2. 合肥工业工业大学矿床成因与勘查技术研究中心, 合肥 230009;
3. Centre of Excellence in Ore Deposit, University of Tasmania, Private Bag 79, Hobart
2. Ore Deposit and Exploration Centre, Hefei University of Technology, Hefei 230009, China;
3. Centre of Excellence in Ore Deposit, University of Tasmania, Private Bag 79, Hobart, Australia
榍石(CaTiSiO5)是岩浆岩和变质岩中常见的副矿物,也广泛发育中不同类型的热液矿床中。榍石通常具有较高含量的稀土元素以及高场强元素(Tiepolo et al., 2002; Gao et al., 2012; Deng et al., 2015),并且不同成因的榍石具有不同的微量元素地球化学特征(Gao et al., 2012; Che et al., 2013; Ismail et al., 2014; Cao et al., 2015; Xu et al., 2015)。因此榍石微量元素含量可指示其形成条件如温度、压力和氧逸度(Hayden et al., 2008; Mazdab, 2009; Che et al., 2013; Ismail et al., 2014; Xu et al., 2015)。此外,榍石中含有大量的U和Th,可以获得高精度的年龄(Aleinikoff et al., 2002; Storey et al., 2006, 2007; 孙金凤和杨进辉, 2009)。榍石可以多阶段生长(Scott and St-Onge, 1995; Frost et al., 2001),能够记录比锆石更复杂的多阶段地质事件(Chiaradia et al., 2009),而且每一个阶段的榍石U-Pb年龄纪录的更可能是结晶年龄,而不是简单的扩散重置年龄(Corfu and Grunsky, 1987; Aleinikoff et al., 2002)。近年来榍石U-Pb定年被广泛用于岩浆,热液活动的定年(Aleinikoff et al., 2002; Storey et al., 2007; Chiaradia et al., 2009; Smith et al., 2009; Li et al., 2010; Sun et al., 2010; Kohn and Corrie, 2011; 朱乔乔等, 2014; Fallourd et al., 2014; Sepahi et al., 2014; Bonamici et al., 2015; Chelle-Michou et al., 2015; Deng et al., 2015; Fu et al., 2016)。
长江中下游地区是中国东部一个重要的多金属成矿带, 产出各类铁、铜、金矿床约200余处(Pan and Dong, 1999; Mao et al., 2006; 周涛发等, 2008a, b, 2012)。近年来,许多学者陆续报道了该成矿带内不同矿集区最新的成岩成矿时代研究成果(谢桂青等, 2009; 袁顺达等, 2010; 侯可军和袁顺达, 2010; 周涛发等, 2010; 范裕等, 2010),为深入认识长江中下游成矿带成岩成矿作用提供了丰富的资料。庐枞火山岩盆地位是长江中下游成矿带中最重要的中生代火山岩盆地和矿集区之一(常印佛等, 1991; 翟裕生等, 1992; 唐永成等, 1998; 范裕等, 2008; Zhou et al., 2007; 周涛发等, 2008a, b, 2010, 2011; 董树文等, 2010)。盆地内广泛发育橄榄安粗质火山-侵入岩,主要产出多个铁矿床,并伴有铜、铅、锌、铀等多金属矿床(化)。罗河铁矿床是20世纪70年代在庐枞盆地中探明的大型玢岩型铁矿床,随着近年来的找矿新发现,矿床中铁矿石总资源量达到约10亿吨,是成矿带内最大的铁矿床。罗河铁矿床发育两层含榍石蚀变岩带,产出大量结晶良好的热液榍石,为确定矿床成矿时代和成矿流体演化过程提供了的理想对象,同时也对玢岩型矿床中榍石的研究提供了良好的机会。目前成矿带内矽卡岩型铁铜矿床,如金山店和铜绿山矿床(Li et al., 2010; 朱乔乔等, 2014; Deng et al., 2015)中榍石相关研究工作已经开展,而对于玢岩型铁矿床却榍石的研究仍鲜有报道。
目前铁矿床成矿年龄一般通过金云母Ar-Ar定年间接限定,但金云母封闭温度较低,不能准确代表磁铁矿的形成年龄。榍石具有较高的铀含量,较低的普通铅含量以及较高的封闭温度,是铁矿床定年的理想矿物,同时榍石中微量元素特征可以为成矿流体特征和演化过程提供线索。本文以庐枞盆地内罗河铁矿床为研究对象,在深入细致的野外地质工作基础上,对庐枞罗河铁矿床深部和浅部两层矿体中热液榍石开展了年代学及地球化学研究,初步分析了矿床的成矿作用条件。对比分析矽卡岩型和玢岩型铁矿床中榍石特征的异同,探讨了庐枞盆地等断凹区以及长江中下游成矿带金属矿床的时空分布特征,并为铁矿床形成的地球动力学背景研究提供新的证据。
2 罗河铁矿床地质特征庐枞盆地位于长江中下游成矿带中部,区内出露地层主要为中侏罗统罗岭组(J2l)陆相碎屑沉积岩,其与上覆的火山岩地层呈不整合接触。盆地中火山岩出露面积约800km2,火山岩岩性为橄榄安粗岩系组合,地层由老至新划分为龙门院组、砖桥组、双庙组和浮山组,各组之间均为喷发不整合接触,并且在空间上大致呈环带状分布,为四个旋回火山活动的产物。各旋回的火山活动均由爆发相开始,此后溢流相逐渐增多,最后以火山沉积相结束,喷发方式由裂隙-中心式向典型的中心式喷发演化。侵入岩属于火山喷发晚期(间隙期)的产物。庐枞盆地内部目前发现有34个侵入岩体出露,侵入岩体的形成与区域火山活动有着极为密切的关系(周涛发等, 2010),这些岩体按岩性可主要分为3种:一种为二长岩体,主要分布在庐枞盆地的北部,出露面积较大,岩体有巴家滩岩体、龙桥岩体和罗岭岩体等;第二种为正长岩体,出露面积较大的岩体有土地山岩体、凤凰山岩体等;第三种为A型花岗岩,出露面积较大的岩体有城山岩体、花山岩体和黄梅尖岩体等(范裕等, 2008; 周涛发等, 2010)。庐枞盆地内主要矿床包括罗河、龙桥和泥河等大型铁矿床,岳山大型铅锌银矿床、井边石门庵、天头山和拔茅山等小型铜金矿床以及矾山等大型明矾石矿床,此外,还有马口、杨桥、吴桥和3440、34等铁-铜-金-铀-多金属矿床(点),庐枞盆地目前已经探明的铁矿石总资源量约15亿吨。
罗河铁矿床位于庐枞盆地西部(图 1),是20世纪70年代发现的大型玢岩型铁矿床,矿体赋存深度在400~700m之间,矿体形态总体呈似层状、平缓透镜状,埋藏在-382~-846m标高内,东浅西深,距地表最浅处为425m,最深为856m,向西南方向倾伏,倾伏角为3°~12°,与地层产状呈微角度斜交。2013年在通过深部勘探在罗河矿区深部发现了新的层状矿体,埋藏在1350~1800m标高内,主矿体长约1260m,宽约840m,矿体平均厚度76m。两层矿体总储量约10亿吨,并有进一步扩大的潜力(高昌生等, 2013①)。
![]() |
