岩石学报  2017, Vol. 33 Issue (11): 3675-3690   PDF    
印支地块晚二叠世弧后伸展:来自老挝川圹高原A型花岗岩的证据
王新雨 , 王世锋 , 江万     
中国地质科学院地质力学研究所, 北京 100081
摘要:印支地块老挝地区的地质构造特征由于历史原因很少公开报道,基于最近的野外考察和室内测试,本文报道了老挝北部川圹高原A型花岗岩的岩石学、年代学及地球化学的特征,并进一步揭示古特提斯板块汇聚初期印支地块内部的伸展特性。Nuna花岗岩体3个花岗岩样品的U-Pb年龄为258.7±1.9 Ma、259.0±1.7Ma及251.0±0.9Ma。花岗岩富硅(SiO2平均含量71.94%),富FeOT(2.91%),富碱(Na2O+K2O平均含量9.2%,且K2O含量高于Na2O),贫镁(MgO平均含量0.11%),富集轻稀土元素和Zr、Hf、Rb、Th和U等元素,亏损Sr、Eu和Ti、Ba等元素,以及较高的锆石饱和温度(平均927℃),显示A型花岗岩的性质特征。花岗岩全岩εNdt)值和二阶Nd模式年龄分别位于-2.4~-2.1和1.20~1.22Ga之间,表明其岩浆源区主要为中元古代古老地壳。通过与印支地块陆壳增生事件的对比,作者认为Nuna A型花岗岩岩浆源区为中元古代古老地壳与少量幔源底侵形成的新生地壳的混合。Nuna花岗岩微量元素图解投点全部落入板内环境,结合其形成时代与区域构造岩浆演化历史,作者认为Nuna花岗岩形成于华南地块向西南俯冲于印支地块之下由于板片回撤引起的弧后伸展环境。
关键词: 老挝     A型花岗岩     锆石U-Pb年龄     全岩主量元素     稀土元素     钕同位素     弧后伸展环境    
A back-arc extensional environment of the Late Permian within the Indochina plate:Evidences from A-type granites in Xieng Khuoang Plateau, North Laos
WANG XinYu, WANG ShiFeng, JIANG Wan     
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
Abstract: Due to the inaccessible of the Laos, there are few papers about the Indochina plate in Laos. This paper reports new zircon U-Pb ages, Nd isotope and whole-rock major, trace element data for granites from the North Laos. Zircon LA-ICP-MS dating for the Nuna granite pluton yields weighted mean ages of 258.7±1.9Ma, 259.0±1.7Ma and 251.0±0.9Ma, suggesting that the crystallization age of the Nuna pluton is Late Permian. Petrological and geochemical data show that the pluton is characterized by high silicon (the average content of SiO2 is 72.94%), abundant ferrous (the average content of FeOT is 2.91%) and alkali ((Na2O+K2O) of granites with an average of 9.2%), depleted magnesium (the average content of MgO is 0.11%). Moreover, the granite is enriched in Zr, Hf, Rb, Th, U and LREE, depleted of Sr, Eu, Ti, Ba, and high magmatic crystallization temperature (with average temperature of 927℃), indicating A-type granite geochemical characters. The granites have negative εNd(t) ratios (-2.4~-2.1) and old second stage Nd model ages (1.20~1.22Ga), indicating they were mainly derived from Proterozoic crust. Compared with the two stages of the crustal growth in Indochina plates, we infer that the source of the Nuna A-type granites are mainly the Mesoproterozoic crust with a small volume of juvenile crust which derived from underplating of mantle material. Most plots of the Nuna granites in tectonic discrimination indicate a within-plate tectonic setting, in combination with their ages and the evolutionary history of tectno-magma in this region, we suggest that the Nuna granites are generated in a back-arc extensional environment within the Simao-Indochina plate during the subduction of the South China plate beneath the Indochina plate.
Key words: Laos     A-type granite     U-Pb age     Whole rock major element     REE     Nd isotopes     Back-arc extensional environment    
1 引言

东南亚板块是古特提斯时期由几个板块(如扬子地块、印支地块、昌都-思茅地块、Sibumasu地块等)汇聚拼贴而成(Metcalfe, 1996, 2002, 2013; Carter et al., 2001)。这几个板块汇聚的边界、汇聚的时间及方式长久以来一直是古特提斯研究的重要内容(图 1)。如印支地块北界长期以来认为与昌都-思茅地块以奠边府缝合带分隔(Şengör., 1979, 1984),新生代构造变形研究甚至认为金沙江缝合带与奠边府缝合带被哀牢山左旋走滑断裂错断500~700km (Leloup et al., 1995)。印支地块与扬子地块的边界过去一直认为是处于现今红河断裂位置的Song Chay缝合带(Lepvrier et al., 1997, 2004),而印支地块的西边界以Nan-Uttaradit缝合带与Sibumasu地块相隔(Barr and MacDonald, 1987; Barr et al., 2000)。近年来印支地块的古特提斯研究取得初步的进展,如Faure et al(2014)Wang et al (2016)王超等(2016)通过地质、构造及岩石学数据表明印支地块与昌都-思茅地块为同一地块,所谓的奠边府缝合带仅仅是印支运动晚期才开始活动的板内断裂。而印支地块东边界是Song Ma缝合带,该缝合带向北和云南境内的金沙江缝合带相连(Jian et al., 2008, 2009; Faure et al., 2014),这样原来研究程度较高的越南境内的印支地块的地质特征其实只是扬子地块西缘的地质特征。代表印支地块的西边界的Nan-Uttaradit与景洪蛇绿岩带则被认为仅仅是弧后残留洋壳,真正代表Sibumasu地块与印支地块边界的是Inthanon缝合带和云南境内的昌宁-孟连缝合带(Sone and Metcalfe, 2008; Metcalfe, 2013)。板块边界的研究取得重大进展的同时,东南亚板块古特提斯时期汇聚的时间与汇聚方式同样取得很大的进展。如印支地块与扬子地块之间的汇聚早期被认为是印支地块俯冲于扬子地块之下(Lepvrier et al., 1997, 2004),并认为云南地区在230Ma左右才开始发生扬子板块向西俯冲于昌都-思茅地块之下(Wang et al., 2000),而越南地区早在250Ma左右就已经发生印支地块向扬子地块的俯冲汇聚(Lepvrier et al., 1997, 2004),因此,扬子地块与思茅地块和印支地块之间的汇聚方式是斜向汇聚的(Carter et al., 2001; Ferrari et al., 2008)。近期的研究逐渐推翻这种认识,所谓的由Song Ma到云南-四川金沙江一线的斜向碰撞只是过去测年技术精度不够造成的误解。而更详细的地质、构造及岩石学研究则引导我们得出古特提斯时期这两个块体汇聚的方式是250Ma扬子板块同时向西俯冲于思茅-印支地块之下(Zi et al., 2012; Faure et al., 2014; Wang et al., 2016)。

