岩石学报  2017, Vol. 33 Issue (11): 3411-3421   PDF    
矿浆型铁矿的氧同位素判别标志:以宁芜玢岩铁矿为例
李延河 , 段超 , 韩丹 , 刘锋 , 万德芳 , 王成玉     
国土资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037
摘要:自然界是否存在矿浆型铁矿以及如何判别矿浆型铁矿是地质学家争论探索了几十年的问题。大量地质现象和实验研究证实,中酸性岩浆在高氧逸度、富磷等挥发分和助熔剂的条件下,硅酸盐熔体与铁氧化物熔体之间可以发生液态不混熔,熔离出富铁氧化物熔体或富铁岩浆。但有些学者认为实验无法直接一次性熔离出高品位铁矿浆,因此不存在矿浆型铁矿。实际上,高品位富铁矿浆可能是经过多次熔离富集形成的,而非一次简单熔离完成;磁铁矿中钛含量偏低,可能与矿浆型铁矿遭受后期热液改造、钛大量丢失有关,最典型的例子莫过于智利拉科铁矿。长江中下游玢岩铁矿是我国重要铁矿资源类型,其中是否发育矿浆型铁矿也一直存在激烈争论。为了避免不必要的争议,本文将铁矿浆限定为由岩浆熔离形成的铁氧化物浓度>30%的富铁熔体,由铁矿浆演化形成的铁矿床称为矿浆型铁矿。根据宁芜成矿岩体中锆石的钛温度计确定了岩浆的温度,根据锆石的氧同位素组成及磁铁矿与锆石之间的氧同位素分馏方程,计算出岩浆温度下直接从熔体中熔离出来的磁铁矿的δ18OMt值为4.2‰。据此建立了宁芜玢岩铁矿中矿浆型铁矿的氧同位素判别标志,如果矿体中磁铁矿的δ18OMt≥4.0‰,则为矿浆型铁矿,否则为热液型或浆-液过渡型铁矿。判别结果表明,钟姑山矿田矿浆型和热液型矿体同时存在,梅山铁矿介于矿浆型-热液型之间,而凹山矿田铁矿则为热液型,与野外观测及前人研究结果一致。
关键词: 玢岩铁矿     铁矿浆     氧同位素     判别标志    
Oxygen isotopic discriminant marker of magmatic iron deposits:Ningwu porphyrite iron ore as an example
LI YanHe, DUAN Chao, HAN Dan, LIU Feng, WAN DeFang, WANG ChengYu     
MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The existence of magma-type iron ore in nature and its identification has been the subject of contentious debate among geologists since decades. Many geological phenomena and experimental studies have confirmed that acidic magma can facilitate immiscibility between a silicate melt and iron oxide melt, under high oxygen fugacity, phosphorus-rich, volatile, and flux conditions. However, some scientists believe that experiments cannot enable the direct melting of high-grade iron magma ore; hence, it is not possible to obtain the ore magma. Nevertheless, high-grade iron-rich magma ore may be formed by multiple melting and enrichment processes. The low content of titanium magnetite from the magma ore is subsequently emplaced by hydrothermal alteration, which leads to the migration of titanium, the most typical example of which is seen in the El Laco iron deposit in Chile. The porphyry iron deposit located in the Middle-Lower Yangtze River is an important iron ore resource in China. The confirmed existence of magma type ore is highly disputed. In this study, iron magma ore is defined as an iron rich melt formed by magma liquation whose concentration of iron oxide is greater than 30%. The iron deposit formed by the evolution of the iron-rich magma is called a magma iron deposit. Based on the magma crystallization temperature of intrusions in the Ningwu area obtained by a magmatic zircon titanium thermometer, oxygen isotopic compositions of zircon of metallogenic-associated intrusions, and the oxygen isotope fractionation equation between magnetite and zircon, the oxygen isotope of the magnetite formed by direct liquation in magmatic temperature has been calculated (δ18OMt=4.2‰). By using the oxygen isotope discrimination technique for magnetite, the value of δ18OMt for magnetite from the magma ore is determined to be more than 4.0‰, while that for the hydrothermal genesis magnetite is lower than 4.0‰. Thus, there are both magmatic as well as hydrothermal-type ores in the Gushan and Yangzhuang iron deposits. The Meishan deposit can be classified into a magmatic-hydrothermal deposit, while the Washan iron deposit is a hydrothermal deposit. These classifications are consistent with their geological characteristics.
Key words: Porphyry iron deposit     Magma ore     Oxygen isotope     Discriminant marker    
1 铁矿浆及矿浆型铁矿

虽然还存在争论,但在智利、瑞典Kiruna型铁矿,中国宁芜姑山、梅山玢岩型铁矿、新疆海相火山岩型铁矿、大冶等矽卡岩型铁矿中部分矿体为矿浆成因已得到很多学者的认可(Park, 1961; Frutos and Oyarzun, 1975; Nystrom and Henriquez, 1994; Henriquez et al., 2003; 宁芜研究项目编写小组, 1978; 宋学信等, 1981; 翟裕生等, 1992; Hou et al., 2010; 蒋宗胜等, 2012; 王跃等, 2014; Li et al., 2015; Zhou et al., 2015)。矿浆型铁矿与围岩接触关系截然,矿石粒度细,品位高,多呈块状产出,气孔状、杏仁状、角砾状和流动构造发育。矿石内部磁铁矿、钠长石等常发育与灰绿/辉长结构类似的共结结构(Li et al., 2015)。但深部岩浆液态不混熔形成的矿浆,因气体无法逸出,气孔状构造则不发育,正如火山岩气孔状构造发育,而侵入岩不发育一样,因此仅凭矿石的构造特征判别是否为矿浆型铁矿显然是不够的(李延河等, 2014)。