图 1 庐枞盆地地质略图(据周涛发等, 2010) Fig. 1 Geological sketch map of Lu-Zong volcanic basin (after Zhou et al., 2010) |
①高昌生, 张千明, 尚世贵. 2013.安徽庐江小包庄铁矿普查地质报告.合肥:安徽省地质矿产勘察局327地质队, 42-65
矿区主要被第四系所覆盖,零星出露有白垩统双庙组,和砖桥组,其岩性主要为粗安质火山熔岩、火山碎屑岩和沉火山碎屑岩(图 2),钻孔深部可见中三叠统东马鞍山组(T2d)沉积岩,产出深度为2000~2200m,为庐枞盆地的基底地层,主要岩性为灰岩与石膏互层,可见层纹状构造,局部受热变质作用转变为硬石膏。矿区内构造较为简单,主要表现为平缓倾斜的单斜岩层叠加了几组陡倾斜的断层,断距一般不明显,仅使地层产生轻微的牵引现象。矿区内发育共轭轴近于水平的两套共轭裂隙组,与矿化蚀变作用密切关联,脉状网脉状矿体常沿着裂隙充填和交代(黄清涛和尹恭沛, 1989)。矿区内未发现规模较大的侵入岩,发育少量粗安玢岩和细晶正长岩,为成矿期后的脉岩(图 2),与成矿作用无关。其中,细晶正长岩呈陡倾斜脉状穿插于砖桥组地层中,粗安玢岩穿切三叠系石膏-灰岩地层。通过矿床中钠化粗安岩和新鲜粗安岩的地球化学分析表明,钠化作用并不能从粗安岩中带出大量铁质,因此推测成矿热液来自深部隐伏闪长质侵入岩(刘一男, 2015)。
![]() |
图 2 罗河铁矿床Ⅲ纵地质剖面图(据安徽省地质矿产勘查局327地质队, 2014①修改) Fig. 2 Geological section of No.3 prospecting line in Luohe deposit |
①安徽省地质矿产勘查局327地质队. 2014.安徽小包庄勘探报告.内部资料
矿体上下盘及矿体中发育多种蚀变矿物组合,包括透辉石、金云母、硬石膏、绿帘石、磷灰石和榍石等。根据野外及室内对矿石、围岩和后期脉体等矿物组合之间的穿插、交代关系的研究,将罗河铁矿床的蚀变矿化阶段划分为:碱性长石阶段、透辉石-硬石膏阶段-磁铁矿阶段、赤铁矿-碳酸盐阶段、硬石膏-黄铁矿阶段、石英-硫化物阶段以及碳酸盐-硬石膏脉阶段。本次采集的榍石样品为透辉石-硬石膏-磁铁矿阶段的产物,该阶段为铁矿化的主要阶段。样品主要赋存在浅部矿体的底板和深部矿体的顶板,赋存高度分别为900~1100m,1500~1600m(图 2)
3 样品和分析方法 3.1 样品特征与制备本次共选取3个热液榍石样品作为测年对象。2个样品位于深部矿体顶板透辉石-硬石膏蚀变岩中(zk2-1-1500、zk2-1-1547),样品中榍石自形程度较好,以不规则菱形为主,棕黄色,金刚光泽,粒径1~3mm,群状分布。榍石主要与磁铁矿、透辉石、绿帘石和磷灰石共生(图 3a, b),局部可见磁铁矿颗粒包裹自形榍石(图 3a)。镜下榍石呈菱形,正高突起,高级白干涉色(图 3c, d)。另1个测试样品位于上层矿体底板绿泥石化透辉石硬石膏磁铁矿脉中(zk2-1-1092),样品中榍石肉眼即能识别,土黄色,自形-半自形晶,以菱形为主,且晶体颗粒较大,在5~10mm左右(图 3e),与透辉石、硬石膏、绿泥石和钠长石共生,蚀变较强。镜下榍石光性特征不显著。在背散射图像中可以看出,蚀变榍石通常沿裂隙发育碳酸盐化形成金红石、方解石和石英(图 3f)。新鲜榍石成分较为均一(图 3g, h)。本次定年分析点根据背散射图像选取新鲜榍石颗粒进行测试。
![]() |
图 3 罗河铁矿典型榍石手标本和显微镜下及背散射照片 (a)深部榍石呈自形粒状分布于磁铁矿颗粒中,并与金云母,硬石膏共生;(b)深部榍石集合体与磁铁矿、磷灰石和绿帘石化透辉石共生;(c)分布于透辉石硬石膏脉中的自形榍石(样品zk2-1-1500);(d)分布于透辉石硬石膏脉中的自形榍石(样品zk2-1-1547);(e)浅部土黄色榍石呈自形和绿泥石共生(样品zk2-1-1092);(f)榍石与磁铁矿共生,发育碳酸盐化,形成金红石,石英和方解石(样品zk2-1-1092,背散射照片);(g)深部自形新鲜榍石与硬石膏共生(样品zk2-1-1500,背散射照片);(h)浅部较为新鲜的榍石(样品zk2-1-1092,背散射照片).矿物缩写:Anh-硬石膏;Ap-磷灰石;Cal-方解石;Chl-绿泥石;Di-透辉石;Ep-绿帘石;Mag-磁铁矿;Py-黄铁矿;Q-石英;Rt-金红石;Ttn-榍石 Fig. 3 Sample, microscope and BSE photos of titanite rock in Luohe deposit |
文中的榍石样品的EPMA分析和LA-ICP-MS原位分析工作均在澳大利亚塔斯马尼亚大学中心实验室完成。对富含榍石的代表性样品磨制激光靶,在显微镜观察的基础上,选择并标记出要分析的区域进行电子探针分析。电子探针分析实验的的负荷为15kV,电子束能量为20nA,斑束直径为2μm,大多数元素的分析精度高于1%。
榍石激光原位U-Pb年龄测定的样品分析方法类似于锆石LA-ICP-MS U-Pb年龄分析,具体见文献(Fryer et al., 1993; Compston, 1999; Košler and Sylvester, 2003; Black et al., 2004; Jackson et al., 2004; Harley and Kelly, 2007)。测试前对Q-ICPMS检测器进行P/A(Pulse/Analogy)校正,以及用调谐液对仪器参数进行优化,确保氧化物产率(Ce2+/Ce+)小于1%和二价离子产率(Ce2+/Ce+)小于3%,同时仪器灵敏度89Y计数大于200Mcps/ppm。在激光剥蚀模式下,用标准玻璃NIST610对仪器进行优化,本文数据采集选用跳峰模式,分析元素的积分时间分别为10ms(29Si、43Ca、232Th和238U),15ms(204Pb、206Pb和208Pb),以及30ms(207Pb)。每个样品点的分析时间为150s,包括30s背景信号收集,60s样品信号收集和60s清洗管道、样品池的时间。标样与样品交叉分析,每8个样品分析点测定一组年龄标样(2个BLR-1榍石,1个OLT-1),每个样测定3个微量元素标样NIST610。实验中,采用单点分析模式,束斑直径为60μm,剥蚀频率为6Hz(Baker et al., 2004)。
榍石样品U、Th、Pb元素含量以43Ca为内标,微量元素含量以29Si为内标,NIST610为外标物质计算得到(榍石样品CaO和SiO2的参考含量参照样品电子探针含量数据)。本文选用榍石标样BLR-1和OLT-1作为外部标准,对单点分析数据结果进行U-Pb分馏校正。所有年龄分析点的U-Th-Pb同位素比值和微量元素含量均采用Halpin et al. (2014)软件进行元素分馏校正及结果计算。分馏校正后样品同位素比值的误差计算,除了考虑标样和样品的测量误差之外,标样推荐值的误差也考虑在内,其相对标准偏差设定为1%。本文采用谐和图解法对榍石样品进行普通Pb校正(Chew et al., 2011)。
3.3 榍石主量和微量元素特征榍石主量和微量元素含量值分别见表 1和表 2,电子探针分析数据表明3个榍石样品具有较为一致的主量元素含量:浅层榍石(zk2-1-1092)主量元素含量变化范围为SiO2,30.0%~30.6%;TiO2,34.9%~41.0%;CaO,25.0%~28.3%;Al2O3,1.06%~1.66%;FeO,1.53%~2.20%(以FeO的形式表示全铁,下同)和F,0.57%~0.85%。深部榍石(zk2-1-1500、zk2-1-1547)主量元素含量为SiO2,29.7%~30.6%;TiO2,33.9%~37.1%;CaO,27.1%~28.5%;Al2O3,0.94%~2.10%;FeO,1.33%~2.16%和F,0.52%~1.06%。浅层榍石Ca,Ti元素含量分布范围更为广泛,深部榍石中Al、F具有更大的分布范围,Si和Fe含量范围基本一致。