虽然对印支地块的研究取得很大的进展,但我们对印支地块的古特提斯构造演化特征仍然存在很多不明之处。例如,印支地块与思茅-昌都地块是否是一个板块的问题不仅是特提斯构造演化中的一个问题,它同样对确定印支地块的新生代构造变形方式有重大意义。如果古特提斯时期印支地块与思茅-昌都地块是一体的(Faure et al., 2014; Wang et al., 2016王超等,2016),则其现今的形状呈哑铃形(图 1)。这意味着新生代昌都-思茅-印支地块经历了由于东构造结向东挤入而发生的塑性变形,而所谓的印支地块的刚性逃逸(Tapponnier et al., 1982; Leloup et al., 1995)是不存在的。由于老挝地处热带地区,植被发育,露头出露较少,且风化严重,加上政治上老挝闭关锁国,造成人们对印支地块内部的地质构造认识十分贫乏。近年来,受老挝地质部门邀请,我们对老挝北部川圹高原进行了系统的地质工作,对印支地块的古特提斯演化有了深入的了解。以下展示的是我们在丰沙湾镇南侧的Nuna花岗岩体所取得的年代学和地球化学数据,我们试图通过这些年代学地球化学数据揭示印支地块在古特提斯时期的构造演化特征。

图 1 印支地块及其相邻地块构造框架略图 Fig. 1 Simplified map showing tectonic framework of Indochina plate and its adjacent plates
2 地质背景

Nuna花岗岩体位于老挝川圹高原丰沙湾镇南10km处,在地表出露面积大于300km2。岩体处于印支地块核心地带,地质位置介于北西走向的Song Ma缝合带、Truong Son Belt(长山构造带)和北东走向的Nan-Uttaradit缝合带之间(图 2),北部是活动的奠边府断裂,一些研究者认为奠边府活动断裂是鲜水河断裂系的最南端(Wang et al., 1998; Lin et al., 2009)。川圹高原出露的地层主要为晚古生代海相碎屑岩和火山碎屑岩,地层弱变形,褶皱轴向近南北向(DGM, 1991)。酸性侵入岩在川圹高原广泛发育,与古生代地层地呈侵入接触关系。在川圹高原东侧的长山(Truong Son)构造带内,发育大量与扬子板块向西俯冲于印支地块之下有关的Ⅰ型花岗岩,其年龄介于256~234Ma之间(Wang et al., 2016)。川圹高原南缘是万象中生代盆地和泰国呵叻中生代盆地,以含丰富的钾矿资源闻名于世。碎屑锆石年龄研究表明(Wang et al., 2014)呵叻盆地的物源区与思茅中生代盆地的物源区相同,可能是秦岭构造带。

图 2 研究区地质略图(据DGM, 1991) Fig. 2 Geological sketch map of Nuna area (after DGM, 1991)
3 岩石矿物特征及实验流程 3.1 样品岩石学特征

Nuna岩体采集的花岗岩样品均为中粗粒黑云母二长花岗岩,中粗粒花岗结构,块状构造。石英含量约30%,斜长石含量约15%,碱性长石含量约40%,主要为微斜长石、微斜条纹长石、条纹长石,可见格子状晶体结构,表面绢云母化。黑云母含量约10%,部分发生绿泥石化。副矿物含量约5%,主要为磷灰石,多出现在斜长石、钾长石中,其次为锆石、磷灰石等(图 3)。

图 3 Nuna花岗岩镜下特征 Qtz-石英; Pl-斜长石; Kfs-钾长石; Bt-黑云母 Fig. 3 Microscopic characteristics of the Nuna granites Qtz-quartz; Pl-plagioclase; Kfs-potash Feldspar; Bt-biotite
3.2 锆石U-Pb年龄测试

锆石的分选采用重液和磁选方法在河北省地质队实验室完成。运用阴极发光图像来观测锆石颗粒的内部结构并选取合适的点位用以分析研究。U、Th、Pb的测定在中国科学院青藏高原研究所LA-ICP-MS进行,详细分析方法见Li et al. (2009)。锆石标样与锆石样品以1:3比例交替测定。U-Th-Pb同位素比值用标准锆石Plésovice (337Ma, Sláma et al., 2008)校正获得,以标准样品Qinghu (159.5 Ma, Li et al., 2009)作为未知样监测数据的精确度。同位素比值及年龄误差均为1σ。数据结果处理采用ISOPLOT软件(Ludwig, 2003)。

3.3 主微量元素测试

我们对9个新鲜样品进行了主量、稀土微量元素含量测定。全岩的主量含量分析均在中国地质大学(北京)科学研究院地学实验中心完成,采用Leeman公司Prodigy型全谱直读型发射光谱仪(ICP-AES)测定,分析精度优于5%。除TiO2(~1.5%)和P2O5(~2.0%)外,其他元素的测量误差小于1%。前处理使用的硼酸压片法,测量内容包括SiO2、Al2O3、K2O、CaO、Na2O、MgO、Fe2O3、P2O5、TiO2、MnO十个主量元素含量测量。稀土微量测试的样品前处理是在北京大学样品前处理实验室完成,并送至中国科学院青藏高原所环境变化与地表过程重点实验室电感耦合等离子体质谱仪(X-Series)对样品进行稀土微量元素分析,采用国家标准物质及美国地调局标准物质作为质量监控样,绝大部分元素测量值与标准参考值的相对偏差都10%以内。测量内容包括15个微量元素(Rb、Sr、Y、Zr、Nb、Sn、Cs、Ba、Hf、Ta、Tl、Pb、Bi、Th、U)以及14个稀土元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)含量的测量。

