岩石学报  2018, Vol. 34 Issue (1): 217-240   PDF    
庐枞矿集区与钨矿床有关的花岗岩的年代学及地球化学特征:岩石成因及其对长江中下游晚白垩世成矿的启示
张赞赞1 , 吴明安2 , 杜建国1 , 张舒1 , 张千明3 , 陆三明4     
1. 安徽省地质调查院, 合肥 230001;
2. 安徽省地质矿产勘查局, 合肥 230001;
3. 安徽省地质矿产勘查局327地质队, 合肥 230011;
4. 安徽省公益性地质调查管理中心, 合肥 230001
摘要:长江中下游是中国东部一个重要的与中生代岩浆作用有关的Cu-Au-Mo-Fe矿成矿带。近期勘查工作在庐枞矿集区东顾山地区深部首次发现了与隐伏花岗岩密切相关的钨钼多金属矿化。岩石学和岩石地球化学研究结果表明,隐伏花岗岩具有高硅富碱高钾、贫铁贫镁及铝弱饱和的特征,属于高钾钙碱性系列岩石;具有富集Rb、Th、U等强不相容元素和轻稀土元素,亏损Nb、P、Ti、Y等高场强元素,低εNdt)(-18.2~-17.1)和相对高的(87Sr/86Sr)i(0.70596~0.70631)的特征,推测其岩浆来源于扬子下地壳的部分熔融,岩浆在就位之前经历了一定程度的分异结晶作用。利用LA-ICP MS锆石U-Pb定年获得96.7±1.3Ma的锆石年龄,表明其属于晚白垩世早期岩浆活动的产物。结合区域成岩成矿时空格架,认为东顾山地区隐伏花岗岩及与之有关的钨钼多金属矿化可能代表了长江中下游成矿带的新一期成岩成矿事件。
关键词: 花岗岩     锆石U-Pb定年     岩石地球化学     长江中下游成矿带     安徽东顾山地区    
Geochronology and geochemistry of the tungsten deposit-related granites in the Luzong orefield: petrogensis and insights for Late Cretaceous metallogeny in the Middle and Lower Reaches of Yangtze River Metallogenic Belt
ZHANG ZanZan1, WU MingAn2, DU JianGuo1, ZHANG Shu1, ZHANG QianMing3, LU SanMing4     
1. Geological Survey of Anhui Province, Hefei 230001, China;
2. Bureau of Geology and Mineral Exploration of Anhui Province, Hefei 230001, China;
3. No. 327 Team of Bureau of Geology and Mineral Exploration of Anhui Province, Hefei 230011, China;
4. Public Geological Survey Management Center of Anhui Province, Hefei 230001, China
Abstract: The Middle and Lower Reaches of Yangtze River Metallogenic Belt is an important Cu-Au-Mo-Fe metallogenic belt in eastern China, most deposits in the belt are associated with Mesozoic magmatism. A new type of tungsten-molybdenum polymetallic deposit which is discovered in the Donggushan district, north of Luzong orefield, and it has a close relationship with the concealed granites. The petrological and geochemical studies indicated that the granitic rocks contained relatively high SiO2, Na2O and K2O, low FeO and MgO, and are nearly saturated in Al2O3, suggesting that they are high-K calc-alkaline series rocks. These granites are also characterized by enrichment of highly incompatible elements such as Rb, Th and U as well as LREE, depletion of high field strong elements such as Nb, P, Ti and Y, as well as low εNd(t) (-18.2~-17.1) and relatively high (87Sr/86Sr)i (0.70596~0.70631). It can be concluded that their parental magmas have been derived from partial melting of Yangtze lower crust. And the magmas had been undergone fractional crystallization before their emplacements. Zircon U-Pb LA-ICP-MS dating of the granites have yielded age of 96.7±1.3Ma, indicating that the granitic intrusive rocks formed at earlier stage of Late Cretaceous. Compared with the previous geochronology data, a new diagenesis-mineralization event in the Middle and Lower Reaches of Yangtze River Metallogenic Belt was identified by the concealed granitic magmatism and tungsten-molybdenum polymetallic mineralization.
Key words: Granite     Zircon U-Pb dating     Petrogeochemistry     Middle and Lower Reaches of Yangtze River Metallogenic Belt     Donggushan district, Anhui    

长江中下游成矿带是我国重要的Cu-Au-Mo-Fe矿成矿带(常印佛等, 1991; 翟裕生等, 1992; 唐永成等, 1998; 毛景文等, 2004; 周涛发等, 2008)。成矿带中生代岩浆活动强烈,具有爆发性、阶段性和分区性的特征(常印佛等, 1991; 翟裕生等, 1992; Pan and Dong, 1999),自二十世纪八十年代以来,前人对成矿带的岩浆岩进行了大量的科学研究,在岩石类型、成岩物质来源、成岩构造背景、岩浆岩成矿专属性等方面取得了许多重要的科学成果(常印佛等, 1991; 翟裕生等, 1992; 唐永成等, 1998; 华仁民和毛景文, 1999; 王强等, 2003; 杜建国等, 2003; 周涛发等, 2008; 孙卫东等, 2010; 毛景文等, 2012),特别是随着同位素定年技术的飞跃进步和对长江中下游地区成岩时代研究的不断深入,获得了一系列高质量的岩浆岩同位素年龄数据,建立了成矿带148~135Ma、135~127Ma、127~121Ma和109~102Ma四个阶段的成岩时空格架(周涛发等, 2008; 曾键年等, 2013; 孙洋等, 2014; 刘建敏等, 2014)。近年来,长江中下游成矿带由于深部找矿的突破而更加备受关注(常印佛等, 1991; 董树文等, 2007, 2010; 吕庆田等, 2004, 2014; et al., 2013;吴明安等, 2007; 张舒等, 2014; 熊欣等, 2014)。2014年底,在庐枞矿集区北部深部勘探过程中,发现了东顾山钨钼多金属矿化及与成矿有关的隐伏花岗岩侵入体,这一发现不仅填补了庐枞矿集区乃至长江深断裂带以北地区无钨矿的空白,而且为研究长江中下游成矿带的岩浆作用提供了新的方向。聂利青等(2016)仅对东顾山钨钼多金属矿床进行了成岩成矿年龄的测定,并进一步完善了长江中下游成矿带的成岩成矿时空格架。但对于与东顾山钨钼多金属矿床有关的花岗岩的岩石地球化学特征、岩石成因及与成矿带中不同阶段岩浆岩的对比研究工作至今还未开展。本文在详细的野外地质调查和室内岩相学观察的基础上,系统测定了与钨钼多金属矿床有关的花岗岩的化学成分和Sr、Nd同位素组成,并与断隆区、断凹区、宁镇地区岩浆岩及沿江A型花岗岩进行对比,探讨了它们在岩石种属、岩浆源区及成岩构造背景等方面的差异;利用LA-ICP MS锆石U-Pb法进行了花岗岩的成岩时代的测定,结合长江中下游成矿带已有岩浆岩的年代学数据,重新构建了成矿带成岩时空格架,进一步阐述了东顾山地区燕山期岩浆-成矿作用可能为长江中下游成矿带的新一期成岩成矿作用。

1 地质背景

长江中下游成矿带位于扬子板块北缘的长江断裂带内,大别-苏鲁晚三叠世碰撞造山带的前陆,经历了中元古界基底(董岭岩群)形成阶段、古生界盖层沉积阶段和中生代板内变形阶段(常印佛等, 1991),长期的构造作用、岩浆活动和成矿作用使其形成了断隆和断凹的构造格架(周涛发等, 2008)(图 1)。成矿带由七个各具特点的矿集区组成,自西向东依次为鄂东南、九瑞、安庆-贵池、铜陵、庐枞、宁芜及宁镇矿集区。庐枞矿集区位于长江中下游成矿带中部,包括庐枞火山岩盆地、沙溪地区和东顾山地区。

图 1 长江中下游成矿带主要岩浆岩分布略图(据毛景文等, 2012修改) Fig. 1 Sketch magma distribution map of the Middle and Lower Reaches of Yangtze River Metallogenic Belt (modified after Mao et al., 2012)

东顾山地区位于庐枞矿集区北部,区内不同程度出露震旦纪-白垩纪地层,震旦纪地层为一套海相沉积的碳酸盐岩;寒武纪-晚二叠世地层为本区稳定发育地沉积盖层,总体为一陆表海环境,形成一套碳酸盐岩、陆源碎屑岩和硅质岩组合;侏罗纪-白垩纪地层为一套陆相碎屑岩沉积。赋矿地层为早奥陶世红花园组浅灰色中-厚层状含硅质砂屑灰岩夹泥质灰岩、生物碎屑灰岩,在地表发育强烈的硅化。东顾山地区构造较为复杂,皱褶构造主要有龙池山-东顾山向斜和盛桥-照壁山背斜,均属于斜歪-倒转褶皱类型,矿区位于盛桥-照壁山复式背斜的西部。断裂构造以NE向走向断裂和NW向横断裂为主,其中NW向断裂为一系列左旋走滑平移断层,错断早期形成的NE向走向断裂,较大规模的有东顾山和二蛟子山-照壁山走向断裂。矿区岩浆岩较为发育,主要包括东顾山隐伏花岗岩岩体和地表出露的冶父山岩体、吕家院岩体及少量的闪长玢岩脉等(图 2a)。东顾山隐伏花岗岩与钨钼多金属矿化直接相关,为成矿岩体;冶父山岩体为石英正长岩,以小岩株状产出,呈不规则长条状NNE向展布,出露面积约4.6km2,岩体接触带及内部含有大量的含金石英脉(邱检生和朱成伟, 1999);吕家院岩体为二长斑岩,零星分布在冶父山岩体周围及以捕掳体形式分布在冶父山岩体内部,出露面积约0.35km2,岩体深部可能为一规模较大的岩株,其中心部位被后期的冶父山岩体吞蚀。

图 2 庐枞矿集区东顾山地区区域地质图(a)及矿体产出示意图(b)(据聂利青等, 2016修改) 1-第四系;2-白垩系;3-侏罗系;4-二叠系;5-泥盆系;6-志留系;7-奥陶系;8-寒武系;9-震旦系;10-石英正长岩;11-二长斑岩;12-闪长玢岩;13-逆断层;14-正断层;15-平移断层/性质不明断层;16-向斜轴/背斜轴;17-钻孔;18大理岩;19-矽卡岩;20-钼矿体;21-钨矿体;22-铅锌矿体 Fig. 2 Regional geological map of Donggushan district in Luzong orefield (a) and a cross section of the Donggushan tungsten polymetallic deposit (b) (modified after Nie et al., 2016) 1-Quaternary; 2-Cretaceous; 3-Jurassic; 4-Permian; 5-Devonian; 6-Silurian; 7-Ordovician; 8-Cambrian; 9-Sinian; 10-quartz syenite; 11-monzonite porphyry; 12-dioritic porphyrite; 13-reverse fault; 14-normal faults; 15-Strike-slip fault and supposed fault; 16-synclinal axis and anticlinal axis; 17-drill; 18-marble; 19-skarn; 20-molybdenum orebody; 21-tungsten orebody; 22-lead-zinc orebody

经深部钻孔揭露发现,东顾山地区隐伏花岗岩体顶部发育多个钼矿化体(图 3e, f),主要以脉状矿化为主,次为浸染状矿化;在花岗岩体与早奥陶世红花园组碳酸盐岩地层接触带外带的石榴子石矽卡岩中发现钨钼共生矿化体,矿体形态以似层状、平缓透镜状为主,以浸染状矿化为主;在外接触带的透辉石、透闪石矽卡岩带中及早奥陶世五峰组硅质岩、志留系碎屑岩与奥陶系碳酸盐岩界面-硅钙面中发现多处矽卡岩型铜、铅、锌、银多金属矿化体,主要由平行缓倾斜(0°~20°)粗脉和不同产状的网脉组成(图 2b)。

图 3 东顾山隐伏花岗岩岩石及矿化样品的手标本和显微照片 (a)隐伏花岗岩手标本;(b)隐伏花岗岩显微照片(正交偏光),花岗结构;(c)隐伏花岗斑岩手标本,斑晶为钾长石和石英,岩石中含有黑云母二长花岗岩包体(虚线内);(d)隐伏花岗斑岩显微照片(正交偏光),斑晶为钾长石和石英,少量为黑云母,基质为石英和长石;(e)岩体中石英-方解石-辉钼矿脉,辉钼矿呈鳞片状集合体,位于脉中间;(f)辉钼矿脉显微照片(反射光). Pl-斜长石;Bi-黑云母;Kf-钾长石;Qz-石英;Cc-方解石;Mo-辉钼矿 Fig. 3 Photomicrographs of concealed granite and mineralization rocks samples in Donggushan area (a) concealed granite; (b) micrograph of concealed granite (CPL) with granitic texture; (c) concealed granite porphyry with the phenocrysts being potassium feldspar and quartz contains some biotite adamellite enclaves (within the dotted line); (d) micrograph of concealed granite porphyry (CPL) with the phenocrysts being potassium feldspar, quartz and less biotite, and the matrix being quartz and feldspar; (e) quartz-calcite-molybdenite vein in granite intrusive rocks, molybdenite occurred in schistose aggregated; (f) micrograph of molybdenite vein (reflected light). Pl-plagioclase; Bi-biotite; Kf-K-feldspar; Qz-quartz; Cc-calcite; Mo-molybdenite
2 样品特征

本文选取东顾山隐伏岩体新鲜的花岗岩样品开展岩石化学分析、Sr-Nd同位素组成分析和锆石U-Pb定年测试工作,实验样品地质特征如下:

新鲜实验样品采自矿区已施工钻孔ZK002中(深度范围为1140~1200m),岩性为花岗岩,岩石呈灰白色,半自形不等粒结构,块状构造(图 3a),主要矿物组成为石英(25%)、钾长石(40%)、斜长石(30%)、黑云母(< 5%)及少量副矿物。其中石英呈灰白色,部分为无色透明,呈他形粒状分布在长石颗粒之间,粒径大小约0.5~2mm;钾长石呈灰白色,以半自形短柱状为主,部分为不规则粒状,大小为0.5×0.5mm~2×3mm,部分短柱状钾长石颗粒中包裹有较早形成的长板状斜长石,斜长石具环带,大小为0.2×0.5mm左右,钾长石表面多为弥漫状;斜长石以灰白色为主,多为长板状,少量为不规则粒状,大小为0.2×0.5mm~1.5×3mm,部分斜长石边部见一圈钾长石环带;黑云母呈褐色,片状,解理清晰,大小不等,约0.2×0.6mm~1×1.5mm,主要以片状和片状集合体分布在长石颗粒之间(图 3b)。在侵入体边部为花岗斑岩(图 3c),斑晶以钾长石和石英为主,基质为细粒石英和长石(图 3d),岩石中见黑云母二长花岗岩包体。

