岩石学报  2018, Vol. 34 Issue (1): 143-156   PDF    
微陆块属性及过程:我国东北地区岩石圈地幔性质差异之根本
林阿兵1 , 郑建平1 , 潘少逵2     
1. 中国地质大学地球科学学院, 地质过程与矿产资源国家重点实验室, 武汉 430074;
2. 中国地质大学珠宝学院, 武汉 430074
摘要:我国东北地区位于中亚造山带的东段,由多个微陆块俯冲拼合所组成,是研究壳幔相互作用的理想地区。但该区岩石圈地幔性质,包括壳幔属性是否解耦、是否有古老地幔残留、导致地幔性质差异的机制是什么,都还不清楚。东北地区多地出露新生代玄武岩并有橄榄岩捕虏体,如松嫩-张广才岭地块的阿巴嘎、五大连池和蛟河,兴安地块的哈拉哈、诺敏和科洛,以及与华北拼合褶皱带处的双辽、伊通和汪清等。其中阿巴嘎、哈拉哈、诺敏、科洛和蛟河的橄榄岩含有Mg# ≥ 91.5的橄榄石,最大Re亏损年龄是2.1~1.9Ga,富集Sr、Nd同位素组成且变化范围大,反映交代作用强烈,这些特征与大陆岩石圈地幔有明显的相似性;而拼合带处的双辽、伊通、汪清及松嫩-张广才岭地块中的五大连池地幔包体橄榄石Mg# < 91.5,Re亏损年龄总体为中元古代,Sr、Nd同位素组成变化范围小,交代作用弱,与大洋岩石圈地幔亲缘性更明显。这些差别总体反映出地块内部与地块边缘相比,有岩石圈地幔形成时代相对较老、亏损程度较高、地幔交代作用较强的特点。但也有例外的情况,如五大连池与科洛相比,更远离贺根山-黑河断裂带,但地幔属性更饱满,反映地块内部深部作用过程可能更强烈。因此,我们认为东北岩石圈地幔性质差异的根本原因与微陆块初始属性和后来的俯冲拼合及软流圈-岩石圈相互作用等有关。
关键词: 东北     岩石圈地幔     微陆块俯冲拼合     软流圈-岩石圈相互作用     地幔不均一性    
Nature and processes of microcontinents: Primary derivation for the heterogeneity of lithospheric mantle beneath northeastern China
LIN ABing1, ZHENG JianPing1, PAN ShaoKui2     
1. State Key Lab of Geological Processes and Mineral Resources, School of Earth Science, China University of Geosciences, Wuhan 430074, China;
2. Gemmological Institute, China University of Geosciences, Wuhan 430074, China
Abstract: Northeast China, located in the eastern part of the Central Asian Orogenic Belt and formed by subduction and amalgamation of several micro-continents, is an ideal area for studying the interaction between crust and mantle. However, the nature of the lithospheric mantle beneath the area, including the origin of the ancient mantle relics, decoupling of crust and underlying mantle, and mechanism for mantle heterogeneity, are still under dispute. The Cenozoic basalts, which contain peridotite xenoliths, are widely distributed in areas such as Abaga, Wudalianchi and Jiaohe in Songnen-Zhangguangcailing block, Halaha, Nuomin and Keluo in Xing'an block, and Shuangliao, Yitong and Wangqing in suture zone between Northeast China and North China. The peridotites from Abaga, Halaha, Nuomin, Keluo and Jiaohe contain olivines with Mg# ≥ 91.5, and have maximum Re depletion ages ranging from 2.1Ga to 1.9Ga and a large range of Sr and Nd isotopic compositions, which reflects that they have experienced strong metasomatism. These features are similar with those in the continental lithospheric mantle. However, the xenoliths from Shuangliao, Yitong, Wangqing in the suture zone and Wudalianchi in Songnen-Zhangguangcailing blocks are characterized by olivine-Mg# < 91.5, Re depletion ages of Mesoproterozoic and a small variation range of Sr and Nd isotopic compositions, suggesting weak metasomatism. All these features display an affinity with the oceanic lithospheric mantle. These differences suggest that compared with the edge of microcontinents, the lithospheric mantle beneath the interior of microcontinents are characterized by older formational age, higher degree of melt depletion and stronger metasomatism. Nonetheless, there are some exceptions. For example, Wudalianchi is further away from the Hegenshan-Heihe fault belt than Keluo, where the lithospheric mantle underlies show fertile characteristic, possibly implying strong deep process in the interior of this microcontinent. We therefore conclude that the origin of mantle heterogeneity beneath Northeast China was resulted from the primary nature of micro-continents and their subsequent subduction and amalgamation and interactions between asthenosphere and lithosphere.
Key words: Northeast China     Lithospheric mantle     Subduction and amalgamation of micro-continents     Lithosphere-asthenosphere interaction     Mantle heterogeneity    

岩石圈地幔是浅部地壳与深部地幔联系的纽带,是深入认识大陆形成和演化的重要组成部分(Sleep, 2005),在壳幔相互作用过程中起着重要作用(Liu et al., 2010),对其深入研究有助于促进人们对地球内部动力学过程的理解(King, 2005)。Boyd (1989)将岩石圈地幔分为大洋型岩石圈地幔和大陆(克拉通)型岩石圈地幔,同时发现矿物中橄榄石的百分含量与其Fo存在着正相关关系,构成所谓的“大洋趋势”,并反映出随着部分熔融程度增加,残留地幔橄榄岩中橄榄石含量增多,相应地橄榄石Fo升高,表明难熔程度增高。与年轻且薄的、热的、以二辉橄榄岩为主要组成的大洋岩石圈地幔相比,大陆克拉通地幔有形成年龄老、岩石圈厚度大、地温低等特征,且主要由方辉橄榄岩组成,通常不存在“大洋趋势”(Boyd, 1989)。因此,大洋与大陆以及其间的大陆边缘过渡带,岩石圈地幔性质存在着明显的不均一性。

根据地球分异理论,大陆地壳是原始地幔通过部分熔融产生玄武质岩浆后并经过长期演化形成的,而难熔的残留部分就构成了大陆岩石圈地幔(Jordan, 1975; Pollack, 1986)。因而,通常情况下, 大陆岩石圈地幔与其上覆地壳除成分互补外,在形成时代上是耦合的(Pearson, 1999; Griffin et al., 2003)。基于这种一致性,Griffin et al. (1999)划分出三种类型的地幔类型,即太古宙型地幔(>2.5Ga)、元古宙型地幔(2.5~1.0Ga)和显生宙型地幔(<1.0Ga)。一般而言,太古宙型地幔橄榄岩中橄榄石Fo最高,主要集中于92~94;显生宙型地幔橄榄石Fo最低,多数小于90~91;元古宙型地幔介于两者之间。其中,古老岩石圈地幔橄榄石具有较高的Fo,可归因于较高程度和/或多次部分熔融事件,与地球早期具有较高地热梯度的事实相吻合(吴福元等, 2007; 张宏福, 2009)。这暗示在某种程度上,地幔橄榄岩中橄榄石的Fo值具有年龄信息,其化学组成越难熔,形成年龄则可能越古老,体现出岩石圈地幔性质随着时间变化的特点(Tang et al., 2013b)。

近年来,对东北地区新生代玄武岩中橄榄岩捕虏体的研究获得了丰硕的成果,但也存在不少问题。比如阿巴嘎地区,有学者认为是新生饱满的岩石圈地幔(Zhang et al., 2012),也有学者认为存在新生饱满与适度难熔共存的岩石圈地幔(Pan et al., 2013)。对古老岩石圈地幔成因的认识也存在分歧,如伊通和蛟河地区具元古代年龄特征的岩石圈地幔,被解释成由软流圈中残留古老岩石圈地幔增生所致(周琴等, 2007, 2010);科洛地区1.9~2.1Ga的岩石圈地幔被认为存在异地来源的可能性(Zhang et al., 2011)。

研究表明,不同位置出露的橄榄岩捕虏体所反映的岩石圈地幔含义不尽相同。另外,虽然这些橄榄岩捕虏体均来源于新生代的玄武岩,但所代表的岩石圈地幔形成时代却存在差异,只有结合橄榄岩捕虏体的化学成分和具体产出背景,才能真正揭示出东北岩石圈地幔不均一性的本质,深化对这一系列地质过程的理解。