![]() |
表 1 罗河铁矿床榍石主量元素电子探针数据(wt%) Table 1 Electron microprobe analysis results of titanite in Luohe iron deposit (wt%) |
![]() |
表 2 罗河铁矿床榍石稀土元素LA-ICP-MS数据(×10-6) Table 2 Rare earth elements analysis result of titanite in Luohe iron deposit by LA-ICP-MS(×10-6) |
深部榍石的稀土元素含量较高,总量变化范围为6160×10-6~13282×10-6,平均为8491×10-6,球粒陨石标准化图解中显示轻重稀土分异较大,其LREE/HREE范围较大,为8.4~16.0,平均11.4。(La/Yb)N=5.9~17.0,平均10.2;具有明显的负Eu异常以及弱正Ce异常,δEu=0.53~0.84,δCe=1.11~1.19;其Th、U含量变化范围很大,分别为138×10-6~1355×10-6(平均520×10-6)和168×10-6~2347×10-6(平均676×10-6),U与∑REE变化具有一定的一致性,Th/U比值范围较大,为0.19~4.60(图 4a)。
![]() |
图 4 罗河榍石微量元素特征箱形图(a)和U-∑REE图解 Fig. 4 Box plot trace elements (a) and binary U vs. ∑REE diagram (b) of the Luohe titanite |
浅层榍石的稀土元素含量稍低,总量变化范围为4511×10-6~8893×10-6,平均为6222×10-6,其LREE/HREE比值范围为7.9~10.5,平均9.4。(La/Yb)N=6.7~10.8,平均8.8,轻重稀土分异相对较为明显。具有明显的负Eu异常以及弱正Ce异常,δEu=0.52~0.60,δCe=1.10~1.14。其Th、U含量分别为716×10-6~1762×10-6(平均1037×10-6)和147×10-6~873×10-6(平均266×10-6),具有较大的Th/U比值分布范围2.00~6.47(图 4a)。U与∑REE变化具有一定的相关性(图 4b)。
3.4 榍石LA-ICP-MS定年结果对于含Pb量较低的榍石或锆石,Stacey and Kramers (1975)的方法可适用于Pb同位素数据的校正。对于Pb含量较高的的榍石,并不适用于典型的Pb同位素校正方法(Aleinikoff et al., 2002)。如果榍石具有较低的U和Pb含量,那么初始Pb同位素的选择会对年龄的计算产生巨大的影响(Frost et al., 2001)。本次测试样品中,榍石样品Pb含量较高,说明利用207Pb校正年龄更为合适(Stern, 1997; Aleinikoff et al., 2002)。Tera-Wasserburg谐和图解如图,Y轴代表的是初始207Pb/206Pb(Aleinikoff et al., 2002),用于207Pb校正计算(Stern, 1997; Frost et al., 2001)。而后,经207Pb校正的206Pb/208Pb年龄可以用来计算加权平均年龄,即代表榍石的形成年龄。这种方法为榍石的普通Pb校正(Storey et al., 2006)。本次测试得到的榍石U、Th、Pb数据经普通铅校正后均得到了较好的年龄值,测试分析数据见表 3。
![]() |
表 3 罗河铁矿床榍石LA-ICP-MS年龄结果 Table 3 LA-ICP-MS U-Th-Pb isotope data of titanite in Luohe iron deposit |
浅部榍石:样品zk2-1-1092交点年龄为130.0±0.9Ma。根据上交点获得其初始Pb同位素组成207Pb/206Pb=0.844,经207Pb校正后,得到该样品的206Pb/238U加权平均年龄为130.0±0.8Ma(n=29, MSWD=1.7),与下交点年龄在误差范围内一致(图 5a, b)。
![]() |
图 5 罗河榍石LA-ICP-MS U-Pb定年结果 Fig. 5 LA-ICP-MS U-Pb diagrams for the Luohe titanite |
深部榍石:样品zk2-1-1500交点年龄为128.8±0.6Ma。根据上交点获得其初始Pb同位素组成207Pb/206Pb=0.843,经207Pb校正后,得到该样品的206Pb/238U加权平均年龄为129.1±0.8Ma(n=21, MSWD=1.5),与下交点年龄在误差范围内一致(图 5c, d)。样品zk2-1-1547交点年龄为129.5±0.5Ma。根据上交点获得其初始Pb同位素组成207Pb/206Pb=0.843,经207Pb校正后,得到该样品的206Pb/238U加权平均年龄为129.7±0.8Ma(n=21, MSWD=1.3),与下交点年龄在误差范围内一致(图 5e, f)。2个样品年龄相近,在误差范围内一致,表明本次年龄分析的精度较高。
4 讨论 4.1 榍石成分特征及成因不同成因的榍石可以通过它们的结构、岩石学矿物组合以及地球化学特征加以区分(Cao et al., 2015)。罗河铁矿床中榍石大多呈自形-半自形,并且与磁铁矿、透辉石、硬石膏、绿帘石和磷灰石等热液矿物共生,通常呈脉状产出,穿切火山岩,说明其为热液成因。榍石电子探针BSE分析表明,榍石无明显成分环带特征,推测矿床中榍石是从一次成矿流体中沉淀形成。榍石的矿物化学成分研究表明(Cempírek et al., 2008; Horie et al., 2008; Olin and Wolff, 2012; Che et al., 2013; Cao et al., 2015),如果榍石中TiO2和FeO+Al2O3、TiO2和F均呈负相关(图 6a, b),则指示榍石中存在(Al, Fe)3++(F, OH)-=Ti4++O2-置换反应,该置换反应受温度,压力以及共生矿物组合的控制,高温(>500℃)或高压条件下有利于置换反应的进行(Troitzsch and Ellis, 2002; Tropper et al., 2002),榍石的上述主量元素特征指示其的形成温度较高(Markl and Piazolo, 1999)。
![]() |
图 6 罗河铁矿床榍石Al2O3-TiO2 (a)、F-TiO2 (b)、Zr-Nb (c)和Th/U-Zr (d)关系图解 Fig. 6 Al2O3 vs. TiO2 (a), F vs. TiO2 (b), Zr vs. Nb (c) and Th/U vs. Zr (d) for the Luohe titanite |