3 分析方法 3.1 全岩主微量元素测试

全岩主微量元素测试分析由核工业北京地质研究院分析测试研究中心完成。将新鲜的岩石样品粉碎至200目以下的粉末。主量元素分析在飞利浦PW2404 X射线荧光光谱仪上完成,采用GB/T 14506.28-93硅酸盐岩石化学分析方法X射线荧光光谱法(XRF)分析测定,相对误差小于5%;包括稀土元素在内的微量元素采用Finnigan MAT制造的HR-ICP-MS(Element Ⅰ)仪器上完成,实验方法采用电感耦合等离子体质谱(ICP-MS)方法通则。实验过程中温度为20℃,相对湿度30%;微量元素含量大于10×10-6时,相对误差 < 5%,含量小于10×10-6时,相对误差 < 10%,实验详细流程参见靳新娣和朱和平(2000)

3.2 全岩Sr-Nd同位素测试

全岩Sr-Nd同位素组成分析在核工业北京地质研究所分析测试研究中心完成。Rb-Sr同位素分析采用ISOPROBE-T热电离质谱计,单带,M+,可调多法拉第接收器接收;质量分馏用86Sr/88Sr=0.1194校正,标准测量结果:NBS987=0.710250±7,实验室流程本底:Rb为2×10-10g,Sr为2×10-10g。Sm-Nd同位素分析采用ISOPROBE-T热电离质谱计,三带,M+,可调多法拉第接收器接收;质量分馏用146Nd/144Nd=0.7219校正,标准测量结果:JMC为143Nd/144Nd=0.512109±3,全流程本底Sm和Nd均小于50pg。相关的化学流程和同位素比值测试可参见Chen et al. (2000)

3.3 锆石U-Pb年龄测试

定年样品的锆石挑选工作由河北省廊坊诚信地质服务公司完成。在详细地野外地质观察及岩石学研究的基础上,将3~5kg的原岩样品粉碎,采用标准重矿物分离技术,经过淘洗、重选、磁选和密度分选等流程,在双目镜下进一步挑选出晶形完好、透明度和色泽较好的锆石颗粒。将分选后的锆石颗粒粘贴于环氧树脂靶之上,打磨刨光,然后进行锆石的透反射光、阴极发光拍照,根据锆石的形态特征,确定激光测年的位置。

LA-ICP MS锆石U-Pb测年由西北大学大陆动力学国家重点实验室完成。所使用的ICP-MS为Elan 6100DRC,激光剥蚀系统为GeoLas 200M深紫外(DUV)193nm ArF准分子激光剥蚀系统。分析所采用的光斑直径为32μm,并采用29Si作为内标,以哈佛大学标准锆石91500作为外标校正。锆石U-Pb年代学测试数据的处理采用Glitter(4.0版)软件进行,普通铅校正采用Andersen的方法(Andersen, 2002),年龄计算采用Isoplot(3.23版)进行(Ludwing, 2003),测试中的误差标准为1σ,实验详细的流程参见袁洪林等(2003)Yuan et al. (2004)。本次实验有效的测试数据为14个。

4 测试结果 4.1 主量元素

表 1列出了东顾山隐伏花岗岩的主量元素分析结果。从表中看出,SiO2含量变化范围为69.31%~75.46%,K2O含量为3.90%~4.51%,全碱含量介于8.17%~8.48%之间,高于中国同酸度岩石的全碱平均含量(黎彤等, 1998),具有富碱特征。在侵入岩硅碱图(图 4)中,东顾山隐伏侵入岩样品全部落于花岗岩区域内。在岩石系列划分上,本区隐伏花岗岩与宁镇地区岩浆岩一致,均为亚碱性系列岩石,而与断凹区岩浆岩截然不同,与断隆区岩浆岩和沿江A型花岗岩存在一定的差异。进一步将亚碱性系列岩石进行划分,东顾山隐伏花岗岩全部落入钙碱性系列范围内,相对于宁镇地区岩浆岩和断隆区岩浆岩,本区隐伏花岗岩更靠近AF一侧,远离FM一侧(图 5),具有更富碱贫铁贫镁的特征。在硅钾图上(图 6),本区隐伏花岗岩全部落入高钾钙碱性系列范围,与断隆区岩浆岩和宁镇地区岩浆岩一致,其中断隆区部分样品分布在钾玄岩系列范围的原因可能与岩石蚀变(钾化)有关(徐晓春等, 2012; 谢建成等, 2012),断凹区岩浆岩和沿江A型花岗岩富钾,全部落在钾玄岩系列范围内。本区花岗岩ANCK=0.97~1.00,且岩石矿物组合中见黑云母,表明东顾山隐伏花岗岩具弱过铝质特征。

表 1 东顾山隐伏花岗岩主量元素分析结果表(wt%) Table 1 The major elements (wt%) analytical results of concealed granite intrusions in Donggushan area


图 5 东顾山隐伏花岗岩AFM判别图解(底图据Irvine and Baragar, 1971) Fig. 5 AFM diagram of concealed granite in Donggushan area (after Irvine and Baragar, 1971)

图 6 东顾山隐伏花岗岩SiO2-K2O判别图解(底图据Middlemost, 1994) Fig. 6 SiO2 vs. K2O diagram of concealed granite in Donggushan area (after Middlemost, 1994)
4.2 稀土元素

东顾山隐伏花岗岩的稀土元素分析结果见表 2,稀土元素总量介于147.5×10-6~252.8×10-6之间,平均值为190.3×10-6,低于世界花岗质岩石的稀土元素平均含量(290×10-6, Taylor and Sheppard, 1986)。本区隐伏花岗岩轻重稀土元素分异明显,(La/Yb)N介于25.1~30.2,平均值为26.9。球粒陨石标准化稀土元素配分模式显示(图 7),本区侵入岩的稀土元素配分模式与断隆区和宁镇地区高钾钙碱性系列岩浆岩的稀土元素配分曲线形式较为相似,均为向右倾斜的轻稀土元素富集型,但在重稀土元素含量上,与后两者存在一定的差异。东顾山隐伏花岗岩δEu变化范围为0.67~0.86,平均值为0.76,表现为Eu负异常,与断隆区高钾钙碱性系列岩浆岩基本一致,而宁镇地区岩浆岩具有弱Eu正异常,可能由于发生过斜长石的堆晶作用引起。

表 2 东顾山隐伏花岗岩微量元素分析结果表(×10-6) Table 2 The trace elements (×10-6) analytical results of concealed granite intrusions in Donggushan area

图 7 东顾山隐伏花岗岩的球粒陨石标准化稀土元素配分图和原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized rare earth elements patterns and primitive mantle-normalized trace element patterns for the concealed granite in Donggushan area (normalization values after Sun and McDonough, 1989)
4.3 微量元素

东顾山隐伏花岗岩的微量元素分析结果见表 2。从表中可以看出该隐伏侵入体具有相对较高含量的Rb、Th、U等强不相容元素和轻稀土元素,相对较低含量的高场强元素(HFSE:Nb、P、Ti、Y),Ba、Sr具有负异常,Ta既表现为富集又表现为亏损。

Sr易取代斜长石中的Ca,主要富集在富钙斜长石、磷灰石等,高Sr是幔源金伯利岩、大陆碱性玄武岩和橄榄玄武岩等高钾岩石的特征(邢凤鸣和徐祥, 1995, 1996)。东顾山隐伏花岗岩贫Sr,其值介于146×10-6~460×10-6,平均值为322×10-6,说明其形成过程中,富钙斜长石、磷灰石等含Sr矿物经历了分离结晶作用,同时暗示本区隐伏花岗岩岩浆来源并非直接来自幔源。Rb、Ba在含钾矿物中与K可以广泛地类质同象,主要载体矿物为钾长石和黑云母,但是元素在一定的物理化学条件下迁移和富集的性质不同,在结晶分异过程中,含K矿物的种类及数量都可影响Rb、Ba的分配,本区隐伏花岗岩富Rb、贫Ba,很可能是原始岩浆固有的特征。一般,幔源型或者壳幔混源同熔型花岗岩的Ba、Sr含量高,Rb含量低,而壳型花岗岩类Ba、Sr含量低,且富Rb(Fowler et al., 2001, 2008; 谢建成等, 2012)。东顾山隐伏花岗岩贫Ba、Sr,富Rb的特征,说明其可能为壳型花岗岩类。P、Ti元素负异常是由于磷灰石和钛铁矿的进一步分离结晶,使P、Ti明显降低造成的。

Nb和Ta、Zr和Hf具有相同的离子价态和相似的离子半径,因此它们具有相似的地球化学行为,特别是在与地幔演化相关的岩浆过程中很难发生分馏(Hofmann, 1988)。一般认为球粒陨石的Nb/Ta和Zr/Hf比值较高(Nb/Ta=19.9±0.6,Zr/Hf=34.3±0.3)(Münker et al., 2003),MORB和OIB都具有相近的低于球粒陨石的Nb/Ta比值(前者约为14.2,后者约为15.9±0.6)(Münker et al., 2003; Pfänder et al., 2007)和高于球粒陨石的Zr/Hf比值(34~42)(Büchl et al., 2002; Pfänder et al., 2007),大陆地壳的平均Nb/Ta比值为13.4左右,Zr/Hf比值为36.7左右(Rudnick and Gao, 2003)。研究表明,在大陆地壳分异和演化过程中,Nb/Ta和Zr/Hf比值并非完全固定,彼此之间会发生分异(Dostal and Chatterjee, 2000; Hoffmann et al., 2011),引起分异的机制可能是相关矿物的分离结晶或者在高压下残留造成(Münker et al., 2004),也可能是流(熔)体与岩浆相互作用形成的(Green, 1994; Dostal and Chatterjee, 2000),或者是在超临界流体媒介下热扩散引起Nb和Ta在低温部位发生重大分异(Ding et al., 2009)。东顾山隐伏花岗岩的Zr/Hf比值介于29.8~37.4,变化范围小,基本接近大陆地壳的平均值,而Nb/Ta比值的变化范围为2.9~12.8(其中前2个样品分别为2.9和7.4,后2个样品基本一致,且与大陆地壳的平均值一致),发生了较大的分异。Nb和Ta的宿主矿物主要为含钛矿物,如角闪石、榍石、金红石、钛铁矿和含钛磁铁矿等。东顾山隐伏花岗岩中黑云母的含量分布不均匀,前2个样品中黑云母含量远高于后2个样品,电子探针分析结果显示(未发表),黑云母中包裹着的大量磷灰石和含钛磁铁矿可能是引起Nb、Ta、P、Sr等元素含量相对较高的主要原因,而伴随亲铁元素W、Cu含量相对较高的原因是花岗岩中的黑云母及磁铁矿等富铁矿物是两者的主要载体。

4.4 Sr-Nd同位素

东顾山隐伏花岗岩Sr-Nd同位素测试结果见表 3。数据显示,本区花岗岩的Sr同位素初始值(87Sr/86Sr)i=0.70596~0.70631,平均0.70610;Nd初始值(143Nd/144Nd)i=0.51158~0.51164,平均0.51161;εNd(t)=-18.2~-17.1,平均-17.7。

表 3 东顾山地区隐伏花岗岩Sr-Nd同位素组成 Table 3 Sr-Nd isotopic compositions of concealed granite in Donggushan area

εNd(t)-(87Sr/86Sr)i图解(图 8)中,本区花岗岩样品集中分布于第四象限,靠近扬子下地壳,而远离扬子克拉通岩石圈地幔,意味着东顾山隐伏侵入岩的成岩物质主要来自扬子下地壳,可能含少量幔源端元物质的加入。断隆区侵入岩高钾钙碱性系列岩石在岩石圈地幔区域与扬子下地壳之间呈斜线排列,表明其物质来源是两种以上端元组成的混合物(邢凤鸣和徐祥, 1996; 陈江峰等, 1993; Wu et al., 2000; 徐晓春等, 2012);断凹区橄榄安粗岩系列岩石成岩物质来自富集型地幔,可能受到少量地壳物质的混染(杨荣勇等, 1993; 谢智等, 2007; 孙冶东等, 1994薛怀民等, 2010, 2016);A型花岗岩分布在扬子克拉通岩石圈地幔与扬子上地壳之间,其成岩物质起源于交代地幔,在上侵过程中,受到地壳物质的混染(向文帅等, 2009; 张舒等, 2014; 薛怀民等, 2016)。可见,东顾山地区花岗岩在物质来源上与断隆区、断凹区及A型花岗岩存在很大的差异。

图 8 东顾山隐伏花岗岩Sr-Nd同位素图解 数据来源:EM Ⅰ和EM Ⅱ地幔端元(Zindler and Hart, 1986);DM、OIB和地幔排列(Yang et al., 2005);华北上地壳和下地壳(Jahn et al., 1999);扬子上地壳和下地壳(薛怀民等, 2010) Fig. 8 The diagram of Sr-Nd isotopic of the concealed granite in Donggushan area Data sources: EM Ⅰ and EM Ⅱ mantle component (Zindler and Hart, 1986); DM, OIB and mantle sequence (after Yang et al., 2005); The upper and lower crust of the North China Block (Jahn et al., 1999); The upper and lower Yangtze crust (after Xue et al., 2010)
4.5 锆石U-Pb年龄

样品(DGSZK002-12)中锆石呈无色-淡黄色,多为半自形-自形柱状,偶见不规则状,锆石颗粒完整,少量锆石表面可见溶蚀现象,锆石长约80~200μm,宽约30~100μm。CL图像显示(图 9),锆石内部结构清晰,具有特征的单期生长的振荡环带,部分锆石颗粒颜色整体偏白,震荡环带表现为灰白-浅灰黑色交替出现,表明这些锆石中U的含量相对偏低,锆石中无继承锆石形成的核幔结构,无后期形成的变质壳,表明这些锆石由岩浆结晶形成。大量研究表明,不同成因锆石具有不同的Th/U比值,岩浆锆石Th/U比值一般大于0.1(表 4),而变质锆石Th/U比值一般小于0.1(Belousova et al., 2002; Watson et al., 2006)。本文所测样品中锆石Th/U比值均大于0.1,应属于典型的岩浆成因锆石,其测年结果可代表岩浆冷凝结晶的时代。

图 9 东顾山隐伏花岗岩样品部分锆石阴极发光(CL)图像及测试位置 Fig. 9 Cathodeluminescence (CL) images of selected zircons for concealed granite in Donggushan area

表 4 东顾山隐伏花岗岩LA-ICP MS锆石U-Pb分析结果 Table 4 LA-ICP MS zircons U-Pb isotopic date of concealed granite intrusion in Donggushan area

锆石U-Pb定年结果表明,多数测点分布在206Pb/238U-207Pb/235U谐和图中谐和曲线附近(图 10),谐和度均在95%以上,表明U-Pb体系封闭,未受后期热液事件干扰。东顾山隐伏花岗岩体(DGSZK002-12)的锆石表面年龄206Pb/238U加权平均值为96.7±1.3Ma(1σ,MSWD=2.0,n=14),且所有测点均分布在206Pb/238U-207Pb/235U谐和图中谐和曲线附近(图 10)。说明测试结果可信度高,该年龄可代表东顾山隐伏花岗岩的侵位时间。

图 10 东顾山隐伏花岗岩锆石U-Pb年龄谐和图 Fig. 10 Zircon U-Pb concordia diagram of concealed granite in Donggushan area
5 讨论 5.1 成岩年代格架