大量实验模拟证明,中酸性岩浆在高氧逸度、富挥发分和碱性组分、非硅酸盐阴离子(如F、Cl、CO3、PO4、BO3)大量存在条件下,硅酸盐岩浆和铁氧化物熔体可以发生液态不混熔,经熔离演化形成富铁矿浆(Veksler, 2004; Veksler et al., 2008)。Philpotts (1967)所做的闪长岩-磁铁矿-磷灰石体系的熔离实验证实了这一点。苏良赫(1984)所做的FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSiO6实验、袁家铮(1990)所做的方铁矿-磷灰石-透辉石-霞石四元体系实验和喻学惠(1984)所做的FeO-CaMgSi2O6-KMg3(AlSi3O10)F2实验,均证明了中-酸性岩浆在磷等挥发分的参与下可以熔离出铁矿浆。磷的参与是岩浆发生液态不混溶形成铁矿浆的重要因素,但不是唯一因素。碱金属阳离子K+、Na+和非硅酸盐阴离子F-、Cl-、CO32-等加入也是硅酸盐熔体发生不混熔的重要因素(Veksler, 2004; Veksler et al., 2008)。Snyder et al. (1993)实验证明在富铁玄武质岩浆体系氧逸度升高将引起铁氧化物大量提前形成。铁氧化物在硅酸盐液相线温度之上提前形成有利于铁氧化物熔体的形成(Naslund, 1983)。Veksler et al.(2007, 2008)采用高温原位离心熔离技术实验研究了玄武质岩浆和K2O-CaO-FeO-Al2O3-SiO2岩浆体系的液态不混熔,结果表明富铁-富硅熔体不仅可以通过分离结晶产生,也可以通过硅酸盐的液态不混熔形成,而且液态不混熔不是发生在传统观念认为的岩浆结晶的最后阶段,而是发生在岩浆演化的较早阶段,这为铁矿浆的形成提供了新的实验依据。火山岩中富铁熔融包裹体的发现进一步证实了上述实验结果(Philpotts, 1982; Sharygin et al., 2012; Tornos et al., 2016)。富铁岩浆熔体与膏盐层氧化障发生同化混染,熔体氧逸度大幅升高可能是形成铁矿浆的必要条件,NaCl、H2O等盐类物质和挥发份的大量加入是岩浆发生液态不混熔形成铁矿浆的重要因素(李延河等, 2014)。

关于矿浆型铁矿的争论主要集中在以下2个方面:(1)自然界观测到的矿浆型矿床品位普遍较高,但模拟实验无法直接一次性熔离出高品位铁矿浆(Hou et al., 2017);(2)部分矿浆型铁矿中磁铁矿的钛含量相对较低,与实验观测结果不完全一致。实际上,高品位富铁矿浆可能是经过多次熔离富集形成的,而非一次简单熔离形成;磁铁矿中钛含量偏低,可能与矿浆型铁矿遭受后期热液改造、钛大量丢失有关,最典型的例子莫过于智利拉科铁矿(Dare et al., 2015; Tornos et al., 2016),最近在湖北大冶矽卡岩铁矿中发现的分布于磁铁矿边部的细粒榍石就是后期热液将磁铁矿中钛活化迁移出来在磁铁矿周围重新沉淀形成的(Hu et al., 2015)。

为了避免不必要的争议,本文将铁矿浆限定为铁氧化物浓度>30%的富铁熔体,由铁矿浆演化形成的铁矿床称为矿浆型铁矿。富铁熔融包裹体是铁矿浆存在的重要证据(Philpotts, 1982; Sharygin et al., 2012; Tornos et al., 2016),但熔融包裹体的寻找、识别及测定难度大,成功的例子不多。铁矿浆中磁铁矿与成矿母岩浆或斑晶矿物处于氧同位素平衡状态,因此成矿岩体/斑晶矿物-磁铁矿之间的氧同位素分馏Δ18O成矿岩浆-磁铁矿或Δ18O锆石-磁铁矿,可作为矿浆型铁矿的重要判别标准。

2 玢岩铁矿的地质特征

长江中下游是我国著名的铁铜金多金属成矿带,发育一系列与中生代中酸性岩浆活动有关的大中型玢岩、矽卡岩、斑岩型Fe-Cu-Au-Mo-Pb-Zn等矿床(常印佛等, 1991; 翟裕生等, 1992; 董树文等, 2010; 周涛发等, 2008, 2010, 2016; Mao et al., 2011; Pirajno and Zhou, 2015; Xie et al., 2016)(图 1)。其中玢岩铁矿主要分布在侏罗纪-白垩纪陆相断陷火山沉积盆地之中,从西向东依次为怀宁、庐枞、滁州、繁昌、宁芜、溧水、溧阳盆地。宁芜和庐枞火山岩盆地是其典型代表,火山盆地规模大,铁矿最为发育。

图 1 长江中下游多金属成矿带与三叠纪岩相古地理及膏盐层分布(据王文斌等, 1994; 范洪源等, 1995; 毕仲其和丁保良, 1997; 侯增谦等, 2004略修改) Fig. 1 Map of Triassic lithofacies-paleogeography showing the distribution of anhydrock sequences and related mineral deposits in the Middle-Lower Yangtze area (modified after Wang et al., 1994; Fan et al., 1995; Bi and Ding, 1997; Hou et al., 2004)

宁芜火山盆地以方山-小丹山断裂,长江断裂带,芜湖断裂和南京-湖熟断裂为边界,从南京至芜湖呈NE-SW向展布,长约60km,宽约20km,总面积1200km2,中生代火山岩和玢岩铁矿床广泛发育。该盆地从下至上分为三个构造层:下部构造层由前火山岩系的地层组成,构成盆地的“基底”,中部构造层由火山岩系组成,上部构造层由火山岩系之后的地层组成(宁芜研究项目编写小组, 1978)。宁芜盆地基底地层主要有三叠纪上青龙组(T1s)海相碳酸盐岩建造,周冲村组(T2z)白云质灰岩、膏岩层和泥质灰岩,黄马青组(T2h)紫红色钙质粉砂岩、粉砂质页岩和页岩;侏罗纪象山群(J1-2x)陆相碎屑岩建造,西横山组(J3x)类磨拉石建造;白垩纪早期火山岩-次火山岩在盆地中广泛发育;浦口组(K2p)砂岩、砾岩,赤山组(K2c)细砂岩、粉砂岩以及第三纪砂砾岩覆盖于火山岩之上(宁芜研究项目编写小组, 1978; 胡文瑄等, 1991; 翟裕生等, 1992; 唐永成等, 1998)。盆地中白垩纪火山岩被划分为四个火山喷发喷溢旋回,从早到晚依次为龙王山组、大王山组、姑山组和娘娘山组,各火山岩旋回以爆发相开始,此后溢流相增多,最后以火山沉积相结束。在大王山组火山活动之后,火山喷发活动变弱,岩浆侵入活动增强,广泛发育与铁矿床形成关系密切的辉石闪长岩-辉石闪长玢岩。矿体往往围绕着一个火山-侵入活动中心分布。