榍石LA-ICP-MS微量元素分析结果表明,榍石矿物中富含Zr、Nb和稀土元素,浅部和深部榍石Zr+Nb+∑REE总量分别为0.66%~1.73%和0.70%~1.76%。前人研究表明,稀土元素会置换榍石中的Ca、Zr和Nb等高场强元素会置换Ti(Al, Fe),从而进入榍石晶格(Della Ventura et al., 1999)。罗河铁矿床榍石中的Nb-Zr呈正相关说明了二者在置换作用中具有相同的性质(图 6c)。微量元素Zr可以有限地取代榍石中的Ti,其取代量的多少与体系的温度和压力有关,压力相近的情况下Zr元素含量与形成温度呈正比(Hayden et al., 2008)。根据Einaudi(1981)和Hayden et al. (2008)的研究,矽卡岩的形成压力为0.1~0.3GPa,aTiO2=aSiO2=0.5,由榍石温压条件估算公式:log(Zrtitanite, ×10-6)=10.52(±0.01)-7708(±101)/T(K)-960(±10)×P(GPa)/T(K)-log(aTiO2)-log(aSiO2)计算得出罗河铁矿床浅部榍石和深部榍石形成温度分别为720~820℃(平均772℃,n=30)和620~798℃(平均689℃,n=56)。湖北金山店矽卡岩型铁矿床中榍石计算温度为452~793℃(朱乔乔等, 2014),说明罗河铁矿床较比矽卡岩型铁矿床具有更高的成矿温度,高温条件对Ti的迁移更为有利,从而可以形成广泛分布的的热液榍石。两层榍石具有相近的形成温度,说明上下两层矿体的成矿时间和成矿温度相近,佐证它们是同一热液系统的产物。
榍石中的Th/U比值对于榍石的成因具有指示意义,一般来说,热液榍石具有较低的Th/U(大多<1),而岩浆中的榍石Th/U比值较大(Aleinikoff et al., 2002; Gao et al., 2012; Che et al., 2013; Deng et al., 2015)。本次研究中,测试榍石样品均具有变化范围较大的Th/U比值(zk2-1-1092为2.0~6.5,平均4.4;zk2-1-1500为0.6~4.6,平均1.4;zk2-1-1547为0.2~4.2,平均0.7),在鄂东南地区铜绿山矽卡岩Cu-Au-Fe矿床热液榍石Th/U比值为0.03~3.22(Li et al., 2010),金山店矽卡岩型铁矿床中热液榍石Th/U比值为1.94~17.20(朱乔乔等, 2014),二者均具有较大的Th/U比值,通过Zr-Th/U图解可以看出二者呈正相关,前文提到榍石中Zr元素含量与温度呈正相关,由此可见榍石中Th/U比值与形成温度同样具有正相关性,其形成温度越高,Th/U比值越大(图 6d),在高温热液条件下结晶形成的榍石也会具有岩浆榍石Th/U比值大于1的特征,因此通过Th/U比值单一指标判别榍石的成因还需要慎重。
榍石稀土元素特征对榍石的成因具有一定的指示。罗河铁矿床三个榍石样品稀土元素组成相似,配分图均呈现出明显右倾,并具有较高的稀土总量以及明显的负Eu异常,与鄂东南金山店矽卡岩型铁矿床中的矽卡岩阶段热液榍石具有很好的相似性(朱乔乔等, 2014)而与铜绿山矽卡岩型铜铁矿床热液榍石相比,具有较高的∑REE含量,并且稀土配分图明显不同(Li et al., 2010; Deng et al., 2015)(图 7a)。其原因可能是罗河铁矿床和金山店矽卡岩铁矿中榍石结晶早于或近于磷灰石和绿帘石等富轻稀土矿物,而铜绿山铜金矿床热液榍石形成于退蚀变阶段,绿帘石的大量形成会对榍石的轻稀土和配分模式造成影响(Pan et al., 1993; Williams-Jones et al., 2012)。榍石中Eu异常的影响因素主要是氧逸度,Eu2+氧化为Eu3+后较难置换Ca2+进入榍石(Horie et al., 2008),从而导致明显的负Eu异常。本次测试样品中两个具有明显负Eu异常(zk2-1-1092、zk2-1-1500),而zk2-1-1547榍石具有较弱的负Eu异常,说明成矿流体随着热液向上运移,裂隙增多,氧逸度有所升高(图 7b)。
![]() |
图 7 罗河铁矿床榍石稀土元素配分图(a)和Zr-δEu图解(b) Fig. 7 Chondrite-normalized REE diagram (a) and binary Zr vs. δEu diagram (b) for the Luohe titanite |
本次所测试的榍石样品在显微镜和背散射照片中没有显示明显的环带构造,成分较为单一,因此可以视为单次热液结晶的产物,榍石空间上与磁铁矿紧密共生,局部可见磁铁矿颗粒包裹榍石,说明两者同时形成(图 3a, b),因此榍石年龄可准确代表矿床的成矿时代。本次测得浅层热液榍石谐和年龄为130.0±0.9Ma,加权平均年龄为130.0±0.8Ma,深部2个样品谐和年龄分别为128.8±0.6Ma和129.5±0.5Ma,加权平均年龄为129.1±0.8Ma和129.7±0.8Ma。在误差范围内基本一致。3个样品年龄均在130Ma左右,榍石样品具有相似的稀土元素分布特征,说明成矿流体均来自于同源的岩浆热液,结合矿床地质特征,指示二者为同一成矿系统在不同深度的产物。本次测得罗河铁成矿年龄与庐枞盆地内其他铁矿床成矿年龄相近(范裕等, 2014a, b; Zhou et al., 2011; 张乐骏, 2011)相接近。表明成岩成矿作用基本同时发生。
4.3 区域成岩时代对比及地球动力学背景庐枞矿集区内有30余个侵入岩体分布,单个岩体出露面积0.1~50km2不等,前人对庐枞矿集区侵入岩做了大量年代学工作(范裕等, 2008; 覃永军等, 2010; Zhou et al., 2007; 周涛发等, 2010; 张乐骏, 2011; 邱宏, 2014)。根据庐枞地区侵入岩成岩时代、岩性和穿插关系可将侵入岩划分为三阶段(图 1):第一阶段为闪长岩类,均为隐伏岩体,与铁矿化关系密切,其形成时代在134~132Ma之间;第二阶段为二长、正长岩类其形成时代在134~130Ma之间,主要分布在庐枞地区的北部。第三阶段为石英正长岩类和花岗岩类,其形成时代在129~123Ma之间;主要分布在庐枞地区南部(图 1)。本次测得罗河铁矿床成矿年龄为130Ma,与区域闪长岩类活动时代相近,表明罗河铁矿床成矿岩体很可能为第一阶段的闪长质岩浆。二长岩、正长岩类虽然在年龄上与闪长岩并未表现出明显差别,但野外可明显观察到正长岩穿切铁矿体,为成矿后的产物(刘一男等, 2015)。研究表明,区内大规模成矿事件发生于挤压-拉张过渡的构造背景下(任启江等, 1991; 袁峰等, 2008),由于古板块俯冲作用导致了岩石圈拉张减薄、软流圈上涌,促使交代地幔部分熔融,其与岩石圈地幔富集组分相互作用,形成的富钾的岩浆与下地壳同化混染并发生分离结晶作用形成了中酸性侵入岩及相关金属矿床(吴利仁等, 1982; 陶奎元等, 1998; 邓晋福等, 1992; 刘洪等, 2002; Sun et al., 2007; Ling et al., 2009; 张乐骏, 2011; 周涛发等, 2008a, b)。本次工作确定的庐枞盆地中罗河铁矿床的上下两层矿体形成时代均为130Ma左右,成矿年龄与上述第一类型相近,因此罗河矿床形成于燕山晚期中国东部岩石圈伸展的构造环境下。
5 结论(1) 罗河铁矿床上、下两层榍石形成温度相近,均为700℃左右,明显高于矽卡岩型铁矿床成矿温度。
(2) 榍石微量元素具有岩浆榍石轻稀土富集的特征,其结晶早于或近于磷灰石和绿帘石等富轻稀土矿物。成矿流体自深部向浅部氧逸度有所升高。