本文通过LA-ICP MS定年技术对东顾山隐伏花岗岩进行了锆石U-Pb定年研究,获得成岩年龄值为96.7±1.3Ma,该年龄与聂利青等(2016)测得的LA-ICP MS锆石U-Pb年龄(99.9±1.7Ma~99.7±1.5Ma)在误差范围内一致,代表了岩浆冷凝结晶的时间。东顾山隐伏花岗岩为晚白垩世早期岩浆活动的产物。

长期以来,长江中下游成矿带的岩浆活动时空格架一直是人们所关注的问题。前人已对成矿带的岩浆活动时限进行了大量的年代学研究。周涛发等(2008)将长江中下游地区岩浆岩成岩时代大致划分为145~136Ma、135~127Ma、126~123Ma三个时期,认为145~136Ma的岩浆活动主要发生在断隆区(如九瑞、铜陵、贵池-安庆等);135~127Ma的岩浆活动主要发育在断凹区(如庐枞盆地、宁芜盆地等),之后的A型花岗岩集中形成于126~123Ma,既可以产于断隆区,又可以产出于断凹区。近年来,随着研究的不断深入,有学者对宁镇矿集区(断隆区)的岩浆岩成岩时序进行了重新厘定,提出宁镇地区岩浆活动为长江中下游成矿带大规模岩浆活动的新一期成岩事件(曾键年等, 2013; 孙洋等, 2014; 王小龙等, 2014; 刘建敏等, 2014; 关俊朋等, 2015),并将长江中下游地区中生代岩浆活动时限重新划分为四期(152~135Ma、135~127Ma、127~121Ma、109~101Ma(孙洋等, 2014);148~133Ma、131~127Ma、126~123Ma、109~102Ma(刘建敏等, 2014))。

相比断隆区与断凹区岩浆活动时限差(7~13Myr)、断凹区与A型花岗岩岩浆活动时限差(3~5Myr)及A型花岗岩与宁镇地区岩浆活动时限差(20Myr左右),东顾山隐伏花岗岩的形成时代与宁镇地区岩浆活动时限相差近8~15Myr。在成岩时代上,东顾山隐伏花岗岩不可能与宁镇地区岩浆岩以区域上的同期岩浆活动来解释,而可能代表了长江中下游成矿带大规模岩浆活动中新一期成岩事件。对此,结合近年来发表的长江中下游地区高精度的岩浆岩年龄数据(包括SHRIMP锆石U-Pb法、LA-ICP MS锆石U-Pb法,年龄数据略),通过梳理和对比,本文重新构筑了长江中下游成矿带中生代岩浆岩年代学格架,共划分为五个成岩作用阶段(图 11a)。第一阶段:148~135Ma,以高钾钙碱性系列侵入岩为主,主要发育在断隆区的九瑞、安庆-贵池及铜陵地区;第二阶段:135~127Ma,以橄榄安粗岩系次火山-火山岩为主,主要发育在宁芜盆地、庐枞盆地及滁州盆地内;第三阶段:127~121Ma,以A型花岗岩为主,主要发育在沿江两岸;第四阶段:109~102Ma,以高钾钙碱性系列岩浆岩为主,主要发育在断隆区的宁镇地区;第五阶段岩浆活动时限为96Ma±,以东顾山隐伏花岗岩侵入体为代表。

图 11 长江中下游地区岩浆活动(a)与成矿作用(b)时限直方图 主要成岩年龄数据来源:鄂东南地区(周珣若等, 1993; 薛怀民等, 2006; Li et al., 2009, 2010; Xie et al., 2011, 2012);九瑞地区(Li et al., 2010; 陈志洪等, 2011; Yang et al., 2011; Xie et al., 2011);安庆-贵池地区(陈江峰等, 1991, 2005; 李波等, 2004; Wang et al., 2006; Wu et al., 2012);铜陵地区(周泰禧等, 1987; 吴才来等, 1996; 王彦斌等, 2004a, b, c; 徐夕生等, 2004; 杨小男等, 2008; 谢建成等, 2008; 徐晓春等, 2008; 吴淦国等, 2008);庐枞地区(Wang and McDougall, 1980; 刘洪等, 2002; 周涛发等, 2007, 2008, 2010; 薛怀民等, 2010; 曾键年等, 2010; 张乐骏, 2011; 范裕等, 2014);宁芜地区(Wang and McDougall, 1980; 岳文浙和丁保良, 1999; 张旗等, 2003; Yan et al., 2009; 薛怀民等, 2010; 范裕等, 2010; 周涛发等, 2011; 袁峰等, 2011);宁镇地区(徐祥和邢凤鸣, 1994; 孙洋等, 2014; 曾键年等, 2013; 刘建敏等, 2014);滁州盆地(谢成龙等, 2007; 马芳和薛怀民, 2011).主要成矿年龄数据来源:断隆区(毛景文等, 2004; Zhou et al., 2007; 王彦斌等, 2004d; 张乐骏等, 2008; 蒋少涌等, 2010);断凹区(Zhou et al., 2011; 张乐骏, 2011; 周涛发等, 2011; 张乐骏等, 2010; 范裕等, 2014);A型花岗岩带(范裕等, 2008; Mao et al., 2011);宁镇地区(王立本等, 1997; 孙洋等, 2014; 关俊朋等, 2015) Fig. 11 Age histogram of magmation (a) and mineralization (b) in the Middle and Lower Reaches of Yangtze River Data sources of main diagenetic age: Edongnan district (Zhou et al., 1994; Xue et al., 2006; Li et al., 2009, 2010; Xie et al., 2011, 2012); Jiurui district (Li et al., 2010; Chen et al., 2011; Yang et al., 2011; Xie et al., 2011); Anqing-Guichi district (Chen et al., 1991, 2005; Li et al., 2004; Wang et al., 2006; Wu et al., 2012); Tongling district (Zhou et al., 1987; Wu et al., 1996; Wang et al., 2004a, b, c; Xu et al., 2004; Yang et al., 2008; Xie et al., 2008; Xu et al., 2008; Wu et al., 2008); Luzong district (Wang and McDougall, 1980; Liu et al., 2002; Zhou et al., 2007, 2008, 2010; Xue et al., 2010; Zeng et al., 2010; Zhang et al., 2011; Fan et al., 2014); Ningwu district (Wang and McDougall, 1980; Yue and Ding, 1999; Zhang et al., 2003; Yan et al., 2009; Xue et al., 2010; Fan et al., 2010; Zhou et al., 2011; Yuan et al., 2011); Ningzhen district (Xu and Xing, 1994; Sun et al., 2014; Zeng et al., 2013; Liu et al., 2014); Chuzhou volcanic basin (Xie et al., 2007; Ma and Xue, 2011). Data sources of main metallogenic age: uplift areas (Mao et al., 2004; Zhou et al., 2007; Wang et al., 2004d; Zhang et al., 2008; Jiang et al., 2010); rift basins (Zhou et al., 2011; Zhang, 2011; Zhou et al., 2011; Zhang et al., 2010; Fan et al., 2014); A-type granite zone (Fan et al., 2008; Mao et al., 2011); Ningzhen area (Wang et al., 1997; Sun et al., 2014; Guan et al., 2015)
5.2 岩石成因 5.2.1 岩石种属

断隆区和宁镇地区岩浆岩相对富碱、富钾,以高钾钙碱性系列为主,且具有埃达克质岩石相似的地球化学特征;断凹区岩浆岩具有高钾、富碱的特征,属于橄榄安粗岩系列岩石。东顾山隐伏花岗岩组合指数σ=2.06~2.76(< 3.3),属于钙碱性系列,在SiO2-K2O关系中,表现为高钾特征,属于高钾钙碱性系列岩石,与断隆区岩石系列一致。

研究认为,埃达克质岩石具有高Sr(>400×10-6)、强烈亏损HREE和Y(Y<18×10-6、Yb<1.9×10-6)、高Sr/Y(>20)、La/Yb>20、Pb/Nd=0.329~0.390及Eu正异常或弱负异常等特征(张旗等, 2001, 2003, 2009; 汪洋等, 2004; 王强等, 2008)。本区隐伏花岗岩Sr=146×10-6~460×10-6,平均值为323×10-6,Y=8.73~17.1,平均12.5,Sr/Y=16.7~32.3,平均值为24.7,Yb=1.15~1.89,La/Yb=37.2~44.7,Pb/Nd=0.392~1.172,在Sr/Y-Y图解(图 12)和(La/Yb)N-YbN图解(图 13)中,样品点主要分布在经典岛弧岩石范围内及附近,说明东顾山隐伏花岗岩不具有埃达克质岩石的特征,有别于断隆区岩浆岩和宁镇地区岩浆岩。

图 12 东顾山隐伏花岗岩Sr/Y-Y图解 Fig. 12 Sr/Y vs. Y diagram of concealed granite in Donggushan area

图 13 东顾山隐伏花岗岩(La/Yb)N-YbN图解 Fig. 13 (La/Yb)N vs. YbN diagram of concealed granite in Donggushan area

在岩石化学成分上,A型花岗岩高硅、富碱,贫钙、镁,具有高的(K2O+Na2O)/Al2O3和FeOT/MgO比值,富Rb、Th、Nb、Ta、Zr、Hf、Ga、Y,贫Ba、Sr、Ti、P、Cr、Co、Ni、V,Ga/Al值高(Collins et al., 1982; Whalen et al., 1987)。稀土元素含量高,常为轻稀土元素富集型并且其配分模式呈海鸥型展布(杨富贵等, 1999; Marks et al., 2004)。张旗等(2012)认为稀土元素配分模式和微量元素蛛网图的联用是判别A型花岗岩最为有效的方法,即强烈亏损Sr、Ba、Ti、P,强烈亏损Eu。东顾山地区隐伏花岗岩与沿江典型A型花岗岩相比,Sr、Ba、Ti、P相对富集,也不具有强烈的Eu负异常,且FeO*/MgO和Ga/Al比值低,亏损Nb、Zr、Hf、Y,在10000Ga/Al系列判断图解(图 14)中,所有样品均位于非A型花岗岩区域。东顾山隐伏花岗岩缺少S型花岗岩的特征的富铝矿物,且铝饱和指数ANCK的值都小于1,表明其具有Ⅰ型花岗岩的特征。实验岩石学表明,弱过铝质岩浆中P2O5随着SiO2的增加呈负相关的特征,也成功地区分了Ⅰ型和S型花岗岩(Wu et al., 2003; Li et al., 2007),本区花岗岩的P2O5随着SiO2的增加而减少,表明东顾山地区隐伏花岗岩为弱过铝质高钾钙碱性系列Ⅰ型花岗岩。

图 14 东顾山隐伏花岗岩判别图解 Fig. 14 Discrimination diagram of concealed granite in Donggushan area
5.2.2 岩浆源区

目前,对于断隆区高钾钙碱性系列岩石的岩浆源区的研究具有较大地争议,主要观点包括幔源岩浆和壳源岩浆的混合(邢凤鸣和徐祥, 1996; 吴才来等, 2003; 王强等, 2003)、热的玄武岩浆地底侵引起加厚和/或拆沉下地壳的部分熔融(邢凤鸣和徐祥, 1999; Li et al., 2009; 徐晓春等, 2012)以及洋脊俯冲背景下洋壳的部分熔融形成(Ling et al., 2009, 2011; 孙卫东等, 2010)。大多数学者认为断凹区橄榄安粗岩系列岩石的岩浆起源于富集型岩石圈地幔,并有软流圈物质的加入(薛怀民等, 2012, 2016; Chen et al., 2014; Xue et al., 2015; Yan et al., 2015),而富集型岩石圈地幔的形成可能是由古太平洋板块俯冲析出的流体/熔体交代形成(刘洪等, 2002; Wang et al., 2006; Li et al., 2013),或是由新元古代扬子地块周边的俯冲交代形成(Tang et al., 2012; Chen et al., 2014)。对于沿江A型花岗岩,岩浆起源于岩石圈地幔,并经历不同程度的地壳物质的混染(邢凤鸣和徐祥, 1999; 曹毅等, 2008; 向文帅等, 2009; Wu et al., 2012),或为中-新元古代增生地壳的深熔作用形成(闫峻等, 2012; 彭戈等, 2012)。宁镇地区中生代中酸性岩浆岩具有埃达克质岩石的地球化学特征,岩浆来源于加厚下地壳的部分熔融(许继峰等, 2001; Wang et al., 2014),也有学者认为其属于壳幔型岩浆成因(宁仁祖和陈根生, 1989; 徐莺, 2010)。

东顾山地区隐伏花岗岩富碱,高钾,贫镁贫铁,富集轻稀土元素,亏损重稀土元素,Rb、Th、U富集,Ba、Sr偏低,亏损高场强元素Nb、Ti、P等,La/Nb值变化范围小,平均值为2.14(与大陆地壳La/Nb比值(2.2)(黎彤等, 1999)一致),具有典型的壳源花岗岩的特征。源于软流圈地幔的岩浆以高的εNd(t)(约为+8)、(87Sr/86Sr)i(约为0.703)为特征,源于岩石圈地幔的岩浆的εNd(t)≈-9±2、(87Sr/86Sr)i=0.7073~0.7097 (DePaolo and Daley, 2000)。在Sr-Nd同位素组成上,东顾山隐伏花岗岩(εNd(t)=-18.2~-17.1,(87Sr/86Sr)i=0.7060~0.7063)与断隆区、断凹区、宁镇地区岩浆岩及A型花岗岩存在较大的差异,且具有一定的特殊性,但与邻区洪镇花岗岩(εNd(t)=-23.6~-11.6,(87Sr/86Sr)i=0.7062~0.7083(Wang et al., 2004; 王斌等, 2012))和大别山早期(143~129Ma)花岗岩(εNd(t)=-19.4~-14.6,(87Sr/86Sr)i=0.7067~0.7087(Wang et al., 2007))相似。大别山早期花岗岩具有高Sr低MgO、Y、Yb、Ni,以及高的Sr/Y、La/Yb比值的特征(Wang et al., 2007; Xu et al., 2012),普遍具有埃达克岩的性质,其形成可能与华南板块俯冲导致的地壳增厚及部分熔融有关(Wang et al., 2007; Zhao et al., 2011)。洪镇花岗岩具有高SiO2和K2O/Na2O,高Sr低MgO、Y、Ni、V的地球化学特征(Wang et al., 2004; 王斌等, 2012),对于其岩浆来源及岩石成因,可能来自迄今尚未出露的古老基底(陈江峰等, 1993)或董岭群古老基底的重熔(王斌等, 2012),或形成于古老大陆下地壳高钾基性物质的部分熔融(Wang et al., 2004),也有人认为洪镇花岗岩与大别山早期花岗岩具有相似的源区,均来源于大别造山带加厚的地壳(余顶杰等, 2016)。可以看出,东顾山隐伏花岗岩、宁镇花岗岩及大别山花岗岩均来自地壳物质的部分熔融,无地幔物质的加入,所不同的是东顾山花岗岩不具有埃达克质岩石的地球化学特征,并非来自加厚下地壳的熔融。在εNd(t)-ISr图解中(图 8),东顾山隐伏花岗岩靠近扬子下地壳区域,远离扬子克拉通岩石圈地幔,说明本区隐伏花岗岩岩浆来源于扬子下地壳的部分熔融。