1 东北地区的构造演化史

东北具有漫长复杂的构造演化史,在探讨岩石圈地幔性质前,有必要先了解该地区的构造背景。我国东北地区属于华北板块与西伯利亚板块间的中亚造山带东段,是由额尔古纳地块、兴安地块、松嫩-张广才岭地块、佳木斯地块和兴凯地块等多个微陆块先后拼合而成(Sengör et al., 1993; Sengör and Natal’in,1996; 任纪舜等, 1999; Wu et al., 2007; Tang et al., 2013a; 许文良等, 2013; 徐备等, 2014; Zhou et al., 2015)(图 1)。这些微陆块多是由Rodinia超大陆裂解产生,同时也产生了分割它们的有限洋盆,因此它们多具有古元古代沉积-变质作用所形成的结晶基底,以及古生代洋盆间的相互闭合导致微陆块之间复杂的碰撞拼合和板块增生(李双林和欧阳自远, 1998; 佘宏全等, 2012)。洋盆间的多期俯冲产生了大量的增生杂岩,以及夹杂其中的微陆块、海底高原和洋岛等构造单元,组成了目前复杂的构造拼合带(郭锋等, 2009)。

图 1 东北地区构造分区(据Wu et al., 2011修改)及新生代玄武岩分布(据Liu et al., 2001修改) Fig. 1 Tectonic subdivisions of Northeast China (modified after Wu et al., 2011) and distribution of Cenozoic basalts (modified after Liu et al., 2001)

中生代期间,东北地区由古亚洲洋构造体系转换为受环太平洋构造和蒙古-鄂霍茨克构造体系叠加的影响(Li, 2006; Jian et al., 2008, 2010; Xiao et al., 2009; Xu et al., 2009; Wu et al., 2011; Zhou et al., 2014),进而经历了碰撞造山、造山后伸展垮塌及大陆边缘弧后伸展等过程(郑常青等, 2009; 孟凡超等, 2014; 张超等, 2014; Tang et al., 2015; 李剑锋等, 2016)。此外,该区也发育有切割岩石圈地幔的深大断裂带,如伊通-依兰断裂带(张兴洲等, 2015; 索艳慧等, 2017),可促使地幔橄榄岩出现残碎斑状结构、剪切变形结构等,同时也为软流圈熔/流体的上涌提供通道,造成地幔富集不相容元素(郑建平, 2009),甚至导致橄榄岩矿物组合及含量上发生变化。如伊通地区异剥橄榄岩的形成,被认为是由二辉橄榄岩与熔体反应,消耗斜方辉石,生成单斜辉石所致(Xu et al., 1996)。

2 不同区域地幔物质对比

东北地区新生代幔源火山岩广泛发育,其中出露的碱性玄武岩含有大量橄榄岩捕虏体。本文收集了东北九个不同地区捕虏体的资料,根据它们所反映的岩石圈地幔属性及产出位置关系,将其分为两大部分,即地块内部和地块边缘。地块内部包括阿巴嘎、哈拉哈、诺敏、科诺和蛟河;地块边缘包括双辽、五大连池、伊通和汪清(图 1)。

2.1 岩石圈地幔难熔程度

原始地幔发生部分熔融时,产生的玄武质熔体富SiO2、Al2O3、Fe2O3、CaO、TiO2等组分,相应亏损这些组分的熔融残余体主要由橄榄岩组成,构成岩石圈地幔(Boyd, 1989; Pearson, 1999; Lee et al., 2011)。熔融程度越高,橄榄岩越难熔,其难熔程度与橄榄石Mg#值具有很好的正相关性,因而可用橄榄石Mg#值来判定岩石圈地幔的难熔程度(Griffin et al., 1998; 张宏福等, 2006; 郑建平, 2009; 汤艳杰等, 2011)。根据前人研究资料,橄榄石Mg#<90,表示饱满地幔(Zheng et al., 1998);Mg#>92,反映难熔地幔(Zheng et al., 2001);而Mg#值在90~92间,代表过渡类型的适度难熔地幔(Zhang, 2005; Zheng et al., 2006, 2007; Li et al., 2014)。

东北地区地幔橄榄石Mg#值与样品数量的分布情况见图 2。地块边缘橄榄石Mg#值均小于91.5,反映这些地区没有难熔地幔,其中双辽岩石圈地幔熔体抽取程度最高,但仅表现为适度难熔地幔特征。值得注意的是,伊通和五大连池都存在Mg#值低至86~88的橄榄石,并且伊通正好处在伊通-依兰断裂带上。相反,地块内部尽管以适度难熔地幔为主,但阿巴嘎和诺敏都含有Mg#值大于92的橄榄石,显示有难熔地幔存在,说明地块内部地幔熔体抽取程度最高。此外,哈拉哈和诺敏橄榄岩捕虏体既有尖晶石相,又有石榴石相,以区别于其它地区只有尖晶石相,这与地块内部岩石圈较厚,而边缘较薄相一致。

2.2 岩石圈地幔交代作用

岩石圈遭受后期熔/流体相互作用的改造称之为地幔交代作用(Menzies and Hawkesworth, 1987; Bodinier et al., 1990; Rudnick et al., 1993; O'Reilly and Griffin, 2013)。通常情况下,岩石圈地幔以橄榄石、斜方辉石、单斜辉石、尖晶石/石榴石等无水矿物组合为代表,当橄榄岩中出现角闪石、金云母、磷灰石等含水矿物时,可判定曾发生过显性交代作用(Harte, 1983; O'Reilly and Griffin, 1988; Yaxley et al., 1991, 1998)。地块内部诺敏橄榄岩捕虏体中发现有少量的金云母和富钾熔体(隋建立等, 2014),地块边缘伊通含有富钾玻璃的异剥橄榄岩(Xu et al., 1996),都表明曾经历过显性交代作用。相对应的为隐性交代作用,即无含水矿物出现,但有不相容元素的富集现象(Dawson, 1984; Zheng et al., 2005a, b; Lu et al., 2013)。

在无水“干”的地幔橄榄岩中,单斜辉石为不相容元素的主要载体,其微量元素含量可用来识别地幔隐性交代作用,甚至可识别交代介质的性质(Ionov et al., 1993; Coltorti et al., 1999; Gorring and Kay, 2000),其中LREE亏损指示未受到或受到微弱的地幔交代作用,而不同类型LREE富集可反映出地幔经历过交代作用的改造(Navon and Stolper, 1987; Ionov et al., 2002; Yu et al., 2005; Su et al., 2010)。常见的地幔交代介质包含硅酸盐熔体和碳酸岩熔体,与硅酸盐熔体相比,碳酸岩熔体具有高的La/Yb、Ca/Al、Zr/Hf、Nb/Ta,低的Ti/Eu微量元素特征(Ionov et al., 1993; Rudnick et al., 1993)。因此,通常用单斜辉石的(La/Yb)N和Ti/Eu关系图解区分这两种介质,其中高的(La/Yb)N、低的Ti/Eu反映多与碳酸岩熔体交代作用有关,相反则多与硅酸盐熔体交代作用有关(Coltorti et al., 1999)。

从东北地区发表的资料看,它们的陆下岩石圈地幔均遭受过不同程度的隐性交代作用。且以硅酸盐熔体交代为主(图 3),碳酸岩熔体交代作用总体较弱, 如阿巴嘎和蛟河(地块内部)、汪清(地块边缘),其中阿巴嘎地区的两个样品具有最高的(La/Yb)N。不难发现,这些具碳酸岩熔体交代特征的橄榄岩捕虏体主要分布在东北地区的南缘及东部。

图 3 东北不同地区地幔单斜辉石Ti/Eu-(La/Yb)N相关图 Fig. 3 Ti/Eu vs. (La/Yb)N diagrams for clinopyroxene from different areas in Northeast China
2.3 岩石圈地幔形成年龄

