeck et al. (1995),标准样品年龄均在推荐范围值内。锆石U-Pb年龄的谐和图及年龄的加权平均计算均采用Isoplot/Ex_ver3(Ludwig, 2003)完成。锆石同位素定年数据见表 1,误差为1σ;微量元素数据见表 2。
![]() |
表 1 崂山镇混合岩浅色体条带的锆石LA-ICP-MS U-Pb同位素数据 Table 1 LA-ICP-MS zircon U-Pb isotope data from leucosome of migmatite in the Laoshan town |
![]() |
表 2 崂山镇混合岩浅色体条带的锆石微量元素及稀土元素含量(×10-6) Table 2 LA-ICP-MS trace element compositions of zircons from leucosome of migmatite in the Laoshan town (×10-6) |
利用细砂轮将混合岩中浅色熔体部分仔细挑选出来,将其研磨至小于200目粉末来进行主、微量元素的测试。主量元素测试分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室通过X射线荧光光谱法完成,分析过程概述如下:首先测定样品烧失量,然后将0.5g全岩粉末以及5g优级纯Li2B4O7/LiBO2(Li2B4O7:LiBO2=12:22)混合溶剂混合均匀并加入少许LiBr,在熔样炉中熔融并倒入模具制成玻璃片进行测试;所用测试仪器为Shimadzu XRF-1800顺序扫描型X射线荧光光谱仪,详细分析测试方法见Ma et al. (2012)。主量元素氧化物测试精度好于4%,准确度好于3%。
微量元素测试分析在中国科学院贵阳地化所矿床地球化学国家重点实验室完成,具体步骤如下:称取40mg样品于洗净烘干的Teflon熔样罐中,加入1mL HF溶液及0.5mL浓度1:1的HNO3溶液将其溶解;然后超声振荡15min,在电热板上蒸至近干;再次加入1mL HF溶液和0.5mL 1:1浓度HNO3溶液,并将其套上合金钢外套放入烘箱加热5天并保持200℃温度;随后再次在电热板上蒸干,加入2mL 1:1HNO3并在烘箱中保温150℃至少5h后再次蒸干;最后,再次加入2mL浓度1:1的HNO3以及1mL 500×10-9 In内标制成待测试溶液,溶液在测试前需加入1%HNO3溶液稀释至50mL。测试所采用仪器为ELAN DRC-77e质谱仪,测试标准样品分别为OU-6、AMH-1以及GBPG-1,标准样品测定值均在推荐值范围之内,样品分析精度及准确度好于±5%。主微量数据所测两个样品均取自于同一采样点,可互为重复样。浅色熔体主、微量元素及标准样品测试数据见表 3。
![]() |
表 3 苏鲁UHP地体北部混合岩浅色体及伟晶岩脉体主量(wt%)、微量(×10-6)元素 Table 3 Major (wt%) and trace (×10-6) element concentrations for leucosomes of migmatite and pegmatite veins in North Sulu UHP terrane |
荣成崂山镇的混合岩浅色体条带中锆石颗粒呈浑圆状-柱状,自形程度较好,长度150~300μm,宽度50~100μm不等,长宽比约在1.5~3之间。多数锆石呈明显的核-边结构(图 3),继承核部发光强度强,呈灰白色,自形-半自形,部分具有熔蚀结构,具有明显的震荡环带,为典型的岩浆锆石特征。新生边部发光强度弱,呈灰黑色,可能为较高的放射性U含量所导致;同时具有较自形的外部轮廓,发育有十分模糊环带结构。少数锆石除上述核-边结构外,在新生边部还会发育一圈十分薄的增生边,呈灰白色,发光强度强,可能为边部岩浆锆石形成后的后期流体作用所致。
![]() |
图 3 崂山镇混合岩浅色体中部分锆石阴极发光(CL)图像及部分LA-ICP-MS U-Pb定年结果 Fig. 3 CL images of representative zircon grains from leucosomes of migmatite in the Laoshan town and their U-Pb ages |
对挑选自浅色体的26颗锆石中35个点进行了分析,边部及核部分别为22个和13个,测定的锆石U-Pb年龄数据见表 1。在U-Pb谐和图中(图 4a),上下交点年龄分别为827±51Ma及214.4±8.5Ma(MSWD=0.91)。锆石继承核部谐和年龄从772±7.4Ma到644±7.2Ma不等,剔除不谐和年龄后加权平均年龄为721±24Ma(MSWB=25)。新生边部谐和年龄从234±2.4Ma到215±1.9Ma不等,加权平均年龄为225.9±2.0Ma(MSWD=4.2)(图 4b)。
![]() |
图 4 崂山镇混合岩浅色体中锆石U-Pb谐和年龄图解 Fig. 4 Zircon U-Pb concordia diagrams for leucosomeof migmatite in the Laoshan town The level of uncertainty plotted is 1σ |
锆石微量元素数据见表 2。继承核部具有明显的LREE亏损及HREE和Y(3776×10-6~13916×10-6)的富集,REE配分模式呈明显的左倾(图 5),(Gd/Lu)N比值较低(0.03~0.06)(图 6b)。此外,还具有强烈的Ce的正异常(Ce/Ce*=4.43~373)及Eu的负异常(Eu/Eu*=0.37~0.50)(图 6c);同时具有较高的Th含量(178×10-6~1889×10-6)、Th/U比值(0.89~1.84)以及较低的Hf/Y比值(1.53~3.43)(图 6a),具有典型的岩浆锆石特征(Rubatto, 2002; Guo et al., 2016)。
![]() |
图 5 崂山镇混合岩浅色体锆石球粒陨石标准化REE图解(标准化值据Sun and McDonough, 1989) Fig. 5 Chondrite-normalized REE patterns of zircons from leucosome of migmatite in the Laoshan town (normalization values after Sun and McDonough, 1989) |
![]() |
图 6 崂山镇混合岩浅色体锆石Y-Hf/Y、Y-(Gd/Lu)N及Y-Eu*图解 Fig. 6 Plots of Y versus Hf/Y, (Gd/Lu)N and Eu* of zircons from leucosome of migmatite in the Laoshan town |
对比继承核,锆石的新生边同样具有强烈的LREE亏损及HREE富集,但REE总体含量略低于核部(图 5)。Ce的正异常(Ce/Ce*=1.85~83.3)及Eu的负异常(Eu/Eu*=0.31~0.98)略弱于核部,Y含量也低于核部(1153×10-6~2696×10-6)(图 6),Hf/Y比值高于核部(12.9~34.4)(图 6a)。与核部明显不同的是,锆石的新生边部具有较低的Th含量(50.6×10-6~132×10-6)及极高的U含量(1485×10-6~3255×10-6),因而导致较低的Th/U比值(<0.01)。虽然Th/U比值不符合典型岩浆锆石的特征,但锆石CL图像、REE配分模式及Hf、Y等元素的特征(图 5、图 6)仍然指示锆石边部具有岩浆深熔锆石特征(Chen et al., 2013b; Song et al., 2014a; Huangfu et al., 2016)。
3.4 浅色体主微量元素荣成崂山镇混合岩中浅色体主量元素数据见表 3。浅色体具有高的SiO2(73.76%~75.62%)、Al2O3(13.48%~14.62%)、K2O(5.11%~5.73%)及Na2O(4.21%~4.33%)含量,低的Fe2O3T(0.23%~0.44%)、MgO(0.11%~0.17%)及CaO(0.26%~0.27%)含量。A/CNK介于1.02~1.04之间,为弱过铝质。TAS图解表明,浅色体为亚碱性的花岗质组分(图 7)。该浅色体成分与实验获得的陆壳物质部分熔融形成的熔体组分基本一致(Schmidt et al., 2004; Auzanneau et al., 2006)。
![]() |
图 7 崂山镇浅色体、参考浅色体、伟晶岩脉体及实验熔体硅碱(TAS)图解(据Le Maitre et al., 1989) 图中粗虚线为碱性-亚碱性界线(据Middlemost, 1994);数据来源:浅色体及伟晶岩脉体自Liu et al. (2012)和Xu et al. (2013),实验熔体数据S04自Schmidt et al. (2004)、A06自Auzanneau et al. (2006) Fig. 7 Total alkalis-silica (TAS) diagram (after Le Maitre et al., 1989) for Laoshan town layered leucosomes, referenced layered leucosomes and pegmatite veins in Sulu UHP terrane and experimental melts of S04 and A06 The dashed thick line shows the alkaline-subalkaline boundary (after Middlemost, 1994); Data sources: The referenced leucosomes and veins from Liu et al. (2012) and Xu et al. (2013), experimental melts of S04 from Schmidt et al. (2004) and A06 from Auzanneau et al. (2006) |
浅色体微量元素数据见表 3。浅色体具有较为平坦的REE配分模式((La/Yb)N=1.10~1.13;(Gd/Lu)N=1.43~1.53),及微弱的Eu负异常(Eu/Eu*=0.70)(图 8a)。在微量元素原始地幔标准化蛛网图上(图 8b),样品具有LILE的显著富集,HFSE中Zr、Hf较为富集,Nb、Ta、Ti较为亏损;同时亏损Sr、P。对比Xu et al. (2013)数据,本文样品具有较高的HFSE(Nb、Ta、Zr、Hf)、HREE含量,以及较低的Sr含量。
![]() |