花岗岩高Si,低Ba、Sr,亏损Nb、Ta、Sr、P、Ti和Eu等元素,指示母岩浆经历了分离结晶演化(Wu et al., 2003)。在Ba-Sr、Rb-Sr对数图解中(图 15),随着Ba含量的升高,Sr含量沿钾长石结晶分异演化线从146×10-6增加到460×10-6,这种变化趋势证明了侵入体在形成过程中经历了钾长石和斜长石的分异结晶。东顾山隐伏花岗岩Yb、Y含量低,且亏损HREE,在Ba-Sr图解中,部分样品分布在向石榴子石演化趋势线上,说明源区可能有石榴子石的存在。但侵入体贫Sr、低Al、具有Eu负异常,说明残留相中也有斜长石存在。由于贫Sr、低Yb,本区侵入岩属于低Sr低Y型花岗岩(张旗等, 2008),形成于中等压力条件下。Wang et al. (2004)通过对洪镇花岗岩地球化学的研究认为,低Y、Yb,高Sr/Y、La/Yb比值的特征表明了岩浆源区残留石榴子石,中稀土元素的亏损及K/Rb比值偏低的特征暗示源区可能有角闪石残留以及低CaO、Al2O3、低Ba/Sr值以及弱Sr负异常表明源区也有斜长石残留。大别山早期埃达克质花岗岩高Al2O3、Sr低Y、Yb,弱Eu正异常和Sr正异常的特征表明源区残留石榴子石及少量或者不含斜长石,Na/Ta比值接近甚至高于原始地幔的值,暗示源区残留金红石(Wang et al., 2004; He et al., 2011)。

图 15 东顾山隐伏花岗岩造岩矿物结晶分异判断图解(底图据Janoušek et al., 2004) PlAn50-斜长石(An=50);PlAn15-斜长石(An=15);Kfs-钾长石;Bt-黑云母;Ms-白云母;Grt-石榴子石;Amp-角闪石 Fig. 15 Ba vs. Sr and Rb vs. Sr plots for the concealed granite in Donggushan area (after Janoušek et al., 2004) PlAn50-Plagioclase (An=50); PlAn15-Plagioclase (An=15); Kfs-K-feldspar; Bt-blotite; Ms-muscovite; Grt-garnet; Amp-amphibole
5.2.3 构造背景及动力学过程

T3-J2(约220Ma)时期中国东部在完成华北板块与扬子板块之间的碰撞并最终焊接后,长江中下游地区转为受太平洋构造体制制约的大陆岩石圈演化阶段(邓晋福等, 2004; 杜杨松等, 2007; 董树文等, 2007, 2011)。晚侏罗纪(165±5Ma~145Ma)古太平洋板块开始俯冲,造成中国东部受挤压整体抬升形成高原,遭受侵蚀而缺失晚侏罗世的沉积,岩石圈迅速增厚(董树文等, 1993; 张旗等, 2001);随后进入碰撞造山后的应力转换期(145~136Ma),构造应力由挤压向拉张过渡,岩石圈地幔发生部分熔融,形成了埃达克质母岩浆(王强等, 2004; 蒋少涌等, 2008),岩浆在上升过程中不同程度地受到地壳物质的混染,经过混合的岩浆经过复杂的演化过程后侵位到地壳浅部,形成了以中酸性为主的具埃达克质特征的侵入体及矽卡岩-斑岩型铜-金成矿作用(毛景文等, 2005; 谢桂青等, 2006; 王建中等, 2008; 徐晓春等, 2008, 2012; 曾键年等, 2010),这一过程主要形成于断隆区。约135~127Ma,长江中下游地区进入拉张构造期,岩石圈拆沉、减薄,软流圈上涌,富集型的岩石圈地幔发生部分熔融,形成的岩浆在壳幔过渡带附近聚集发生分离结晶作用(薛怀民等, 2016),随后岩浆上升到地壳浅部,发生的火山作用形成了一系列断陷火山岩盆地和以橄榄安岩系列为主的火山作用及与火山-次火山岩有关的玢岩型铁硫磷成矿作用(任启江等, 1991; 周涛发等, 2010; 薛怀民等, 2012),这一过程主要发生在断凹区。126~123Ma,拉张作用进一步加强,岩石圈减薄和伸展达到高峰期(范裕等, 2008),富集岩石圈地幔进一步部分熔融形成的岩浆和部分软流圈地幔减压熔融所形成的岩浆混合,这种混合岩浆首先在地壳深部发生了镁铁(钛)质矿物的分离结晶作用,在地壳浅部又发生了以斜长石为主,晚期还有钾长石和黑云母的分离结晶作用,形成了以正长岩-石英正长岩-正长花岗岩为组合的A型花岗岩及铁氧化物-铜-铀成矿作用(陈一峰, 1994; 陈一峰等, 1996; 范裕等, 2008; 周涛发等, 2012; 薛怀民等, 2016),主要分布在长江沿岸。至此,长江中下游地区晚中生代强烈的岩浆-构造-成矿作用相对减弱。

约110~100Ma,太平洋板块转变75°,向SW方向俯冲,包括长江中下游地区在内的中国东部又开始伸展活动(Sun et al., 2007),岩石圈减薄、拆沉,在宁镇地区形成了具有埃达克质岩特征的中酸性侵入体及与之有关的矽卡岩型铁矿和矽卡岩型-斑岩型铜矿成矿作用(曾键年等, 2013; 王小龙等, 2014; 孙洋等, 2014; Wang et al., 2014; Xue et al., 2015)。目前,对于花岗岩构造背景的研究存在较大的分歧(张旗等, 2007; 吴福元等, 2007)。肖庆辉等(2007)认为高钾钙碱性系列花岗岩可以出现在各种不同的地球动力学环境中,它们实际上指示的是一种构造体制的变化而不是一个特定的地球动力学环境。受太平洋板块的俯冲作用,下扬子地区在燕山期经历了四幕构造变形,最晚一幕逆冲推覆构造变形发生在K1-K2(100Ma)时期,随后进入了造山后伸展崩塌,形成断陷盆地(邓晋福和吴宗絮, 2001)。根据成岩时代,东顾山地区的燕山期高钾钙碱性岩浆可能形成于由挤压向拉张过渡的构造背景下,是不同于断隆区和宁镇地区的新一期岩浆作用的产物。

5.3 与岩浆活动有关的成矿作用

前人对长江中下游成矿带的成矿作用研究取得了丰硕的成果,系统划分了区内成矿系列:(1)与高钾钙碱性岩浆活动有关的矽卡岩-斑岩型Cu-Mo-Au矿床,以断隆区(铜陵、九瑞、安庆-贵池)及宁镇地区两期成矿为代表(毛景文等, 2004, 2009; 吴淦国等, 2008),成矿时代分别为146~135Ma和108~104Ma;(2)与橄榄安粗岩有关的玢岩型Fe-S-P矿床,以断凹区(宁芜、庐枞)为代表(宁芜研究项目编写小组, 1978; 任启江等, 1991; 周涛发等, 2010),集中形成于130Ma左右;(3)与A型花岗岩有关的铁氧化物-铜-铀矿床(陈一峰, 1994; 陈一峰等, 1996; 郑永飞等, 1995, 1997; 周涛发等, 2012),主要形成时代为127~123Ma(图 11b)。东顾山地区深部钨钼多金属矿化与该区隐伏花岗岩在时空和成因上有密切的关系,形成于97Ma左右(聂利青等, 2016),可能代表了长江中下游成矿带最晚一期成矿作用事件,但在成矿系列上,与断隆区和宁镇地区相似,同属于与高钾钙碱性岩浆活动有关的矽卡岩-斑岩型矿床。

长江中下游成矿带中已发现的具有规模的钨矿床数量较少,且均位于长江深大断裂以南,受不同时期岩浆作用的控制,如鄂东南矿集区南部阮家湾大型层控矽卡岩型W-Cu-Mo矿床、中南部傅家山和大冶龙角山中型矽卡岩型W-Cu-Mo矿床(朱增青, 1987; 舒全安等, 1992)、宁镇矿集区谏壁中型斑岩型W-Mo矿床(杨松生等, 1985; 马春和王素娟, 2003)及铜陵矿集区姚家岭大型锌金多金属矿床中的白钨矿化(钟国雄等, 2014)。而具有大中型规模的矽卡岩-斑岩型钨钼矿床主要集中分布在长江中下游成矿带以南的皖南地区,如祁门东源斑岩型W-Mo矿床、青阳百丈岩矽卡岩-斑岩型W-Mo矿床、池州鸡头山矽卡岩-斑岩型W-Mo矿床等。东顾山地区与隐伏花岗岩有关的钨钼多金属矿化为长江以北地区首次发现,这一发现改变了“南钨北移”的界线不会超过长江深大断裂带的认识(马振东等, 1999; 王登红等, 2012),指示了长江深断裂以北地区具有寻找矽卡岩-斑岩型钨钼多金属矿床的潜力。

6 结论

(1) 庐枞矿集区与钨矿床有关的花岗岩属于弱过铝质高钾钙碱性系列Ⅰ型花岗岩,岩浆来源于扬子下地壳的部分熔融,岩浆演化过程中经历了一定程度的分异结晶作用,形成于由挤压向拉张过渡的构造背景之下;

(2) 庐枞矿集区东顾山隐伏花岗岩形成于96.7±1.3Ma,为晚白垩世早期岩浆活动的产物,其在岩石地球化学和成岩年龄上不同于断隆区高钾钙碱性系列岩石、断凹区橄榄安粗岩系列岩石、沿江A型花岗岩及宁镇高钾钙碱性系列岩石,可能代表了长江中下游成矿带新一期成岩成矿事件;

(3) 庐枞矿集区东顾山钨钼多金属矿化的首次发现,改变了“南钨北移”界线不超过长江深大断裂带的认识,指示长江深断裂带以北地区具有寻找矽卡岩-斑岩型钨钼多金属矿床的潜力。