3.4 Nd同位素分析

Sm-Nd的化学分离纯化和同位素比值测量在中国科学技术大学壳幔物质与环境重点实验室完成。Sm-Nd同位素的分离纯化在装有1.7mL Teflon粉末的石英交换柱中完成。同位素比值的测试在MAT-262热电离质谱计完成,Sm-Nd同位素比值测定采用Re金属带,测量得到的同位素比值采用146Nd/144Nd=0.7219进行质量分馏校正。重复分析标准溶液NBS 987和La Jolla,得到143Nd/144Nd值0.511869±0.000006。具体的化学分析流程和同位素比值测定流程可以参见Chen et al.(2000, 2007)。

4 实验数据及分析结果 4.1 锆石U-Pb年龄

样品Laos-9、Laos-11和Laos-15来自Nuna岩体,锆石呈80~120μm的无色透明的短柱状,CL图像显示锆石一般具有发光的核部(低U)以及晶形较好的岩浆岩振荡环带(图 4a-c)。测试结果显示3个样品的锆石年龄数据基本一致(表 1),锆石206Pb/238U的加权平均年龄分别为258.7±1.9Ma(MWSD=2.3, n=24)(图 4a)、259.0±1.7Ma年龄(MWSD=1.6, n=19)(图 4b)、251.0±0.9Ma年龄(MWSD=0.94, n=21)(图 4c)。3个样品的锆石Th/U比值范围分别为0.44~1.27、0.50~1.27、0.45~1.55(表 1),均指示典型岩浆成因。由于这些数据主要来自锆石边部环带部位,251.0~259.0Ma代表了该岩体的侵位时间。

图 4 Nuna花岗岩锆石U-Pb谐和曲线 Fig. 4 Zircon U-Pb concordia curves of the Nuna granites

表 1 Nuna花岗岩锆石U-Pb数据 Table 1 U-Pb isotopic compositions of the Nuna granites
4.2 全岩主量、稀土微量元素特征

对9块来自Nuna岩体的样品进行了全岩主量、稀土微量元素分析,分析结果见表 2。主量元素表明所有样品均表现为高硅、富碱、贫钙和弱过铝质的特征。Nuna岩体SiO2含量比较集中,百分含量在69.36%~77.33%之间,平均含量71.94%。Na2O+K2O的含量在8.8%~9.7%之间,且K2O的含量高于Na2O含量,K2O/Na2O比值在0.73~1.64之间,岩体K2O/Na2O平均比值为1.26。在TAS图解上(图 5),所有样品均落在花岗岩的区域,与薄片鉴定结果相符。在SiO2-K2O投点图上, 7个样品落在钾玄岩范围,2个样品落在高钾钙碱性系列(图 6a)。样品的CaO含量介于0.2%~0.73%,岩体CaO平均含量0.38%。9个样品的Al2O3的含量在12.30%~16.32%之间,其中,6个样品的铝饱和指数(A/CNK)介于1.03~1.29,属于弱过铝质-强过铝质,另外3个介于0.94~0.99之间,属于准铝质(图 6b)。岩体铝平均含量13.8%,铝饱和指数(A/CNK)平均为1.06,岩体总体上为弱过铝质;里特曼指数在2.41~3.29(<3.3);岩石中Fe2O3含量较高,岩体平均含量在3.23%,而MgO含量极低,平均含量0.11%。FeOT/MgO比值为16.2~121,平均值40.7。

表 2 Nuna岩体岩石主化学组成(wt%)、微量元素含量(×10-6) Table 2 Major elements composition (wt%) and trace elements abundances (×10-6) of the Nuna granites

图 5 Nuna花岗岩TAS图解(据Le Maitre et al., 1989) Fig. 5 TAS diagram for the Nuna granites (after Le Maitre et al., 1989)

图 6 Nuna岩体SiO2-K2O图解(a, 实线据Peccerillo and Taylor, 1976; 虚线据Middlemost, 1985)和A/NK-A/CNK图解(b, 据Mania and Piccoli, 1989) Fig. 6 SiO2 vs. K2O diagram (a, solid line after Peccerillo and Taylor, 1976; dash line after Middlemost, 1985) and molar Al/(K+Na) vs. Al/(Ca+Na+K) diagram (b, after Mania and Piccoli, 1989) of the Nuna granites

9个Nuna花岗岩样品的稀土元素(REE)总量较高, 为457×10-6~1027×10-6,岩体平均稀土含量为542×10-6(表 2)。在球粒陨石标准化稀土元素配分曲线上(图 7a), 轻稀土元素(LREE)相对富集, 重稀土元素(HREE)相对亏损, (La/Yb)N为6.16~12.8, Eu具有较大的负异常, Eu*/Eu=0.04~0.23,平均值为0.15。此配分模式图总体呈右倾的海鸥型。Nuna花岗岩的微量元素在原始地幔标准化蛛网图(图 7b)上显示大离子亲石元素(LILE) Rb、Th、U、K、Pb明显富集,而Ba、Sr明显亏损;高场强元素(HFSE) Nb、Ta、Ti亏损明显, 但Zr、Hf相对富集。

图 7 Nuna花岗岩体球粒陨石标准化稀土元素配分曲线(a, 标准化值据Boynton,1984)和原始地幔标准化微量元素蛛网图(b, 标准化值据Sun and McDonough,1989) 长山构造带Ⅰ型花岗岩数据引自Wang et al. (2016) Fig. 7 Chonrdite-normalized REE patterns (a, normalized values after Boynton, 1984) and primitive mantle-normalized trace element spider diagram (b, normalized values after Sun and McDonough, 1989) for Nuna granites The data of Truong Son Ⅰ-type granites is from Wang et al. (2016)
4.3 全岩Sr-Nd同位素特征