宁芜盆地内4组火山岩的锆石U-Pb年龄分别为:龙王山组134.8Ma,大王山组132.2~130.3Ma,姑山组129.5~128.2Ma,娘娘山组126.8Ma(周涛发等, 2011; 侯可军和袁顺达, 2010)。含矿辉石闪长玢岩的锆石U-Pb年龄集中分布在128~132Ma之间(侯可军和袁顺达, 2010; 范裕等, 2008, 2010; 段超等, 2011)。矿后花岗闪长斑岩的锆石U-Pb年龄为126~128Ma(侯可军和袁顺达, 2010; 段超等, 2011; Duan et al., 2012)。宁芜玢岩铁矿的成矿年龄为~130Ma,多形成于大王山组火山岩旋回晚期,与次火山相辉石闪长玢岩关系密切。大王山组火山岩与次火山相辉石闪长玢岩为同源同期异相之产物。

宁芜火山盆地玢岩铁矿分为三个矿田,从北至南依次是:梅山矿田、凹山矿田和钟姑矿田。典型矿床有梅山、凹山、高村(陶村)、南山、东山、和尚桥、姑山、钟山、和睦山、白象山、杨庄铁矿床等。铁矿床主要赋存于辉石闪长玢岩岩体与周冲村组膏盐层、火山岩接触带附近及辉石闪长玢岩岩体和火山岩之中。铁矿床以透辉石(阳起石)-磷灰石-磁铁矿三矿物组合为特色,普遍含有硬石膏。矿床围岩蚀变强烈,以钠化(钠长石化)、钾化(钾长石化)、氯化(钠柱石、方柱石)和硬石膏化、黄铁矿化为特色。围岩蚀变具有明显的分带,从下而上可分为三个带:下部浅色蚀变带,中部深色蚀变带和上部浅色蚀变带(宁芜研究项目编写小组, 1978)。矿石矿物主要有磁铁矿、赤铁矿、菱铁矿和黄铁矿,脉石矿物主要有透辉石、阳起石、磷灰石、硬石膏、绿泥石、绿帘石、石榴石、钠长石、钾长石、方柱石和石英、方解石、高岭石等组成。矿石结构构造以浸染状、块状、角砾状、脉状和伟晶状为主。从早到晚分为浸染状/块状矿化→角砾状矿化→网脉状矿化→伟晶状矿化。浸染状矿化主要发育于凹山矿田,磁铁矿在辉石闪长玢岩中呈浸染状分布,主要位于矿体的下部;块状矿化主要发育钟姑山和梅山矿田,磁铁矿/赤铁矿粒度细,气孔状构造发育(图 2);角砾状矿化多发育于矿体的边部,磁铁矿胶结辉石闪长玢岩或浸染状矿石,角砾多发育绿泥石化、阳起石化和钠长石化;粗粒脉状磁铁矿矿石分布于矿体的中部,矿物组合主要为阳起石-磁铁矿-磷灰石,阳起石含量较多,呈纤维状集合体,磁铁矿呈中-粗粒自形晶,磷灰石含量较少,脉体围岩多发育钠长石化;伟晶状磁铁矿矿石分布于矿体的上部,矿物组合主要为磷灰石-磁铁矿-(阳起石),磷灰石与磁铁矿含量多达70%~90%,呈伟晶状,自形-半自形,阳起石含量较少。后期发育有黄铁矿、赤铁矿、菱铁矿、镜铁矿、石英脉、方解石脉等。

图 2 宁芜姑山和梅山铁矿的主要矿石类型 (a)姑山矿床含气孔的块状赤铁矿矿石;(b)姑山矿床含气孔的块状赤铁矿矿石;(c)梅山矿床含气孔的块状赤铁矿矿石,气孔壁为镜铁矿,内部充填物为石英;(d)梅山矿床中菱铁矿化石榴石 Fig. 2 Photos of main ore types of Gushan and Meishan deposits in Ninbgwu ore district (a) massive hematite ore containing gas cavities from Gushan deposit; (b) massive hematite ore containing gas cavities from Gushan deposit; (c) massive hematite ore containing gas cavities from Meishan deposit, and specularite occurred on the wall of cavities with quartz and calcite filling internal; (d) siderite mineralization of garnet from Meishan deposit

宁芜玢岩铁矿矿化类型复杂多样,既有铁矿浆贯入式,也有热液交代-充填式(宁芜研究项目编写小组, 1978; 李秉伦和谢奕汉, 1984; 宋学信等, 1981; Hou et al., 2010; 段超等, 2012)。矿浆贯入式矿体以赤铁矿为主,矿石品位高,块状、气孔状和角砾状构造发育,多数与围岩界线截然。矿化类型与基底地层的埋深及膏盐层的分布具有明显的相关性。位于宁芜盆地南段的鈡姑山矿田基底地层埋藏最浅,区内见有上青龙组和黄马青组地层出露,周冲村组膏盐层发育,姑山矿床主体为矿浆型;位于宁芜盆地北段的梅山矿田基底地层埋藏也比较浅,在凤凰山地区也见有上青龙组地层出露,周冲村组膏盐层发育,梅山矿床则既有矿浆型矿体,也有热液交代-充填型矿体,梅山矿床受后期热液改造比较强烈,早期形成的石榴石多被改造为菱铁矿(图 2);凹山矿田位于宁芜盆地的中部,火山岩系厚度巨大,矿床则以热液交代-充填型为主。区内玢岩铁矿的类型虽然不同,但成矿阶段基本一致,可以相互对比。

3 膏盐层与玢岩铁矿的关系及铁矿浆的形成机制

长江中下游地区膏盐层属于中下三叠统,相当于鄂东的嘉陵江组、安徽的马鞍山组和江苏的周冲村组,分布范围从鄂东经皖南到苏南,绵延500km,发育陶厂等大中型层状石膏/硬石膏矿床(点)30余处,石膏矿层厚度由数十米到数百米(蔡本俊, 1980; 范洪源等, 1995; 侯增谦等, 2004; 李延河等, 2014)。长江中下游玢岩铁矿与三叠纪膏盐层关系密切,三叠纪蒸发盆地膏盐层分布与玢岩铁矿分布空间上完全一致,很多高品位块状矿体直接产在成矿岩体与膏盐层的接触带附近(周涛发等, 2014)。玢岩铁矿中普遍含有硬石膏,在有些矿床和地段硬石膏富集形成独立的石膏矿。玢岩铁矿-石膏矿-硫铁矿空间上紧密共生,这既是长江中下游玢岩铁矿的一大特色,也是重要找矿标志(李延河等, 2014)。膏盐层可能也是国外Kiruna型铁矿成矿关键因素。智利-秘鲁Kiruna型铁矿带赋矿地层含有厚大石膏层(Sillitoe and Burrows, 2002; Sillitoe, 2003),智利拉科铁矿中普遍含有石膏和硬石膏,含量约占热液矿物组合的10%~20%,硬石膏在寄主安山岩的熔融包裹体中也很丰富(Tornos et al., 2016)。瑞典Kiruna铁矿磷灰石中SO3含量异常高(Edfelt et al., 2005);伊朗中部Esfordi磷灰石-磁铁矿矿床中黄铁矿的δ34S值高达16.3‰~30.1‰(Jami et al., 2007)。IOCG型铁矿普遍受含盐(NaCl)地层控制,δ34S值普遍较高(Barton and Johnson, 1996)。