从全岩Re亏损年龄看, 东北可能没有太古代地幔(图 4),其中最古老年龄者分布在地块内部的科洛,该年龄由难熔方辉橄榄岩得到, Re亏损年龄为1.9~2.1Ga(Zhang et al., 2011); 阿巴嘎最老地幔年龄却为762Ma(Zhang et al., 2012),小于东北其它地区最老的地幔年龄,但由全岩Al2O3、CaO的关系图解却可看出阿巴嘎存在亏损程度很高的地幔(图 5)。这种相对年轻的地幔与该地区有难熔地幔似乎相矛盾(张臣等, 2006; 陈生生等, 2012)。地块边缘最老地幔分布在伊通,其Re亏损年龄为1635Ma(周琴等, 2010)。根据有限的数据看,地块内部岩石圈地幔年龄总体比较老,其形成时代可能为古元古代;而地块边缘相对年轻,可能最古老的形成于中元古代。此外,从图 2图 5也不难发现,伊通岩石圈地幔部分熔融程度最低,与地幔年龄不很协调,可能与强烈的熔岩相互作用有关(图 4),即该区处在伊舒-伊通断裂带上,从而导致比较容易出现大比例的显生宙地幔(图 6)。

图 4 东北不同地区橄榄石Mg#与地幔Re亏损年龄相关图 Fig. 4 Olivine-Mg# vs. Re-depletion ages of mantle diagrams from different areas in Northeast China

图 5 东北不同地区橄榄岩全岩CaO-Al2O3相关图解 Fig. 5 Whole-rock CaO vs. Al2O3 diagrams for peridotites from different areas in Northeast China

图 6 东北地幔橄榄岩捕虏体中橄榄石的百分含量与其Fo图解 Fig. 6 Modal olivine contents vs. olivine-Fo diagram for mantle peridotite xenoliths in Northeast China
2.4 岩石圈地幔Sr-Nd同位素组成

科洛(地块内部)橄榄岩具有高87Sr/86Sr、低143Nd/144Nd的同位素组成,反映岩石圈地幔相对富集(图 7)。与科洛相比,阿巴嘎虽然同处在地块内部,但其放射成因的Sr、Nd同位素组成明显亏损,这可能与它们所属的微陆块不同,拥有不同的演示历史有关。蛟河Sr、Nd同位素组成变化最大,同时具有最高的87Sr/86Sr、143Nd/144Nd值,可能与后期太平洋板块俯冲所释放流体交代较强烈有关。此外,87Sr/86Sr和143Nd/144Nd分别与全岩Al2O3含量呈负相关和正相关均可能指示受到过熔岩相互作用的影响(Tang et al., 2013b)。从图 7可以看出,双辽和汪清岩石圈地幔经历过熔岩相互作用。就整体而言,地块内部地幔的Sr、Nd同位素组成变化最大,同时也相对富集,说明演化更复杂;而地块边缘相对亏损,含量变化也相对有限,说明演化相对更简单, 符合地块内部老、边缘新的规律。

图 7 东北地幔橄榄岩捕虏体Sr-Nd同位素与全岩Al2O3含量关系 Fig. 7 Relationship between Sr-Nd isotopic ratios and whole-rock Al2O3 contents for mantle peridotite xenoliths in Northeast China
3 东北地区壳幔耦合与解耦

大陆岩石圈上地幔,作为玄武质熔体抽取后的残留,理论上与上覆地壳在形成年龄上是耦合的(Pearson, 1999; Griffin et al., 2003; 吴福元等, 2007)。然而,克拉通岩石圈地幔也并不总是在年龄结构上与上覆地壳相耦合(Menzies et al., 1993; Gao et al., 2002; Xu, 2001)。研究证实,在一些克拉通中古老难熔的岩石圈地幔可以部分地被年轻饱满的岩石圈地幔所置换(郑建平, 1999, 2009; Zheng et al., 2007),因而会导致岩石圈地幔在年龄上解耦、成分上分层。东北地区花岗岩的Nd模式年龄普遍为0.5~1.0Ga(Jahn et al., 2000; Wu et al., 2000),反映年轻的地壳成分特征,这似乎与下覆包含中元古代到古元古代的岩石圈地幔是不协调的(周琴等, 2007, 2010; Zhang et al., 2011),显示“上新下老”的壳幔结构特征。这也导致对东北地区古老岩石圈地幔的成因有两种认识:1)东北地区古老岩石圈地幔与上覆地壳无关,而是由其它地方运移所致(Zhang et al., 2011);2)古老地幔是由软流圈地幔中保存有早期残留的岩石圈地幔,在新的岩石圈地幔形成过程中增生而来(周琴等, 2007, 2010)。

尽管东北是否有着广泛的前寒武纪结晶基底还存在争论,但近年来的一些研究发现,不少地区应该存在早前寒武纪结晶基底,主要证据包括:松嫩地块东缘的东风山群和塔东群碎屑锆石中有新元古代的年龄峰值(权京玉等, 2013; Wang et al., 2014);张广才岭地区晚古生代石英砂岩中有2500Ma和1800Ma的碎屑锆石(Meng et al., 2010);铁力地区变沉积岩碎屑锆石中有501~2690Ma的年龄分布(Zhou et al., 2012);松辽盆地南部变辉长岩和变花岗岩的锆石年龄分别为1808±21Ma和1873±13Ma(裴福萍等, 2006),变闪长岩的锆石年龄为1839±7Ma(王颖等, 2006),团山子基性脉岩中有新元古代到新太古代的捕获锆石(贾维馨等, 2016);松辽盆地北部早白垩世火山岩中存在古元古代和中元古代的古老锆石(章凤奇等, 2008);锡林浩特地区发育有中元古代的条带状花岗片麻岩(孙立新等, 2013a)。这些数据均表明松嫩地块应该存在早前寒武纪结晶基底,年龄可能老于古元古代。伊通和蛟河在大地构造上归属于松嫩地块的南缘,该地块有古老的基底组成,这似乎说明壳幔结构曾经是耦合的。

最近,Sun et al.(2014, 2015)对靠近WEK地区(五大连池、二克山、科洛)的小古里河超钾质岩石研究发现,这些火山岩的源区为大陆岩石圈地幔,并经历过古俯冲大陆沉积物(>1.5Ga)来源的富钾硅酸盐熔体交代作用,暗示该地区在古元古代时就有大陆岩石圈地幔的存在。科洛地区具有1.9~2.1Ga的岩石圈地幔因而不太可能是在显生宙的增生造山过程中由软流圈中残留的古老岩石圈地幔增生而来。虽然科洛龙镇地区花岗岩Hf模式年龄511~958Ma(张彦龙等, 2010),要比下覆岩石圈地幔年轻得多,可能显示该地区壳幔年龄是解耦的(Zhang et al., 2011)。额尔古纳地区花岗片麻岩锆石的U-Pb年代学指示该地区存在古元古代末期的岩浆记录(孙立新等, 2013b)。此外,黑龙江兴华渡口群变沉积岩中有1.0~2.6Ga的碎屑锆石(Miao et al., 2007)。这些资料反映科洛邻区含有古老基底,但在显生宙增生造山过程中,地壳经历了多期改造,地壳的模式年龄代表该区经历的最后一期大规模的地壳改造时间(于宋月等, 2007),而下覆岩石圈地幔可能只受到了有限的影响,因此科洛地区壳-幔在年龄结构上也曾可能是耦合的。

兴凯地块橄榄岩捕虏体Re-Os同位素资料表明,该地块含有~2.0Ga的岩石圈地幔(Guo et al., 2017)。不难发现,东北多个微陆块都包含古元古代的岩石圈地幔。很难想象,分布范围如此广的古老岩石圈地幔可以通过构造移位形成,或者软流圈地幔中能够保存有如此大比例的古老岩石圈地幔。如果东北地区壳幔耦合属实,那么该地区现存古老的岩石圈地幔就应该是微陆块的一部分,它们在早期地球分异过程中,是随陆壳形成而生成,并非从异地通过构造移位或者从软流圈中增生而来。Guo et al. (2017)通过比较地幔Re亏损年龄和地壳岩石的形成年龄,发现东北地区地壳和地幔的形成在时间和成因上都存在着密切的联系。

4 岩石圈地幔不均一性的形成过程

不同地区出露的深源捕虏体在矿物组合、含量、结构及成分上有所差异。尽管它们多为尖晶石相橄榄岩,局部有辉石岩的出露,但大兴安岭北部诺敏及中部哈拉哈等地区还有石榴石相橄榄岩(樊祺诚等, 2008; 隋建立等, 2012),反映有较厚的岩石圈地幔。伊通以含有糜棱结构的橄榄岩而区别于其它地区(Xu et al., 1993; 周琴等, 2010),这种橄榄岩具有典型的动力学破碎特征,其形成与特定的构造背景相关,暗示深大断裂带在岩石圈地幔演化中起到重要作用(郑建平, 2009)。橄榄石Mg#值反映地块边缘岩石圈地幔属性较饱满,而地块内部更多地体现出适度难熔的地幔特征。除此之外,在岩石圈地幔的形成年龄上,不同地区间及同一区域内差异较大,有着从元古代到显生宙的年龄分布。可以看出,东北岩石圈地幔在横向上和垂向上都存在很大的不均一性, 这种不均一性形成机制是什么呢?