图 8 崂山镇浅色体、参考浅色体及伟晶岩脉体球粒陨石标准化REE图解(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) 浅色体及伟晶岩脉体参考数据来自Xu et al. (2013).阴影区域代表混合岩全岩,数据来源于Huang et al. (2006), Zhao et al. (2007), Tang et al. (2008)及Zong et al. (2010b) Fig. 8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements spidergrams (b) for Laoshan town leucosomes, referenced leucosomes and pegmatite veins in Sulu UHP terrane (normalization values after Sun and McDonough, 1989) The referenced data of leucosomes and pegmatite veins from Xu et al. (2013). The shaded area represents the whole rock of the migmatite, and data from Huang et al. (2006), Zhao et al. (2007), Tang et al. (2008) and Zong et al. (2010b) |
大别-苏鲁造山带各类岩石广泛记录了晚三叠世扬子板块与华北板块的碰撞及后期岩浆作用事件,由于受到中生代以来各种变质及岩浆事件的改造,俯冲板片原岩的信息很难保留下来。但锆石由于其具有较难熔且抗风化等性质,能较好地保存原岩信息。前人针对大别-苏鲁造山带片麻岩(Rowley et al., 1997; Hacker et al., 1998; Liu et al., 2004b; Zheng et al., 2004; Tang et al., 2008; Zhang et al., 2009b; Xu and Zhang, 2018)及榴辉岩(Zheng et al., 2004; Tang et al., 2008; Zhang et al., 2009b)中锆石的研究发现,大量锆石具有新元古代700~800Ma的岩浆继承核部年龄,这些锆石核部氧同位素具有低的δ18O值,且多数存在负异常,认为这是由于裂谷环境下地表热液蚀变作用所导致(Rowley et al., 1997; Zheng et al., 2003, 2004; Tang et al., 2008),而在华北克拉通内部新元古代火成岩中并未发现有该氧同位素特征,因此认为其原岩属性上应为扬子板块(Tang et al., 2008)。结合扬子板块新元古代构造特征分析,认为俯冲扬子板片的原岩与Rodinia超大陆裂解有关,为扬子板块北缘裂谷环境下双峰式岩浆作用成因(Zheng et al., 2003, 2004; Tang et al., 2008)。
在本文所研究浅色体样品锆石中,均发育有明显的核边结构特征。其中继承核CL图像上震荡环带发育,微量元素上REE左倾,Eu负异常、Ce正异常明显,低Hf/Y高Th/U比值等特征(图 5、图 6),均指示出继承核为岩浆成因。核部年龄绝大多数呈现出较谐和的表面年龄,剔除掉不谐和年龄,谐和年龄范围在644±7.2Ma~772±7.4Ma之间,加权平均年龄为721±24Ma。通过与前人研究成果相对比,我们认为本文所研究的熔体其原岩属性为俯冲的扬子板片新元古代岩浆作用产物。
4.2 初始部分熔融时代在苏鲁造山带片麻岩中,锆石中柯石英包裹体已在不同研究区域及不同样品中被先后发现并报导(Ye et al., 2000; Liu et al., 2004a, b, 2010; Zhang et al., 2009a; Chen et al., 2013b),对这些含柯石英锆石区域以及超高压榴辉岩中(Gao et al., 2010; Zong et al., 2010a, b)锆石U-Pb定年研究,可将UHP榴辉岩相峰期变质年龄限定在236~227Ma之间(图 9)。而在折返过程中,榴辉岩经历了后期退变质作用的改造(Zong et al., 2010a)并被后成合晶中锆石所记录,同时在片麻岩和长英质伟晶岩脉的锆石中,也记录了退变质过程中的流体作用(Liu et al., 2006b, 2010),这些锆石年龄集中在210~195Ma之间,为角闪岩相退变质阶段的年龄(图 9)。在本文浅色体样品中,锆石边部CL图像及稀土元素配分模式上呈现出部分熔融深熔锆石特征(Chen et al., 2013b),年龄范围在234Ma到215Ma之间,平均年龄为225.9Ma,该年龄介于UHP榴辉岩相变质年龄与角闪岩相退变质年龄之间。并十分接近于峰期变质的年龄。该年龄与Chen et al. (2013b)、Li et al.(2014, 2016)以及Xu et al. (2013)等所限定的熔体产生的年龄一致,而略早于Liu et al.(2010, 2012)所限定的部分熔融时代,同时在更早阶段并未发现有部分熔融的证据,因此,我们认为部分熔融起始于俯冲板片折返初期。从年龄上来说,本文所报道熔体可代表初始熔体而非后期结晶分异的熔体。
![]() |
图 9 苏鲁UHP地体片麻岩及榴辉岩中锆石U-Pb年龄分布图 数据来源:峰期变质年龄来自于Liu et al.(2004a, b), Zong et al.(2010a, b);部分熔融年龄来自于本文, Liu et al.(2010, 2012), 续海金等(2013), Xu et al. (2013)以及Song et al. (2014a);退变质年龄来自于Liu et al. (2010) Fig. 9 The zircon U-Pb ages distribution from gneiss and eclogite in Sulu UHP terrane Data sources:UHP metamorphism ages from Liu et al.(2004a, b), Zong et al.(2010a, b); partial melting ages from this paper, Liu et al.(2010, 2012), Xu et al.(2013) and Song et al. (2014a); retrograde ages from Liu et al. (2010) |
在苏鲁超高压变质地体北部,由于其在折返过程中经历了降压升温的麻粒岩相变质叠加过程,P-T轨迹切穿了多硅白云母等含水矿物的分解线,因而可见大量部分熔融现象。现有研究已在北苏鲁威海地区片麻岩识别出以下几类折返部分熔融作用产生的熔体:(1)富斜长石浅色体(Chen et al., 2013b; Xu et al., 2013; Song et al., 2014b),与残余体呈互层状产出,厚度在毫米到厘米级别,主要矿物组合为斜长石+石英±钾长石,年龄在224~228Ma之间;(2)富钾长石伟晶岩脉(Liu et al., 2010, 2012; Xu et al., 2013; Song et al., 2014a; Xu and Zhang, 2018),主要矿物组合为钾长石+石英±斜长石,与前者不同,该类熔体聚集多呈脉状切穿并灌入片麻岩中或呈透镜体状,脉体宽度从几厘米到几十厘米甚至1~2m不等,年龄上略晚于富斜长石浅色体,在210~220Ma之间。(3)石英伟晶岩脉(Zong et al., 2010b)及花岗岩脉(刘福来等, 2009),这两种类型熔体野外产状与富钾长石伟晶岩脉一致,其锆石年龄均在219Ma左右。而本文样品熔体特征则不同于上述任何一种熔体,野外产状及年龄上基本与富斜长石浅色体一致,但矿物组合上则明显富集钾长石,同样的熔体在文献Song et al. (2014a)中也有报导。
Sawyer (2008)依据部分熔融程度及熔体的迁移特征,将部分熔融熔体分为三类,分别为原位熔融熔体、近源区熔融熔体以及浅色伟晶脉体。其中原位熔融熔体呈囊状分布于残余体中或以显微尺度下多相包裹体形式存在,未发生熔体的迁移及分异,为部分熔融初始阶段形成的低程度部分熔融熔体。近源区熔融熔体呈条带状浅色体与残余体互层产出(图 2a,b),为初始熔体经短距离迁移并仍在源区成分层内结晶形成。而浅色伟晶岩脉体则是熔体形成后迁移出源区层位并侵入到混合岩的其它部位汇聚结晶形成。因此,对于这三种类型的熔体,伟晶岩脉经历了熔体的迁移及汇聚,并不能很好代表初始熔体组分,而前两者并未经过明显的熔体迁移,为初始熔体在源区直接结晶所形成。对于北苏鲁地区观察到的不同熔体,我们认为其中的富钾长石伟晶岩脉、石英伟晶岩脉以及花岗质伟晶岩脉的成因对应于Sawyer所划分的第三类熔体;而富斜长石浅色体及本文富钾长石浅色体均为近源区熔融熔体,有可能代表了初始熔体组分。年龄特征上,这两类熔体(224~228Ma)均早于几种类型的伟晶岩脉(210~220Ma),也为熔体的汇聚迁移或结晶分异提供了年代学上的证据支持。另一方面,通过对本文浅色体中深熔锆石Ti温度计计算(Ferry and Watson, 2007),得到熔体结晶温度在698~850℃之间(平均温度773℃),该温度与富斜长石浅色熔体结晶温度基本一致,而明显高于伟晶岩脉结晶温度(529~769℃)(Xu et al., 2012)。从温度方面也为熔体的冷却结晶分异提供了依据。
实验岩石学研究已经证明,多硅白云母所主导部分熔融作用产生的熔体会明显具有高的钾含量(Hermann and Green, 2001; Schmidt et al., 2004; Auzanneau et al., 2006)。在富斜长石浅色体中,其钾长石含量较少或不含钾长石,而在富钾长石伟晶岩脉中,则强烈富集钾长石。另一方面,实验岩石学也证明了在>1~1.5GPa水不饱和花岗质熔体降温结晶过程中,斜长石与石英会优先结晶,而富钾组分及水则会富集在残余熔体之中(Huang and Wyllie, 1981; Stern and Wyllie, 1981; Huang and Wyllie, 1986)。因此,Xu et al. (2013)认为从富斜长石浅色体到富钾长石伟晶岩脉体,熔体经历了结晶分异作用,即富斜长石浅色体优先在源区成分层内结晶,残余熔体则迁移出成分层并汇聚形成伟晶岩脉体结晶。因而富斜长石浅色体也并不能代表未分异的初始熔体。