膏盐层富含SO42-、CO32-、Cl-和Ca2+、Mg2+、Na+、K+等组分,不仅可以为铁等成矿物质活化迁移提供矿化剂,膏盐层还是重要氧化障,使铁质氧化沉淀富集成矿,这可能是玢岩铁矿与膏盐层关系密切的根本原因。关于膏盐层为铁矿提供矿化剂的作用,国内外已有很多专家学者开展过研究(蔡本俊, 1980; Barton and Johnson, 1996; Sillitoe and Burrows, 2002; Sillitoe, 2003),但膏盐层氧化障在玢岩铁矿成矿中的作用及铁矿浆的形成过程国内外鲜有报道(李延河等, 2013, 2014)。

铁在正常硅酸盐熔体中主要以Fe2+形式存在。在岩浆上侵过程中,炽热岩浆与膏盐CaSO4发生同化混染,使岩浆系统的氧逸度大幅升高,硅酸盐熔体中的Fe2+氧化成Fe3+,Fe3+无法进入硅酸盐矿物晶格,使铁氧化物Fe3O4/Fe2O3在共结线之上大量提前形成,同时形成大量贫铁硅酸盐矿物,如透辉石、透闪石等:

岩浆熔体中提前形成的铁氧化物在PO43-、SO42-、CO32-、Cl-、H2O和Ca2+、Mg2+、Na+、K+等组分的作用下,在岩浆房中富铁岩浆与硅酸盐熔体发生液态不混熔,熔离形成富铁氧化物熔体,经多次熔离富集最终形成铁矿浆,在构造有利部位充填形成矿浆型铁矿床。玢岩铁矿中普遍存在的膏辉岩(硬石膏透辉石岩)就是岩浆-膏盐层相互作用,铁氧化物从岩浆中熔离出来,剩余贫铁硅酸盐岩浆与硬石膏共结晶的产物。

同时在岩浆演化后期,随着结晶作用的进行,富挥发分岩浆和矿浆脱溶形成富铁岩浆热液液。随着温度降低、膏盐和大气降水不断的加入,成矿系统的氧逸度逐渐升高,热液中Fe2+被氧化,生成铁氧化物,沉淀富集形成热液型铁矿床。在玢岩铁矿中,矿浆充填型和热液交代/充填型矿体可能同时存在,有的矿体以矿浆充填型为主,有的矿体以热液交代-充填型为主。矿浆型和热液型矿体在空间上具有一定的分带性,矿浆型或矽卡岩型矿石带主要赋存于深部成矿岩体与膏盐层接触带附近,向上逐渐过渡为热液交代-充填型矿石带。

膏盐层在氧化Fe2+形成铁矿床的同时,石膏等硫酸盐自身被还原,形成黄铁矿等硫化物:

这是玢岩铁矿与硫铁矿、石膏矿空间上密切共生,玢岩铁矿中硫化物的δ34S值普遍较高的根本原因。在此基础上,建立了石膏矿-玢岩铁矿-硫铁矿三位一体成矿模型和双层成矿结构模型(李延河等, 2014)。该模型已被宁芜鈡姑山矿田杨庄铁矿和庐枞罗河-小包庄铁矿的最新勘查成果所证实(金明, 2014; 尚世贵等, 2014)。因此在玢岩铁矿中准确判别矿浆型与热液型矿体具有重要意义。

4 矿浆型铁矿的氧同位素判别标志

为了避免不必要的争议,本文将铁矿浆限定为由岩浆熔离形成的铁氧化物浓度>30%的富铁熔体,由铁矿浆演化形成的铁矿床称为矿浆型铁矿。因此要判别铁矿体是否为矿浆型矿床,就要查明磁铁矿是否在成矿岩浆固结之前形成。如果矿体中磁铁矿是在岩浆结晶温度之上形成的,则为矿浆型铁矿;反之,为热液型或浆-液过渡型矿体。磁铁矿与成矿母岩浆之间的氧同位素分馏受温度控制,因此可根据矿体中磁铁矿的氧同位素组成与岩浆岩的氧同位素组成,以及磁铁矿-岩浆岩之间的氧同位素分馏方程确定磁铁矿的形成温度。赵子福和郑永飞(1999)研究了矿物斑晶-火山岩之间的氧同位素分馏方程,给出了磁铁矿斑晶-安山岩之间的氧同位素分馏公式,103lnαMt-andesite=-3.89×106/T2。因此可根据磁铁矿和辉石闪长玢岩的氧同位素组成,利用上述分馏公式,计算矿体中磁铁矿的形成温度,判别矿体是否为矿浆成因。宁芜地区成矿辉石闪长玢岩普遍遭受强烈热液蚀变,我们在凹山矿田高村矿区挑选2件相对较新鲜的闪长玢岩,其δ18O值分别为4.4‰和4.6‰(表 1)。该值较正常闪长玢岩的值明显偏低,说明这2件样品也遭受了一定程度的热液蚀变,不能代表新鲜闪长玢岩的氧同位素组成,不能用于计算磁铁矿的形成温度。

表 1 宁芜玢岩铁矿氧同位素组成及成因类型判别 Table 1 Oxygen isotopic compositions and origin type of porphyrite iron ore from Ningwu basin

锆石化学性质非常稳定,其同位素年龄和氧同位素组成基本不受后期风化、热液蚀变和变质作用的影响,在中酸性岩浆中结晶时间较早,一般锆石结晶时岩浆还没有固结。锆石的结晶温度可通过锆石钛温度计(Watson and Harrison, 2005; Watson et al., 2006)确定。Valley et al. (2005)通过系列分析研究,建立锆石与寄主岩石之间的氧同位素经验公式:δ18OWRδ18OZir+0.0612(wt% SiO2)-2.5(Valley et al., 2005)。根据锆石氧同位素组成和SiO2含量,即可估算寄主岩石的氧同位素组成,再利用磁铁矿-岩浆岩之间的氧同位素分馏公式计算磁铁矿的形成温度。