4.1 熔-岩相互作用

通常认为,地幔橄榄岩是软流圈地幔部分熔融的残留物,随后又经历了地幔交代作用,这种典型的二阶段演化可以很好的解释橄榄岩主量元素难熔(低Al2O3、Fe2O3、TiO2),微量元素富集(高LREE/HREE)的地球化学特征(Ionov et al., 2002; Rudnick et al., 2004; Lu et al., 2013; Tang et al., 2013b)。因此,同一套火山岩中的深源捕虏体,难熔的方辉橄榄岩往往被解释为由较饱满的二辉橄榄岩通过更高程度部分熔融生成。尽管有证据显示,方辉橄榄岩也可由二辉橄榄岩与熔体反应形成,如吉林辉南地区的“反应型”方辉橄榄岩(Xu et al., 2003)。随着研究的深入,越来越多的证据表明较饱满的二辉橄榄岩也可由难熔的方辉橄榄岩通过熔体再富集作用生成(Le Roux et al., 2007),即部分熔融的逆过程(再富集作用)。这种通过熔岩相互作用产生饱满的二辉橄榄岩和直接由软流圈地幔通过部分熔融作用产生的二辉橄榄岩在哈克图解上很难区分,它们有着相似的变化趋势,但所隐含的地质意义却大不相同。

伊通和五大连池因具有Mg#值低至86~88的橄榄石而不同于其它地区,这种比原始地幔更饱满的橄榄石不太可能仅通过部分熔融作用形成。虽然岩浆成因的橄榄石可具有与其大致相当的Mg#值,但这种橄榄石通常有较高的CaO含量(Thompson and Gibson, 2000)。伊通和五大连池地区的橄榄石的CaO<0.1%,属典型的地幔来源,很可能是地幔橄榄岩与软流圈来源的熔体相互作用的结果(张宏福等, 2006; 张宏福, 2009)。在不同熔/岩比的条件下,熔-岩相互作用的结果也会有所不同:低熔/岩比条件时,会不同程度地降低橄榄石的Mg#值,但不会引起矿物含量上的变化;高熔/岩比条件时,不仅会有效地降低橄榄石的Mg#值,甚至还会造成矿物含量上的改变。伊通地区出露的异剥橄榄岩可能是一种典型的高熔/岩比条件下的产物,是由富铁的硅酸盐熔体不断的渗透反应,形成了二辉橄榄岩–含斜方辉石的异剥橄榄岩–无斜方辉石的异剥橄榄岩连续序列(Xu et al., 1996)。

4.2 岩石圈地幔置换作用

同一地区均具有新老地幔(或难熔与饱满程度不同地幔)并存的现象,持续的熔岩相互作用虽然可以造成橄榄石Mg#值的连续变化,但不易解释新生饱满地幔LREE亏损的情况(郑建平, 2009),而新生的饱满地幔是由上涌的软流圈物质冷却转变似乎更符合这一事实(Zheng et al., 2007)。以阿巴嘎为例,作为一个具有从饱满地幔到过渡地幔,甚至到难熔地幔特征的典型地区,地幔属性变化很大,却不存在上老下新的分层现象(Pan et al., 2013)。如果岩石圈地幔是均匀地垂向增生,现今的岩石圈地幔应该是由上部的古老难熔地幔和下部的新生饱满地幔所组成,橄榄石的Mg#值与平衡温度应该存在很好的相关性,但从现有的成分结构看,显然不是这样的。倘若岩石圈地幔是蘑菇云状不均匀地垂向增生,可以很好地实现这一地幔置换过程,产生新老地幔交叉并置的现象(Zheng et al., 2007; 郑建平, 2009)。

4.3 微陆块俯冲拼合作用影响

地块内部和地块边缘存在着系统性的差异,主要表现为地块内部岩石圈地幔难熔程度较高,地幔年龄更古老,具有更富集、变化范围大的Sr、Nd同位素组成,反映交代作用更强烈;而地块边缘偏饱满,地幔年龄相对年轻,具有较亏损、变化范围小的Sr、Nd同位素组成,交代作用相对较弱(图 7图 8)。这些差异与大陆和大洋岩石圈地幔间的差异有些相似,考虑到东北地区具有复杂的演化历史,不难发现这二者间可能有着一定的联系。目前来说,东北地区还未发现太古代时期的岩石圈地幔(图 8),最古老的地幔年龄为古元古代(1.9~2.1Ga,Zhang et al., 2011)。最近Guo et al. (2017)对比了东北地区岩石圈地幔和地壳岩石的形成年龄,发现有三期地幔和地壳的年龄峰值,1.8~1.9Ga、1.2~1.3Ga和0.75~0.85Ga,都可以很好地对应起来,这让我们粗略地建立起东北地区以下岩石圈地幔成因模式。

图 8 东北橄榄岩中橄榄石(La/Yb)N、1000×Ti/Eu和地幔年龄(Ga)与Fo关系 Fig. 8 Plots of (La/Yb)N, 1000×Ti/Eu and ages (Ga) against olivine-Fo of mantle for peridotites in Northeast China

(1) 古元古代时期(1.8~1.9Ga),是显著的壳幔增生阶段,岩石圈地幔和地壳在年龄结构上耦合一致,此时形成的岩石圈地幔难熔程度最高,但在后期的演化过程中不断受到熔/流体的交代作用,造成现今看到的岩石圈地幔Sr、Nd同位素组成最富集。

(2) 中元古代时期(1.2~1.3Ga),是又一次壳幔增生的重要阶段,但此时形成的岩石圈地幔要比古元古代时期的较饱满。

(3) 新元古代时期(0.75~0.85Ga),属超大陆裂解、有限洋盆形成的重要阶段,在这个过程中形成了东北地区众多的微陆块,该时期也是大洋和大陆岩石圈地幔增生的重要时期。

(4) 古生代时期,微陆块彼此之间相俯冲拼贴成为一个整体。例如,额尔古纳地块与兴安地块在加里东早期完成拼合,松嫩地块与佳木斯地块在早古生代晚期完成拼合,而兴安地块与松嫩地块于早石炭世完成拼合,此后这些微陆块才作为一个整体与华北板块至少在中三叠世前完成拼合(许文良等, 2013及引用文献)。

(5) 新生代时期,大量玄武岩喷发并携带地幔橄榄岩至地表。由于玄武岩源区处在不同位置,玄武质岩浆穿过岩石圈的路径也会大不相同,因此随机捕获的地幔橄榄岩就会存在较大差异。如果玄武岩的源区在微陆块内部,玄武岩浆达到地表必将穿过较厚的岩石圈,携带的地幔橄榄岩必然具有更多大陆岩石圈地幔的特征;相反,如果玄武岩的源区在微陆块边缘,该区是微陆块相互拼合的地带,其下覆有残留的大洋岩石圈地幔,此时玄武岩捕获的地幔橄榄岩可能会具有更多大洋岩石圈地幔的信息。

从现今地理位置看,也有例外的情况出现,如科洛很靠近断裂带,让人很容易想到应该把该地区划分到地块边缘加以探讨,但科洛出露的橄榄岩亏损程度较高,Re亏损年龄也最古老(Zhang et al., 2011),显示与大陆岩石圈地幔有着更多的相似性,这似乎与上述岩石圈地幔成因模式相矛盾。倘若考虑以下情况,这种矛盾就不难理解:由于俯冲作用的存在,微陆块的边缘部分会俯冲到地球深部,从而导致微陆块的中心部分出现在地表缝合带的边缘。此外,科洛虽然在地表很靠近贺根山-黑河断裂带,但断裂带延伸到岩石圈地幔就有可能远离科洛而偏向南边的五大连池。