致谢 成文过程中得到中国地质科学院地质所吴才来研究员的悉心指导,匿名审稿人对本文提出了宝贵的修改意见,在此深表感谢!
参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. DOI:10.1016/S0009-2541(02)00195-X
Belousova E, Griffin W, O'Reilly SY and Fisher N. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622. DOI:10.1007/s00410-002-0364-7
Büchl A, Münker C, Mezger K and Hofmann AW. 2002. High-precision Nb/Ta and Zr/Hf ratios in global MORB. Geochimica et Cosmochimica Acta, 66(15A): A108.
Cao Y, Du YS, Cai CL, Qin XL, Li ST and Xiang WS. 2008. Mesozoic A-type granitoids and xenoliths in the Lujiang-Zongyang area, Anhui Province:Significance in post-collisional magmatic evolution. Geological Journal of China Universities, 14(4): 565-576.
Chang YF, Liu XP and Wu YC. 1991. The Copper-iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House: 1-379.
Chen F, Hegner E and Todt W. 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany:Evidence for a Cambrian magmatic arc. International Journal of Earth Sciences, 88(4): 791-802. DOI:10.1007/s005310050306
Chen JF, Li XM, Zhou TX and Foland KA. 1991. 40Ar/39Ar dating for the Yueshan diorite, Anhui Province and the estimated formation time of the associated ore deposit. Geoscience, 5(1): 91-99.
Chen JF, Zhou TX, Li XM, Foland KA, Huang CY and Lu W. 1993. Sr and Nd isotopic constraints on source regions of the intermediate and acid intrusions from southern Anhui Province. Geochimica, 22(3): 261-268.
Chen JF, Yu G, Yang G and Yang SH. 2005. A geochronological framework of late Mesozoic magmatism and metallogenesis in the Lower Yangtze Valley, Anhui Province. Geology of Anhui, 15(3): 161-169.
Chen L, Zhao ZF and Zheng YF. 2014. Origin of andesitic rocks:Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China. Lithos, 190-191: 220-239. DOI:10.1016/j.lithos.2013.12.011
Chen YF. 1994. Discussion on uranium metallogenetic regularities in Lu-Zong region. Uranium Geology, 10(4): 193-202, 206.
Chen YF, Ma CM and Fan HX. 1996. A study on the regional geological setting of uranium metallogenesis in Lu-Zong region. Uranium Geology, 12(2): 75-82.
Chen ZH, Xing GF, Guo KY, Zeng Y, Kuang FX, He ZY, Ke X, Yu MG, Zhao XL and Zhang Y. 2011. Zircon U-Pb ages of ore-bearing granitic bodies in northern Jiujiang-Ruichang metallogenic district of the mineralization belt of the Middle-Lower Reaches of the Yangtze River, and its geological significance. Acta Geologica Sinica, 85(7): 1146-1158.
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. DOI:10.1007/BF00374895
Deng JF and Wu ZX. 2001. Lithospheric thinning event in the Lower Yangtze craton and Cu-Fe metallogenic belt in the Middle and Lower Yangtze River Reaches. Geology of Anhui, 11(2): 86-91.
Deng JF, Luo ZH, Su SG, Mo XX, Yu BS, Lai XY and Chen HW. 2004. Petrogenesis, Structural Setting and Mineralization. Beijing: Geological Publishing House: 1-214.
Deng JF, Liu C, Feng YF, Dai SQ, Du JG, Wu MA, Tong JS, Zhou S, Su SG, Wu ZX, Yao XD and Wu XF. 2011. Petrology of volcanic rocks and its relationship to Fe-Cu mineralization of Luzong and Chouzhou basin, Anhui Province. Acta Geologica Sinica, 85(5): 626-635.
DePaolo DJ and Daley EE. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169(1-2): 157-185. DOI:10.1016/S0009-2541(00)00261-8
Ding X, Lundstrom C, Huang F, Li J, Zhang ZM, Sun XM, Liang JL and Sun WD. 2009. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation. International Geology Review, 51(6): 473-501. DOI:10.1080/00206810902759749
Dong SW, Sun XR, Zhang Y, Huang DZ, Wang G, Dai SK and Yu BC. 1993. The basic structure of Dabie collisional orogen. Chinese Science Bulletin, 38(22): 1884-1888.
Dong SW, Zhang YQ, Long CX, Yang ZY, Ji Q, Wang T, Hu JM and Chen XH. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement. Acta Geologica Sinica, 81(11): 1449-1461.
Dong SW, Xiang HS, Gao R, Lv QT, Li JS, Zhan SQ, Lu ZW and Ma LC. 2010. Deep structure and ore formation within Lujiang-Zongyang volcanic ore concentrated area in Middle to Lower Reaches of Yangtze River. Acta Petrologica Sinica, 26(9): 2529-2542.
Dong SW, Ma LC, Liu G, Xue HM, Shi W and Li JH. 2011. On dynamics of the metallogenic belt of Middle-Lower Reaches of Yangtze River, eastern China. Acta Geologica Sinica, 85(5): 612-625.
Dostal J and Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia Canada). Chemical Geology, 163(1-4): 207-218. DOI:10.1016/S0009-2541(99)00113-8
Du JG, Dai SQ, Mo XX, Deng JF and Xu W. 2003. Petrogenic and metallogenic settings of area along Yangtze River in Yanshanian, Anhui Province. Earth Science Frontiers, 10(4): 551-560.
Du YS, Li ST, Cao Y, Qin XL and Lou YE. 2007. UAFC-related origin of the Late Jurassic to Early Cretaceous intrusions in the Tongguanshan ore field, Tongling, Anhui Province, East China. Geoscience, 21(1): 71-77.
Fan Y, Zhou TF, Yuan F, Qian CC, Lu SM and David C. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715-1724.
Fan Y, Zhou TF, Yuan F, Zhang LJ, Qian B, Ma L and David RC. 2010. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances. Acta Petrologica Sinica, 26(9): 2715-2728.
Fan Y, Qiu H, Zhou TF, Yuan F and Zhang LJ. 2014. LA-ICP MS zircon U-Pb dating for the hidden intrusions in the Lu-Zong basin and its tectonic significance. Acta Geologica Sinica, 88(4): 532-546.
Fowler MB, Henney PJ, Darbyshire DPF and Greenwood PB. 2001. Petrogenesis of high Ba-Sr granites:The Rogart pluton, Sutherland. Journal of the Geological Society, 158(3): 521-534. DOI:10.1144/jgs.158.3.521
Fowler MB, Kocks H, Darbyshire DPF and Greenwood PB. 2008. Petrogenesis of high Ba-Sr plutons from the northern Highlands Terrane of the British Caledonian province. Lithos, 105(1-2): 129-148. DOI:10.1016/j.lithos.2008.03.003
Green TH. 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 16 years later. Chemical Geology, 117(1-4): 1-36. DOI:10.1016/0009-2541(94)90119-8
Guan JP, Wei FB, Sun GX, Huang JP and Wang LJ. 2015. Zircon U-Pb dating of intermediate-acid intrusive rocks in the middle section of Ningzhen district and their metallogenic implications. Geotectonica et Metallogenia, 39(2): 344-354.
He YS, Li SG, Hoefs J, Huang F, Liu SB and Hou ZH. 2011. Post-collisional granitoids from the Dabie orogen:New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. DOI:10.1016/j.gca.2011.04.011
Hoffmann JE, Münker C, Næraa T, Rosing MT, Herwartz D, Garbe-Schönberg D and Svahnberg H. 2011. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochimica et Cosmochimica Acta, 75(15): 4157-4178. DOI:10.1016/j.gca.2011.04.027
Hofmann AW. 1988. Chemical differentiation of the earth:The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314. DOI:10.1016/0012-821X(88)90132-X
Hong WT, Xu XS, He ZY and Yan J. 2010. Geochronology and geochemistry of the Jiangmiao intrusion in Nanjing:Its geological significance. Acta Petrologica Sinica, 26(5): 1577-1588.
Hua RM and Mao JW. 1999. A preliminary discussion on the Mesozoic metallogenic explosion in East China. Mineral Deposits, 18(4): 300-308.
Irvine IN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. DOI:10.1139/e71-055
Jahn BM, Wu FY, Lo CH and Tsai QH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2): 119-146. DOI:10.1016/S0009-2541(98)00197-1
Janoušek V, Finger F, Roberts M, Fryda J, Pin C and Dolejš D. 2004. Deciphering the petrogenesis of deeply buried granites:Whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Earth Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 141-159. DOI:10.1017/S0263593300000985
Jiang SY, Li L, Zhu B, Ding X, Jiang YH, Gu LX and Ni P. 2008. Geochemical and Sr-Nd-Hf isotopic compositions of granodiorite from the Wushan copper deposit, Jiangxi Province and their implications for petrogenesis. Acta Petrologica Sinica, 24(8): 1679-1690.
Jiang SY, Sun Y, Sun MZ, Bian LZ, Xiong YG, Yang SY, Cao ZQ and Wu YM. 2010. Reiterative fault systems and superimposed mineralization in the Jiurui metallogenic cluster district, Middle and Lower Yangtze River mineralization belt, China. Acta Petrologica Sinica, 26(9): 2751-2767.
Jin XD and Zhu HP. 2000. Determination of 43 trace elements in rock samples by double focusing high resolution inductively coupled plasma-mass spectrometry. Chinese Journal of Analytical Chemistry, 28(5): 563-567.
Li B, Chen JF, Zheng YF, Zhao ZF and Qian H. 2004. Relationship among oxygen isotope, Rb-Sr isochron and mineral alteration in quartz diorite at Yueshan in Anhui. Acta Petrologica Sinica, 20(5): 1185-1192.
Li H, Li MX, Li CY, Zhang H, Ding X, Yang XY, Fan WM, Li YL and Sun WD. 2012. A-type granite belts of two chemical subgroups in central eastern China:Indication of ridge subduction. Lithos, 150(1): 26-36.
Li JW, Pei RF, Zhang DQ, Mei YX, Zang WS, Meng GX, Zeng PS, Li TJ and Di YJ. 2007. Geochemical characteristics of the Yanshanian intermediate-acid intrusive rocks in the Tongling mineralization concentration area, Anhui Province, and their geological implications. Acta Geoscientica Sinica, 28(1): 11-22.
Li JW, Zhao XF, Zhou MF, Ma CQ, de Souza ZS and Vasconcelos P. 2009. Late Mesozoic magmatism from the Daye region, eastern China:U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. DOI:10.1007/s00410-008-0341-x
Li T, Yuan HY and Wu SX. 1998. On the average chemical composition of granitoids in China and the world. Geotectonica et Metallogenia, 22(1): 29-34.
Li T, Yuan HY, Wu SX and Cheng XF. 1999. Regional element abundances of continental crust bodies in China. Geotectonica et Metallogenia, 23(2): 101-107.
Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab?. Lithos, 96(1-2): 186-204. DOI:10.1016/j.lithos.2006.09.018
Li XH, Li WX, Wang XC, Li QL, Liu Y, Tang GQ, Gao YY and Wu FY. 2010. SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China:Magmatic response to Early Cretaceous lithospheric extension. Lithos, 119(3-4): 427-438. DOI:10.1016/j.lithos.2010.07.018
Li XH, Li ZX, Li WX, Wang XC and Gao YY. 2013. Revisiting the "C-type adakites" of the Lower Yangtze River Belt, central eastern China:In-situ zircon Hf-O isotope and geochemical constraints. Chemical Geology, 345: 1-15. DOI:10.1016/j.chemgeo.2013.02.024
Ling MX, Wang FY, Ding X, Hu YH, Zhou JB, Zartman RE, Yang XY and Sun WD. 2009. Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China. Economic Geology, 104(2): 303-321. DOI:10.2113/gsecongeo.104.2.303
Ling MX, Wang FY, Ding X, Zhou JB and Sun WD. 2011. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China:Geochemical constraints. International Geology Review, 53(5-6): 727-740. DOI:10.1080/00206814.2010.482349
Liu H, Qiu JS, Luo QH, Xu XS, Ling WL and Wang DZ. 2002. Petrogenesis of the Mesozoic potash-rich volcanic rocks in the Luzong basin, Anhui Province:Geochemical constraints. Geochimica, 31(2): 129-140.
Liu JM, Yan J, Li QZ and Liu XQ. 2014. Zircon LA-ICP MS dating of the Anjishan pluton in Nanjing-Zhenjiang area and its significance. Geological Review, 60(1): 190-200.
Lou YE and Du YS. 2006. Characteristics and zircon SHRIMP U-Pb ages of the Mesozoic intrusive rocks in Fanchang, Anhui Province. Geochimica, 35(4): 359-366.
Ludwing KR. 2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center: 59-79.
Lü QT, Hou ZQ, Shi DN, Zhao JH, Xu MC and Chai MT. 2004. Tentative seismic reflection study of Shizishan orefield in Tongling and its significance in regional exploration. Mineral Deposits, 23(3): 390-398.
Lü QT, Yan JY, Shi DN, Dong SW, Tang JT, Wu MA and Chang YF. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze Metallogenic Belt:An insight into the crustal structure and geodynamics of an ore district. Tectonophysics, 606: 60-77. DOI:10.1016/j.tecto.2013.04.006
Lü QT, Dong SW, Shi DN, Tang JT, Jiang GM, Zhang YQ, Xu T and SinoProbe-03-CJ Group. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt:A review from SinoProbe. Acta Petrologica Sinica, 30(4): 889-906.
Münker C, Pfänder JA, Weyer S, Büchl A, Kleine T and Mezger K. 2003. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics. Science, 301(5629): 84-87. DOI:10.1126/science.1084662