实际上,也可直接根据锆石-水、磁铁矿-水、赤铁矿-水之间的氧同位素分馏方程(Zheng, 1991, 1993, 1995):

推导建立锆石-磁铁矿、锆石-赤铁矿之间的氧同位素分馏方程:

Yan et al. (2015)利用二次离子探针Cameca IMS-1280系统测定了宁芜中生代火山盆地龙王山组、大王山组、姑山组和娘娘山组火山岩中锆石的氧同位素组成,其中大王山组火山岩中锆石的δ18OZircon=5.4‰~7.3‰,平均6.1‰。宁芜中生代火山盆地大王山组火山岩与成矿辉石闪长玢岩为同源同期异相产物,因此二者的锆石氧同位素组成应基本一致,可以相互替代。Yan et al. (2015)利用锆石钛温度计估算出了锆石的形成温度,750~785℃,平均768℃。如果以δ18OZircon平均值6.1‰代表锆石的氧同位素组成,以780℃代表锆石的结晶温度,计算出在该温度下形成的磁铁矿、赤铁矿的δ18OMtδ18OHem值分别为4.2‰和2.8‰。因此在锆石结晶、岩浆固结之前形成的磁铁矿的δ18OMt≥4‰,赤铁矿的δ18OHem≥3‰。换句话说,如果矿体中磁铁矿的δ18OMt≥4‰,赤铁矿的δ18OHem≥3‰,则该矿体可能为矿浆成因,低于该值则可能为热液成因或浆-液过渡成因。当然,岩浆和磁铁矿/赤铁矿的氧同位素组成可能还会受到围岩同化混染及后期热液作用等因素的影响。磁/赤铁矿是自然界δ18O值最低的矿物之一,在本文讨论的条件之下,后期热液改造只能降低磁/赤铁矿的δ18O值,而不会升高,因此有可能将部分受热液改造的矿浆成因磁/赤铁矿判为热液成因,一般不会将热液成因磁/赤铁矿判为矿浆成因。同时,磁/赤铁矿的氧同位素组成无法判别铁矿浆是岩浆熔离形成的,还是结晶分异形成的。因此,就像其他判别指标一样,磁/赤铁矿氧同位素是判别铁矿体是否为矿浆型矿体的重要标准,但不是唯一标准,应用该标准时还需要考虑矿石的其他地质地球化学特征和标志,不能绝对化。

判别结果表明,鈡姑山矿田的姑山铁矿、杨庄铁矿、龙山矿铁矿和钟九铁矿确实存在矿浆型矿体,或者说矿浆型和热液型矿体同时存在,梅山铁矿介于矿浆型-热液型矿体之间,而凹山矿田铁矿则为典型的热液型矿体,这与野外观测及前人研究结果一致。梅山铁矿中赤铁矿的δ18O值稍低,可能与梅山矿床形成后遭到强烈热液改造有关,矿床中石榴石普遍蚀变形成菱铁矿,但仍保留石榴石的假象(图 2)。同一矿床中,磁铁矿的δ18O值变化较大可能与矿浆型矿体和热液型矿体同时存在,以及矿浆型矿体遭受后期热液改造有关。我们还测定了姑山矿床晶洞中石英的氧同位素组成(表 1),石英的δ18O值高达20.7‰,表明晶洞、气孔可能是富铁矿浆在熔融阶段保留下来的大型气液包裹体,晶洞中的石英等矿物相当于流体包裹体中的子晶,而非后期热液充填之产物,这与晶洞-气孔的形态特征和空间分布是一致的。

5 结论

(1) 成矿岩浆在上升过程中与膏盐层发生同化混染,导致岩浆成矿系统氧逸度快速升高,岩浆中Fe2+被氧化成Fe3+,Fe3+无法进入硅酸盐矿物晶格,而提前形成铁氧化物。在挥发分和碱性组分、非硅酸盐阴离子的共同作用下,硅酸盐岩浆和富铁氧化物熔体发生液态不混熔,经熔离演化形成铁矿浆(铁氧化物浓度>30%的富铁熔体),富铁矿浆经过多次熔离富集,形成矿浆型铁矿体。

(2) 铁矿浆是在熔融状态由岩浆熔离富集形成的,矿浆型铁矿体中磁铁矿的形成温度高于岩浆的最低固结温度。根据大王山组火山岩中锆石的氧同位素组成、锆石形成温度和锆石-磁铁矿之间的氧同位素分馏方程,建立了矿浆型铁矿的磁铁矿氧同位素判别标准。矿体中磁铁矿的δ18OMt≥4‰,赤铁矿的δ18OHem≥3‰,为矿浆型铁矿;δ18OMt<4‰,δ18OHem<3‰,为热液型或浆-液过渡型矿体。

(3) 判别结果表明,鈡姑山矿田姑山、杨庄等矿床确实存在矿浆型矿体或矿浆型-热液型矿体同时存在,而凹山矿田铁矿则为热液型,梅山铁矿介于矿浆型-热液型之间,与野外观测及前人研究结果一致。磁铁矿氧同位素是判别矿浆型-热液型铁矿体的重要依据,但不是唯一标准,不能绝对化。