5 结语

属于中亚造山带东段一部分的我国东北地区岩石圈地幔存在不均一性,其中阿巴嘎、哈拉哈、诺敏、科洛和蛟河的地幔橄榄石Mg#≥91.5,最大Re亏损年龄是2.1~1.9Ga,富集Sr、Nd同位素组成且变化范围大,反映交代作用强烈,这些特征与大陆岩石圈地幔有明显相似性;而东北与华北拼合褶皱带中的双辽、伊通、汪清以及松嫩地块五大连池的地幔橄榄石Mg#<91.5,Re亏损年龄总体为中元古代,Sr、Nd同位素组成变化范围小,交代作用较弱,与大洋岩石圈地幔特征有亲缘性。这些差别总体反映出:与地块边缘相比,地块内部的岩石圈地幔有形成时代较老、难熔程度较高、交代作用较强的特点,但也有个别例外的情况,这些差异的根本原因与微陆块初始属性和后来的俯冲拼合及软流圈-岩石圈相互作用等过程有关。

致谢 感谢徐义刚院士和郭正府研究员的组稿以及两位评审人认真审阅了本文并提出了有益的修改意见。
参考文献
Bodinier JL, Vasseur G, Vernieres J, Dupuy C and Fabries J. 1990. Mechanisms of mantle metasomatism:Geochemical evidence from the Lherz orogenic peridotite. Journal of Petrology, 31(3): 597-628. DOI:10.1093/petrology/31.3.597
Boyd FR. 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96(1-2): 15-26. DOI:10.1016/0012-821X(89)90120-9
Chen SS, Fan QC, Zhao YW, Sui JL and Du XX. 2012. Mantle peridotite xenoliths and the nature of lithospheric mantle in Abaga, Inner Mongolia. Acta Petrologica Sinica, 28(4): 1108-1118.
Coltorti M, Bonadiman C, Hinton RW, Siena F and Upton BGJ. 1999. Carbonatite metasomatism of the oceanic upper mantle:Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40(1): 133-165. DOI:10.1093/petroj/40.1.133
Dawson JB. 1984. Contrasting types of upper mantle metasomatism? In: Kornprobst J (ed. ). Kimberlites Ⅱ: The Mantle and Crust-mantle Relationships. Amsterdam: Elsevier, 289-294
Fan QC, Sui JL, Zhao YW, Sun Q, Li N and Du XX. 2008. Preliminary study on garnet peridotite xenolith of Quaternary volcanic rocks in middle Daxing'an Mountain Range. Acta Petrologica Sinica, 24(11): 2563-2568.
Gao S, Rudnick RL, Carlson RW, McDonough WF and Liu YS. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198(3): 307-322.
Gorring ML and Kay SM. 2000. Carbonatite metasomatized peridotite xenoliths from southern Patagonia:implications for lithospheric processes and Neogene plateau magmatism. Contributions to Mineralogy and Petrology, 140(1): 55-72. DOI:10.1007/s004100000164
Griffin WL, O'Reilly SY, Ryan CG, Gaul O and Ionov DA. 1998. Secular variation in the composition of subcontinental lithospheric mantle. In: Braun J, Dooley JC, Goleby BR, van der Hilst RD and Klootwijk CT (eds. ). Structure and Evolution of the Australian Continent. American Geopyhysical Union, Geodynamics Series, 26: 1-26
Griffin WL, O'Reilly SY and Ryan CG. 1999. The composition and origin of subcontinental lithospheric mantle. In: Fei Y, Bertka C and Mysen BO (eds. ). Mantle Petrology: Field Observations and High-Pressure Experimentation. N. Y. : The Geochemical Society, Stony Brook, 13-45
Griffin WL, O'Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ and Kivi K. 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Research, 127(1): 19-41.
Guo F, Fan WM, Li CW, Miao LC and Zhao L. 2009. Early Paleozoic subduction of the Paleo-Asian Ocean:Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia. Science in China (Series D), 52(7): 940-951. DOI:10.1007/s11430-009-0083-2
Guo P, Xu WL, Wang CG, Wang F, Ge WC, Sorokin AA and Wang ZW. 2017. Age and evolution of the lithospheric mantle beneath the Khanka Massif:Geochemical and Re-Os isotopic evidence from Sviyagino mantle xenoliths. Lithos, 28: 326-338.
Harte B. 1983. Mantle peridotites and processes: The kimberlite sample. In: Hawkesworth CJ and Norry MJ (eds. ). Continental Basalts and Their Xenoliths. Shiva, Nantwich, 46-91
Ionov DA, Dupuy C, O'Reilly SY, Kopylova MG and Genshaft YS. 1993. Carbonated peridotite xenoliths from Spitsbergen:Implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters, 119(3): 283-297. DOI:10.1016/0012-821X(93)90139-Z
Ionov DA, Bodinier JL, Mukasa SB and Zanetti A. 2002. Mechanisms and sources of mantle metasomatism:Major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. Journal of Petrology, 43(12): 2219-2259. DOI:10.1093/petrology/43.12.2219
Jahn BM, Wu FY and Chen B. 2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82-92.
Jia WX, Jiang QG, Wang DY and Gao W. 2016. Captured zircon U-Pb ages in the mafic dike and constraints of the magmatic events in the basement of southern Songliao Basin. Acta Petrologica Sinica, 32(9): 2881-2888.
Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang FQ, Shi GH, Miao LC, Zhang W, Zhang Q, Zhang LQ and Ren JS. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth. Lithos, 101(3): 233-259.
Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang W, Zhang FQ, Miao LC, Zhang LQ and Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1): 169-190.
Jordan TH. 1975. The continental tectosphere. Reviews of Geophysics, 13(3): 1-12. DOI:10.1029/RG013i003p00001
King SD. 2005. Archean cratons and mantle dynamics. Earth and Planetary Science Letters, 234(1): 1-14.
Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A and Riches AJV. 2007. The Lherz spinel lherzolite:Refertilized rather than pristine mantle. Earth and Planetary Science Letters, 259(3): 599-612.
Lee CTA, Luffi P and Chin EJ. 2011. Building and destroying continental mantle. Annual Review of Earth and Planetary Sciences, 39: 59-90. DOI:10.1146/annurev-earth-040610-133505
Li JF, Wang KY, Quan HY, Sun FY, Zhao LS and Zhang XB. 2016. Discussion on the magmatic evolution sequence and metallogenic geodynamical setting background Hongling Pb-Zn deposit in the southern Da Xing'an Mountains. Acta Petrologica Sinica, 32(5): 1529-1542.
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3): 207-224.
Li SL and Ouyang ZY. 1998. Tectonic framework and evolution of Xing'anling Mongolian Orogenic Belt (XMOB) and its adjacent region. Marine Geology and Quaternary Geology, 18(3): 45-54.
Li XY, Zheng JP, Sun M, Pan SK, Wang W and Xia QK. 2014. The Cenozoic lithospheric mantle beneath the interior of South China Block:Constraints from mantle xenoliths in Guangxi Province. Lithos, 210: 14-26.
Liu JL, Wang J, Song Y, Liu JG and Li A. 2014. Study on SCLM in Aershan-Chaihe area of Inner Mongolia:evidence from trace elements of clinopyroxene. Global Geology, 33(1): 1-10.
Liu JQ, Han JT and Fyfe WS. 2001. Cenozoic episodic volcanism and continental rifting in Northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics, 339(3): 385-401.
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082
Lu JG, Zheng JP, Griffin WL and Yu CM. 2013. Petrology and geochemistry of peridotite xenoliths from the Lianshan region:Nature and evolution of lithospheric mantle beneath the lower Yangtze block. Gondwana Research, 23(1): 161-175. DOI:10.1016/j.gr.2012.01.008
