2. 西部矿产资源与地质工程教育部重点实验室, 西安 710054;
3. 中国人民武装警察部队黄金第八支队, 乌鲁木齐 830057
2. Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Xi'an 710054, China;
3. No. 8 Gold Geological Party of Chinese People's Armed Police Force, Urumqi 830057, China
一直以来,增生造山和陆壳生长是地球科学的两大前沿课题,中亚造山带作为全球最大的显生宙增生造山带(Şengör et al., 1993)和陆壳生长区(Jahn et al., 2000a, b; Pachett and Samson, 2003),其增生造山和陆壳生长一直是研究的重要内容。阿尔泰造山带是中亚造山带的重要组成部分,占据特殊的地理位置和构造位置,与整个中亚造山带一样,出露大面积侵入岩,尤其是花岗岩类较为发育,约占全区总面积的40%以上(王中刚等,1998;王涛等,2010)。前人对出露于阿尔泰造山带的花岗岩做了大量的研究工作,显示这些花岗岩具有多时代、多类型、多成因、多来源等特征,形成于多种构造环境(刘伟,1990;赵振华等,1993;王中刚等,1998;袁峰等,2001;王登红等,2002;王涛等, 2005, 2010;童英,2006;Wang et al., 2006, 2007, 2008;周刚等,2007;杨富全等,2008;刘锋等,2009;孙桂华等,2009;孙敏等,2009;柴凤梅等,2010;董连慧等,2012;沈晓明等,2013;刘峰等,2014;张志欣等,2014;张亚峰等,2015)。同位素年代学研究结果显示阿尔泰造山带花岗岩主要有460Ma、408Ma、375Ma和265Ma四个峰期,较完整的记录了早古生代以来的俯冲-碰撞-造山过程,尤其是~400Ma的花岗岩浆活动最为剧烈(Wang et al., 2006;曾乔松等,2007)。相对古生代岩浆岩而言,中亚造山带中生代岩浆活动研究较为薄弱,随着对中亚造山带中生代岩浆活动的重视,近些年相关研究成果显示中亚造山带由东向西不同程度发育中生代花岗岩,如:东段出露大面积中生代花岗岩主要与蒙古-鄂霍次克构造带和环太平洋岛弧有关(Wu et al., 2000; Yarmolyuk et al., 2002; Jahn et al., 2009; Litvinovsky et al., 2011);中段(即蒙古阿尔泰)发育大面积中生代花岗岩,关于其构造背景,有碰撞后、板内以及蒙古-鄂霍次克洋俯冲相关的活动陆缘等多种认识(Yarmolyuk et al., 2002, 2005; Jahn et al., 2004; Wang et al., 2004; Li et al., 2013; Zhu et al., 2016);同样的,西段(俄罗斯阿尔泰、中国阿尔泰)也识别出少量的中生代花岗岩,不同学者对于其构造背景,有碰撞后、板内、地幔柱等不同的认识(Vladimirov a et al., 2001, 2005; Annikova et al., 2006; Pavlova et al., 2008; Tong et al., 2014; Wang et al., 2014)。同位素年代学研究结果显示,中亚造山带中生代花岗岩大致可以分为两个阶段:早-中三叠世(250~230Ma),此类花岗岩广泛出露于俄罗斯、哈萨克斯坦等地区,主要以I型花岗岩为主,有少量的埃达克岩和S型花岗岩;晚三叠世-早侏罗世(230~180Ma),广泛出露于俄罗斯、哈萨克斯坦、蒙古等地,主要以A型、I-A过渡型花岗岩或高度分异的I型花岗岩为主(Li et al., 2013; Wang et al., 2014)。