(3) 罗河铁矿床成矿年代为130Ma,其形成时代与矿集区内闪长质岩浆相近,结合矿床地质特征表明罗河铁矿床成矿热液可能来自于深部隐伏闪长岩。
(4) 罗河铁矿床属于长江中下游成矿带燕山晚期成岩成矿作用产物,形成于区域早白垩世岩石圈减薄的环境。
Aleinikoff JN, Wintsch RP, Fanning CM and Dorais MJ. 2002. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA:An integrated SEM, EMPA, TIMS, and SHRIMP study. Chemical Geology, 188(1-2): 125-147. DOI:10.1016/S0009-2541(02)00076-1 |
Baker J, Peate D, Waight T and Meyzen C. 2004. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chemical Geology, 211(3-4): 275-303. DOI:10.1016/j.chemgeo.2004.06.030 |
Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS and Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect:SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2): 115-140. DOI:10.1016/j.chemgeo.2004.01.003 |
Bonamici CE, Fanning CM, Kozdon R, Fournelle JH and Valley JW. 2015. Combined oxygen-isotope and U-Pb zoning studies of titanite:New criteria for age preservation. Chemical Geology, 398: 70-84. DOI:10.1016/j.chemgeo.2015.02.002 |
Cao MJ, Qin KZ, Li GM, Evans NJ and Jin LY. 2015. In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China. Ore Geology Reviews, 65: 940-954. DOI:10.1016/j.oregeorev.2014.07.014 |
Cempírek J, Houzar S and Novák M. 2008. Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitutions Al(Nb, Ta)Ti-2, Al(F, OH)(TiO)-1 and SnTi-1. Mineralogical Magazine, 72(6): 1293-1305. DOI:10.1180/minmag.2008.072.6.1293 |
Chang YF, Liu XP and Wu YC. 1991. The Copper Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House: 71-76.
|
Che XD, Linnen RL, Wang RC, Groat LA and Brand AA. 2013. Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia, Canada. The Canadian Mineralogist, 51(3): 415-438. DOI:10.3749/canmin.51.3.415 |
Chelle-Michou C, Chiaradia M, Selby D, Ovtcharova M and Spikings RA. 2015. High-resolution geochronology of the Coroccohuayco porphyry-skarn deposit, Peru:A rapid product of the Incaic orogeny. Economic Geology, 110(2): 423-443. DOI:10.2113/econgeo.110.2.423 |
Chew DM, Sylvester PJ and Tubrett MN. 2011. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chemical Geology, 280(1-2): 200-216. DOI:10.1016/j.chemgeo.2010.11.010 |
Chiaradia M, Vallance J, Fontboté L, Stein H, Schaltegger U, Coder J, Richards J, Villeneuve M and Gendall I. 2009. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador:Implications for the Jurassic metallogenic belt of the northern Andes. Mineralium Deposita, 44(4): 371-387. DOI:10.1007/s00126-008-0210-6 |
Compston W. 1999. Geological age by instrument analysis:The 29th Hallimond Lecture. Mineralogical Magazine, 63(3): 297-311. DOI:10.1180/002646199548213 |
Corfu F and Grunsky EC. 1987. Igneous and tectonic evolution of the Batchawana greenstone belt, Superior Province:A U-Pb zircon and titanite study. The Journal of Geology, 95(1): 87-105. DOI:10.1086/629108 |
Della Ventura G, Bellatreccia F and Williams CT. 1999. Zr-and LREE-rich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy). Mineralogical Magazine, 63(1): 123-130. DOI:10.1180/002646199548240 |
Deng JF, Ye DL, Zhao HL and Tang DP. 1992. Volcanism, Deep Internal Processed and Basin Formation in the Lower Reaches of the Yangtze River. Wuhan: China University of Geosciences Press: 1-184.