Münker C, Wörner G, Yogodzinski G and Churikova T. 2004. Behaviour of high field strength elements in subduction zones:Constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters, 224(3-4): 275-293. DOI:10.1016/j.epsl.2004.05.030
Ma C and Wang SJ. 2003. Features of Jianbi rock mass and type of molybdenum (wolframium) deposits, in Zhenjiang, Jiangsu Province. Geology of Jiangsu, 27(3): 152-158.
Ma F and Xue HM. 2011. SHRIMP zircon U-Pb age of Late Mesozoic volcanic rocks from the Chuzhou basin, eastern Anhui Province, and its geological significance. Acta Petrologica et Mineralogica, 30(5): 924-934.
Ma ZD, Jiang JY, Li YX and Shan GX. 1999. Geochemical division of basement and regional metallogenic forecasting in Middle and Lower reaches of Yangtze River and neighboring regions. Earth Science-Journal of China University of Geosciences, 24(3): 287-291.
Mao JW, Stein H, Du AD, Zhou TF, Mei YX, Li YF, Zang WS and Li JW. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River belt and its implications for mineralization. Acta Geologica Sinica, 78(1): 121-131.
Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188.
Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2): 109-119.
Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China. Ore Geology Reviews, 43(1): 294-314. DOI:10.1016/j.oregeorev.2011.07.010
Mao JW, Duan C, Liu JL and Zhang C. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1): 1-14.
Marks M, Halama R, Wenzel T and Markl G. 2004. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites:Implications for mineral-melt trace-element partitioning. Chemical Geology, 211(3-4): 185-215. DOI:10.1016/j.chemgeo.2004.06.032
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3-4): 215-224. DOI:10.1016/0012-8252(94)90029-9
Nie LQ, Zhou TF, Fan Y, Zhang QM, Zhang M and Wang LH. 2016. LA-ICP MS U-Pb zircon age and molybdenite Re-Os dating of Donggushan, the first tungsten deposit found in the Luzong orefield, Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 32(2): 303-318.
Ning RZ and Chen GS. 1989. REE characteristics of Yenshanian intrusive rocks from Ningzhen. Geochimica, (1): 52-61.
Ningwu Project Group. 1978. The Porphyrite Iron Deposit in Ningwu Area. Beijing: Geological Publishing House: 1-320.
Pan YM and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177-242. DOI:10.1016/S0169-1368(99)00022-0
Peng G, Yan J, Chu XQ, Li QZ and Chen ZH. 2012. Zircon U-Pb dating and geochemistry of Guichi intrusive rocks:Petrogenesis and deep dynamic processes. Acta Petrologica Sinica, 28(10): 3271-3286.
Pfänder JA, Münker C, Stracke A and Mezger K. 2007. Nb/Ta and Zr/Hf in ocean island basalts-Implications for crust-mantle differentiation and the fate of niobium. Earth and Planetary Science Letters, 254(1-2): 158-172. DOI:10.1016/j.epsl.2006.11.027
Qiu JS and Zhu CW. 1999. Geochemical features of rock mass in Yefushan, Anhui and its ore potential evaluation. Gold Geology, 5(3): 64-68.
Ren QJ, Liu XS, Xu ZW, Qiu DT, Hu WX, Fang CQ, Ruan HC, Dong HG, Li ZL and Wu QZ. 1991. Mesozoic Volcano-Tectonic Depression and Its Mineralizing Process in Lujiang-Zongyang Area, Anhui Province. Beijing: Geological Publishing House: 1-145.
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Holland HD and Turekian KK (eds. ). Treatise on Geochemistry, Vol 3. Oxford: Elsevier, 1-64
Shu QA, Chen PL and Cheng JR. 1992. Geology of Iron-Copper Deposits in Eastern Hubei Province, China. Beijing: Metallurgic Industry Press: 1-530.
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: 313-345
Sun WD, Ding X, Hu YH and Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542. DOI:10.1016/j.epsl.2007.08.021
Sun WD, Ling MX, Yang XY, Fan WM, Ding X and Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization:An overview. Science China (Earth Sciences), 53(4): 475-484. DOI:10.1007/s11430-010-0024-0
Sun Y, Ma CQ and Liu YY. 2013. The latest Yanshanian magmatic and metallogenic events in the Middle-Lower Yangtze River Belt:Evidence from the Ningzhen region. Chinese Science Bulletin, 58(34): 4308-4318. DOI:10.1007/s11434-013-6015-8
Sun YD, Yang RY, Ren QJ and Liu XS. 1994. Discussion on the characteristics and tectonic setting of the Mesozoic volcanic sequences in Lujiang-Zongyang area. Acta Petrologica Sinica, 10(1): 97-103.
Tang HY, Zheng JP, Griffin WL, Su YP, Yu CM and Ren HW. 2012. Complex Precambrian crustal evolution beneath the northeastern Yangtze Craton reflected by zircons from Mesozoic volcanic rocks of the Fanchang basin, Anhui province. Precambrian Research, 220-221: 91-106. DOI:10.1016/j.precamres.2012.07.005
Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-gold Polymetallic Deposits in along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House: 1-359.
Taylor HP and Sheppard SMF. 1986. Igneous rocks; Ⅰ, Processes of isotopic fractionation and isotope systematics. Reviews in Mineralogy and Geochemistry, 16(1): 227-271.
Wang B, Xie Z, Cui YR, Chen JF and Zhou TX. 2012. The source composition inversion of the Late Mesozoic granitoids in Lower Yangtze region. Geological Journal of China Universities, 18(4): 623-638.
Wang DH, Chen ZH, Huang GC, Wu GZ and Chen F. 2012. Northwards and westwards prospecting for tungsten and its significance in South China. Geotectonica et Metallogenia, 36(3): 322-329.
Wang FY, Liu SA, Li SG, Akhtar S and He YS. 2014. Zircon U-Pb ages, Hf-O isotopes and trace elements of Mesozoic high Sr/Y porphyries from Ningzhen, eastern China:Constraints on their petrogenesis, tectonic implications and Cu mineralization. Lithos, 200-201: 299-316. DOI:10.1016/j.lithos.2014.05.004
Wang JZ, Li JW, Zhao XF, Qian ZZ and Ma CQ. 2008. Genesis of the Chaoshan gold deposit and its host intrusion, Tongling area:Constraints from 40Ar/39Ar ages and elemental and Sr-Nd-O-C-S isotope geochemistry. Acta Petrologica Sinica, 24(8): 1875-1888.
Wang LB, Ji KJ and Chen D. 1997. Re-Os isotope ages of molybdenite from the Anjishan copper deposit and the Tongshan copper-molybdenum deposit and their implications. Acta Petrologica et Mineralogica, 16(2): 154-159.
Wang Q, Xu JF, Zhao ZH, Xiong XL and Bao ZW. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process. Science in China (Series D), 46(8): 801-815. DOI:10.1007/BF02879524
Wang Q, Xu JF, Zhao ZH, Bao ZW, Xu W and Xiong XL. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of East China:Adakites in an extensional tectonic regime within a continent. Geochemical Journal, 38(5): 417-434. DOI:10.2343/geochemj.38.417
Wang Q, Zhao ZH, Xu JF, Bai ZH, Wang JX and Liu CX. 2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei:(Delaminated) lower crustal melting and the genesis of porphyry copper deposit. Acta Petrologica Sinica, 20(2): 351-360.
Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF and Bai ZH. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China):Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446. DOI:10.1016/j.lithos.2005.12.010
Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CF, Xu W, Ma JL and He B. 2007. Early cretaceous adakitic granites in the northern Dabie complex, central China:Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. DOI:10.1016/j.gca.2007.03.008
Wang Q, Xu JF, Zhao ZH, Zi F, Tang GJ, Jia XH and Jiang ZQ. 2008. Tectonic setting and associated rock suites of adakitic rocks. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 344-350.
Wang SS and McDougall I. 1980. K-Ar and 39Ar/40Ar ages on Mesozoic volcanic rocks from the Lower Yangtze Volcanic Zone, southeastern China. Journal of the Geological Society of Australia, 27(1-2): 121-128. DOI:10.1080/00167618008729127
Wang XL, Zeng JN, Ma CQ, Li XF, Wu YF and Lu SF. 2014. Zircon U-Pb dating of Yanshanian intrusive rocks in Ningzhen district, Jiangsu:The chronology evidence for a new stage of petrogensis and metallogeny in Middle and Lower Reaches of Yangtze River. Earth Science Frontiers, 21(6): 289-301.
Wang Y, Deng JF and Ji GY. 2004. A perspective on the geotectonic setting of Early Cretaceous adakite-like rocks in the Lower Reaches of Yangtze River and its significance for copper-gold mineralization. Acta Petrologica Sinica, 20(2): 297-314.
Wang YB, Liu DY, Meng YF, Zeng PS, Yang ZS and Tian SH. 2004a. SHRIMP U-Pb geochronology of the Xinqiao Cu-S-Fe-Au deposit in the Tongling ore district, Anhui. Geology in China, 31(2): 169-173.
Wang YB, Liu DY, Zeng PS, Yang ZS, Meng YF and Tian SH. 2004b. SHRIMP U-Pb geochronology of Xiaotongguanshan quartz-dioritic intrusions in Tongling district and its petrogenetic implications. Acta Petrologica et Mineralogica, 23(4): 298-304.
Wang YB, Liu DY, Zeng PS, Yang ZS and Tian SH. 2004c. SHRIMP U-Pb geochronology of pyroxene diorite in the Chaoshan gold deposit and its geological significance. Acta Geoscientica Sinica, 25(4): 423-427.
Wang YB, Tang SH, Wang JH, Zeng PS, Yang ZS, Meng YF and Tian SH. 2004d. Rb-Sr dating the pyrite of the Xiaoqiao Cu-S-Fe-Au deposit, Tongling, Anhui Province. Geological Review, 50(5): 538-542.
Watson FB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. DOI:10.1007/s00410-006-0068-5
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. DOI:10.1007/BF00402202
Wu CL, Zhou XR, Huang XC, Zhang CH and Huang WM. 1996. 40Ar/39Ar chronology of intrusive rocks from Tongling. Acta Petrologica et Mineralogica, 15(4): 299-306.
Wu CL, Wang ZH, Qiao DW, Li HB, Hao MY and Shi RD. 2000. Types of enclaves and their features and origins in intermediate-acid intrusive rocks from the Tongling district, Anhui Province, China. Acta Geologica Sinica, 74(1): 54-67.
Wu CL, Chen SY, Shi RD and Hao MY. 2003. Origin and features of the Mesozoic intermediate-acid intrusive in the Tongling area, Anhui, China. Acta Geoscientia Sinica, 24(1): 41-48.
Wu CL, Gao QM, Guo HP, Guo XY, Liu LG, Gao YH, Lei M and Qin HP. 2010. Petrogenesis of the intermediate-acid intrusive rocks and zircon SHRIMP dating in Tongling, Anhui, China. Acta Petrologica Sinica, 26(9): 2630-2652.
Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated Ⅰ-type granites in NE China (Ⅰ):Geochronology and petrogenesis. Lithos, 66(3-4): 241-273. DOI:10.1016/S0024-4937(02)00222-0
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238.
Wu FY, Ji WQ, Sun DH, Yang YH and Li XH. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province China. Lithos, 150: 6-25. DOI:10.1016/j.lithos.2012.03.020
Wu GG, Zhang D, Di YJ, Zang WS, Zhang XX, Song B and Zhang ZY. 2008. SHRIMP zircon U-Pb dating of the intrusives in the Tongling metallogenic cluster and its dynamic setting. Science in China (Series D), 51(7): 911-928. DOI:10.1007/s11430-008-0067-7
Wu MA, Hou MJ and Zhao WG. 2007. Mineralization regularity and exploration direction in Luzong area, Anhui. Resources Survey & Environment, 28(4): 269-277.
Xiang WS, Du YS and Cao Y. 2009. A-type granites along with shoshonitic rocks in the Luzong area. Journal of Mineralogy and Petrology, 29(3): 36-42.
Xiao QH, Qiu RZ, Xing ZY, Zhang Y, Wu GY and Tong JS. 2007. Major frontiers on studies of granite formation. Geological Review, 53(Suppl.): 17-27.
Xie CL, Zhu G, Niu ML and Wang YS. 2007. LA-ICP MS zircon U-Pb ages of the Mesozoic volcanic rocks from Chuzhou area and their tectonic significances. Geological Review, 53(5): 642-655.
Xie GQ, Mao JW, Li RL, Zhang ZS, Zhao WC, Qu WJ, Zhao CS and Wei SK. 2006. Metallogenic epoch and geodynamic framework of Cu-Au-Mo-(W) deposits in southeastern Hubei Province:Constraints from Re-Os molybdenite ages. Mineral Deposits, 25(1): 43-52.
Xie GQ, Mao JW and Zhao HJ. 2011. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China. Lithos, 125(1-2): 693-710. DOI:10.1016/j.lithos.2011.04.001