通过全岩K-Ar、Ar-Ar、Rb-Sr测试手段,在中国阿尔泰识别出中生代花岗岩的存在,岩浆事件从270Ma到130Ma均有不同程度发育(Zhang et al., 1994; Hu et al., 1997; Chen et al., 2000; 王登红等, 2002),其中以将军山岩体(235~207Ma)、阿拉尔岩体(131~250Ma)、尚克兰岩体(176~183Ma)最为典型,随着TIMS、SHRIMP、LA-ICP-MS等精确测试手段的出现,后期获得相近的锆石U-Pb年龄,如将军山岩体(151Ma)、阿拉尔岩体(211~216Ma)、尚克兰岩体(203Ma)、3号伟晶岩(198~220Ma)(Zhu et al., 2006; Wang et al., 2007, 2014)。在构造位置上,中国阿尔泰造山带远离蒙古-鄂霍次克洋等中生代洋盆,其形成于板内构造环境(Wang et al., 2014)、俯冲向后造山转换阶段(Cai et al., 2015)、还是与塔里木超级地幔柱有关(Tong et al., 2014),目前有较多争议。
依托在阿尔泰乌齐里克他乌一带开展的区域地质矿产调查项目,在研究区识别出中生代花岗岩,其中辉腾阿尔善地区出露的辉腾花岗岩体为例,1:20万资料依据侵入接触关系和区域资料将其归属为华里西晚期岩浆岩,但对其精确的形成时代和构造属性并没有深入的研究。本次研究通过详细的岩相学、年代学、岩石地球化学和全岩Sr-Nd同位素研究,精确限定辉腾花岗岩体形成时代,并进一步探讨其岩石成因及构造环境,为进一步探讨阿尔泰造山带中生代造山作用和大陆地壳形成与演化提供详实的年代学和地球化学依据。
1 区域地质背景与岩体特征中国阿尔泰造山带呈北西-南东向展布,是中亚造山带的重要组成部分(图 1a),大地构造位置位于西伯利亚板块和哈萨克斯坦-准噶尔板块之间,是典型的显生宙造山带Şengör et al., 1993),北至中-蒙、中-俄及中-哈边境,南以额尔齐斯断裂与哈萨克斯坦-准噶尔板块北缘相邻(何国琦等,1990)。以红嘴山-诺尔特断裂、阿巴宫-库尔提断裂和额尔齐斯断裂带为界,由北向南可以简单的将阿尔泰造山带划分为北阿尔泰、中阿尔泰和南阿尔泰三个构造带(或块体)(Li et al., 2003;Xiao et al., 2004)(图 1b)。北阿尔泰构造带主要由震旦系-寒武系、上泥盆统-下石炭统火山-沉积岩组成,并出露晚加里东期花岗岩;中阿尔泰构造带主要由元古界-下古生界深变质岩系和奥陶纪-二叠纪侵入岩组成,其中泥盆纪花岗岩最为发育,具有微陆块的特点(Windley et al., 2002;Li et al., 2003;Xiao et al., 2004;Wang et al., 2006);南阿尔泰构造带主要由元古界片麻岩和志留系-石炭系火山-沉积岩系组成(Windley et al., 2002;Xiao et al., 2004)。前人综合区域资料研究认为:阿尔泰造山带于前寒武纪晚期到早古生代早期为稳定大陆边缘阶段;大致从晚寒武世开始发生俯冲、增生,其中早古生代(奥陶纪-泥盆纪)为洋壳俯冲阶段;之后可能发生碰撞造山作用,于中石炭世基本奠定了阿尔泰造山带的构造格架;而额尔齐斯断裂以南,即准噶尔造山带,在石炭纪可能仍发生有俯冲碰撞作用(何国琦等,1994;Windley et al., 2002;Li et al., 2003;Xiao et al., 2004;王涛等,2005;Wang et al., 2006)。
|
图 1 中亚造山带构造位置图(a,据何国琦等,1990)、阿尔泰造山带构造分区图(b,据Windley et al., 2002)及辉腾岩体地质简图(c) Fig. 1 Tectonic position of the Central Asian Orogenic Belt(a, after He et al., 1990), tectonic division for the Altay Orogenic Belt(b, after Windley et al., 2002) and simplified geological map of Huiteng pluton(c) |