6个样品进行了全岩Sm-Nd同位素分析,分析数据如表 3所示。147Sm/144Nd值范围分布于0.102~0.118之间,143Nd/144Nd值范围为0.512355~0.512398,εNd(t)值集中于-2.4~-2.1之间。经计算得,6个样品的Nd二阶段模式年龄tDM2较为均一,分布于1197~1224Ma,计算方法及参数见Keto and Jacobsen (1987)

表 3 Nuna岩体Nd同位素分析结果 Table 3 Nd isotopic composition of the Nuna granites
5 讨论 5.1 花岗岩岩石类型

花岗岩的分类及其成因一直是岩浆岩石学的一个研究热点,通常认为,不同类型的花岗岩常常被赋予不同的构造环境(Pitcher, 1997; Barbarin, 1999),如Ⅰ型花岗岩对应于俯冲、S型花岗岩对应于碰撞和A型花岗岩对应于伸展的认识,因此花岗岩的岩石地球化学特征成为构造研究的一种重要手段。花岗岩通常被分为Ⅰ型、S型、M型和A型,前三种主要根据其源岩性质划分,而A型花岗岩的是根据地化特征是否富碱来区别的,形成在低压高温条件下,对源岩类型没有特别的要求。A型花岗岩特征首先是富碱,地化特征常常表现为富SiO2、K2O和FeOT,贫Al2O3、MgO、Sr、Ba和Eu,REE分布具明显的负Eu异常(张旗等,2012)。如前节Nuna花岗岩地球化学所述,Nuna花岗岩体高硅,SiO2含量较高,平均含量71.94%;富碱,Na2O+K2O平均含量9.26%; FeOT含量较高,平均含量2.91%;而MgO含量极低,平均值只有0.11%,FeOT/MgO比值为16.2~121,平均值40.7,高于全球典型的Ⅰ型(2.27)、S型(2.38)和M型(2.37)(Whalen et al., 1987),与A型类似。Al2O3含量13.84%,接近壳源平均值,在球粒陨石标准化稀土曲线配分模式图和在原始地幔标准化蛛网图上,Sr、Ba、Eu亏损异常明显,其Eu负异常程度(Eu*/Eu的平均值为0.15)明显强于邻区的长山构造带Ⅰ型花岗岩(Eu*/Eu的平均值为0.51)(图 7a),Sr、Ba亏损程度也明显强于长山构造带Ⅰ型花岗岩(图 7b),同时Nuna岩体呈海鸥式的稀土配分模式曲线也指示其A型花岗岩的地球化学特征,以上均表明Nuna花岗岩是典型的A型花岗岩。

Nuna岩体的A型花岗岩特征在投点图上同样表现明显,Nuna花岗岩具有较高的FeOT/MgO,较高的Zr+Nb+Ce+Y含量,在Whalen et al. (1987)的(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)和(FeOT/MgO)-(Zr+Nb+Ce+Y)经典A型判别图解(图 8ab)中,9个样品均落在A型花岗岩区域,与Wang et al. (2016)所报道的长山构造带Ⅰ型花岗岩的范围截然不同。然而,在FeOT/(FeOT+MgO)-SiO2判别图(图 8c)中,Nuna花岗岩样品均落入A型花岗岩范围,与长山构造带Ⅰ型花岗岩范围有一定的重合,但是Nuna A型花岗岩较高的FeOT/MgO值,其在判别图中范围明显高于长山构造带Ⅰ型花岗岩的范围。由于分类标准不同,A型花岗岩既可以具有Ⅰ型花岗岩地化特征,也可以具有S型花岗岩的某些特征(张旗, 2013)。就本次研究而言,A型花岗岩的地化特征与Ⅰ型花岗岩有类似之处,如在(Na2O+K2O-CaO)-SiO2投点图中,9个花岗岩样品均投在Ⅰ型与A型花岗岩的重叠区域(图 8d),而落在S型花岗岩区域之外。这表明Nuna A型花岗岩与相邻长山构造带同时期大范围Ⅰ型花岗岩(Liu et al., 2012; Wang et al., 2016)可能具有相似的岩浆源区或构造环境。

图 8 Nuna花岗岩成因类型判别图 Fig. 8 Plots of Nuna granites in diagrams for division of A, I and S granites (a) (K2O+Na2O)/CaO vs. (Zr+Nb+Ce+Y) diagram; (b) FeOT/MgO vs. (Zr+Nb+Ce+Y) diagram; (c) FeOT/(FeOT+ MgO) vs. SiO2 diagram; (d) (Na2O+K2O-CaO) vs. SiO2 diagram (a, b, after Whalen et al., 1987; c, d, after Frost et al., 2001)

A型花岗岩形成通常需要高温的条件(张旗等,2012),而Nuna岩体形成温度满足A型花岗岩形成所必备的温度条件。Nuna岩体九个岩石样品锆石饱和温度计算结果显示所有样品的形成温度在835~974℃之间(见表 2)(其计算公式见Watson and Harrison, 1983),平均值为927℃,明显高于一般酸性岩浆的温度。

5.2 成因及岩浆源区特征

前人对于A型花岗岩的成因提出了许多模式:(1)地幔玄武质岩浆高度结晶分异(Beyth et al., 1994; Han et al., 1997; Mushkin et al., 2003; Turner et al., 1992);(2)各种源岩的部分熔融,如麻粒岩相岩石(Clemens et al., 1986; Collins et al., 1982; King et al., 1997; Whalen et al., 1987)、英云闪长岩-花岗闪长岩(Creaser et al., 1991)和紫苏花岗岩(Landenberger and Collins, 1996)、新生玄武质地壳(Wu et al., 2002)、中下地壳中的岛弧岩浆岩(唐功建等,2008);(3)幔源物质和壳源物质混合(Konopelko et al., 2007; Mingram et al., 2000; Yang et al., 2006);(4)上地壳钙碱性岩石低压熔融(Patiño Douce,1997)。首先,研究区并未发现与Nuna花岗岩体密切共生的玄武质岩石,因此我们认为其由地幔玄武质岩浆高度结晶分异的可能性较小。此外,来自Nuna岩体的6个样品的εNd(t)均为负值,且集中在-2.4~-2.1之间(表 3),在SiO2-εNd(t)图解中(图 9a),εNd(t)值随着SiO2的变化基本保持不变,表明岩浆在上升侵位过程中,并没有遭受中上地壳明显的同化混染作用,Nd二阶段模式年龄值(tDM2)在1.20~1.24Ga之间,表明源区来自古老地壳,所以排除了Nuna花岗岩体来自上地壳钙碱性岩石低压熔融的可能性。