Schmidt et al. (2004)通过对杂砂岩及泥质岩体系部分熔融的实验证实,对于未发生结晶分异的熔体,随着部分熔融程度增加,熔体中钾和硅的相对含量会逐渐降低,而钠、钙、铝端元则会逐渐升高(图 10),换言之,即低程度未分异的熔体具有富钾高硅的特征。本文浅色体样品呈现出富钾高硅的特征,因此我们认为可代表未分异的初始熔体。另外,在锆石U元素含量上,从富斜长石浅色体到晚期的伟晶岩脉体,U含量呈逐渐增加的趋势,指示出结晶分异过程中U容易随着熔体迁移的特点。而本文浅色体样品U含量明显高于同时代富斜长石浅色体样品(Xu et al., 2013),且略高于后期伟晶岩脉(图 11),也证明了其未经历过熔体的迁移及结晶分异,U未发生迁移及丢失。
![]() |
图 10 崂山镇浅色体、参考富斜长石浅色体、伟晶岩脉体及实验熔体Harker图解 参考数据来源同图 7;蓝色箭头指示熔融程度增加的趋势 Fig. 10 Harker diagram for Laoshan town leucosomes, referenced leucosomes and pegmatite veins in Sulu UHP terrane The referenced data are from the same sources as those in Fig. 7; The blue arrow indicates the trend of melts fraction increase |
![]() |
图 11 崂山镇混合岩浅色体及参照富斜长石浅色体、伟晶岩脉体锆石U含量与年龄关系图解 参考对比数据来自于Liu et al.(2010, 2012)、Chen et al. (2013b)和Xu et al. (2013) Fig. 11 The relationship between U contents and 206Pb/238U ages for the zircons from the Laoshan town leucosomes, referenced leucosomes and pegmatite veins in Sulu UHP terrane The referenced data are from Liu et al.(2010, 2012), Chen et al. (2013b) and Xu et al. (2013) |
除上述两类产状上呈顺层条带状及脉状的熔体外,在大别-苏鲁造山带中还发现有部分熔融作用形成的多相包裹体,如Zeng et al. (2009)在苏鲁UHP地体榴辉岩中绿辉石及石榴子石中发现的由钾长石、石英以及钠长石组成的多相包裹体。这些包裹体对应于Sawyer所提出的原位熔融熔体,因而可较好的指示出部分熔融初始熔体的矿物组成及结构特征。但另一方面,由于其只能在显微尺度下观察,无法将其分离出来,也就无法确定熔体中各类矿物的相对含量,更无法厘定初始熔体的化学组成。
综上,我们认为本文所选取的富钾长石顺层浅色体不仅可以很好的代表俯冲长英质板片部分熔融未迁移分异的初始熔体,而且可通过浅色体的矿物组成及其相对含量,精确厘定熔体的化学组成。
如前所述,熔体矿物及主量元素特征具有富钾高硅的特点,通过CIPW标准化矿物成分计算,其钾长石含量约在30%~35%之间,石英与酸性斜长石的含量也均在30%左右,对比作为参照的富斜长石浅色体,在An-Ab-Or图解上二者钾长石含量并无明显差异(图 12),这与岩相学上的观察并不一致。通过对比主量元素数据可发现富斜长石浅色体明显富Fe,而CIPW标准化矿物成分计算时并未考虑含水矿物如黑云母的影响,因此我们认为造成这种不一致的原因可能是作为对比的富斜长石浅色体在熔体挑选时少量上述暗色矿物的混入所导致。微量元素特征上,不同于Xu et al. (2013)浅色体样品,本文熔体样品REE配分模式图上呈现出较为平坦的特征,无HREE的亏损,且HFSE(Nb、Ta、Zr、Hf)含量较高,在Xu et al. (2013)所研究样品中,混合岩残余体中可见石榴子石,因而导致与之平衡的熔体中出现HREE的亏损,而本文样品残余体中并未发现石榴子石的存在。同时,本文及参考样品LREE对比混合岩全岩组分出现明显的解耦,含量显著降低,独居石作为主要的富LREE矿物,其在地壳重熔过程中的行为显著控制着LREE的分配。研究证明,独居石在熔体中的溶解度与熔体中SiO2含量呈明显的负相关性(Miller and Mittlefehldt, 1982; Mittlefehldt and Miller, 1983),对于本文花岗质片麻岩初始熔融形成的富硅熔体,溶解的独居石十分有限,从而导致LREE相对于原岩的亏损,岩相学上独居石仅在残余相中发现也证明了该点(图 2e)。另外,本文样品具有弱的Eu负异常以及Sr的亏损,Eu和Sr两种元素均在斜长石中具有很高的分配系数。出现该异常有两种可能,一是在部分熔融过程中斜长石主要残留在源区,二是斜长石的结晶分异作用导致。对于后者,前已述及本文所研究熔体呈近源区产出,未发生明显迁移,因而可以排除斜长石的结晶分异。而对于前者,相关实验也证实在多硅白云母分解所诱发的部分熔融现象中,斜长石可作为转熔相残余在源区残留(Auzanneau et al., 2006)。
![]() |
图 12 崂山镇浅色体,参考浅色体、伟晶岩脉体及实验熔体CIPW矿物标准化An-Ab-Or图解 图中参考数据来源同图 7 Fig. 12 Normative compositions of Laoshan town leucosomes, referenced leucosomes, pegmatite veins and experimental melts shown on the CIPW An-Ab-Or diagram The sources of the referenced data are the same as Fig. 7 |
俯冲大陆板片折返过程中部分熔融释放的熔体,会交代上覆地幔楔,发生显著的壳幔相互作用。在苏鲁超高压变质地体中,出露有一系列同折返期岩浆作用形成的碱性杂岩体(辉长岩+辉石正长岩+角闪石正长岩+石英正长岩+碱性花岗岩)(Yang et al., 2005; 郭敬辉等, 2005; Zhao et al., 2012; Xu et al., 2016)。该碱性杂岩体的成因,Zhao et al. (2012)认为辉长岩为扬子板块折返过程中部分熔融交代华北板块地幔楔形成,正长岩及花岗岩来源于扬子陆壳;Xu et al. (2016)则认为该碱性杂岩体均为扬子板块部分熔融熔体交代上覆地幔楔形成,不同的岩性则是由于结晶分异所致。无论哪种观点,其成因均离不开折返的扬子板片熔体的交代。本文厘定出的扬子板片部分熔融形成的熔体,具有高钾的特点,这为该杂岩体提供了碱质物质的来源,一定程度上支持了熔体交代地幔楔形成碱性杂岩体的观点(Xu et al., 2016)。
另一方面,在野外天然样品中,已发现大量大陆俯冲带壳幔相互作用的产物(Jahn et al., 1999; Yang et al., 2005; Malaspina et al., 2006; Dai et al., 2011, 2012; Zhao et al., 2011, 2012, 2013; Xu et al., 2016)。但在实验岩石学方面,现有研究则主要集中在模拟大洋俯冲带上,这些研究对于板片沉积物-地幔楔交代过程(Martin et al., 2012)、岛弧岩浆作用(Sekine and Wyllie, 1982a, b; Mallik et al., 2015)以及高镁埃达克岩成因(Rapp et al., 1999)等问题做出了很好的诠释。而关于陆壳板片与地幔楔发生的相互作用实验研究则主要集中在解释华北克拉通破坏以及造山带垮塌过程中高镁埃达克质岩石成因(Wang et al., 2010; Zhang et al., 2012; Wang et al., 2013; Yu et al., 2014)几个问题上,这样一些研究所选取的地壳端元均为基性下地壳部分熔融产生的熔体。关于俯冲折返过程中长英质大陆地壳部分熔融产生的熔体交代地幔楔产生的同折返及碰撞后岩浆作用,目前并未有实验岩石学方面研究对其成因及反应过程做出解释。对于大陆俯冲带内壳幔相互作用过程中的陆壳熔体端元,先后经历了熔体产生,从源区分离以及与地幔楔反应几个阶段。部分熔融的程度以及分离过程中可能伴随的结晶分异,均可能对熔-岩反应过程产生影响,而这些过程的影响程度则无从知晓。因此,从实验模拟角度出发,应同时考虑未分异以及高度分异的两类熔体对于熔-岩反应过程的影响,本文厘定出的俯冲长英质陆壳板片熔融形成的初始熔体,可作为该实验岩石学研究的一类陆壳端元物质,从而为进一步通过实验探讨该类熔体对大陆俯冲带壳幔相互作用可能的贡献提供依据。
5 结论通过对威海荣成崂山镇混合岩的野外和岩石学研究,结合浅色熔体中锆石U-Pb年龄、微量元素以及熔体主微量元素的研究,我们得出了如下结论:
(1) 混合岩锆石中残留的继承核部为新元古代(~720Ma)岩浆锆石,表明混合岩原岩来自于俯冲的扬子陆块。
(2) 混合岩中识别出的富钾长石浅色体(Kfs+Qtz+Pl),呈不连续条带状与残余体互层产出,可代表未分异的初始熔体。
(3) 浅色体锆石边部为深熔作用成因,记录的部分熔融时代为225.9±2Ma,指示部分熔融作用发生在深俯冲陆壳折返早期阶段。
(4) 初始熔体具有富钾高硅贫钙,富集LILE,亏损部分HFSE的地球化学特征,与实验岩石学获得的长英质陆壳物质部分熔融形成的熔体组分基本一致。
(5) 深俯冲陆壳初始熔体的厘定,可为研究俯冲带内壳幔相互作用提供一种可能的陆壳端元物质,为理解相互作用机制提供关键依据。
致谢 感谢中国地质大学地质过程与矿产资源国家重点实验室的王璐副教授、胡兆初教授和马强博士分别在锆石CL图像、锆石定年和微量元素以及全岩主量元素分析中的帮助;感谢中国科学院贵阳地化所漆亮研究员在全岩微量元素分析中的帮助。
Auzanneau E, Vielzeuf D and Schmidt MW. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contributions to Mineralogy and Petrology, 152(2): 125-148. DOI:10.1007/s00410-006-0104-5 |
Banno S, Enami M, Hirajima T, Ishiwatari A and Wang QC. 2000. Decompression P-T path of coesite eclogite to granulite from Weihai, eastern China. Lithos, 52(1-4): 97-108. DOI:10.1016/S0024-4937(99)00086-9 |