Xie GQ, Mao JW, Zhao HJ, Duan C and Yao L. 2012. Zircon U-Pb and phlogopite 40Ar-39Ar age of the Chengchao and Jinshandian skarn Fe deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt, China. Mineralium Deposita, 47(6): 633-652. DOI:10.1007/s00126-011-0367-2
Xie JC, Yang XY, Du JG and Sun WD. 2008. Zircon U-Pb geochronology of the Mesozoic intrusive rocks in the Tongling region:Implications for copper-gold mineralization. Acta Petrologica Sinica, 24(8): 1782-1800.
Xie JC, Yang XY, Xiao YL, Du JG and Sun WD. 2012. Petrogenesis of the Mesozoic intrusive rocks from the Tongling ore cluster region:The metallogenic significance. Acta Geologica Sinica, 86(3): 423-459.
Xie Z, Li QZ, Chen JF and Gao TS. 2007. The geochemical characteristics of the Early-Cretaceous volcanics in Luzong region and their source significances. Geological Journal of China Universities, 13(2): 235-249.
Xing FM and Xu X. 1995. The essentail features of magmatic rocks along the Yangtze River in Anhui Province. Acta Petrologica Sinica, 11(4): 409-422.
Xing FM and Xu X. 1996. High-potassium calc-alkaline intrusive rocks in Tongling area, Anhui Province. Geochimica, 25(1): 29-38.
Xing FM and Xu X. 1999. Yangtze Magmatic Rocks Belt and Mineralization in Anhui. Hefei: Anhui Peoole's Publishing House: 1-170.
Xiong X, Xu WY, Yang ZS, Jia LQ and Li J. 2014. Characteristics and genesis of hypothermal uranium and thorium mineralization in Luzong basin:Evidence from the scientific drilling ZK01 at Zhuanqiao. Acta Petrologica Sinica, 30(4): 1017-1030.
Xu HJ, Ma CQ and Zhang JF. 2012. Generation of Early Cretaceous high-Mg adakitic host and enclaves by magma mixing, Dabie orogen, eastern China. Lithos, 142-143: 182-200. DOI:10.1016/j.lithos.2012.03.004
Xu JF, Wang Q, Xu YG, Zhao ZH and Xiong XL. 2001. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area:Constraint to origin of the magma with HREE and Y depletion. Acta Petrologica Sinica, 17(4): 576-584.
Xu X and Xing FM. 1994. Whole-rock and mineral Rb-Sr isochron ages of the three gabbros in Nanjing-Wuhu area, China. Chinses Journal of Geology, 29(3): 309-312.
Xu XC, Lu SM, Xie QQ, Bai L and Chu GZ. 2008. SHRIMP zircon U-Pb dating for the magmatic rocks in Shizishan ore-field of Tongling, Anhui Province, and its geological implications. Acta Geologica Sinica, 82(4): 500-509.
Xu XC, Bai RY, Xie QQ, Lou JW, Zhang ZZ, Liu QN and Chen LW. 2012. Re-understanding of the geological and geochemical characteristics of the Mesozoic intrusive rocks from Tongling area of Anhui Province, and discussions on their genesis. Acta Petrologica Sinica, 28(10): 3139-3169.
Xu XS, Fan QC, O'Reilly SY, Jiang SY, Griffin WL, Wang RC and Qiu JS. 2004. U-Pb dating of zircons from quartz diorite and its enclaves at Tongguanshan in Anhui and its petrogenetic implication. Chinese Science Bulletin, 49(19): 2073-2082. DOI:10.1360/04wd0137
Xu Y. 2010. Research on magmatic origin, evolution mechanism and the relation with formation of Cu-polymetallic deposit in the middle-segment of Nanjing-Zhenjiang. Master Degree Thesis. Changsha: Central South University, 43-45 (in Chinese with English summary)
Xue HM, Dong SW and Jian P. 2006. Mineral chemistry, geochemistry and U-Pb SHRIMP zircon data of the Yangxin monzonitic intrusive in the foreland of the Dabie orogen. Science in China (Series D), 49(7): 684-695. DOI:10.1007/s11430-006-0684-y
Xue HM, Dong SW and Ma F. 2010. Zircon U-Pb SHRIMP ages of sub-volcanic bodies related with porphyritic Fe-deposits in the Luzong and Ningwu basins, Middle and Lower Yangtze River Reaches, Central China. Acta Petrologica Sinica, 26(9): 2653-2664.
Xue HM, Dong SW and Ma F. 2012. Zircon SHRIMP U-Pb ages of volcanic rocks in the Luzong Basin, Middle and Lower Yangtze River reaches: Constraints on the model of Late Mesozoic lithospheric thinning of the Eastern Yangtze Craton. Acta Geologica Sinica, 86(10): 1569-1583.
Xue HM, Ma F and Cao GY. 2015. Geochronology and petrogenesis of shoshonitic igneous rocks, Luzong volcanic basin, Middle and Lower Yangtze River Reaches, China. Journal of Asian Earth Sciences, 110: 123-140. DOI:10.1016/j.jseaes.2015.03.020
Xue HM, Ma F, Cao GY, Wang YP and Guo XY. 2016. Petrogenesis of potassic intrusive rocks along the southern margin of the Luzong volcanic basin, Middle and Lower Yangtze River Reaches, China. Acta Geologica Sinica, 90(9): 2233-2257.
Yan J, Liu HQ, Song CZ, Xu XS, An YJ, Liu J and Dai LQ. 2009. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications. Chinese Science Bulletin, 54(16): 2895-2904.
Yan J, Peng G, Liu JM, Li QZ, Chen ZH, Shi L, Liu XQ and Jiang ZC. 2012. Petrogenesis of granites from Fanchang district, the Lower Yangtze region: Zircon geochronology and Hf-O isotopes constrains. Acta Petrologica Sinica, 28(10): 3209-3227.
Yan J, Liu JM, Li QZ, Xing GF, Liu XQ, Xie JC, Chu XQ and Chen ZH. 2015. In situ zircon Hf-O isotopic analyses of Late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China: Implications for petrogenesis and geodynamic evolution. Lithos, 227: 57-76. DOI:10.1016/j.lithos.2015.03.013
Yang FG, Wang ZG, Liu CQ, Hou HQ and Hong WX. 1999. Geological and geochemical significance of hornblendes from alkali granitoids in northern and western Junggar, Xinjiang, China. Acta Mineralogica Sinica, 19(1): 70-76.
Yang JH, Chung SL, Wilde SA, Wu FY, Chu MF, Lo CH and Fan HR. 2005. Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214(1-2): 99-125. DOI:10.1016/j.chemgeo.2004.08.053
Yang RY, Ren QJ, Xu ZW, Sun YD, Guo GZ and Qiu JS. 1993. The magma source of Bajiatan volcanic-intrusive complex in the Lujiang-Zhongyang area, Anhui Province. Geochimica, 22(2): 197-206.
Yang SS, Duan JC, Ju ZF and He JG. 1985. Discussion of Jianbi tungsten molybdenum deposit geological characteristics and formation mechanism. Geology and Prospecting, (8): 20-27.
Yang SY, Jiang SY, Li L, Sun Y, Sun MZ, Bian LZ, Xiong YG and Cao ZQ. 2011. Late Mesozoic magmatism of the Jiurui mineralization district in the Middle Lower Yangtze River Metallogenic Belt, eastern China: Precise U-Pb ages and geodynamic implications. Gondwana Research, 20(4): 831-843. DOI:10.1016/j.gr.2011.03.012
Yang XN, Xu ZW, Xu XS, Ling HF, Liu SM, Zhang J and Li HY. 2008. Zircon U-Pb geochronology and its implication for the temperature of Yanshanian magma in Tongling, Anhui Province. Acta Geologica Sinica, 82(4): 510-516.
Yu DJ, Wang YS, Yang BF and Wang HF. 2016. Geochemical features of granites from two sides of the southern segment of the Tan-Lu fault zone: Evidence for middle-lower crust flow of the Dabie orogenic belt. Acta Petrologica Sinica, 32(4): 1001-1012.
Yu WX. 2006. Research on the origin of the Yueshan intrusion and its relation with mineralization, Anhui Province. Master Degree Thesis. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-88 (in Chinese with English summary)
Yuan F, Zhou TF, Fan Y, Zhang LJ, Ma L and Qian B. 2011. Zircon U-Pb ages and isotopic characteristics of the granitoids in the Ningwu basin, China, and their significance. Acta Geologica Sinica, 85(5): 821-833.
Yuan HL, Wu FY, Gao S, Liu XM, Xu P and Sun DY. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411-2421.
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. DOI:10.1111/ggr.2004.28.issue-3
Yue WZ and Ding BL. 1999. Study on cretaceous stratigraphic sequence of continental basin in Jiangsu. Volcanology & Mineral Resources, 20(4): 287-344.
Zeng JN, Qin YJ, Guo KY, Chen GG and Zeng Y. 2010. Zircon U-Pb dating of ore-bearing magmatic rocks and its constraint on the formation time of the ore deposits in Luzong basin, Anhui Province. Acta Geologica Sinica, 84(4): 466-478.
Zeng JN, Li JW, Chen JH and Lu JP. 2013. SHRIMP zircon U-Pb dating of Anjishan intrusive rocks in Ningzhen district, Jiangsu, and its geological significance. Earth Science-Journal of China University of Geosciences, 38(1): 57-67.
Zhai YS, Yao SZ, Lin XD, Zhou XR, Wan QF, Jin FQ and Zhou ZG. 1992. Regularities of Metallogenesis for Copper (Gold) Deposits in the Middle and Lower Reaches of the Yangtze River Area. Beijing: Geological Publishing House: 12-35.
Zhang LJ, Zhou TF, Fan Y and Yuan F. 2008. SHRIMP U-Pb zircon dating of Yueshan intrusion in the Yueshan ore field, Anhui, and its significance. Acta Petrologica Sinica, 24(8): 1725-1732.
Zhang LJ, Zhou TF, Fan Y, Yuan F, Ma L and Qian B. 2010. Dating of copper mineralization in Jingbian deposit and its prospecting significance in Luzong basin, Anhui Province. Acta Petrologica Sinica, 26(9): 2729-2738.
Zhang LJ. 2011. Polymetallic mineralization and associated magmatic and volcanic activity in the Luzong basin, Anhui Province, eastern China. Ph. D. Dissertation. Hefei: Hefei University of Technology, 1-239 (in Chinese with English summary)
Zhang Q, Wang Y, Qian Q, Yang JH, Wang YL, Zhao TP and Guo GJ. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan Period from eastern China. Acta Petrologica Sinica, 17(2): 236-244.
Zhang Q, Jian P, Liu DY, Wang YL, Qian Q, Wang Y and Xue HM. 2003. SHRIMP dating of volcanic rocks from Ningwu area and its geological implications. Science in China (Series D), 46(8): 830-837. DOI:10.1007/BF02879526
Zhang Q, Pan GQ, Li CD, Jin WJ and Jia XQ. 2007. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3). Acta Petrologica Sinica, 23(11): 2683-2698.
Zhang Q, Wang Y, Xiong XL and Li CD. 2008. Adakite and Granite: Challenge and Opportunity. Beijing: China Land Press: 107-129.
Zhang Q, Jin WJ, Xiong XL, Li CD and Wang YL. 2009. Characteristics and implication of O-type adakite in China during different geological periods. Geotectonica et Metallogenia, 33(3): 432-447.
Zhang Q, Ran H and Li CD. 2012. A-type granite: What is the essence?. Acta Petrologica et Mineralogica, 31(4): 621-626.
Zhang S, Wu MA, Wang J, Li XD, Zhao WG and Wei GH. 2014. The mineralization related with the syenite in Luzong basin, Anhui Province. Acta Geologica Sinica, 88(4): 519-531.
Zhao ZF, Zheng YF, Wei CS and Wu FY. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126(1-2): 99-114. DOI:10.1016/j.lithos.2011.06.010
Zheng YF, Fu B and Gong B. 1995. The thermal history of the Huangmeijian intrusion in Anhui and its relation to mineralization: Isotopic evidence. Acta Geologica Sinica, 69(4): 337-348.
Zheng YF, Wei CS, Wang ZR, Huang YS and Zhang H. 1997. An isotope study on the cooling history of the Dalongshan granitic massif and its bearing on mineralizing process. Scientia Geologica Sinica, 32(4): 465-477.
Zhong GX, Zhou TF, Yuan F, Jiang QS, Fan Y, Zhang DY and Huang JM. 2014. Discovery of scheelite in Yaojialing large zinc-gold deposit in Tongling ore district, Anhui Province, China. Acta Geologica Sinica, 88(4): 620-629.
Zhou TF, Yuan F, Yue SC, Liu XD, Zhang X and Fan Y. 2007. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn and vein-type deposits, Anhui Province, Southe China. Ore Geology Reviews, 31(2): 279-303.
Zhou TF, Song MY, Fan Y, Yuan F, Liu J, Wu MA, Qian CC and Lu SM. 2007. Chronology of the Bajiatan intrusion in the Luzong basin, Anhui, and its significance. Acta Petrologica Sinica, 23(10): 2379-2386.
Zhou TF, Fan Y, Yuan F, Lu SM, Shang SG, Cooke D, Meffre S and Zhao GC. 2008. Geochronology of the volcanic rocks in the Lu-Zong basin and its significance. Science in China (Series D), 51(10): 1470-1482. DOI:10.1007/s11430-008-0111-7
Zhou TF, Fan Y, Yuan F, Song CZ, Zhang LJ, Qian CC, Lu SM and David RC. 2010. Temporal-spatial framework of magmatic intrusions in Luzong volcanic basin in east China and their constrain to mineralizations. Acta Petrologica Sinica, 26(9): 2694-2714.
Zhou TF, Fan Y, Yuan F, Zhang LJ, Qian B, Ma L, Yang XF and David RC. 2011. Geochronology and significance of volcanic rocks in the Ning-Wu basin of China. Science China (Earth Sciences), 54(2): 185-196. DOI:10.1007/s11430-010-4150-5
Zhou TF, Wang B, Fan Y, Yuan F, Zhang LJ and Zhong GX. 2012. Apatite-actinolite-magnetite deposit related to A-type granite in Luzong basin: Evidence from Makou iron deposit. Acta Petrologica Sinica, 28(10): 3087-3098.