图 9 Nuna花岗岩εNd(t)-SiO2图(a)和εNd(t)-Age图(b) 印支地块花岗岩类数据引自Liew and McCulloch (1985) and Nagy et al. (2000); Nd模式演化线据Lan et al. (2003) Fig. 9 εNd(t) vs. SiO2 diagram (a) and εNd(t) vs. Age diagram (b) for the Nuna granites Data of Indochina granitoids are taken from Liew and McCulloch (1985) and Nagy et al. (2000); the Nd isotopic evolution diagram is after Lan et al. (2003)

因此Nuna A型花岗岩极有可能来自于各种源岩的部分熔融或者幔源物质与壳源物质的混合。而且岩石地化特征显示大离子亲石元素的富集和Nb、Ta等高场强元素的亏损,也表明形成这些岩体的花岗岩的岩浆主要来自地壳。然而Nuna岩体平均Nb/Ta值(16.5)高于地壳平均Nb/Ta值(11.4)(Taylor and Mc Lennan, 1985),而与原始地幔的平均Nb/Ta值(17.8)(McDonough and Sun, 1995)又较为接近,可能表明Nuna岩体岩浆形成过程中可能有部分幔源物质的参与。

此外,Lan et al. (2003)根据岩石Nd同位素组成认为印支地块主要有两次的地壳增生事件(图 9b),第一次约在2.4~1.8Ga(图 9b实线部分),第二次主要2.1~1.2Ga(图 9b虚线部分)(平均1.5Ga, 并且主要集中于1.45~1.35Ga(Nam et al., 2001; Liew and McCulloch, 1985)),而Nuna岩体其二阶段Nd模式年龄集中在1.2Ga,应属于第二次陆壳增生事件,但是其低于该次增生地壳的平均Nd模式年龄,进一步暗示岩浆源区有少量幔源物质的加入。Nuna岩体与印支地块花岗岩类具有相似的Nd同位素演化历史,表明Nuna岩体与印支地块花岗岩类可能具有相似的物源区。

地幔物质参与花岗质熔体的岩浆作用可以通过两种方式,一种是岩浆混合,即幔源岩浆和壳源岩浆的混合作用;另一种是幔源岩浆底侵形成地壳物质与古老地壳作为混合源区的部分熔融。通过对Nuna岩体的野外踏勘,在该岩体中并未发现暗色微粒包体,同时结合岩体中极低的MgO含量(平均值0.11%),可以排除中生代壳幔岩浆混合作用的机制。因此,我们认为Nuna岩体的岩浆源区以中元古代古老地壳部分熔融为主,同时混合了少量的幔源岩浆底侵形成的地壳物质,这也与Lan et al. (2000)提到在240Ma左右,研究区有过幔源物质加入地壳的事件相吻合。

Wang et al.(2016)报道长山构造带内Ⅰ型花岗岩的Hf二阶段模式年龄主要集中于1.7~1.5Ga,以及Lan et al. (2000)所报道的奠边府花岗岩的Nd模式年龄(1.53~1.37Ga),表明其源区均属于印支地块第二次陆壳增生(主要峰值期为1.45~1.35Ga),但是二者的模式年龄明显高于Nuna A型花岗岩体的Nd二阶段模式年龄(~1.2Ga),这可能是由于前两者源岩为古老地壳的熔融而没有新生幔源物质加入或者幔源物质贡献量更少的原因。

5.3 构造环境

Nuna A型花岗岩在Nb-Y、Rb-(Yb+Ta)、Rb-(Y+Nb)以及DF2-DF1构造判别图(图 10a-d)上均落入板内花岗岩的区域,表明其形成环境处于地壳伸展减薄的构造背景。与A型花岗岩是在低压下熔融的花岗岩类, 大多产于地壳伸展减薄的构造背景的观点(张旗,2013)相符,而与Wang et al. (2016)所报道的同时期(256~234Ma)大量长山构造带Ⅰ型花岗岩的投点范围存在差异,后者投点主要落入岛弧环境(图 10a-d),这也充分说明了二者形成构造环境的不同。A型花岗岩地化特征表现为富硅、富碱、贫水的花岗岩类, 地球化学上以贫Al、Sr、Eu、Ba、Ti、P,对源岩类型没有特定的要求,同样与本文中Nuna岩体的地球化学特征相符。

图 10 Nuna花岗岩的构造环境判别图解(a-c, 据Pearce et al., 1984; d, 据Verma et al., 2012) VAG-岛弧型花岗岩;ORG-洋脊花岗岩;WPG-板内花岗岩;syn-COLG-同碰撞花岗岩;CA-陆缘弧环境;IA-岛弧环境;CR-板内环境 Fig. 10 Tectonic discrimination diagrams of Nuna granites (a-c, after Pearce et al., 1984; d, after Verma et al., 2012) VAG-volcanic-arc granites; ORG-ocean-ridge granites; WPG-within-plate granites; syn-COLG-syn-collision granites; CA-continental arc; IA-Island arc; CR-continental rift