Meng E, Xu WL, Pei FP, Yang DB, Yu Y and Zhang XZ. 2010. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics, 485(1): 42-51.
Meng FC, Liu JQ, Cui Y, Gao JL, Liu X and Tong Y. 2014. Mesozoic tectonic regimes transition in the Northeast China:Constraints from temporal-spatial distribution and associations of volcanic rocks. Acta Petrologica Sinica, 30(12): 3569-3586.
Menzies MA and Hawkesworth CJ. 1987. Mantle Metasomatism. Orlando, London: Academic Press: 1-472.
Menzies MA, Fan WM and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean craton, China. Geological Society, London, Special Publications, 76(1): 71-81. DOI:10.1144/GSL.SP.1993.076.01.04
Miao LC, Liu DY, Zhang FQ, Fan WM, Shi YR and Xie HQ. 2007. Zircon SHRIMP U-Pb ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains. Chinese Science Bulletin, 52(8): 1112-1124. DOI:10.1007/s11434-007-0131-2
Navon O and Stolper E. 1987. Geochemical consequences of melt percolation:the upper mantle as a chromatographic column. The Journal of Geology, 95(3): 285-307. DOI:10.1086/629131
O'Reilly SY and Griffin WL. 1988. Mantle metasomatism beneath western Victoria, Australia:Ⅰ. Metasomatic processes in Cr-diopside lherzolites. Geochimica et Cosmochimica Acta, 52(2): 433-447. DOI:10.1016/0016-7037(88)90099-3
O'Reilly SY and Griffin WL. 2013. Mantle metasomatism. In: Harlow DE and Austrheim H (eds. ). Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes. New York: Springer, 471-534
Pan SK, Zheng JP, Chu LL and Griffin WL. 2013. Coexistence of the moderately refractory and fertile mantle beneath the eastern Central Asian Orogenic Belt. Gondwana Research, 23(1): 176-189. DOI:10.1016/j.gr.2012.03.001
Pan SK, Zheng JP, Griffin WL, Xu YX and Li XY. 2015. Nature and evolution of the lithospheric mantle beneath the eastern Central Asian Orogenic Belt:Constraints from peridotite xenoliths in the central part of the Great Xing'an Range, NE China. Lithos, 238: 52-63. DOI:10.1016/j.lithos.2015.09.013
Pearson DG. 1999. The age of continental roots. Lithos, 48(1): 171-194.
Pei FP, Xu WL, Yang DB, Zhao QG, Liu XM and Hu ZC. 2006. Zircon U-Pb Geochronology for metamorphic rocks from basement of the Songliao Basin and its geological implication. Chinese Science Bulletin, 51(24): 2881-2887.
Pollack HN. 1986. Cratonization and thermal evolution of the mantle. Earth and Planetary Science Letters, 80(1-2): 175-182. DOI:10.1016/0012-821X(86)90031-2
Quan JY, Chi XG, Zhang R, Sun W, Fan LF and Hu ZC. 2013. LA-ICP-MS U-Pb geochronology of detrital zircon from the Neoproterozoic Dongfengshan Group in Songnen masiff and its geological significance. Geological Bulletin of China, 32(2-3): 353-364.
Ren JS, Niu BG and Liu ZG. 1999. Soft collision, superposition orogeny and polycyclic suturing. Earth Science Frontiers, 6(3): 85-93.
Rudnick RL, McDonough WF and Chappell BW. 1993. Carbonatite metasomatism in the northern Tanzanian mantle:Petrographic and geochemical characteristics. Earth and Planetary Science Letters, 114(4): 463-475. DOI:10.1016/0012-821X(93)90076-L
Rudnick RL, Gao S, Ling WL, Liu YS and McDonough WF. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77(1): 609-637.
Sengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307. DOI:10.1038/364299a0
Sengör AMC and Natal'in BA. 1996. Paleotectonics of Asia: fragments of a synthesis. In: Yin A and Harrison M (eds. ). The Tectonic Evolution of Asia. London: Cambridge University Press, 486-640
She HQ, Li JW, Xiang AP, Guan JD, Zhang DQ, Yang YC, Tan G and Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2): 571-594.
Sleep NH. 2005. Evolution of the continental lithosphere. Annual Review of Earth and Planetary Sciences, 33: 369-393. DOI:10.1146/annurev.earth.33.092203.122643
Song Y, Wang J, Liu JL, Xie ZP and Hattori KH. 2013. Mineral chemistry of mantle xenoliths in Cenozoic basalts from Wangqing, eastern Jilin:Implications for formation of newly accreted sub-continental mantle. Earth Science Frontiers, 20(5): 75-86.
Su BX, Zhang HF, Sakyi PA, Ying JF, Tang YJ, Yang YH, Qin KZ, Xiao Y and Zhao XM. 2010. Compositionally stratified lithosphere and carbonatite metasomatism recorded in mantle xenoliths from the Western Qinling (Central China). Lithos, 116(1): 111-128.
Sui JL, Fan QC and Xu YG. 2012. Discovery of peridotite xenoliths from the Nuomin river Quaternary volcanic field, the Great Xing'an Range, and its geological significance. Acta Petrologica Sinica, 28(4): 1130-1138.
Sui JL, Li N, Fan QC and Xu YG. 2014. Phlogopites and potassic melts in mantle xenoliths from Nuomin volcanic field, northern Great Xing'an Range. Acta Petrologica Sinica, 30(12): 3587-3594.
Sun LX, Ren BF, Zhao FQ, Gu YC, Li YF and Liu H. 2013a. Zircon U-Pb dating and Hf isotopic compositions of the Mesoporterozoic granitic gneiss in Xilinhot Block, Inner Mongolia. Geological Bulletin of China, 32(2/3): 327-340.
Sun LX, Ren BF, Zhao FQ, Ji SP and Geng JZ. 2013b. Late Paleoproterozoic magmatic records in the Eerguna massif:Evidences from the zircon U-Pb dating of granitic gneisses. Geological Bulletin of China, 32(2/3): 341-352.
Sun Y, Ying JF, Zhou X, Shao JA, Chu Z and Su BX. 2014. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China:Implications for the role of ancient subducted sediments. Lithos, 208: 53-66.
Sun Y, Ying JF, Su BX, Zhou XH and Shao JA. 2015. Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China:New constraints from mineral chemistry and oxygen isotopes of olivine. Chemical Geology, 405: 10-18. DOI:10.1016/j.chemgeo.2015.04.005
Suo YH, Li SZ, Cao XZ, Li XY, Liu X and Cao HH. 2017. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate. Earth Science Frontiers, 24(4): 249-267.
Tang J, Xu WL, Wang F, Wang W, Xu MJ and Zhang YH. 2013a. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China:Petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Research, 224: 597-611. DOI:10.1016/j.precamres.2012.10.019
Tang J, Xu WL, Wang F, Zhao S and Li Y. 2015. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China:Constraints on the Late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt. Tectonophysics, 658: 91-110. DOI:10.1016/j.tecto.2015.07.012
Tang YJ, Zhang HF, Ying JF, Yang W, Zhao XM, Su BX and Xiao Y. 2011. Indicative significance of olivine in mantle peridotites. Journal of Earth Sciences and Environment, 33(1): 24-33.
Tang YJ, Zhang HF, Ying JF and Su BX. 2013b. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth-Science Reviews, 118: 45-68. DOI:10.1016/j.earscirev.2013.01.004