Zhou TX, Li XM, Zhao JS and Zhang FT. 1987. Geochronology of igneous rocks from the Tongguanshan ore area of Anhui Province. Journal of China University of Science and Technology, 17(3): 403-407.
Zhou XR, Wu CL, Huang XC and Zhang CH. 1993. Characteristics of cognate inclusions in intermediate-acid intrusive rocks of Tongling area and their magmatic dynamics. Acta Petrologica et Mineralogica, 12(1): 20-31.
Zhu ZQ. 1987. A brief analysis of skarn type scheelite deposit characteristic in the Middle and Lower Reaches of Changjiang River. Geology of Jiangs, (3): 8-11.
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. DOI:10.1146/annurev.ea.14.050186.002425
曹毅, 杜杨松, 蔡春麟, 秦新龙, 李顺庭, 向文帅. 2008. 安徽庐枞地区中生代A型花岗岩类及其岩石包体:在碰撞后岩浆演化过程中的意义. 高校地质学报, 14(4): 565-576.
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社: 1-379.
陈江峰, 李学明, 周泰禧, Foland KA. 1991. 安徽月山岩体的40Ar/39Ar年龄及与其有关的成矿时代估计. 现代地质, 5(1): 91-99.
陈江峰, 周泰禧, 李学明, Forland KA, 黄承义, 卢伟. 1993. 安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约. 地球化学, 22(3): 261-268.
陈江峰, 喻钢, 杨刚, 杨胜洪. 2005. 安徽沿江江南晚中生代岩浆-成矿年代学格架. 安徽地质, 15(3): 161-169.
陈一峰. 1994. 庐枞地区铀成矿规律探讨. 铀矿地质, 10(4): 193-202, 206.
陈一峰, 马昌明, 樊焕新. 1996. 庐枞地区铀成矿的区域地质背景研究. 铀矿地质, 12(2): 75-82.
陈志洪, 邢光福, 郭坤一, 曾勇, 匡福祥, 贺振宇, 柯学, 余明刚, 赵希林, 张勇. 2011. 长江中下游成矿带九瑞矿集区(北部)含矿岩体的锆石U-Pb定年及其地质意义. 地质学报, 85(7): 1146-1158.
邓晋福, 吴宗絮. 2001. 下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带. 安徽地质, 11(2): 86-91.
邓晋福, 罗照华, 苏尚国, 莫宣学, 于炳松, 赖兴运, 谌宏伟. 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社: 1-214.
邓晋福, 刘翠, 冯艳芳, 戴圣潜, 杜建国, 吴明安, 童劲松, 周肃, 苏尚国, 吴宗絮, 姚孝德, 吴雪峰. 2011. 安徽省庐枞与滁州盆地火山岩岩石学特征与Fe-Cu成矿的关系. 地质学报, 85(5): 626-635.
董树文, 孙先如, 张勇, 黄德志, 王刚, 戴世坤, 于邦存. 1993. 大别山碰撞造山带基本结构. 科学通报, 38(6): 542-545.
董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461. DOI:10.3321/j.issn:0001-5717.2007.11.001
董树文, 向怀顺, 高锐, 吕庆田, 李建设, 战双庆, 卢占武, 马立成. 2010. 长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用. 岩石学报, 26(9): 2529-2542.
董树文, 马立成, 刘刚, 薛怀民, 施炜, 李建华. 2011. 论长江中下游成矿动力学. 地质学报, 85(5): 612-625.
杜建国, 戴圣潜, 莫宣学, 邓晋福, 许卫. 2003. 安徽沿江地区燕山期火成岩成岩成矿地质背景. 地学前缘, 10(4): 551-560.
杜杨松, 李顺庭, 曹毅, 秦新龙, 楼亚儿. 2007. 安徽铜陵铜官山矿区中生代侵入岩的形成过程——岩浆底侵、同化混染和分离结晶. 现代地质, 21(1): 71-77.
范裕, 周涛发, 袁峰, 钱存超, 陆三明, David C. 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(8): 1715-1724.
范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, David RC. 2010. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义. 岩石学报, 26(9): 2715-2728.
范裕, 邱宏, 周涛发, 袁峰, 张乐骏. 2014. 安徽庐枞盆地隐伏侵入岩的LA-ICP MS定年及其构造意义. 地质学报, 88(4): 532-546.
关俊朋, 韦福彪, 孙国曦, 黄建平, 王丽娟. 2015. 宁镇中段中酸性侵入岩锆石U-Pb年龄及其成岩成矿指示意义. 大地构造与成矿学, 39(2): 344-354.
洪文涛, 徐夕生, 贺振宇, 闫峻. 2010. 南京蒋庙岩体的年代学、地球化学及其地质意义. 岩石学报, 26(5): 1577-1588.
华仁民, 毛景文. 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18(4): 300-308.
蒋少涌, 李亮, 朱碧, 丁昕, 姜耀辉, 顾连兴, 倪培. 2008. 江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨. 岩石学报, 24(8): 1679-1690.
蒋少涌, 孙岩, 孙明志, 边立曾, 熊永根, 杨水源, 曹钟清, 吴亚民. 2010. 长江中下游成矿带九瑞矿集区叠合断裂系统和叠加成矿作用. 岩石学报, 26(9): 2751-2767.
靳新娣, 朱和平. 2000. 岩石样品中43种元素的高分辨等离子质谱测定. 分析化学, 28(5): 563-567.
李波, 陈江峰, 郑永飞, 赵子福, 钱卉. 2004. 安徽月山石英闪长岩氧同位素分馏、Rb-Sr等时线定年与矿物蚀变之间的关系. 岩石学报, 20(5): 1185-1192.
李进文, 裴荣富, 张德全, 梅燕雄, 藏文栓, 孟贵详, 曾普胜, 李铁军, 狄永军. 2007. 铜陵矿集区燕山期中酸性侵入岩地球化学特征及其地质意义. 地球学报, 28(1): 11-22.
黎彤, 袁怀雨, 吴胜昔. 1998. 中国花岗岩类和世界花岗岩类平均化学成分的对比研究. 大地构造与成矿学, 22(1): 29-34.
黎彤, 袁怀雨, 吴胜昔, 程先富. 1999. 中国大陆壳体的区域元素丰度. 大地构造与成矿学, 23(2): 101-107.
刘洪, 邱检生, 罗清华, 徐夕生, 凌文黎, 王德滋. 2002. 安徽庐枞中生代富钾火山岩成因的地球化学制约. 地球化学, 31(2): 129-140.
刘建敏, 闫峻, 李全忠, 刘晓强. 2014. 宁镇地区安基山岩体锆石LA-ICP MS U-Pb定年及意义. 地质论评, 60(1): 190-200.
楼亚儿, 杜杨松. 2006. 安徽繁昌中生代侵入岩的特征和锆石SHRIMP测年. 地球化学, 35(4): 359-366.
吕庆田, 侯增谦, 史大年, 赵金花, 徐明才, 柴铭涛. 2004. 铜陵狮子山金属矿地震反射结果及对区域找矿的意义. 矿床地质, 23(3): 390-398.
吕庆田, 董树文, 史大年, 汤井田, 江国明, 张永谦, 徐涛, SinoProbe-03-CJ项目组. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述. 岩石学报, 30(4): 889-906.
马春, 王素娟. 2003. 江苏镇江谏壁岩体特征与钼(钨)矿床类型. 江苏地质, 27(3): 152-158.
马芳, 薛怀民. 2011. 皖东滁州盆地晚中生代火山岩的SHRIMP锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 30(5): 924-934.
马振东, 蒋敬业, 李艳霞, 单光祥. 1999. 长江中下游及邻区基底地球化学分区及区域成矿远景预测. 地球科学—中国地质大学学报, 24(3): 287-291.
毛景文, Stein H, 杜安道, 周涛发, 梅艳雄, 李永峰, 藏文栓, 李进文. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78(1): 121-131.
毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188.
毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2): 109-119.
毛景文, 段超, 刘佳林, 张成. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例. 岩石学报, 28(1): 1-14.
聂利青, 周涛发, 范裕, 张千明, 张明, 汪龙虎. 2016. 长江中下游成矿带庐枞矿集区首例钨矿床成岩成矿时代及其意义. 岩石学报, 32(2): 303-318.
宁仁祖, 陈根生. 1989. 宁镇地区燕山期侵入岩的稀土元素特征. 地球化学, (1): 52-61.
宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社: 1-320.
彭戈, 闫峻, 初晓强, 李全忠, 陈志洪. 2012. 贵池岩体的锆石定年和地球化学:岩石成因和深部过程. 岩石学报, 28(10): 3271-3286.
邱检生, 朱成伟. 1999. 安徽冶父山岩体地球化学特征及含矿性评价. 黄金地质, 5(3): 64-68.
任启江, 刘孝善, 徐兆文, 邱德同, 胡文瑄, 方长泉, 阮惠础, 董火根, 李兆麟, 吴启志. 1991. 安徽庐枞中生代火山构造洼地及其成矿作用. 北京: 地质出版社: 1-145.
舒全安, 陈培良, 程建荣. 1992. 鄂东铁铜矿产地质. 北京: 冶金工业出版社: 1-530.
孙卫东, 凌明星, 杨晓勇, 范蔚茗, 丁兴, 梁华英. 2010. 洋脊俯冲与斑岩铜金矿成矿. 中国科学(地球科学), 40(2): 127-137.
孙洋, 马昌前, 刘圆圆. 2014. 长江中下游燕山期最新的成岩成矿事件:来自宁镇地区的证据. 科学通报, 59(8): 668-678.
孙冶东, 杨荣勇, 任启江, 刘孝善. 1994. 安徽庐枞中生代火山岩系的特征及其形成的构造背景. 岩石学报, 10(1): 97-103.
唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社: 1-359.
王斌, 谢智, 崔玉荣, 陈江峰, 周泰禧. 2012. 下扬子地区晚中生代花岗质岩石的源区物质组成反演. 高校地质学报, 18(4): 623-638.
王登红, 陈郑辉, 黄国成, 武国忠, 陈芳. 2012. 华南"南钨北扩"、"东钨西扩"及其找矿方向探讨. 大地构造与成矿学, 36(3): 322-329.
王建中, 李建威, 赵新福, 钱壮志, 马昌前. 2008. 铜陵地区朝山矽卡岩型金矿床及含矿岩体的成因: 40Ar/39Ar年龄、元素地球化学及多元同位素证据. 岩石学报, 24(8): 1875-1888.
王立本, 季克俭, 陈东. 1997. 安基山和铜山铜(钼)矿床中辉钼矿的铼-锇同位素年龄及其意义. 岩石矿物学杂志, 16(2): 154-159.
王强, 许继峰, 赵振华, 熊小林, 包志伟. 2003. 安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约. 中国科学(D辑), 33(4): 323-334.
王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004. 鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比: (拆沉)下地壳熔融与斑岩铜矿的成因. 岩石学报, 20(2): 351-360.
王强, 许继峰, 赵振华, 资锋, 唐功建, 贾小辉, 姜子琦. 2008. 埃达克质岩的构造背景与岩石组合. 矿物岩石地球化学通报, 27(4): 344-350.
王小龙, 曾键年, 马昌前, 李小芬, 吴亚飞, 陆顺富. 2014. 宁镇地区燕山期侵入岩锆石U-Pb定年:长江中下游新一期成岩成矿作用的年代学证据. 地学前缘, 21(6): 289-301.
王彦斌, 刘敦一, 蒙义峰, 曾普胜, 杨竹森, 田世洪. 2004a. 安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义. 中国地质, 31(2): 169-173.
王彦斌, 刘敦一, 曾普胜, 杨竹森, 蒙义峰, 田世洪. 2004b. 铜陵地区小铜官山石英闪长岩锆石SHRIMP的U-Pb年龄及其成因指示. 岩石矿物学杂志, 23(4): 298-304.
王彦斌, 刘敦一, 曾普胜, 杨竹森, 田世洪. 2004c. 安徽铜陵地区幔源岩浆底侵作用的时代——朝山辉石闪长岩锆石SHRIMP定年. 地球学报, 25(4): 423-427.
王彦斌, 唐索寒, 王进辉, 曾普胜, 杨竹森, 蒙义峰, 田世洪. 2004d. 安徽铜陵新桥铜金矿床黄铁矿Rb/Sr同位素年龄数据——燕山晚期成矿作用证据. 地质论评, 50(5): 538-542.
汪洋, 邓晋福, 姬广义. 2004. 长江中下游地区早白垩世埃达克质岩的大地构造背景及其成矿意义. 岩石学报, 20(2): 297-314.
吴才来, 周珣若, 黄许陈, 张成火, 黄文明. 1996. 铜陵地区中酸性侵入岩年代学研究. 岩石矿物学杂志, 15(4): 299-306.
吴才来, 陈松永, 史仁灯, 郝美英. 2003. 铜陵中生代中酸性侵入岩特征及成因. 地球学报, 24(1): 41-48.
吴才来, 高前明, 国和平, 郭祥炎, 刘良根, 郜源红, 雷敏, 秦海鹏. 2010. 铜陵中酸性侵入岩成因及锆石SHRIMP定年. 岩石学报, 26(9): 2630-2652.
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
吴淦国, 张达, 狄永军, 臧文拴, 张祥信, 宋彪, 张忠义. 2008. 铜陵矿集区侵入岩SHRIMP锆石U-Pb年龄及其深部动力学背景. 中国科学(D辑), 38(5): 630-645.
吴明安, 侯明金, 赵文广. 2007. 安徽省庐枞地区成矿规律及找矿方向. 资源调查与环境, 28(4): 269-277.
向文帅, 杜杨松, 曹毅. 2009. 庐枞地区A型花岗岩类与橄榄安粗岩系研究. 矿物岩石, 29(3): 36-42.
肖庆辉, 邱瑞照, 邢作云, 张昱, 伍光英, 童劲松. 2007. 花岗岩成因研究前沿的认识. 地质论评, 53(增): 17-27.
谢成龙, 朱光, 牛漫兰, 王勇生. 2007. 滁州中生代火山岩LA-ICP MS锆石U-Pb年龄及其构造地质学意义. 地质论评, 53(5): 642-655.
谢桂青, 毛景文, 李瑞玲, 张祖送, 赵维超, 屈文俊, 赵财胜, 魏世昆. 2006. 鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨:辉钼矿Re-Os同位素年龄. 矿床地质, 25(1): 43-52.
谢建成, 杨晓勇, 杜建国, 孙卫东. 2008. 铜陵地区中生代侵入岩LA-ICP MS锆石U-Pb年代学及Cu-Au成矿指示意义. 岩石学报, 24(8): 1782-1800.
谢建成, 杨晓勇, 肖益林, 杜建国, 孙卫东. 2012. 铜陵矿集区中生代侵入岩成因及成矿意义. 地质学报, 86(3): 423-459.
谢智, 李全忠, 陈江峰, 高天山. 2007. 庐枞早白垩世火山岩的地球化学特征及其源区意义. 高校地质学报, 13(2): 235-249.
邢凤鸣, 徐祥. 1995. 安徽沿江地区中生代岩浆岩的基本特点. 岩石学报, 11(4): 409-422.
邢凤鸣, 徐祥. 1996. 铜陵地区高钾钙碱系列侵入岩. 地球化学, 25(1): 29-38.
邢凤鸣, 徐祥. 1999. 安徽扬子岩浆岩带与成矿. 合肥: 安徽人民出版社: 1-170.
熊欣, 徐文艺, 杨竹森, 贾丽琼, 李骏. 2014. 庐枞盆地高温铀钍矿化特征、成因及其找矿意义——来自砖桥科学深钻ZK01的依据. 岩石学报, 30(4): 1017-1030.
许继峰, 王强, 徐义刚, 赵振华, 熊小林. 2001. 宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制. 岩石学报, 17(4): 576-584.
徐祥, 邢凤鸣. 1994. 宁芜地区三个辉长岩的全岩和矿物Rb-Sr等时线年龄. 地质科学, 29(3): 309-312.
徐晓春, 陆三明, 谢巧勤, 柏林, 储国正. 2008. 安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义. 地质学报, 82(4): 500-509.
徐晓春, 白茹玉, 谢巧勤, 楼金伟, 张赞赞, 刘启能, 陈莉薇. 2012. 安徽铜陵中生代侵入岩地质地球化学特征再认识及成因讨论. 岩石学报, 28(10): 3139-3169.
徐夕生, 范钦成, O'Reilly SY, 蒋少涌, Griffin WL, 王汝成, 邱检生. 2004. 安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨. 科学通报, 49(18): 1883-1891. DOI:10.3321/j.issn:0023-074X.2004.18.012
徐莺. 2010. 宁镇中段燕山期岩浆岩成因、演化规律及其与铜多金属成矿关系研究. 硕士学位论文. 长沙: 中南大学, 43-45 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1719664
薛怀民, 董树文, 简平. 2006. 大别山造山带前陆阳新二长质侵入体的矿物化学、地球化学与锆石SHRIMP定年. 中国科学(D辑), 36(2): 133-142.
薛怀民, 董树文, 马芳. 2010. 长江中下游地区庐(江)-枞(阳)和宁(南京)-芜(湖)盆地内与成矿有关的潜火山岩体的SHRIMP锆石U-Pb年龄. 岩石学报, 26(9): 2653-2664.
薛怀民, 董树文, 马芳. 2012. 长江中下游庐枞盆地火山岩的SHRIMP锆石U-Pb年龄:对扬子克拉通东部晚中生代岩石圈减薄机制的约束. 地质学报, 86(10): 1569-1583. DOI:10.3969/j.issn.0001-5717.2012.10.002
薛怀民, 马芳, 曹光跃, 王一鹏, 郭秀艳. 2016. 长江中下游庐枞火山岩盆地南侧钾质侵入岩带的成因. 地质学报, 90(9): 2233-2257.
闫峻, 彭戈, 刘建敏, 李全忠, 陈志洪, 史磊, 刘晓强, 姜子朝. 2012. 下扬子繁昌地区花岗岩成因:锆石年代学和Hf-O同位素制约. 岩石学报, 28(10): 3209-3227.
杨富贵, 王中刚, 刘丛强, 侯鸿泉, 洪文兴. 1999. 西北准噶尔地区碱性花岗岩体中角闪石的地质地球化学意义. 矿物学报, 19(1): 70-76.
杨荣勇, 任启江, 徐兆文, 孙冶东, 郭国章, 邱检生. 1993. 安徽庐枞地区巴家滩火山-侵入岩体的岩浆来源. 地球化学, 22(2): 197-206.
杨松生, 段家才, 鞠在富, 何建国. 1985. 谏壁钨钼矿床地质特征和成因机制讨论. 地质与勘探, (8): 20-27.
杨小男, 徐兆文, 徐夕生, 凌洪飞, 刘苏明, 张军, 李海勇. 2008. 安徽铜陵狮子山矿田岩浆岩锆石U-Pb年龄意义. 地质学报, 82(4): 510-516.
余顶杰, 王勇生, 杨秉飞, 王海峰. 2016. 郯庐断裂带南段两侧花岗岩地球化学特征:对大别造山带中-下地壳流动的限定. 岩石学报, 32(4): 1001-1012.
于文修. 2006. 安徽月山岩体成因及其与成矿关系探讨. 硕士学位论文. 贵阳: 中国科学院地球化学研究所, 1-88 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1615339
袁峰, 周涛发, 范裕, 张乐骏, 马良, 钱兵. 2011. 宁芜盆地花岗岩类的锆石U-Pb年龄、同位素特征及其意义. 地质学报, 85(5): 821-833.
袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有. 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511-1520. DOI:10.3321/j.issn:0023-074X.2003.14.008
岳文浙, 丁保良. 1999. 江苏白垩纪陆相层序地层研究. 火山地质与矿产, 20(4): 287-344.
曾键年, 覃永军, 郭坤一, 陈国光, 曾勇. 2010. 安徽庐枞盆地含矿岩浆岩锆石U-Pb年龄及其对成矿时限的约束. 地质学报, 84(4): 466-478.
曾键年, 李锦伟, 陈津华, 陆建培. 2013. 宁镇地区安基山侵入岩SHRIMP锆石U-Pb年龄及其地质意义. 地球科学—中国地质大学学报, 38(1): 57-67.
翟裕生, 姚书振, 林新多, 周珣若, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社: 12-35.
张乐骏, 周涛发, 范裕, 袁峰. 2008. 安徽月山岩体的锆石SHRIMP U-Pb定年及其意义. 岩石学报, 24(8): 1725-1732.
张乐骏, 周涛发, 范裕, 袁峰, 马良, 钱兵. 2010. 安徽庐枞盆地井边铜矿床的成矿时代及其找矿指示意义. 岩石学报, 26(9): 2729-2738.
张乐骏. 2011. 安徽庐枞盆地成岩成矿作用研究. 博士学位论文. 合肥: 合肥工业大学, 1-239 http://d.wanfangdata.com.cn/Thesis/Y2041689
张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244.
张旗, 简平, 刘敦一, 王元龙, 钱青, 王焰, 薛怀民. 2003. 宁芜火山岩的锆石SHRIMP定年及其意义. 中国科学(D辑), 33(4): 309-314.
张旗, 潘国强, 李承东, 金惟俊, 贾秀勤. 2007. 花岗岩构造环境问题:关于花岗岩研究的思考之三. 岩石学报, 23(11): 2683-2698. DOI:10.3969/j.issn.1000-0569.2007.11.002
张旗, 王焰, 熊小林, 李承东. 2008. 埃达克岩和花岗岩:挑战和机遇. 北京: 中国大地出版社: 107-129.
张旗, 金惟俊, 熊小林, 李承东, 王元龙. 2009. 中国不同时代O型埃达克岩的特征及其意义. 大地构造与成矿学, 33(3): 432-447.
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?. 岩石矿物学杂志, 31(4): 621-626.
张舒, 吴明安, 汪晶, 李小东, 赵文广, 魏国辉. 2014. 安徽庐枞盆地与正长岩有关的成矿作用. 地质学报, 88(4): 519-531.
郑永飞, 傅斌, 龚冰. 1995. 安徽黄梅尖岩体热历史及其与成矿关系:同位素证据. 地质学报, 69(4): 337-348.
郑永飞, 魏春生, 王峥嵘, 黄耀生, 张宏. 1997. 大龙山岩体冷却史及其成矿关系的同位素研究. 地质科学, 32(4): 465-477.
钟国雄, 周涛发, 袁峰, 蒋其胜, 范裕, 张达玉, 黄建满. 2014. 安徽铜陵姚家岭大型锌金矿床中新发现白钨矿. 地质学报, 88(4): 620-629.
周涛发, 宋明义, 范裕, 袁峰, 刘珺, 吴明安, 钱存超, 陆三明. 2007. 安徽庐枞盆地中巴家滩岩体的年代学研究及其意义. 岩石学报, 23(10): 2379-2386. DOI:10.3969/j.issn.1000-0569.2007.10.006
周涛发, 范裕, 袁峰, 陆三明, 尚世贵, Cooke D, Meffre S, 赵国春. 2008. 安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义. 中国科学(D辑), 38(11): 1342-1353. DOI:10.3321/j.issn:1006-9267.2008.11.002
周涛发, 范裕, 袁峰, 宋传中, 张乐骏, 钱存超, 陆三明, David RC. 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9): 2694-2714.
周涛发, 范裕, 袁峰, 张乐骏, 钱兵, 马良, 杨西飞, Cooke DR. 2011. 宁芜(南京-芜湖)盆地火山岩的年代学及其意义. 中国科学(地球科学), 41(7): 960-971.
周涛发, 王彪, 范裕, 袁峰, 张乐骏, 钟国雄. 2012. 庐枞盆地与A型花岗岩有关的磁铁矿-阳起石-磷灰石矿床——以马口铁矿床为例. 岩石学报, 28(10): 3087-3098.
周泰禧, 李学明, 赵俊深, 张富陶. 1987. 安徽铜陵铜官山矿田火成岩的同位素地质年龄. 中国科学技术大学学报, 17(3): 403-407.
周珣若, 吴才来, 黄许陈, 张成火. 1993. 铜陵中酸性侵入岩同源包体特征及岩浆动力学. 岩石矿物学杂志, 12(1): 20-31.
朱增青. 1987. 长江中、下游矽卡岩型白钨矿床成矿特征浅析. 江苏地质, (3): 8-11.