|
Deng XD, Li JW, Zhou MF, Zhao XF and Yan DR. 2015. In-situ LA-ICPMS trace elements and U-Pb analysis of titanite from the Mesozoic Ruanjiawan W-Cu-Mo skarn deposit, Daye district, China. Ore Geology Reviews, 65: 990-1004. DOI:10.1016/j.oregeorev.2014.08.011 |
Dong SW, Xiang HS, Gao R, Lv QT, Li JS, Zhan SQ, Lu ZW and Ma LC. 2010. Deep structure and ore formation within Lujiang-Zongyang volcanic ore concentrated area in Middle to Lower Reaches of Yangtze River. Acta Petrologica Sinica, 26(9): 2529-2542. |
Einaudi MT, Meinert LD and Newberry RJ. 1981. Skarn deposits. Economic Geology, 75: 317-391. |
Fallourd S, Poujol M, Boulvais P, Paquette JL, De Saint Blanquat M and Rémy P. 2014. In situ LAICP-MS U-Pb titanite dating of Na-Ca metasomatism in orogenic belts:The North Pyrenean example. International Journal of Earth Sciences, 103(3): 667-682. DOI:10.1007/s00531-013-0978-1 |
Fan Y, Zhou TF, Yuan F, Qian CC, Lu SM and David C. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715-1724. |
Fan Y, Zhou TF, Yuan F, Zhang LJ, Qian B, Ma L and David RC. 2010. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances. Acta Petrologica Sinica, 26(9): 2715-2728. |
Fan Y, Liu YN, Zhou TF, Zhang LJ, Yuan F and Wang WC. 2014a. Geochronology of the Nihe deposit and in the Lu-Zong basin and its metallogenic significances. Acta Petrologica Sinica, 30(5): 1369-1381. |
Fan Y, Qiu H, Zhou TF, Yuan F and Zhang LJ. 2014b. LA-ICP MS Zircon U-Pb dating for the hidden intrusions in the Lu-Zong Basin and its tectonic significance. Acta Geologica Sinica, 88(4): 532-546. |
Frost BR, Chamberlain KR and Schumacher JC. 2001. Sphene (titanite):Phase relations and role as a geochronometer. Chemical Geology, 172(1-2): 131-148. DOI:10.1016/S0009-2541(00)00240-0 |
Fryer BJ, Jackson SE and Longerich HP. 1993. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology. Chemical Geology, 109(1-4): 1-8. DOI:10.1016/0009-2541(93)90058-Q |
Fu Y, Sun XM, Zhou HY, Lin H and Yang TJ. 2016. In-situ LA-ICP-MS U-Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China. Ore Geology Reviews, 77: 43-56. DOI:10.1016/j.oregeorev.2016.02.001 |
Gao XY, Zheng YF, Chen YX and Guo JL. 2012. Geochemical and U-Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen. Lithos, 136-139: 93-108. DOI:10.1016/j.lithos.2011.03.020 |
Halpin JA, Jensen T, McGoldric P, Meffre S, Berry RF, Everard JL, Calver CR, Thompson J, Goemann K and Whittaker JM. 2014. Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania:Links to the Belt-Purcell Supergroup, North America. Precambrian Research, 250: 50-67. DOI:10.1016/j.precamres.2014.05.025 |
Harley SL and Kelly NM. 2007. Zircon tiny but timely. Elements, 3(1): 13-18. DOI:10.2113/gselements.3.1.13 |
Hayden LA, Watson EB and Wark DA. 2008. A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology, 155(4): 529-540. DOI:10.1007/s00410-007-0256-y |
Horie K, Hidaka H and Gauthier-Lafaye F. 2008. Elemental distribution in apatite, titanite and zircon during hydrothermal alteration:Durability of immobilization mineral phases for actinides. Physics and Chemistry of the Earth, Parts A/B/C, 33(14-16): 962-968. DOI:10.1016/j.pce.2008.05.008 |
Hou KJ and Yuan SD. 2010. Zircon U-Pb age and Hf isotopic composition of the volcanic and sub-volcanic rocks in the Ningwu basin and their geological implications. Acta Petrologica Sinica, 26(3): 888-902. |
Huang QT and Yin GP. 1989. Luohe Iron Deposit in Anhui Province. Beijing: Geological Publishing House: 1-209.
|
Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Mumm AS and Wade B. 2014. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia. Lithos, 184-187: 456-477. DOI:10.1016/j.lithos.2013.07.023 |
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69. DOI:10.1016/j.chemgeo.2004.06.017 |
Kohn MJ and Corrie SL. 2011. Preserved Zr-temperatures and U-Pb ages in high-grade metamorphic titanite:Evidence for a static hot channel in the Himalayan orogen. Earth and Planetary Science Letters, 311(1-2): 136-143. DOI:10.1016/j.epsl.2011.09.008 |
Košler J and Sylvester PJ. 2003. Present trends and the future of zircon in geochronology:Laser ablation ICPMS. Reviews in Mineralogy and Geochemistry, 53(1): 243-275. DOI:10.2113/0530243 |
Li JW, Deng XD, Zhou MF, Liu YS, Zhao XF and Guo JL. 2010. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits:A case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China. Chemical Geology, 270(1-4): 56-67. DOI:10.1016/j.chemgeo.2009.11.005 |
Ling MX, Wang FY, Ding X, Hu YH, Zhou JB, Zartman RE, Yang XY and Sun WD. 2009. Cretaceous ridge subduction along the Lower Yangtze River belt, eastern China. Economic Geology, 104(2): 303-321. DOI:10.2113/gsecongeo.104.2.303 |
Liu H, Qiu JS, Luo QH, Xu XS, Ling WL and Wang DZ. 2002. Petrogenesis of the Mesozoic potash-rich volcanic rocks in the Luzong basin, Anhui Province:Geochemical constraints. Geochimica, 31(2): 129-140. |
Liu YN. 2015. Mineralization of Luohe-Xiaobaozhuang iron deposit in the Lu-Zong volcanic basin, Anhui Province. Master Degree Thesis. Hefei:Hefei University of Technology, 50-56 (in Chinese with English summary)
|
Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ and Zhou TF. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River Valley and metallogenic implications. Ore Geology Reviews, 29(3-4): 307-324. DOI:10.1016/j.oregeorev.2005.11.001 |
Markl G and Piazolo S. 1999. Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and host-rock composition. American Mineralogist, 84(1-2): 37-47. DOI:10.2138/am-1999-1-204 |
Mazdab FK. 2009. Characterization of flux-grown trace-element-doped titanite using the high-mass-resolution ion microprobe (SHRIMP-RG). The Canadian Mineralogist, 47(4): 813-831. DOI:10.3749/canmin.47.4.813 |
Olin PH and Wolff JA. 2012. Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos, 128-131: 46-54. DOI:10.1016/j.lithos.2011.10.007 |
Pan YM, Fleet ME and MacRae ND. 1993. Late alteration in titanite (CaTiSiO5):Redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochimica et Cosmochimica Acta, 57(2): 355-367. DOI:10.1016/0016-7037(93)90437-2 |
Pan YM and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177-242. DOI:10.1016/S0169-1368(99)00022-0 |
Qin YJ, Zeng JN, Zeng Y, Ma ZD, Chen JH and Jin X. 2010. Zircon LA-ICP-MS U-Pb dating of ore-bearing pyroxene-trachyandesite porphyry and its geological significance in Luohe-Nihe iron ore field in Luzong basin, southern Anhui, China. Geological Bulletin of China, 29(6): 851-862. |
Qiu H. 2014. Diagenesis of intermediate-acidic intrusive rock in the Luzong areas, Anhui Province. Master Degree Thesis. Hefei:Hefei University of Technology, 1-88 (in Chinese with English summary)
|
Ren QJ, Liu XS and Xu ZW. 1991. Mesozoic Volcano Tectonic Depression and Its Mineralizing Process in Lujiang-Zongyang Area, Anhui Province. Beijing: Geological Publishing House: 1-206.