在满足相关样品落入(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)和(FeOT/MgO)-(Zr+Nb+Ce+Y)判别图上A型花岗岩区域的前提下,Eby(1990, 1992)利用Y-Nb-Ce三角图解把满足上述前提的A型花岗岩划分为A1和A2两种类型花岗岩,不同类型花岗岩指示不同的构造环境。其中,A1型花岗岩代表了一种非造山环境(anorogenic),在大陆裂谷时期或板内岩浆作用(如热点、地幔柱的活动)侵入;A2型形成的构造环境范围比较广泛,主要是后碰撞伸展环境(post-orogenic),新近的研究成果表明A2型花岗岩也可以形成于岛弧环境,例如板片俯冲引起的岩石圈伸展环境(蒋少涌等,2008胡培远等,2016)。在Y-Nb-Ce(图 11a)以及Ce/Nb-Y/Nb(图 11b)图解中,Nuna岩体九个花岗岩样品投点大多落在A2型花岗岩区。

图 11 Nuna花岗岩A1、A2类型判别图解(据Eby, 1992) Fig. 11 Plots of the Nuna granites in Y-Ce-Nb (a) diagram and Ce/Nb vs. Y/Nb (b) diagram for division of A1-and A2-type granites (after Eby, 1992)

由于A2型花岗岩形成的构造环境范围比较广泛,所以要确定其形成的构造环境必须与区域地质背景相结合。已有的证据表明,与Nuna岩体东侧的长山构造带(Truong Son belt)发育大量与扬子板块向西俯冲于印支地块有关的Ⅰ型花岗岩、岛弧型火山岩,Liu et al. (2012)报道了长山岛弧型花岗岩类以及Song Ca火山岩的形成年龄,分别为280~270Ma和250~245Ma,并且认为二者均为Song Ma洋向西南俯冲于印支地块之下的产物。Wang et al. (2016)通过对长山构造带内大量Ⅰ型花岗岩测年,得出该区域Ⅰ型花岗岩256~234Ma的年龄区间,与本文中的A型花岗岩259~251Ma的年龄基本保持一致,并且认为该阶段Ⅰ型花岗岩形成于华南板块俯冲于印支板块的岛弧环境,这些资料均表明Nuna A型花岗岩形成于古特提斯体系开始闭合的大背景,即Song Ma洋壳俯冲于印支地块之下的构造环境,而A型花岗岩侵入印支地块的事实表明挤压的大背景并没有影响到印支地块内部的伸展环境,A型花岗岩生成环境是由于板片回撤侵入于板片弧后伸展环境。由于越来越多的证据表明印支地块和思茅-昌都-北羌塘为一个同一的板块(Metcalfe, 2013; Faure et al., 2014; Wang et al., 2016; 王超等,2016),A型花岗岩在老挝地区和北羌塘地区(胡培远等,2016)同时出现表明250Ma之前印支-思茅-北羌塘地块内部的伸展背景,这也暗示250Ma左右时古特提斯洋的消减萎缩环境。能够佐证A型花岗岩代表的伸展环境的地质证据还有在印支地区发育大量同时期的火山碎屑岩。

前节通过地球化学特征以及亏损地幔二阶段模式年龄的对比,推断长山构造带Ⅰ型花岗岩可能与Nuna A型花岗岩具有相似的源区,二者时代相近,但是形成的构造环境有着显著的区别,长山构造带Ⅰ型花岗岩为岛弧环境,而Nuna A型花岗岩为弧后伸展环境,我们可以推断长山构造带Ⅰ型花岗岩形成于俯冲环境下加厚古老下地壳的熔融,与此同时,Nuna A型花岗岩形成于弧后伸展减薄的古老下地壳的熔融,而减薄的地壳更有利于幔源物质的加入,这也与前节提到的“长山构造带Ⅰ型花岗岩幔源物质的贡献比例小于Nuna A型花岗岩”的观点相符。

因此,我们可以认为Nuna A型花岗岩形成于华南地块俯冲于印支地块之下由于俯冲板片回撤引起的弧后伸展环境,弧后伸展导致岩石圈变薄,软流圈上涌造成的地热异常引发岩石圈下地壳(中元古代古老地壳与少量幔源底侵形成的新生地壳)部分熔融(图 12),形成Nuna A型花岗岩体。

图 12 Nuna花岗岩的形成构造演化模式图 Fig. 12 Tectonic evolution models showing the petrogenesis of Nuna granites
6 结论

综合上述分析,我们得出以下结论:

(1) Nuna花岗岩体的锆石LA-ICP-MS U-Pb年龄为258.7±1.9Ma、259.0±1.7Ma和251.0±1.9Ma,表明花岗岩体侵位时间为晚二叠-早三叠世;

(2) Nuna岩体富SiO2、K2O,以及高的FeOT/MgO值、Zr+Nb+Ce+Y值,显著的Eu负异常以及Sr、Ba的明显亏损,表明Nuna岩体属于典型的A型花岗岩;

(3) 综合Nuna岩体主微量元素特征以及Nd同位素组成,认为Nuna岩体主要源于中元古代古老地壳和少量幔源底侵形成的新生地壳混合源区的部分熔融;