Carswell DA, O'Brein PJ, Wilson RN and Zhai M. 1997. Thermobarometry of phengite-bearing eclogites in the Dabie Mountains of central China. Journal of Metamorphic Geology, 15(2): 239-252. DOI:10.1111/j.1525-1314.1997.00014.x |
Chen YX, Zheng YF and Hu ZC. 2013a. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. Journal of Metamorphic Geology, 31(4): 389-413. DOI:10.1111/jmg.2013.31.issue-4 |
Chen YX, Zheng YF and Hu ZC. 2013b. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks:Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156-159: 69-96. DOI:10.1016/j.lithos.2012.10.008 |
Dai LQ, Zhao ZF, Zheng YF, Li QL, Yang YH and Dai MN. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth and Planetary Science Letters, 308(1-2): 229-244. DOI:10.1016/j.epsl.2011.06.001 |
Dai LQ, Zhao ZF, Zheng YF and Zhang J. 2012. The nature of orogenic lithospheric mantle:Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chemical Geology, 334: 99-121. DOI:10.1016/j.chemgeo.2012.10.009 |
Ebanu M and Nagasaki A. 1999. Prograde P-T path of kyanite eclogites from Junan in the Sulu ultrahigh-pressure province, eastern China. Island Arc, 8(4): 459-474. DOI:10.1046/j.1440-1738.1999.00252.x |
Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. DOI:10.1007/s00410-007-0201-0 |
Frezzotti ML, Ferrando S, Dallai L and Compagnoni R. 2007. Intermediate alkali-alumino-silicate aqueous solutions released by deeply subducted continental crust:Fluid evolution in UHP OH-rich topaz-kyanite quartzites from Donghai (Sulu, China). Journal of Petrology, 48(6): 1219-1241. DOI:10.1093/petrology/egm015 |
Gao CG, Liu YS, Zong KQ, Hu ZC and Gao S. 2010. Microgeochemistry of rutile and zircon in eclogites from the CCSD main hole:Implications for the fluid activity and thermo-history of the UHP metamorphism. Lithos, 115(1-4): 51-64. DOI:10.1016/j.lithos.2009.11.007 |
Gilotti JA and Ravna EJK. 2002. First evidence for ultrahigh-pressure metamorphism in the North-East Greenland Caledonides. Geology, 30(6): 551-554. DOI:10.1130/0091-7613(2002)030<0551:FEFUPM>2.0.CO;2 |
Groppo C, Rubatto D, Rolfo F and Lombardo B. 2010. Early Oligocene partial melting in the Main Central Thrust Zone (Arun valley, eastern Nepal Himalaya). Lithos, 118(3-4): 287-301. DOI:10.1016/j.lithos.2010.05.003 |
Guo JH, Chen FK, Zhang XM, Siebel W and Zhai MG. 2005. Evolution of syn-to post-collisional magmatism from North Sulu UHP belt, eastern China:Zircon U-Pb geochronology. Acta Petrologica Sinica, 21(4): 1281-1301. |
Guo XF, Wang YJ, Liu HC and Zi JW. 2016. Zircon U-Pb geochronology of the Cenozoic granitic mylonite along the Ailaoshan-Red River shear zone:New constraints on the timing of the sinistral shearing. Journal of Earth Science, 27(3): 435-443. DOI:10.1007/s12583-016-0678-2 |
Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D and Shuwen D. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230. DOI:10.1016/S0012-821X(98)00152-6 |
Hermann J and Green DH. 2001. Experimental constraints on high pressure melting in subducted crust. Earth and Planetary Science Letters, 188(1-2): 149-168. DOI:10.1016/S0012-821X(01)00321-1 |
Hermann J, Rubatto D, Korsakov A and Shatsky VS. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66-82. DOI:10.1007/s004100000218 |
Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contributions to Mineralogy and Petrology, 143(2): 219-235. DOI:10.1007/s00410-001-0336-3 |
Hermann J, Spandler C, Hack A and Korsakov AV. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:Implications for element transfer in subduction zones. Lithos, 92(3-4): 399-417. DOI:10.1016/j.lithos.2006.03.055 |
Hermann J and Spandler CJ. 2008. Sediment melts at sub-arc depths:An experimental study. Journal of Petrology, 49(4): 717-740. DOI:10.1093/petrology/egm073 |
Hirajima T, Ishiwatari A, Cong B, Zhang R, Banno S and Nozaka T. 1990. Coesite from Mengzhong eclogite at Donghai County, northeastern Jiangsu Province, China. Mineralogical Magazine, 54(4): 579-583. |
Hu ZC, Gao S, Liu YS, Hu SH, Chen HH and Yuan HL. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. DOI:10.1039/b804760j |
Huang J, Zheng YF, Zhao ZF, Wu YB, Zhou JB and Liu XM. 2006. Melting of subducted continent:Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology, 229(4): 227-256. DOI:10.1016/j.chemgeo.2005.11.007 |
Huang WL and Wyllie PJ. 1981. Phase relationships of S-type granite with H2O to 35kbar:Muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research, 86(B11): 10515-10529. DOI:10.1029/JB086iB11p10515 |