|
Scott DJ and St-Onge MR. 1995. Constraints on Pb closure temperature in titanite based on rocks from the Ungava Orogen, Canada:Implications for U-Pb geochronology and P-T-t path determinations. Geology, 23(12): 1123-1126. DOI:10.1130/0091-7613(1995)023<1123:COPCTI>2.3.CO;2 |
Sepahi AA, Shahbazi H, Siebel W and Ranin A. 2014. Geochronology of plutonic rocks from the Sanandaj-Sirjan zone, Iran and new zircon and titanite U-Th-Pb ages for granitoids from the Marivan pluton. Geochronometria, 41(3): 207-215. |
Smith MP, Storey CD, Jeffries TE and Ryan C. 2009. In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden:New constraints on the timing and origin of mineralization. Journal of Petrology, 50(11): 2063-2094. DOI:10.1093/petrology/egp069 |
Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207-221. DOI:10.1016/0012-821X(75)90088-6 |
Stern RA. 1997. The GSC sensitive high resolution ion microprobe (SHRIMP):Analytical techniques of zircon U-Th-Pb age determinations and performance evaluation.In:Radiogenic Age and Isotopic Studies:Report 10. Natural Resources Canada, 1997: 1-31. |
Storey CD, Jeffries TE and Smith M. 2006. Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite. Chemical Geology, 227(1-2): 37-52. DOI:10.1016/j.chemgeo.2005.09.003 |
Storey CD, Smith MP and Jeffries TE. 2007. In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden:Records of extended geological histories in complex titanite grains. Chemical Geology, 240(1-2): 163-181. DOI:10.1016/j.chemgeo.2007.02.004 |
Sun JF and Yang JH. 2009. A review of in-situ U-Pb dating methods for the accessory U-bearing minerals. Journal of Jilin University (Earth Science Edition), 39(4): 630-641, 649. |
Sun JF, Yang JH, Wu FY, Li XH, Yang YH, Xie LW and Wilde SA. 2010. Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton:in situ U-Pb age and Sr-, Nd-, Hf-and O-isotope evidence. Lithos, 120(1-2): 421-438. |
Sun WD, Ding X, Hu YH and Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542. DOI:10.1016/j.epsl.2007.08.021 |
Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House: 60-85.
|
Tao KY, Mao JR, Yang ZL, Zhao Y, Xing GF and Xue HM. 1998. Mesozonic petro-tectonic associations and records of the geodynamic processes in Southeast China. Earth Science Frontiers, 5(4): 183-191. |
Tiepolo M, Oberti R and Vannucci R. 2002. Trace-element incorporation in titanite:Constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191(1-3): 105-119. DOI:10.1016/S0009-2541(02)00151-1 |
Troitzsch U and Ellis DJ. 2002. Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4-CaAlFSiO4. Contributions to Mineralogy and Petrology, 142(5): 543-563. DOI:10.1007/s004100100309 |
Tropper P, Manning CE and Essene EJ. 2002. The substitution of Al and F in titanite at high pressure and temperature:Experimental constraints on phase relations and solid solution properties. Journal of Petrology, 43(10): 1787-1814. DOI:10.1093/petrology/43.10.1787 |
Williams-Jones AE, Migdisov AA and Samson IM. 2012. Hydrothermal mobilisation of the rare earth elements:A tale of "Ceria" and "Yttria". Elements, 8(5): 355-360. DOI:10.2113/gselements.8.5.355 |
Wu LR, Qi JY, Wang TD, Zhang XQ and Xu YS. 1982. Mesozoic volcanic rocks in the eastern part of China. Acta Geologica Sinica, 56(3): 223-234. |
Xie GQ, Zhao HJ, Zhao CS, Li XQ, Hou KJ and Pan HJ. 2009. Re-Os dating of molybdenite from Tonglushan ore district in southeastern Hubei Province, Middle-Lower Yangtze River belt and its geological significance. Mineral Deposits, 28(3): 227-239. |
Xu LL, Bi XW, Hu RZ, Tang YY, Wang XS and Xu Y. 2015. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang-Red River alkaline igneous belt, SW China. Mineralogy and Petrology, 109(2): 181-200. DOI:10.1007/s00710-014-0359-x |
Yuan F, Zhou TF, Fan Y, Lu SM, Qian CC, Zhang LJ, Duan C and Tang MH. 2008. Source, evolution and tectonic setting of Mesozoic volcanic rocks in Luzong basin, Anhui Province. Acta Petrologica Sinica, 24(8): 1691-1702. |
Yuan SD, Hou KJ and Liu M. 2010. Timing of mineralization and geodynamic framework of iron-oxide-apatite deposits in Ningwu Cretaceous basin in the Middle-Lower Reaches of the Yangtze River, China:Constraints from Ar-Ar dating on phlogopites. Acta Petrologica Sinica, 26(3): 797-808. |
Zhai YS, Yao SZ, Lin XD, Zhou XR, Wang TF, Jin FQ and Zhou ZG. 1992. Regularities of Metallogenesis for Copper-Gold Deposits in the Middle and Lower Reaches of the Yangtze River Area. Beijing: Geological Publishing House: 1-120.