(4) 结合研究区地质背景以及Nuna岩体的地球化学特征,我们推测Nuna岩体形成于华南板块俯冲于印支板块背景之下的弧后伸展环境。

致谢 测年工作得到中国科学院青藏高原研究所岳雅慧老师的指导和帮助;Nd同位素分析测试上得到中国科学技术大学地球与空间科学学院陈福坤、肖平老师的帮助;王超、莫亚思同志一同参加了老挝野外地质调查和采样工作;审稿专家钱青、唐功建对文稿提出了大量建设性修改意见,使本文得以改进;在此对上述人员表示一致感谢。
参考文献
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626. DOI:10.1016/S0024-4937(98)00085-1
Barr SM and MacDonald AS. 1987. Nan River suture zone, northern Thailand. Geology, 15(10): 907-910. DOI:10.1130/0091-7613(1987)15<907:NRSZNT>2.0.CO;2
Barr SM, MacDonald AS, Dunning GR, Ounchanum P and Yaowanoiyothin W. 2000. Petrochemistry, U-Pb (zircon) age, and palaeotectonic setting of the Lampang volcanic belt, northern Thailand. Journal of the Geological Society, 157(3): 553-563. DOI:10.1144/jgs.157.3.553
Beyth M, Stern RJ, Altherr R and Kröner A. 1994. The Late Precambrian Timna igneous complex, Southern Israel:Evidence for Comagmatic-type sanukitoid monzodiorite and alkali granite magma. Lithos, 31(3-4): 103-124. DOI:10.1016/0024-4937(94)90003-5
Boynton WV. 1984. Cosmochemistry of the rare earth elements:Meteorite studies. In:Henderson P (ed.). Rare Earth Element Geochemistry:Developments in Geochemistry 2. Amsterdam: Elsevier: 63-114.
Carter A, Roques D, Bristow C and Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia:Significance of Triassic thermotectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211-214. DOI:10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2
Chen FK, Hegner E and Todt W. 2000. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany:Evidence for a Cambrian magmatic arc. International Journal of Earth Sciences, 88(4): 791-802. DOI:10.1007/s005310050306
Chen FK, Li XH and Wang XL, et al. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179-1194. DOI:10.1007/s00531-006-0146-y
Clemens JD, Holloway JR and White AJR. 1986. Origin of an A-type granite:Experimental constraints. American Mineralogist, 71(3-4): 317-324.
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. DOI:10.1007/BF00374895
Creaser RA, Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology, 19(2): 163-166. DOI:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
Department of Geology and Mining, Lao P.D.R. (DGM). 1991. Geological and Mineral Occurrence Map. 1︰1000000 Scale. British Geological Survey and Department of Geology and Mines
Eby GN. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115-134. DOI:10.1016/0024-4937(90)90043-Z
Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology, 20(7): 641-644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Faure M, Lepvrier C, van Nguyen V, van Vu T, Lin W and Chen ZC. 2014. The South China block-Indochina collision:Where, when, and how?. Journal of Asian Earth Sciences, 79: 260-274. DOI:10.1016/j.jseaes.2013.09.022
Ferrari OM, Hochard C and Stampfli GM. 2008. An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451(1-4): 346-365. DOI:10.1016/j.tecto.2007.11.065
Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048. DOI:10.1093/petrology/42.11.2033
Han BF, Wang SG, Jahn BM, Hong DW, Kagami H and Sun YL. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135-159. DOI:10.1016/S0009-2541(97)00003-X
Hu PY, Li C, Xie CW, Xie CM, Wang M and Li J. 2016. A back-arc extensional environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau:Evidences from A-type granites. Acta Petrologica Sinica, 32(4): 1219-1231.
Jian P, Liu DY and Sun XM. 2008. SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite, southwestern China:Geochronological constraints for the evolution of Paleo-Tethys. Journal of Asian Earth Sciences, 32(5-6): 371-384. DOI:10.1016/j.jseaes.2007.11.006
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅱ):Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767-784. DOI:10.1016/j.lithos.2009.04.006
Jiang SY, Zhao KD, Jiang YH and Dai BZ. 2008. Characteristics and Genesis of Mesozoic A-type granites and associated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509.
Keto LS and Jacobsen SB. 1987. Nd and Sr isotopic variations of Early Paleozoic oceans. Earth and Planetary Science Letters, 84: 27-41. DOI:10.1016/0012-821X(87)90173-7
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. DOI:10.1093/petroj/38.3.371
Konopelko D, Biske G, Seltmann R, Eklund O and Belyatsky B. 2007. Hercynian post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 97(1-2): 140-160. DOI:10.1016/j.lithos.2006.12.005
Lan CY, Chung SL, Shen JJS, Lo CH, Wang PL, Hoa TT, Thanh HH and Mertzman SA. 2000. Geochemical and Sr-Nd isotopic characteristics of granitic rocks from northern Vietnam. Journal of Asian Earth Sciences, 18(3): 267-280. DOI:10.1016/S1367-9120(99)00063-2
Lan CY, Chung SL and Van Long T, et al. 2003. Geochemical and Sr-Nd isotopic constraints from the Kontum massif, central Vietnam on the crustal evolution of the Indochina block. Precambrian Research, 122(1-4): 7-27. DOI:10.1016/S0301-9268(02)00205-X
Landenberger B and Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37(1): 145-170. DOI:10.1093/petrology/37.1.145
Leloup PH, Lacassin R, Tapponnier P, Schärer U, Zhong DL, Lui XH, Zhang LS, Ji SC and Trinh PT. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 3-84. DOI:10.1016/0040-1951(95)00070-4
Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR and Zanettin B. 1989. A Classification of Igneous Rocks and Glossary of Terms:Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Oxford:Blackwell Scientific
Lepvrier C, Maluski H, van Vuong N, Roques D, Axente V and Rangin C. 1997. Indochina NW-trending shear zones within the Truong Son belt (Vietnam) 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 283(1-4): 105-127. DOI:10.1016/S0040-1951(97)00151-0
Lepvrier C, Maluski H, van Tich V, Leyreloup A, Truong Thi P and van Vuong N. 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif):Implications for the geodynamic evolution of Indochina. Tectonophysics, 393(1-4): 87-118. DOI:10.1016/j.tecto.2004.07.030
Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010.
Liew TC and McCulloch MT. 1985. Genesis of granitoid batholiths of Peninsular Malaysia and implications for models of crustal evolution:Evidence from a Nd-Sr isotopic and U-Pb zircon study. Geochimica et Cosmochimica Acta, 49(2): 587-600. DOI:10.1016/0016-7037(85)90050-X