前人研究成果表明阿尔泰造山带不同构造单元广泛出露不同时代的花岗岩,主要由早古生代、晚古生代及少量中生代花岗岩体构成,岩石类型主要为英云闪长岩、花岗闪长岩、黑云母花岗岩、二云母花岗岩和白云母花岗岩等,其成因类型多样,如有S、I、A型(王涛等,2005)。本文以出露于中阿尔泰构造带的辉腾花岗岩体为例对中生代花岗岩的岩石成因及构造环境进行研究。辉腾花岗岩体位于阿尔泰构造带内,侵位于中元古代苏普特岩群中,岩体中不同程度地包裹了苏普特岩群的变质岩捕掳体,岩体边部呈岩枝状侵入到苏普特岩群中,两者接触部位不同程度发育角岩化蚀变带。岩体呈近似圆状分布,出露面积约110km2,岩石类型较为单一。野外观察及室内镜下观察研究结果表明主要岩石类型有似斑状碱长花岗岩、似斑状正长花岗岩和似斑状二长花岗岩,矿物粒度较粗,其中含有少量镁铁质暗色微粒包体,2~10cm大小不等。三种不同岩石类型之间的接触关系表明粗中粒似斑状碱长花岗岩形成最晚,粗中粒似斑状正长花岗岩次之,粗中粒似斑状二长花岗岩最早。各类岩石的特征列述如下:
粗中粒似斑状碱长花岗岩呈灰白色,风化面为土红色,具有粗中粒似斑状结构、块状构造(图 2a)。斑晶主要为钾长石,均匀分布于岩石中,呈半自形-自形板状,粒径6~35mm,约占总体积10%。基质主要由钾长石、斜长石、石英和少量黑云母组成,其中钾长石呈半自形板柱状,多为微斜长石及条纹长石,粒径2~4mm,含量约60%;斜长石呈半自形板状,发育聚片双晶,粒径2~3mm,含量约5%;石英呈他形粒状,粒径约2mm,含量约25%;黑云母呈片状,片径约2mm,含量约10%(图 2d)。
|
图 2 阿尔泰地区辉腾花岗岩的野外露头(a-c)及显微特征(d-f) (a、d)似斑状碱长花岗岩;(b、e)似斑状正长花岗岩;(c、f)似斑状二长花岗岩.Bt-黑云母;Kfs-钾长石;Ms-白云母;Pl-斜长石;Q-石英 Fig. 2 Field outcrop(a-c) and mircroscopic feature(d-f)of Huiteng granites in Altay area (a, d) porphyritic alkali feldapar granite; (b, e) porphyritic syenogranites; (c, f) porphyritic monzongranite. Bt-biotite; Kfs-K-feldspar; Ms-muscovite; Pl-plagioclase; Q-quartz |
粗中粒似斑状正长花岗岩呈灰白色,风化色常呈灰色或灰黄色,具有粗中粒似斑状结构、块状构造(图 2b)。斑晶主要为钾长石,呈半自形-自形板柱状,发育格子双晶、卡式双晶,粒径8~40mm不等,内部发育斜长石及石英包晶,约占岩石总体积10%。基质主要由钾长石、斜长石、石英及少量黑云母组成,其中钾长石呈他形粒状均匀分布于岩石中,粒径约5mm,发育格子双晶,含量约50%;斜长石呈半自形板状,发育聚片双晶,粒径约4mm,含量约20%;石英呈他形粒状,粒径约4mm,含量约25%;黑云母呈片状,片径约3mm;含量约5%(图 2e)。
粗中粒似斑状二长花岗岩呈灰白色,具有粗中粒似斑状结构、块状构造(图 2c)。斑晶主要为钾长石,呈半自形-自形板柱状,发育格子双晶、卡式双晶,粒径8~50mm不等,内部见斜长石和石英包晶,石英呈文象状嵌于其中,占总体积约20%。基质主要由钾长石、斜长石、石英和少量黑云母组成,其中钾长石呈半自形板柱状,发育格子双晶,含量约占30%;斜长石呈半自形板柱状,发育聚片双晶,部分发育环带结构,粒径2~3mm,表面绢云母化,含量约占40%;石英呈他形粒状,粒径3~4mm,含量约占25%;黑云母为片状矿物,含量约占5%(图 2f)。