致谢 在野外工作期间得到了马钢集团南山矿业公司和姑山矿业公司的大力支持与帮助;二位审稿专家提出了富有建设性的修改意见;在此一并致谢。
参考文献
Barton MD and Johnson DA. 1996. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology, 24(3): 259-262. DOI:10.1130/0091-7613(1996)024<0259:ESMFIR>2.3.CO;2
Bi ZQ and Ding BL. 1997. Sedimentary environments of Triassic evaporite formations in the Lower Yangtze River region. Volcanology & Mineral Resources, 18(2): 127-136.
Cai BJ. 1980. The relationship of gypsum salt beds with endogenic copper and iron ores in the Middle-Lower Yangtze Valley. Geochimica, (2): 193-199.
Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House: 1-379.
Dare SAS, Barnes SJ and Beaudoin G. 2015. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineralium Deposita, 50(5): 607-617. DOI:10.1007/s00126-014-0560-1
Dong SW, Xiang HS, Gao R, Lü QT, Li JS, Zhan SQ, Lu ZW and Ma LC. 2010. Deep structure and ore formation with in Lujiang-Zongyang volcanic ore concentrated area in Middle to Lower Reaches of Yangtze River. Acta Petrologica Sinica, 26(9): 2529-2542.
Duan C, Mao JW, Li YH, Hou KJ, Yuan SD, Zhang C and Liu JL. 2011. Zircon U-Pb geochronology of the gabbro-diorite porphyry and granodiorite porphyry from the Washan iron deposit in Ningwu basin, and its geological significance. Acta Geologica Sinica, 85(7): 1159-1171.
Duan C, Li YH, Hou KJ, Yuan SD, Liu JL and Zhang C. 2012. Late Mesozoic ore-forming events in the Ningwu ore district, Middle-Lower Yangtze River polymetallic ore belt, East China:Evidence from zircon U-Pb geochronology and Hf isotopic compositions of the granodioritic stocks. Acta Geologica Sinica, 86(3): 719-736. DOI:10.1111/acgs.2012.86.issue-3
Duan C, Li YH, Yuan SD, Hu MY, Zhao LH, Chen XD, Zhang C and Liu JL. 2012. Geochemical characteristics of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming. Acta Petrologica Sinica, 28(1): 243-257.
Edfelt Å, Armstrong RN, Smith M and Martinsson O. 2005. Alteration paragenesis and mineral chemistry of the Tjårrojåkka apatite-iron and Cu (-Au) occurrences, Kiruna area, northern Sweden. Mineralium Deposita, 40(4): 409-434. DOI:10.1007/s00126-005-0005-y
Fan HY, Li WD and Wang WB. 1995. On the relationship between the marine Triassic evaporite horizons and Cu(Au), Fe deposits in the Middle-Lower Yangtze area. Volcanology & Mineral Resources, 16(2): 32-41.
Fan Y, Zhou TF, Yuan F, Qian CC, Lu SM and Cooke DR. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715-1724.
Fan Y, Zhou TF, Yuan F, Zhang LJ, Qian B, Ma L and Cooke DR. 2010. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances. Acta Petrologica Sinica, 26(9): 2715-2728.
Frutos J and Oyarzun MJ. 1975. Tectonic and geochemical evidence concerning the genesis of El Laco magnetite lava flow deposits, Chile. Economic Geology, 70(5): 988-990. DOI:10.2113/gsecongeo.70.5.988
Henriquez F, Naslund HR, Nystrom JO, Vivallo W, Aguirre R, Dobbs FM and Lledo H. 2003. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile:A discussion. Economic Geology, 98(7): 1497-1500. DOI:10.2113/gsecongeo.98.7.1497
Hou KJ and Yuan SD. 2010. Zircon U-Pb age and Hf isotopic composition of the volcanic and sub-volcanic rocks in the Ningwu basin and their geological implications. Acta Petrologica Sinica, 26(3): 888-902.
Hou T, Zhang ZC, Encarnacion J, Du YS, Zhao ZD and Liu JL. 2010. Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle-Lower Yangtze valley, eastern China:Constraints on petrogenesis and iron sources. Lithos, 119(3-4): 330-344. DOI:10.1016/j.lithos.2010.07.009
Hou T, Charlier B, Namur O, Schütte P, Schwarz-Schampera U, Zhang ZC and Holtz F. 2017. Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron-fluorine deposit, South Africa. Geochimica et Cosmochimica Acta, 203: 303-322. DOI:10.1016/j.gca.2017.01.025
Hou ZQ, Yang ZS, Li YQ, Zeng PS, Meng YF, Xu WY and Tian SH. 2004. Large-scale migration of fluids towards foreland basins during collisional orogeny:Evidence from Triassic anhydrock sequences and regional alteration in Middle-Lower Yangtze area. Mineral Deposits, 23(3): 310-326.
Hu H, Lentz D, Li JW, McCarron T, Zhao XF and Hall D. 2015. Reequilibration processes in magnetite from iron skarn deposits. Economic Geology, 110(1): 1-8. DOI:10.2113/econgeo.110.1.1
Hu WX, Hu SX and Zhao YC. 1991. Sedimentary genesis of anhydrite deposits in the volcanic series and their relation to the pyrite deposits in Xiangshan district, Anhui Province. Geoscience, 5(2): 164-173.
Jami M, Dunlop AC and Cohen DR. 2007. Fluid inclusion and stable isotope study of the esfordi apatite-magnetite deposit, Central Iran. Economic Geology, 102(6): 1111-1128. DOI:10.2113/gsecongeo.102.6.1111
Jiang ZS, Zhang ZH, Wang ZH, Li FM and Tian JQ. 2012. Alteration mineralogy, mineral chemistry and genesis of Zhibo iron deposit in western Tianshan Mountains, Xinjiang. Mineral Deposits, 31(5): 1051-1066.
Jin M. 2014. On geological and geochemical characteristics and genesis of iron deposit in Yangzhuang of Dangtu in Anhui. Journal of Geology, 38(2): 206-218.
Li BL and Xie YH. 1984. Genesis, classification and genetic model of iron ore deposits of Nanjing-Wuhu type in Nanjing-Wuhu district. Science in China (Series B), 27(6): 625-634.
Li HM, Ding JH, Zhang ZC, Li LX, Chen J and Yao T. 2015. Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China:Constraints on metallogenesis. Journal of Asian Earth Sciences, 113: 1068-1081. DOI:10.1016/j.jseaes.2015.06.026