|
Zhang LJ. 2011. Polymetallic mineralisation and associated magmatic and volcanic activity in the Luzong basin, Anhui Province, eastern China. Ph. D. Dissertation. Hefei:Hefei University of Technology, 1-262 (in Chinese with English summary)
|
Zhou TF, Yuan F, Yue SC, Liu XD, Zhang X and Fan Y. 2007. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn-and vein-type deposits, Anhui Province, South China. Ore Geology Reviews, 31(1-4): 279-303. DOI:10.1016/j.oregeorev.2005.03.016 |
Zhou TF, Fan Y and Yuan F. 2008a. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica, 24(8): 1665-1678. |
Zhou TF, Fan Y, Yuan F, Lu SM, Shang SG, Cooke D, Meffre S and Zhao GC. 2008b. Geochronology of the volcanic rocks in the Lu-Zong basin and its significance. Science in China (Series D), 51(10): 1470-1482. DOI:10.1007/s11430-008-0111-7 |
Zhou TF, Fan Y, Yuan F, Song CZ, Zhang LJ, Qian CC, Lu SM and David RC. 2010. Temporal-spatial framework of magmatic intrusions in Luzong volcanic basin in East China and their constrain to mineralizations. Acta Petrologica Sinica, 26(9): 2694-2714. |
Zhou TF, Wu MA, Fan Y, Duan C, Yuan F, Zhang LJ, Liu J, Qian B, Franco P and David RC. 2011. Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley, eastern China. Ore Geology Reviews, 43(1): 154-169. DOI:10.1016/j.oregeorev.2011.04.004 |
Zhou TF, Fan Y, Yuan F, Zhang LJ, Ma L, Qian B and Xie J. 2011. Petrogensis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze metallogenic belt. Acta Geologica Sinica, 85(5): 712-730. |
Zhou TF, Fan Y, Yuan F and Zhong GX. 2012. Progress of geological study in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 28(10): 3051-3066. |
Zhu QQ, Xie GQ, Jiang ZS, Sun JF and Li W. 2014. Characteristics and in situ U-Pb dating of hydrothermal titanite by LA-ICPMS of the Jingshandian iron skarn deposit, Hubei Province. Acta Petrologica Sinica, 30(5): 1322-1338. |
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社: 71-76.
|
邓晋福, 叶德隆, 赵海玲, 汤德平. 1992. 下扬子地区火山作用深部过程与盆地形成. 武汉: 中国地质大学出版社: 1-184.
|
董树文, 项怀顺, 高锐, 吕庆田, 李建设, 战双庆, 卢占武, 马立成. 2010. 长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用. 岩石学报, 26(9): 2529-2542. |
范裕, 周涛发, 袁峰, 钱存超, 陆三明, David C. 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(8): 1715-1724. |
范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, David RC. 2010. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义. 岩石学报, 26(9): 2715-2728. |
范裕, 刘一男, 周涛发, 张乐骏, 袁峰, 王文财. 2014a. 安徽庐枞盆地泥河铁矿床年代学研究及其意义. 岩石学报, 30(5): 1369-1381. |
范裕, 邱宏, 周涛发, 袁峰, 张乐骏. 2014b. 安徽庐枞盆地隐伏侵入岩的LA-ICP MS定年及其构造意义. 地质学报, 88(4): 532-546. |
侯可军, 袁顺达. 2010. 宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报, 26(3): 888-902. |
黄清涛, 尹恭沛. 1989. 安徽庐江罗河铁矿. 北京: 地质出版社: 1-209.
|
刘洪, 邱检生, 罗清华, 徐夕生, 凌文黎, 王德滋. 2002. 安徽庐枞中生代富钾火山岩成因的地球化学制约. 地球化学, 31(2): 129-140. |
刘一男. 2015. 安徽庐枞盆地罗河-小包庄铁矿床成矿作用研究. 硕士学位论文. 合肥: 合肥工业大学, 50-56
|
覃永军, 曾键年, 曾勇, 马振东, 陈津华, 金希. 2010. 安徽南部庐枞盆地罗河-泥河铁矿田含矿辉石粗安玢岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(6): 851-862. |
邱宏. 2014. 安徽庐枞地区中酸性侵入岩成岩作用研究. 硕士学位论文. 合肥: 合肥工业大学, 1-88
|
任启江, 刘孝善, 徐兆文. 1991. 安徽庐枞中生代火山构造洼地及其成矿作用. 北京: 地质出版社: 1-206.
|
孙金凤, 杨进辉. 2009. 含U副矿物的原位微区U-Pb定年方法. 吉林大学学报(地球科学版), 39(4): 630-641, 649. |
唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社: 60-85.
|
陶奎元, 毛建仁, 杨祝良, 赵宇, 邢光福, 薛怀民. 1998. 中国东南部中生代岩石构造组合和复合动力学过程的记录. 地学前缘, 5(4): 183-191. |
吴利仁, 齐进英, 王听渡, 张秀棋, 徐永生. 1982. 中国东部中生代火山岩. 地质学报, 56(3): 223-234. |
谢桂青, 赵海杰, 赵财胜, 李向前, 侯可军, 潘怀军. 2009. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 28(3): 227-239. |
袁峰, 周涛发, 范裕, 陆三明, 钱存超, 张乐骏, 段超, 唐敏慧. 2008. 庐枞盆地中生代火山岩的起源、演化及形成背景. 岩石学报, 24(8): 1691-1702. |
袁顺达, 侯可军, 刘敏. 2010. 安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义. 岩石学报, 26(3): 797-808. |
翟裕生, 姚书振, 林新多, 周峋弱, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社: 1-120.
|
张乐骏. 2011. 安徽庐枞盆地成岩成矿作用研究. 博士学位论文. 合肥: 合肥工业大学, 1-262
|
周涛发, 范裕, 袁峰. 2008a. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8): 1665-1678. |
周涛发, 范裕, 袁峰, 陆三明, 尚世贵, Cooke D, Meffre S, 赵国春. 2008b. 安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义. 中国科学(D辑), 38(11): 1342-1353. |
周涛发, 范裕, 袁峰, 宋传中, 张乐骏, 钱存超, 陆三明, David RC. 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9): 2694-2714. |
周涛发, 范裕, 袁峰, 张乐骏, 马良, 钱兵, 谢杰. 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用. 地质学报, 85(5): 712-730. |
周涛发, 范裕, 袁峰, 钟国雄. 2012. 长江中下游成矿带地质与矿产研究进展. 岩石学报, 28(10): 3051-3066. |
朱乔乔, 谢桂青, 蒋宗胜, 孙金凤, 李伟. 2014. 湖北金山店大型矽卡岩型铁矿热液榍石特征和原位微区LA-ICPMS U-Pb定年. 岩石学报, 30(5): 1322-1338. |