Huang WL and Wyllie PJ. 1986. Phase relationships of gabbro-tonalite-granite-water at 15kbar with applications to differentiation and anatexis. American Mineralogist, 71(3-4): 301-316. |
Huangfu PP, Wang YJ, Li ZH, Fan WM and Zhang Y. 2016. Effects of crustal eclogitization on plate subduction/collision dynamics:Implications for India-Asia collision. Journal of Earth Science, 27(5): 727-739. DOI:10.1007/s12583-016-0701-9 |
Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2): 119-146. DOI:10.1016/S0009-2541(98)00197-1 |
Labrousse L, Prouteau G and Ganzhorn AC. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39(12): 1171-1174. DOI:10.1130/G32316.1 |
Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre Le Bas MJ, Sabine PA, Schmid R, Sorenson H, Streckeisen A, Woolley AR and Zanettin B. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell
|
Li WC, Chen RX, Zheng YF and Hu ZC. 2014. Dehydration and anatexis of UHP metagranite during continental collision in the Sulu orogen. Journal of Metamorphic Geology, 32(9): 915-936. DOI:10.1111/jmg.12100 |
Li WC, Chen RX, Zheng YF, Tang HL and Hu ZC. 2016. Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogeny, China. Geological Society of America Bulletin, 128(9-10): 1521-1542. DOI:10.1130/B31366.1 |
Liu DY, Jian P, Kröner A and Xu ST. 2006c. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters, 250(3-4): 650-666. DOI:10.1016/j.epsl.2006.07.043 |
Liu FL, Xu ZQ, Liou JG and Song B. 2004a. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology, 22(4): 315-326. DOI:10.1111/j.1525-1314.2004.00516.x |
Liu FL, Xu ZQ and Xue HM. 2004b. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China):SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos, 78(4): 411-429. DOI:10.1016/j.lithos.2004.08.001 |
Liu FL, Gerdes A, Liou JG, Xue HM and Liang FH. 2006a. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China:Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology, 24(7): 569-589. DOI:10.1111/jmg.2006.24.issue-7 |
Liu FL, Xu ZQ, Xue HM and Zhou KF. 2006b. Ultrahigh-pressure and retrograde metamorphic ages for Paleozoic protolith of paragneiss in the Main Drill Hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), SW Sulu UHP terrane. Acta Geologica Sinica, 80(3): 336-348. |
Liu FL, Xue HM and Liu PH. 2009. Partial melting time of ultrahigh-pressure metamorphic rocks in the Sulu UHP terrane:Constrained by zircon U-Pb ages, trace elements and Lu-Hf isotope compositions of biotite-bearing granite. Acta Petrologica Sinica, 25(5): 1039-1055. |
Liu FL, Robinson PT, Gerdes A, Xue HM, Liu PH and Liou JG. 2010. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China:Constraints on the timing and nature of partial melting. Lithos, 117(1-4): 247-268. DOI:10.1016/j.lithos.2010.03.002 |
Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39. DOI:10.1016/j.jseaes.2010.08.007 |
Liu FL, Robinson PT and Liu PH. 2012. Multiple partial melting events in the Sulu UHP terrane:Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. Journal of Metamorphic Geology, 30(8): 887-906. DOI:10.1111/jmg.2012.30.issue-8 |
Liu Q, Jin ZM and Zhang JF. 2009. An experimental study of dehydration melting of phengite-bearing eclogite at 1.5~3.0GPa. Chinese Science Bulletin, 54(12): 2090-2100. |
Liu Q, Wu Y and Zhang JF. 2011. Experimental investigation on low-degree dehydration partial melting of biotite gneiss and phengite-bearing eclogite at 2GPa. Journal of Earth Science, 22(6): 677-687. DOI:10.1007/s12583-011-0219-0 |
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43. DOI:10.1016/j.chemgeo.2008.08.004 |
Ludwig KR. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center.
|
Ma Q, Zheng JP, Griffin WL, Zhang M, Tang HY, Su YP and Ping XQ. 2012. Triassic "adakitic" rocks in an extensional setting (North China):Melts from the cratonic lower crust. Lithos, 149: 159-173. DOI:10.1016/j.lithos.2012.04.017 |
Malaspina N, Hermann J, Scambelluri M and Compagnoni R. 2006. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth and Planetary Science Letters, 249(3-4): 173-187. DOI:10.1016/j.epsl.2006.07.017 |
Malaspina N, Hermann J and Scambelluri M. 2009. Fluid/mineral interaction in UHP garnet peridotite. Lithos, 107(1-2): 38-52. DOI:10.1016/j.lithos.2008.07.006 |
Mallik A, Nelson J and Dasgupta R. 2015. Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2~3GPa:Implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins. Contributions to Mineralogy and Petrology, 169: 48. DOI:10.1007/s00410-015-1139-2 |
Martin AM, Laporte D, Koga KT, Kawamoto T and Hammouda T. 2012. Experimental study of the stability of a dolomite+coesite assemblage in contact with peridotite:Implications for sediment-mantle interaction and diamond formation during subduction. Journal of Petrology, 53(2): 391-417. DOI:10.1093/petrology/egr066 |