Li YH, Xie GQ, Duan C, Han D and Wang YC. 2013. Effect of sulfate evaporate salt layer over the formation of skarn-type iron ores. Acta Geologica Sinica, 87(9): 1324-1334.
Li YH, Duan C, Han D, Chen XW, Wang CL, Yang BY, Zhang C and Liu F. 2014. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area. Acta Petrologica Sinica, 30(5): 1355-1368.
Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphyry-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China. Ore Geology Reviews, 43(1): 294-314. DOI:10.1016/j.oregeorev.2011.07.010
Naslund HR. 1983. The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts. American Journal of Science, 283(10): 1034-1059. DOI:10.2475/ajs.283.10.1034
Ningwu Research Group. 1978. Magnetite Porphyry Deposits in Ningwu Area. Beijing: Geological Publishing House: 1-320.
Nystrom JO and Henriquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden:Ore textures and magnetite geochemistry. Economic Geology, 89(4): 820-839. DOI:10.2113/gsecongeo.89.4.820
Park CF. 1961. A magnetite "flow" in northern Chile. Economic Geology, 56(2): 431-436. DOI:10.2113/gsecongeo.56.2.431
Philpotts AR. 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology, 62(3): 303-315. DOI:10.2113/gsecongeo.62.3.303
Philpotts AR. 1982. Compositions of immiscible liquids in volcanic rocks. Contributions to Mineralogy and Petrology, 80(3): 201-218. DOI:10.1007/BF00371350
Pirajno F and Zhou TF. 2015. Intracontinental porphyry and porphyry-skarn mineral systems in eastern China:Scrutiny of a special case "Made-in-China". Economic Geology, 110(3): 603-629. DOI:10.2113/econgeo.110.3.603
Shang SG, Zhang QM and Gao CS. 2014. Features of magnetic anomaly and their application in exploration in the Xiaobaozhuang iron ore deposit, the Lu-Zong mineral-rich area, Anhui. Geology of Anhui, 24(3): 172-175.
Sharygin VV, Kamenetsky VS, Zaitsev AN and Kamenetsky MB. 2012. Silicate-natrocarbonatite liquid immiscibility in 1917 eruption combeite-wollastonite nephelinite, Oldoinyo Lengai Volcano, Tanzania:Melt inclusion study. Lithos, 152: 23-39. DOI:10.1016/j.lithos.2012.01.021
Sillitoe RH and Burrows DR. 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Economic Geology, 97(5): 1101-1109.
Sillitoe RH. 2003. Iron oxide-copper-gold deposits:An Andean view. Mineralium Deposita, 38(7): 787-812. DOI:10.1007/s00126-003-0379-7
Snyder D, Carmichael ISE and Wiebe RA. 1993. Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion:Constraints Fe-Ti oxide precipitation on the T-fO2 and T-ρ paths of tholeiitic magmas. Contributions to Mineralogy and Petrology, 113(1): 73-86. DOI:10.1007/BF00320832
Song XX, Chen YC, Sheng JF and Ai YD. 1981. On iron deposits formed from volcanogenic-hypabyssal ore magma. Acta Geologica Sinica, 55(1): 41-55.
Su LH. 1984. The importance of liquid immiscibility in petrology and mineral deposits. Earth Science-Journal of Wuhan College of Geology, (1): 1-12.
Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House: 1-351.
Tornos F, Velasco F and Hanchar JM. 2016. Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems:The El Laco deposit, Chile. Geology, 44(6): 427-430. DOI:10.1130/G37705.1
Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK and Wei CS. 2005. 4.4 billion years of crustal maturation:Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150: 561-580. DOI:10.1007/s00410-005-0025-8
Veksler IV. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition:A summary of experimental studies. Chemical Geology, 210(1-4): 7-31. DOI:10.1016/j.chemgeo.2004.06.002
Veksler IV, Dorfman AM, Borisov AA, Wirth R and Dingwell DB. 2007. Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology, 48(11): 2187-2210. DOI:10.1093/petrology/egm056
Veksler IV, Dorfman AM, Rhede D, Wirth R, Borisov AA and Dingwell DB. 2008. Liquid unmixing kinetics and the extent of immiscibility in the system K2O-CaO-FeO-Al2O3-SiO2. Chemical Geology, 256(3-4): 119-130. DOI:10.1016/j.chemgeo.2008.06.033
Wang WB, Li WD, Fan HY and Cheng ZF. 1994. Controlling condtions of strata, lithofacies and paleogeography to copper-deposit concentration regions in Middle-Lower Yangtze River. Volcanoloy & Mineral Resources, 15(3): 33-41.
Watson EB and Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723): 841-844. DOI:10.1126/science.1110873
Watson EB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. DOI:10.1007/s00410-006-0068-5
Wang Y, Zhu XK, Mao JW and Cheng YB. 2014. Preliminary Fe isotopic study of Gushan ore magma deposit in Anhui Province. Mineral Deposits, 33(4): 689-696.
Xie GQ, Mao JW, Li W, Zhu QQ, Liu HB, Jia GH, Li YH, Li JJ and Zhang J. 2016. Different proportion of mantle-derived noble gases in the Cu-Fe and Fe skarn deposits:He-Ar isotopic constraint in the Edong district, eastern China. Ore Geology Reviews, 72: 343-354. DOI:10.1016/j.oregeorev.2015.08.004
Yan J, Liu JM, Li QZ, Xing GF, Liu XQ, Xie JC, Chu XQ and Chen ZH. 2015. In situ zircon Hf-O isotopic analyses of Late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China:Implications for petrogenesis and geodynamic evolution. Lithos, 227: 57-76. DOI:10.1016/j.lithos.2015.03.013