Thompson RN and Gibson SA. 2000. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature, 407(6803): 502-505. DOI:10.1038/35035058
Wang F, Xu WL, Gao FH, Zhang HZ, Pei FP, Zhao L and Yang Y. 2014. Precambrian terrane within the Songnen-Zhangguangcai Range Massif, NE China:Evidence from U-Pb ages of detrital zircons from the Dongfengshan and Tadong groups. Gondwana Research, 26(1): 402-413. DOI:10.1016/j.gr.2013.06.017
Wang Y, Zhang F, Zhang DW, Miao LC, Li TS, Xie HQ, Meng QR and Liu DY. 2006. Zircon SHRIMP U-Pb age of the metamorphic diorite in the south of Songliao Basin and its geological implication. Chinese Science Bulletin, 51(15): 1811-1816. DOI:10.1007/s11434-006-2018-z
Wu FY, Jahn BM, Wilde S and Sun DY. 2000. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1): 89-13.
Wu FY, Walker RJ, Ren XW, Sun DY and Zhou XH. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology, 196(1): 107-129.
Wu FY, Yang JH, Lo CH, Wilde SA, Sun DY and Jahn BM. 2007. The Heilongjiang Group:A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. The Island Arc, 16(1): 156-172. DOI:10.1111/iar.2007.16.issue-1
Wu FY, Yang JH, Chu ZY, Xie LW, Yang YH and Li QL. 2007. Dating the subcontinental lithospheric mantle. Earth Science Frontiers, 14(2): 76-86.
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. DOI:10.1016/j.jseaes.2010.11.014
Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Che HL, Sun M, Sun S and Li JL. 2009. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids:Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. DOI:10.1007/s00531-008-0407-z
Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857.
Xu WL, Ji WQ, Pei FP, Meng E, Yu Y, Yang DB and Zhang XZ. 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China:Chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences, 34(3): 392-402. DOI:10.1016/j.jseaes.2008.07.001
Xu WL, Wang F, Pei FP, Meng E, Tang J, Xu MJ and Wang W. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China:Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica, 29(2): 339-353.
Xu YG, Ross JV and Mercier JCC. 1993. The upper mantle beneath the continental rift of Tanlu, eastern China:Evidence for the intra-lithospheric shear zones. Tectonophysics, 225(4): 337-360. DOI:10.1016/0040-1951(93)90304-3
Xu YG, Mercier JCC, Menzies MA, Ross JV, Harte B, Lin CY and Shi LB. 1996. K-rich glass-bearing wehrlite xenoliths from Yitong, northeastern China:petrological and chemical evidence for mantle metasomatism. Contributions to Mineralogy and Petrology, 125(4): 406-420. DOI:10.1007/s004100050231
Xu YG, Menzies MA, Vroon P, Mercier JC and Lin C. 1998. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. Journal of Petrology, 39(3): 469-493. DOI:10.1093/petroj/39.3.469
Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9): 747-757.
Xu YG, Menzies MA, Thirlwall MF, Huang XL, Liu Y and Chen XM. 2003. "Reactive" harzburgites from Huinan, NE China:Products of the lithosphere-asthenosphere interaction during lithospheric thinning?. Geochimica et Cosmochimica Acta, 67(3): 487-505. DOI:10.1016/S0016-7037(02)01089-X
Yaxley GM, Crawford AJ and Green DH. 1991. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth and Planetary Science Letters, 107(2): 305-317. DOI:10.1016/0012-821X(91)90078-V
Yaxley GM, Green DH and Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39(11-12): 1917-1930. DOI:10.1093/petroj/39.11-12.1917
Yu JH, O'Reilly SY, Zhang M, Griffin WL and Xu XS. 2005. Roles of melting and metasomatism in the formation of the lithospheric mantle beneath the Leizhou Peninsula, South China. Journal of Petrology, 47(2): 355-383.
Yu SY, Xu YG, Huang XL, Ge WC and Cheng J. 2007. Comparison of composition and thermal state of the upper mantle beneath Northeast and North China:Implications for lithospheric thinning in eastern China. Acta Petrologica Sinica, 23(6): 1252-1268.
Yu SY, Xu YG, Huang XL, Ma JL, Ge WC, Zhang HH and Qin XF. 2009. Hf-Nd isotopic decoupling in continental mantle lithosphere beneath Northeast China:Effects of pervasive mantle metasomatism. Journal of Asian Earth Sciences, 35(6): 554-570. DOI:10.1016/j.jseaes.2009.04.005
Zhao YW and Fan QC. 2011. Characteristics of lithospheric mantle beneath the Great Xing'an Range:Evidence from spinel peridotite xenoliths in the Halaha river and Chaoer river area. Acta Petrologica Sinica, 27(10): 2833-2841.
Zhang C, Liu SW, Han BF and Li DC. 2006. Characteristics of ultramafic xenoliths from Cenozoic basalts in Abagaqi area, Inner Mongolia. Acta Petrologica Sinica, 22(11): 2801-2807.
Zhang C, Yang WH, He ZH, Wu H and Wu Q. 2014. Chronology and geochemistry of rhyolites in Manketou'ebo Formation from Ta'erqi area, southern-central Greater Xing'an Range. Global Geology, 33(2): 255-265.
Zhang FQ, Chen HL, Dong CW, Yu X, Xiao J, Pang YM, Cao RC and Zhu DF. 2008. Evidence for the existence of Precambrian basement under the northern Songliao basin. Geology in China, 35(3): 421-428.
Zhang HF. 2005. Transformation of lithospheric mantle through peridotite-melt reaction:A case of Sino-Korean craton. Earth and Planetary Science Letters, 237(3): 768-780.
Zhang HF, Ying JF, Tang YJ, Zhang J, Zhao XM, Niu LF, Xiao Y and Su BX. 2006. Heterogeneity of Mesozoic and Cenozoic lithospheric mantle beneath the eastern North China Craton:Evidence from olivine compositional mapping. Acta Petrologica Sinica, 22(9): 2279-2288.
Zhang HF. 2009. Peridotite-melt interaction:A key point for the destruction of cratonic lithospheric mantle. Chinese Science Bulletin, 54(14): 2008-2026.
Zhang M, Suddaby P, O'Reilly SY, Norman M and Qiu JX. 2000. Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt:Mantle xenolith evidence. Tectonophysics, 328: 131-156. DOI:10.1016/S0040-1951(00)00181-5
Zhang M, Yang JH, Sun JF, Wu FY and Zhang M. 2012. Juvenile subcontinental lithospheric mantle beneath the eastern part of the Central Asian Orogenic Belt. Chemical Geology, 328: 109-122. DOI:10.1016/j.chemgeo.2012.07.010
Zhang XZ, Guo Y, Zeng Z, Fu QL and Pu JB. 2015. Dynamic evolution of the Mesozoic-Cenozoic basins in the northeastern China. Earth Science Frontiers, 22(3): 88-98.
Zhang YL, Ge WC, Gao Y, Chen JS and Zhao L. 2010. Zircon U-Pb ages and Hf isotopes of granites in Longzhen area and their geological implications. Acta Petrologica Sinica, 26(4): 1059-1073.
Zhang YL, Liu CZ, Ge WC, Wu FY and Chu ZY. 2011. Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB):Implications for crust-mantle decoupling. Lithos, 126(3): 233-247.