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224. DOI:10.1016/0012-8252(94)90029-9 |
Miller CF and Mittlefehldt DW. 1982. Depletion of light rare-earth elements in felsic magmas. Geology, 10(3): 129-133. DOI:10.1130/0091-7613(1982)10<129:DOLREI>2.0.CO;2 |
Mittlefehldt DW and Miller CF. 1983. Geochemistry of the Sweetwater Wash Pluton, California:Implications for "anomalous" trace element behavior during differentiation of felsic magmas. Geochimica et Cosmochimica Acta, 47(1): 109-124. DOI:10.1016/0016-7037(83)90095-9 |
Nakamura D and Hirajima T. 2000. Granulite-facies overprinting of ultrahigh-pressure metamorphic rocks, northeastern Su-Lu region, Eastern China. Journal of Petrology, 41(4): 563-582. DOI:10.1093/petrology/41.4.563 |
Patiño Douce AE and Beard JS. 1996. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology, 37(5): 999-1024. DOI:10.1093/petrology/37.5.999 |
Patiño Douce AE. 2005. Vapor-absent melting of tonalite at 15~32kbar. Journal of Petrology, 46(2): 275-290. |
Peacock SM. 1993. The importance of blueschist → eclogite dehydration reactions in subducting oceanic crust. Geological Society of America Bulletin, 105(5): 684-694. DOI:10.1130/0016-7606(1993)105<0684:TIOBED>2.3.CO;2 |
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356. DOI:10.1016/S0009-2541(99)00106-0 |
Rosenberg CL and Handy MR. 2005. Experimental deformation of partially melted granite revisited:Implications for the continental crust. Journal of metamorphic Geology, 23(1): 19-28. DOI:10.1111/jmg.2005.23.issue-1 |
Rowley DB, Xue F, Tucker RD, Peng ZX, Baker J and Davis A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology. Earth and Planetary Science Letters, 151(3-4): 191-203. DOI:10.1016/S0012-821X(97)81848-1 |
Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138. DOI:10.1016/S0009-2541(01)00355-2 |
Sawyer EW. 1999. Criteria for the recognition of partial melting. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 24(3): 269-279. DOI:10.1016/S1464-1895(99)00029-0 |
Sawyer EW. 2008. Working with migmatites: Nomenclature for the constituent parts. In: Sawyer EW (ed. ). Working with Migmatites. Quebec City, Quebec: Mineralogical Association of Canada, 1-28
|
Sawyer EW. 2010. Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith:Microstructures in the residual rocks and source of the fluid. Lithos, 116(3-4): 273-286. DOI:10.1016/j.lithos.2009.07.003 |
Schertl HP, Schreyer W and Chopin C. 1991. The pyrope-coesite rocks and their country rocks at Parigi, Dora Maira Massif, Western Alps:Detailed petrography, mineral chemistry and PT-path. Contributions to Mineralogy and Petrology, 108(1-2): 1-21. DOI:10.1007/BF00307322 |
Schmidt MW and Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1-4): 361-379. DOI:10.1016/S0012-821X(98)00142-3 |
Schmidt MW, Vielzeuf D and Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures:The key role of white mica. Earth and Planetary Science Letters, 228(1-2): 65-84. DOI:10.1016/j.epsl.2004.09.020 |
Sekine T and Wyllie PJ. 1982a. Synthetic systems for modeling hybridization between hydrous siliceous magmas and peridotite in subduction zones. The Journal of Geology, 90(6): 734-741. DOI:10.1086/628728 |
Sekine T and Wyllie PJ. 1982b. The system granite-peridotite-H2O at 30kbar, with applications to hybridization in subduction zone magmatism. Contributions to Mineralogy and Petrology, 81(3): 190-202. DOI:10.1007/BF00371296 |
Song YR, Xu HJ, Zhang JF, Wang DY and Liu ED. 2014a. Syn-exhumation partial melting and melt segregation in the Sulu UHP terrane:Evidences from leucosome and pegmatitic vein of migmatite. Lithos, 202-203: 55-75. DOI:10.1016/j.lithos.2014.05.017 |
Song YR, Xu HJ, Zhang JF, Wang DY and Liu ED. 2014b. Effects of melt fractional crystallization on Sr-Nd and Lu-Hf isotope systems:A case study of Triassic migmatite in the Sulu UHP terrane. International Geology Review, 56(7): 783-800. DOI:10.1080/00206814.2014.900652 |
Spandler C and Pirard C. 2013. Element recycling from subducting slabs to arc crust:A review. Lithos, 170-171: 208-223. DOI:10.1016/j.lithos.2013.02.016 |
Stern CR and Wyllie PJ. 1981. Phase relationships of Ⅰ-type granite with H2O to 35 kilobars:The Dinkey Lakes biotite-granite from the Sierra Nevada Batholith. Journal of Geophysical Research, 86(B11): 10412-10422. DOI:10.1029/JB086iB11p10412 |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
|