Yu XH. 1984. The geological significance and the phase equilibrium experiments of wustite-fluor-phlogopite-diopside melt system at one bar and high temperature. Earth Science-Journal of Wuhan College of Geology, (1): 13-18.
Yuan JZ. 1990. Iron ore type and genesis of Meishan iron ore deposit:The study of high temperature experiments. Geoscience, 4(4): 77-84.
Zhai YS, Yao SZ, Lin XD, Zhou XR, Wan TF, Jin FQ and Zhou ZG. 1992. Fe-Cu-Au Metallogeny of the Middle-Lower Changjiang Region. Beijing: Geological Publishing House: 1-235.
Zhao ZF and Zheng YF. 1999. Theoretical calculation of oxygen isotope fractionation in magmatic rocks. Acta Petrologica Sinica, 15(1): 1-13.
Zheng YF. 1991. Calculation of oxygen isotope fractionation in metal oxides. Geochimica et Cosmochimica Acta, 55(8): 2299-2307. DOI:10.1016/0016-7037(91)90105-E
Zheng YF. 1993. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochimica et Cosmochimica Acta, 57(5): 1079-1091. DOI:10.1016/0016-7037(93)90042-U
Zheng YF. 1995. Oxygen isotope fractionation in magnetites:Structural effect and oxygen inheritance. Chemical Geology, 121(1-4): 309-316. DOI:10.1016/0009-2541(94)00149-3
Zhou TF, Fan Y, Yuan F, Lu SM, Shang SG, Cooke D, Meffre S and Zhao GC. 2008. Geochronology of the volcanic rocks in the Lu-Zong basin and its significance. Science in China (Series D), 51(10): 1470-1482. DOI:10.1007/s11430-008-0111-7
Zhou TF, Fan Y, Yuan F, Song CZ, Zhang LJ, Qian CC, Lu SM and Cooke D. 2010. Temporal-spatial framework of magmatic intrusions in Luzong volcanic basin in East China and their constrain to mineralization. Acta Petrologica Sinica, 26(9): 2694-2714.
Zhou TF, Fan Y, Yuan F, Zhang LJ, Ma L, Qian B and Xie J. 2011. Petrogensis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze metallogenic belt. Acta Geologica Sinica, 85(5): 712-730.
Zhou TF, Fan Y, Yuan F, Wu MA, Zhao WG, Qian B, Ma L, Wang WC, Liu YN and White N. 2014. The metallogenic model of Nihe iron deposit in Lu-Zong Basin and genetic relationship between gypsum-salt layer and deposit. Acta Geologica Sinica, 88(4): 562-573.
Zhou TF, Wang SW, Fan Y, Yuan F, Zhang DY and White NC. 2015. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, eastern China. Ore Geology Reviews, 65: 433-456. DOI:10.1016/j.oregeorev.2014.10.002
Zhou TF, Wang SW, Yuan F, Fan Y, Zhang DY, Chang YF and White N. 2016. Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 32(2): 271-288.
毕仲其, 丁保良. 1997. 下扬子区三叠系膏盐建造的沉积环境. 火山地质与矿产, 18(2): 127-136.
蔡本俊. 1980. 长江中下游地区内生铁铜矿床与膏盐的关系. 地球化学, (2): 193-199.
常印佛, 刘湘培, 吴昌言. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社: 1-379.
董树文, 项怀顺, 高锐, 吕庆田, 李建设, 战双庆, 卢占武, 马立成. 2010. 长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用. 岩石学报, 26(9): 2529-2542.
段超, 毛景文, 李延河, 侯可军, 袁顺达, 张成, 刘佳林. 2011. 宁芜盆地凹山铁矿床辉长闪长玢岩和花岗闪长斑岩的锆石U-Pb年龄及其地质意义. 地质学报, 85(7): 1159-1171.
段超, 李延河, 袁顺达, 胡明月, 赵令浩, 陈小丹, 张成, 刘佳林. 2012. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约. 岩石学报, 28(1): 243-257.
范洪源, 李文达, 王文斌. 1995. 长江中下游海相三叠系膏盐层与铜(金)、铁矿床. 火山地质与矿产, 16(2): 32-41.
范裕, 周涛发, 袁峰, 钱存超, 陆三明, Cooke DR. 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(8): 1715-1724.
范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, Cooke DR. 2010. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义. 岩石学报, 26(9): 2715-2728.
侯可军, 袁顺达. 2010. 宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报, 26(3): 888-902.
侯增谦, 杨竹森, 李荫清, 曾普胜, 蒙义峰, 徐文艺, 田世洪. 2004. 碰撞造山过程中流体向前陆盆地大规模迁移汇聚:来自长江中下游三叠纪膏盐建造和区域蚀变的证据. 矿床地质, 23(3): 310-326.
胡文瑄, 胡受奚, 赵玉琛. 1991. 安徽向山地区火山岩层中硬石膏的沉积成因特征及其与硫铁矿的关系. 现代地质, 5(2): 164-173.
蒋宗胜, 张作衡, 王志华, 李凤鸣, 田敬全. 2012. 新疆西天山智博铁矿床蚀变矿物学、矿物化学特征及矿床成因探讨. 矿床地质, 31(5): 1051-1066.
金明. 2014. 安徽当涂杨庄铁矿床地质地球化学特征与成因研究. 地质学刊, 38(2): 206-218.
李秉伦, 谢奕汉. 1984. 宁芜地区宁芜型铁矿的成因、分类和成矿模式. 中国科学(B辑), 14(1): 80-86.
李延河, 谢桂青, 段超, 韩丹, 王成玉. 2013. 膏盐层在矽卡岩型铁矿成矿中的作用. 地质学报, 87(9): 1324-1334.
李延河, 段超, 韩丹, 陈新旺, 王丛林, 杨秉阳, 张成, 刘锋. 2014. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用. 岩石学报, 30(5): 1355-1368.
宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社: 1-320.
尚世贵, 张千明, 高昌生. 2014. 安徽庐枞矿集区小包庄铁矿床磁异常特征及在勘查中的应用. 安徽地质, 24(3): 172-175.
宋学信, 陈毓川, 盛继福, 艾永德. 1981. 论火山-浅成矿浆铁矿床. 地质科学, 55(1): 41-54.
苏良赫. 1984. 液相不共溶在岩石学及矿床学中的重要性. 地球科学——武汉地质学院学报, (1): 1-12.
唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社: 1-351.
王文斌, 李文达, 范洪源, 程忠富. 1994. 长江中下游铜矿集中区地层、岩相、古地理控制条件. 火山地质与矿产, 15(3): 33-41.
王跃, 朱祥坤, 毛景文, 程彦博. 2014. 安徽姑山矿浆型铁矿床Fe同位素初步研究. 矿床地质, 33(4): 689-696.
喻学慧. 1984. 常压高温下方铁矿(FeO)-氟-金云母[KMg3(AlSi3O10)F2]-透辉石(CaMgSi2O6)熔融体系相平衡实验及地质意义. 地球科学——武汉地质学院学报, (1): 13-18.
袁家铮. 1990. 梅山铁矿矿石类型及成因——高温实验结果探讨. 现代地质, 4(4): 77-84.
翟裕生, 姚书振, 林新多, 周珣若, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社: 1-235.
赵子福, 郑永飞. 1999. 岩浆岩体系氧同位素分馏系数的理论计算. 岩石学报, 15(1): 1-13.
周涛发, 范裕, 袁峰, 陆三明, 尚世贵, Cooke D, Meffre S, 赵国春. 2008. 安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义. 中国科学(D辑), 38(11): 1342-1353. DOI:10.3321/j.issn:1006-9267.2008.11.002
周涛发, 范裕, 袁峰, 宋传中, 张乐骏, 钱存超, 陆三明, Cooke D. 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9): 2694-2714.
周涛发, 范裕, 袁峰, 张乐骏, 马良, 钱兵, 谢杰. 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用. 地质学报, 85(5): 712-730.
周涛发, 范裕, 袁峰, 吴明安, 赵文广, 钱兵, 马良, 王文财, 刘一男, White N. 2014. 安徽庐枞盆地泥河铁矿床与膏盐层的成因联系及矿床成矿模式. 地质学报, 88(4): 562-573.
周涛发, 王世伟, 袁峰, 范裕, 张达玉, 常印佛, White N. 2016. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用. 岩石学报, 32(2): 271-288.