Zhang ZH, Zheng JP and Ma HW. 2006. Trace elemental compositions of peridotitic diopsides and the record of partial melting and metasomatism in lithosphere beneath Wangqing and Huinan areas, Jilin Province. Geological Science and Technology Information, 25(6): 9-16.
Zheng CQ, Zhou JB, Jin W, Ji JQ, Zhang XZ, Ma ZH and Ding X. 2009. Geochronology in the north segment of the Derbugan fault zone, Great Xing'an Range, NE China. Acta Petrologica Sinica, 25(8): 1989-2000.
Zheng JP, O'Reilly SY, Griffin WL, Lu FX and Zhang M. 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. International Geology Review, 40(6): 471-499. DOI:10.1080/00206819809465220
Zheng JP. 1999. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning beneath the Eastern China. Wuhan: China University of Geosciences Press: 1-126.
Zheng JP, O'Reilly SY, Griffin WL, Lu FX, Zhang M and Pearson NJ. 2001. Relict refractory mantle beneath the eastern North China block:Significance for lithosphere evolution. Lithos, 57(1): 43-66. DOI:10.1016/S0024-4937(00)00073-6
Zheng JP, Sun M, Zhou MF and Robinson P. 2005a. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochimica et Cosmochimica Acta, 69(13): 3401-3418. DOI:10.1016/j.gca.2005.03.020
Zheng JP, Zhang RY, Griffin WL, Liou JG and O'Reilly SY. 2005b. Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chemical Geology, 221(3): 243-259.
Zheng JP, Griffin WL, O'Reilly SY, Yang JS, Li TF, Zhang M, Zhang RY and Liou JG. 2006. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere:Constraints on mantle evolution beneath eastern China. Journal of Petrology, 47(11): 2233-2256. DOI:10.1093/petrology/egl042
Zheng JP, Griffin WL, O'Reilly SY, Yu CM, Zhang HF, Pearson N and Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, 71(21): 5203-5225. DOI:10.1016/j.gca.2007.07.028
Zheng JP. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton. Chinese Science Bulletin, 54(1): 1990-2007.
Zhou JB, Wilde SA, Zhang XZ, Liu FL and Liu JH. 2012. Detrital zircons from phanerozoic rocks of the Songliao Block, NE China:Evidence and tectonic implications. Journal of Asian Earth Sciences, 47: 21-34. DOI:10.1016/j.jseaes.2011.05.004
Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ and Wang B. 2014. Paleo-Pacific subduction-accretion:Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12): 2444-2466. DOI:10.1002/2014TC003637
Zhou JB, Wang B, Wilde SA, Zhao GC, Cao JL, Zheng CQ and Zeng WS. 2015. Geochemistry and U-Pb zircon dating of the Toudaoqiao blueschists in the Great Xing'an Range, northeast China, and tectonic implications. Journal of Asian Earth Sciences, 97: 197-210. DOI:10.1016/j.jseaes.2014.07.011
Zhou Q, Wu FY, Chu ZY, Yang YH, Sun DY and Ge WC. 2007. Sr-Nd-Hf-Os isotopic characterizations of the Jiaohe peridotite xenoliths in Jilin Province and constraints on the lithospheric mantle age in northeastern China. Acta Petrologica Sinica, 23(6): 1269-1280.
Zhou Q, Wu FY, Chu ZY and Ge WC. 2010. Isotopic compositions of mantle xenoliths and age of the lithospheric mantle in Yitong, Jilin Province. Acta Petrologica Sinica, 26(4): 1241-1264.
陈生生, 樊祺诚, 赵勇伟, 隋建立, 杜星星. 2012. 内蒙古阿巴嘎地幔岩捕掳体与岩石圈地幔性质探讨. 岩石学报, 28(4): 1108-1118.
樊祺诚, 隋建立, 赵勇伟, 孙谦, 李霓, 杜星星. 2008. 大兴安岭中部第四纪火山岩中石榴石橄榄岩捕虏体的初步研究. 岩石学报, 24(11): 2563-2568.
贾维馨, 姜琦刚, 王冬艳, 高文. 2016. 松辽盆地南缘基性岩脉中捕获锆石U-Pb年龄及其对基底岩浆事件的制约. 岩石学报, 32(9): 2881-2888.
郭锋, 范蔚茗, 李超文, 苗来成, 赵亮. 2009. 早古生代古亚洲洋俯冲作用:来自内蒙古大石寨玄武岩的年代学与地球化学证据. 中国科学(D辑), 39(5): 569-579.
李剑锋, 王可勇, 权鸿雁, 孙丰月, 赵来时, 张雪冰. 2016. 大兴安岭南段红岭铅锌矿床岩浆演化序列与成矿动力学背景探讨. 岩石学报, 32(5): 1529-1542.
李双林, 欧阳自远. 1998. 兴蒙造山带及邻区的构造格局与构造演化. 海洋地质与第四纪地质, 18(3): 45-54.
刘金霖, 王建, 宋樾, 刘建国, 李爱. 2014. 内蒙古阿尔山-柴河地区陆下岩石圈地幔性质研究. 世界地质, 33(1): 1-10.
孟凡超, 刘嘉麒, 崔岩, 高金亮, 刘祥, 童英. 2014. 中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约. 岩石学报, 30(12): 3569-3586.
裴福萍, 许文良, 杨德彬, 赵全国, 柳小明, 胡兆初. 2006. 松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义. 科学通报, 51(24): 2881-2887. DOI:10.3321/j.issn:0023-074X.2006.24.012
权京玉, 迟效国, 张蕊, 孙巍, 范乐夫, 胡兆初. 2013. 松嫩地块东部新元古代东风山群碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质通报, 32(2): 353-364.
任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 6(3): 85-93.
佘宏全, 李进文, 向安平, 关继东, 杨郧城, 张德全, 谭刚, 张斌. 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系. 岩石学报, 28(2): 571-594.
宋樾, 王建, 刘金霖, 谢志鹏, Hattori KH. 2013. 吉林东部汪清新生代玄武岩中地幔包体的矿物化学:对该地区岩石圈地幔形成过程的启示. 地学前缘, 20(5): 75-86.
隋建立, 樊祺诚, 徐义刚. 2012. 大兴安岭诺敏河石榴石橄榄岩捕虏体的发现及其地质意义. 岩石学报, 28(4): 1130-1138.
隋建立, 李霓, 樊祺诚, 徐义刚. 2014. 大兴安岭北部诺敏河地幔金云母及钾质地幔熔体研究. 岩石学报, 30(12): 3587-3594.
孙立新, 任邦方, 赵凤清, 谷永昌, 李艳峰, 刘卉. 2013a. 内蒙古锡林浩特地块中元古代花岗片麻岩的锆石U-Pb年龄和Hf同位素特征. 地质通报, 32(2): 327-340.
孙立新, 任邦方, 赵凤清, 冀世平, 耿建珍. 2013b. 内蒙古额尔古纳地块古元古代末期的岩浆记录——来自花岗片麻岩的锆石U-Pb年龄证据. 地质通报, 32(2): 341-352.
索艳慧, 李三忠, 曹现志, 李玺瑶, 刘鑫, 曹花花. 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程. 地学前缘, 24(4): 249-267.
汤艳杰, 张宏福, 英基丰, 杨蔚, 赵新苗, 苏本勋, 肖燕. 2011. 地幔橄榄岩中橄榄石的指示意义. 地球科学与环境学报, 33(1): 24-33.
王颖, 张福勤, 张大伟, 苗来成, 李铁胜, 颉颃强, 孟庆任, 刘敦一. 2006. 松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 51(15): 1811-1816. DOI:10.3321/j.issn:0023-074X.2006.15.012
吴福元, 杨进辉, 储著银, 谢烈文, 杨岳衡, 李秋立. 2007. 大陆岩石圈地幔定年. 地学前緣, 14(2): 76-86.
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-352.
于宋月, 徐义刚, 黄小龙, 葛文春, 程锦. 2007. 东北和华北地区上地幔成分和热状态对比及对中国东部岩石圈减薄的启示. 岩石学报, 23(6): 1252-1268.
张超, 杨伟红, 和钟铧, 吴浩, 吴庆. 2014. 大兴安岭中南段塔尔气地区满克头鄂博组流纹岩年代学和地球化学研究. 世界地质, 33(2): 255-265.
张臣, 刘树文, 韩宝福, 李德春. 2006. 内蒙古阿巴嘎旗新生代玄武岩中超镁铁岩包体的特征. 岩石学报, 22(11): 2801-2807.
张宏福, 英基丰, 汤艳杰, 张瑾, 赵新苗, 牛利锋, 肖燕, 苏本勋. 2006. 华北东部中、新生代岩石圈地慢的不均一性:来自橄榄石的组成填图结果. 岩石学报, 22(9): 2279-2288.
张宏福. 2009. 橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键. 科学通报, 54(14): 2008-2026.
张兴洲, 郭冶, 曾振, 付秋林, 蒲建彬. 2015. 东北地区中-新生代盆地群形成演化的动力学背景. 地学前缘, 22(3): 88-98.
张志海, 郑建平, 马鸿文. 2006. 吉林汪清-辉南地幔透辉石微量元素及其记录的地幔熔融与交代作用. 地质科技情报, 25(6): 9-16.
张彦龙, 葛文春, 高妍, 陈井胜, 赵磊. 2010. 龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义. 岩石学报, 26(4): 1059-1073.
章凤奇, 陈汉林, 董传万, 余星, 肖骏, 庞彦明, 曹瑞成, 朱德丰. 2008. 松辽盆地北部存在前寒武纪基底的证据. 中国地质, 35(3): 421-428.
赵勇伟, 樊祺诚. 2011. 大兴安岭岩石圈地幔特征——哈拉哈河-绰尔河橄榄岩捕虏体的证据. 岩石学报, 27(10): 2833-2841.
郑常青, 周建波, 金巍, 季建清, 张兴洲, 马志红, 丁雪. 2009. 大兴安岭地区德尔布干断裂带北段构造年代学研究. 岩石学报, 25(8): 1989-2000.
郑建平. 1999. 中国东部地幔置换作用与中新生代岩石圈减薄. 武汉: 中国地质大学出版社: 1-126.
郑建平. 2009. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程. 科学通报, 54(1): 1990-2007.
周琴, 吴福元, 储著银, 杨岳衡, 孙德有, 葛文春. 2007. 吉林蛟河地慢橄榄岩捕虏体的Sr-Nd-Hf-Os同位素特征与岩石圈地慢时代. 岩石学报, 23(6): 1269-1280.
周琴, 吴福元, 储著银, 葛文春. 2010. 吉林省伊通地区橄榄岩包体的同位素特征与岩石圈地幔时代. 岩石学报, 26(4): 1241-1264.