Tang J, Zheng YF, Wu YB and Gong B. 2006. Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogen:Implication for tectonic affinity. Precambrian Research, 144(1-2): 1-18. DOI:10.1016/j.precamres.2005.10.003 |
Tang J, Zheng YF, Wu YB, Gong B, Zha XP and Liu XM. 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research, 161(3-4): 389-418. DOI:10.1016/j.precamres.2007.09.008 |
Tatsumi Y and Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science: 211.
|
Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang LL and Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33(2): 129-132. DOI:10.1130/G20991.1 |
Wang C, Jin ZM, Gao S, Zhang JF and Zheng S. 2010. Eclogite-melt/peridotite reaction:Experimental constrains on the destruction mechanism of the North China Craton. Science China Earth Sciences, 53(6): 797-809. DOI:10.1007/s11430-010-3084-2 |
Wang CG, Liang Y, Xu WL and Dygert N. 2013. Effect of melt composition on basalt and peridotite interaction:Laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths from the North China Craton. Contributions to Mineralogy and Petrology, 166(5): 1469-1488. DOI:10.1007/s00410-013-0938-6 |
Wang L, Kusky TM, Polat A, Wang SJ, Jiang XF, Zong KQ, Wang JP, Deng H and Fu JM. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nature Communications, 5: 5604. DOI:10.1038/ncomms6604 |
Wang Q, Hawkesworth CJ, Wyman D, Chung SL, Wu FY, Li XH, Li ZX, Gou GN, Zhang XZ, Tang GJ, Dan W, Ma L and Dong YH. 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 7: 11888. DOI:10.1038/ncomms11888 |
Wang QC, Ishiwatari A, Zhao ZY, Hirajima T, Hiramatsu N, Enami M, Zhai MG, Li JJ and Cong B. 1993. Coesite-bearing granulite retrograded from eclogite in Weihai, eastern China. European Journal of Mineralogy, 5(1): 141-152. DOI:10.1127/ejm/5/1/0141 |
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. DOI:10.1111/ggr.1995.19.issue-1 |
Wu YN and Wang YF. 2018. An FTIR study of kyanite in the Maobei kyanite-bearing eclogites from the Sulu Orogenic Belt, eastern China. Journal of Earth Science, 29(1): 21-29. DOI:10.1007/s12583-017-0774-0 |
Xu HJ, Ye K and Zhang JF. 2012. Temperature of prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane:Constraints from Ti-in-zircon thermometer. Journal of Earth Science, 23(6): 813-827. DOI:10.1007/s12583-012-0303-0 |
Xu HJ, Ye K, Song YR, Chen Y, Zhang JF, Liu Q and Guo S. 2013. Prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane, eastern China. Chemical Geology, 341: 16-37. DOI:10.1016/j.chemgeo.2013.01.002 |
Xu HJ, Song YR and Ye K. 2013. Partial melting time of the Sulu UHP terrane:Constraints from zircon U-Pb age, trace element and Lu-Hf isotope composition of leucosome in Rongcheng granitic gneiss. Acta Petrologica Sinica, 29(5): 1594-1606. |
Xu HJ, Zhang JF, Wang YF and Liu WL. 2016. Late Triassic alkaline complex in the Sulu UHP terrane:Implications for post-collisional magmatism and subsequent fractional crystallization. Gondwana Research, 35: 390-410. DOI:10.1016/j.gr.2015.05.017 |
Xu HJ and Zhang JF. 2018. Zircon geochronological evidence for participation of the North China Craton in the protolith of migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1): 30-42. DOI:10.1007/s12583-017-0805-x |
Xu ZQ, Zeng LS, Liu FL, Yang JS, Zhang ZM, McWilliams M and Liou JG. 2006. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. Geological Society of America Special Papers, 403: 93-113. |
Yang JH, Chung SL, Wilde SA, Wu FY, Chu MF, Lo CH and Fan HR. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China:Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214(1-2): 99-125. DOI:10.1016/j.chemgeo.2004.08.053 |
Ye K, Yao YP, Katayama I, Cong BL, Wang QC and Maruyama S. 2000. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China:New implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 52(1-4): 157-164. DOI:10.1016/S0024-4937(99)00089-4 |
Yu Y, Xu WL and Wang CG. 2014. Experimental studies of melt-peridotite reactions at 1~2GPa and 1250~1400℃ and their implications for transforming the nature of lithospheric mantle and for high-Mg signatures in adakitic rocks. Science China Earth Sciences, 57(3): 415-427. DOI:10.1007/s11430-013-4768-1 |
Zeng LS, Liang FH, Asimow PD, Chen FY and Chen J. 2009. Partial melting of deeply subducted continental crust and the formation of quartzofeldspathic polyphase inclusions in the Sulu UHP eclogites. Chinese Science Bulletin, 54(15): 2580-2594. |
Zhang JF, Wang C and Wang YF. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91-99. DOI:10.1016/j.lithos.2012.03.015 |