Lin TH, Lo CH, Chung SL, Wang PL, Yeh MW, Lee TY, Lan CY, van Vuong N and Anh TT. 2009. Jurassic dextral movement along the Dien Bien Phu Fault, NW Vietnam:Constraints from 40Ar/39Ar geochronology. The Journal of Geology, 117(2): 192-199. DOI:10.1086/595965
Liu JL, Tran MD, Tang Y, Nguyen QL, Tran TH, Wu WB, Chen JF, Zhang ZC and Zhao ZD. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam:Geochronology, geochemistry and tectonic implications. Gondwana Research, 22(2): 628-644. DOI:10.1016/j.gr.2011.10.011
Ludwig KR. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Special Publication No. 4a. Berkeley, CA:Berkeley Geochronology Center
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
McDonough WF and Sun SS. 1995. The composition of the earth. Chemical Geology, 120(3-4): 223-253. DOI:10.1016/0009-2541(94)00140-4
Metcalfe I. 1996. Pre-Cretaceous evolution of SE Asian terranes. In:Hall R and Blundell D (eds.). Tectonic evolution of Southeast Asia. Geological Society, London, Special Publications, 106: 97-122. DOI:10.1144/GSL.SP.1996.106.01.09
Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551-566. DOI:10.1016/S1367-9120(02)00022-6
Metcalfe I. 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. DOI:10.1016/j.jseaes.2012.12.020
Middlemost EAK. 1985. Magmas and Magmatic Rocks. London: Longman: 1-266.
Mingram B, Trumbull RB, Littman S and Gerstenberger H. 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia:Evidence for mixing of crust and mantle-derived components. Lithos, 54(1-2): 1-22. DOI:10.1016/S0024-4937(00)00033-5
Mushkin A, Navon O, Halicz L, Hartmann G and Stein M. 2003. The Petrogenesis of A-type magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. DOI:10.1093/petrology/44.5.815
Nagy EA, Schärer U and Minh NT. 2000. Oligo-Miocene granitic magmatism in central Vietnam and implications for continental deformation in Indochina. Terra Nova, 12(2): 67-76. DOI:10.1111/terra.2000.12.issue-2
Nam TN, Sano Y, Terada K, Toriumi M, Van Quynh P and Dung LT. 2001. First SHRIMP U-Pb Zircon dating of granulites from the Kontum massif (Vietnam) and tectonothermal implications. Journal of Asian Earth Sciences, 19(1-2): 77-84. DOI:10.1016/S1367-9120(00)00015-8
Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746. DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745
Pitcher WS. 1997. The Nature and Origin of Granite. 2nd Edition. London. Chapman & Hall, 386
Şengör AMC. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279(5714): 590-593. DOI:10.1038/279590a0
Şengör AMC. 1984. The Cimmeride Orogenic System and the Tectonics of Eurasia. Geological Society of America, Special Papers, 195: 1-74. DOI:10.1130/SPE195
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plesšovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35. DOI:10.1016/j.chemgeo.2007.11.005
Sone M and Metcalfe I. 2008. Parallel Tethyan sutures in mainland Southeast Asia:New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340(2-3): 166-179. DOI:10.1016/j.crte.2007.09.008
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Tang GJ, Chen HH, Wang Q, Zhao ZH, Wyman DA, Jiang ZQ and Jia XH. 2008. Geochronological age and tectonic background of the Dabate A-type granite pluton in the West Tianshan. Acta Petrologica Sinica, 24(5): 947-958.
Tapponnier P, Peltzer G, Le Dain AY, Armijo R and Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine. Geology, 10(12): 611-616. DOI:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell Scientific Publications: 1-312.
Turner SP, Foden JD and Morrison RS. 1992. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. DOI:10.1016/0024-4937(92)90029-X
Verma SK, Pandarinath K and Verma SP. 2012. Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54(3): 325-347. DOI:10.1080/00206814.2010.543784
Wang C, Wang SF and Mo YS. 2016. Zircon U-Pb age and Lu-Hf ratios constraint the basement of the Indochina block. Chinese Journal of Geology, 51(2): 576-593.
Wang E, Burchfiel BC, Royden LH, Chen L, Chen J, Li W and Chen Z. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geology Society of American Special Paper, 327: 1-108.
Wang LC, Liu CL, Gao X and Zhang H. 2014. Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau:Whole-rock geochemistry, U-Pb geochronology, and Hf isotopic constraints. Sedimentary Geology, 304: 44-58. DOI:10.1016/j.sedgeo.2014.02.003
Wang SF, Mo YS, Wang C and Ye PS. 2016. Paleotethyan evolution of the Indochina Block as deduced from granites in northern Laos. Gondwana Research, 38: 183-196. DOI:10.1016/j.gr.2015.11.011
Wang XF, Metcalfe I, Jian P, He LQ and Wang CS. 2000. The Jinshajiang-Ailaoshan Suture Zone, China:Tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences, 18(6): 675-690. DOI:10.1016/S1367-9120(00)00039-0
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304. DOI:10.1016/0012-821X(83)90211-X
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. DOI:10.1007/BF00402202
Wu FY, Sun DY, Li HM, Jahn BM and Wilde S. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173. DOI:10.1016/S0009-2541(02)00018-9
Yang JH, Wu FY, Chung SL, Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89-106. DOI:10.1016/j.lithos.2005.10.002
Zhang Q, Ran H and Li CD. 2012. A-type granite:What is the essence?. Acta Petrologica et Mineralogica, 31(4): 621-626.
Zhang Q. 2013. The criteria and discrimination for A-type granites:A reply to the question put forward by Wang Yang and some other persons for "A-type granite:what is the essence?. Acta Petrologica et Mineralogica, 32(2): 267-274.
Zi JW, Cawood PA, Fan WM, Tohver E, Wang YJ and McCuaig TC. 2012. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos, 140-141: 166-185. DOI:10.1016/j.lithos.2012.02.006
胡培远, 李才, 吴彦旺, 解超明, 王明, 李娇. 2016. 青藏高原古特提斯洋早石炭世弧后拉张:来自A型花岗岩的证据. 岩石学报, 32(4): 1219-1231.
蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509.
唐功建, 陈海红, 王强, 赵振华, Wyman DA, 姜子琦, 贾小辉. 2008. 西天山达巴特A型花岗岩的形成时代与构造背景. 岩石学报, 24(5): 947-958.
王超, 王世锋, 莫亚思. 2016. 锆石U-Pb年龄及Lu-Hf模式年龄对印支地块基底的限定. 地质科学, 51(2): 576-593. DOI:10.12017/dzkx.2016.018
张旗, 冉槔, 李承东. 2012. A型花岗岩的实质是什么?. 岩石矿物学杂志, 31(4): 621-626.
张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑. 岩石矿物学杂志, 32(2): 267-274.