Zhang JF, Wang CG, Xu HJ, Wang C and Xu WL. 2015. Partial melting and crust-mantle interaction in subduction channels:Constraints from experimental petrology. Science China Earth Sciences, 58(10): 1700-1712. DOI:10.1007/s11430-015-5186-3 |
Zhang RY, Liou JG and Cong BL. 1995. Talc-, magnesite-and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology, 36(4): 1011-1037. DOI:10.1093/petrology/36.4.1011 |
Zhang RY and Liou JG. 1997. Partial transformation of gabbro to coesite-bearing eclogite from Yangkou, the Sulu terrane, eastern China. Journal of Metamorphic Geology, 15(2): 183-202. DOI:10.1111/j.1525-1314.1997.00012.x |
Zhang RY, Yang JS, Wooden JL, Liou JG and Li TF. 2005a. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China:Implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth and Planetary Science Letters, 237(3-4): 729-743. DOI:10.1016/j.epsl.2005.07.003 |
Zhang RY, Liou JG and Ernst WG. 2009a. The Dabie-Sulu continental collision zone:A comprehensive review. Gondwana Research, 16(1): 1-26. DOI:10.1016/j.gr.2009.03.008 |
Zhang ZM, Xiao YL, Liu FL, Liou JG and Hoefs J. 2005b. Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos, 81(1-4): 189-207. DOI:10.1016/j.lithos.2004.10.002 |
Zhang ZM, Shen K, Wang JL and Dong HL. 2009b. Petrological and geochronological constraints on the formation, subduction and exhumation of the continental crust in the southern Sulu orogen, eastern-central China. Tectonophysics, 475(2): 291-307. DOI:10.1016/j.tecto.2009.02.042 |
Zhao RX, Liou JG, Zhang RY and Wooden JL. 2005. SHRIMP U-Pb dating of zircon from the Xugou UHP eclogite, Sulu terrane, eastern China. International Geology Review, 47(8): 805-814. DOI:10.2747/0020-6814.47.8.805 |
Zhao ZF, Zheng YF, Chen RX, Xia QX and Wu YB. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica et Cosmochimica Acta, 71(21): 5244-5266. DOI:10.1016/j.gca.2007.09.009 |
Zhao ZF, Zheng YF, Wei CS and Wu FY. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen:Implications for crust-mantle interaction and crustal architecture. Lithos, 126(1-2): 99-114. DOI:10.1016/j.lithos.2011.06.010 |
Zhao ZF, Zheng YF, Zhang J, Dai LQ, Li QL and Liu XM. 2012. Syn-exhumation magmatism during continental collision:Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chemical Geology, 328: 70-88. DOI:10.1016/j.chemgeo.2011.11.002 |
Zhao ZF, Dai LQ and Zheng YF. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports, 3: 3413. DOI:10.1038/srep03413 |
Zhao ZF, Dai LQ and Zheng YF. 2015. Two types of the crust-mantle interaction in continental subduction zones. Science China Earth Sciences, 58(8): 1269-1283. DOI:10.1007/s11430-015-5136-0 |
Zheng JP, Griffin WL, O'Reilly SY, Yang JS and Zhang RY. 2006. A refractory mantle protolith in younger continental crust, east-central China:Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 34(9): 705-708. DOI:10.1130/G22569.1 |
Zheng YF, Fu B, Gong B and Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:Implications for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2): 105-161. DOI:10.1016/S0012-8252(02)00133-2 |
Zheng YF, Wu YB, Chen FK, Gong B, Li L and Zhao ZF. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165. DOI:10.1016/j.gca.2004.01.007 |
Zheng YF. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(20): 3081-3104. |
Zheng YF, Xia QX, Chen RX and Gao XY. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3-4): 342-374. DOI:10.1016/j.earscirev.2011.04.004 |
Zheng YF. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328: 5-48. DOI:10.1016/j.chemgeo.2012.02.005 |
Zheng YF, Zhao ZF and Chen YX. 2013. Continental subduction channel processes:Plate interface interaction during continental collision. Chinese Science Bulletin, 58(35): 4371-4377. DOI:10.1007/s11434-013-6066-x |
Zheng YF and Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth, Planets and Space, 66: 93. DOI:10.1186/1880-5981-66-93 |
Zong KQ, Liu YS, Gao CG, Hu ZC, Gao S and Gong HJ. 2010a. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite:Refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China. Chemical Geology, 269(3-4): 237-251. DOI:10.1016/j.chemgeo.2009.09.021 |
Zong KQ, Liu YS, Hu ZC, Kusky T, Wang DB, Gao CG, Gao S and Wang JQ. 2010b. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos, 120(3-4): 490-510. DOI:10.1016/j.lithos.2010.09.013 |
郭敬辉, 陈福坤, 张晓曼, Siebel W, 翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学. 岩石学报, 21(4): 1281-1301. |
刘福来, 薛怀民, 刘平华. 2009. 苏鲁超高压岩石部分熔融时间的准确限定:来自含黑云母花岗岩中锆石U-Pb定年、REE和Lu-Hf同位素的证据. 岩石学报, 25(5): 1039-1055. |
续海金, 宋衍茹, 叶凯. 2013. 苏鲁超高压地体部分熔融时间的厘定:荣成花岗质片麻岩中浅色条带的锆石U-Pb定年、微量元素和Lu-Hf同位素证据. 岩石学报, 29(5): 1594-1606. |