2 测试方法 2.1 锆石U-Pb测年锆石挑选、制靶、阴极发光照相及LA-ICP-MS测试工作均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。锆石的CL图像分析,采用FEI公司XL30型SFEG电子束进行锆石内部结构显微照相分析。锆石的激光剥蚀电感偶合等离子体质谱(LA-ICP-MS)原位U-Pb定年实验采用的等离子质谱仪为美国Agilent公司生产的Agilent7500a,激光剥蚀系统为德国MicroLas公司生产的GeoLas200M,激光剥蚀斑束直径为32μm,频率为10Hz。以29Si作为内标元素进行校正,以国际标准锆石91500作为外标,元素含量采用美国国家标准物质局人工合成硅酸盐玻璃NIST SRM610作为外标,分析方法及仪器参数见文献(Yuan et al., 2004;Liu et al., 2010)。样品的同位素比值及元素含量计算采用GLITTER(ver4.0,Macquarie University)程序处理,采用Andersen方法对普通Pb进行校正(Anderseon, 2002),加权平均年龄计算及谐和图的绘制采用Isoplot(ver2.49) 完成(Ludwing, 2001)。
2.2 岩石地球化学分析本次研究选用样品的主量元素、稀土及微量元素分析在中国地质调查局西安地质调查中心完成。主量元素除FeO、LOI采用标准分析为湿化学法分析外,其他采用PW4400型X荧光光谱仪(XRF)测定;微量元素和稀土元素采用X-SeriesⅡ型电感耦合等离子质谱仪(ICP-MS)测定,检测极限优于5×10-9,相对标准偏差优于5%。
2.3 Sr-Nd同位素分析Sr-Nd同位素的全岩测试、化学分离和同位素比值测定在中国科学院地质与地球物理所同位素地球化学实验室完成,测试仪器为德国Finnigan公司MAT-262热电离质谱仪。分别采用88Sr/86Sr=8.375209和146Nd/144Nd=0.7219对Sr和Nd同位素比值进行质量分馏校正。Rb-Sr和Sm-Nd的全流程本底为250pg和100pg。浓度(147Sm/144Nd和87Rb/86Sr比值)误差小于0.5%。Rb/Sr和Sm/Nd比值的不确定度分别小于±2%和±0.5%。测试过程中分别对Sr标准溶液NBS-987和Nd标准溶液JNdi-1测得87Sr/86Sr=0.710261±0.000012(n=5,2σ)和143Nd/144Nd=0.512119±0.000011(n=5,2σ),均与参考值吻合。对USGS标准物质BCR-2进行了测试,结果为87Sr/86Sr=0.705020±0.000014和143Nd/144Nd=0.512623±0.000011,分别与参考值基本一致。化学流程和同位素比值测试详见参考文献(Li et al., 2012, 2015)。
3 分析结果 3.1 锆石U-Pb定年用于锆石U-Pb同位素测定的样品采于中阿尔泰构造带的辉腾花岗岩体的中粗粒似斑状二长花岗岩(PM3-TW34)。从样品中选取的锆石以浅黄色、无色为主,透明-半透明,晶体长宽比值为3:1~2:1,晶面光滑,晶棱晶面界线清晰。从阴极发光图像中可以看出(图 3a),锆石形态多为单锥或双锥状,发育典型岩浆锆石生长韵律环带,Th/U值多大于0.4(表 1),表现出典型岩浆成因锆石特征(Rubatto,2002;Wu and Zheng, 2004)。
|
图 3 阿尔泰地区辉腾岩体代表性锆石阴极发光图像及锆石U-Pb年龄 Fig. 3 Representative CL images and U-Pb age diagram of the analyzed zircon for Huiteng granites in Altay area |
|
|
表 1 阿尔泰地区辉腾花岗岩体(PM3-TW34)锆石U-Pb同位素测试结果(LA-ICP-MS) Table 1 LA-ICP-MS U-Pb isotopic data of zircons from Huiteng granites (PM3-TW34) in the Altay area |
对样品PM3-TW34进行了24个分析点测试,测试结果见表 1。由测试结果可以看出,除了06、08、20点明显偏离谐和线外(图 3b),其余21个点在207Pb/235U-206Pb/238U谐和年龄图中表现出较好的谐和性,故剔除该3个年龄后对21个谐和性较好的锆石206Pb/238U表面年龄进行加权平均计算(图 3c),获得年龄加权平均值为202.3±2.2Ma(MSWD=0.81),时代为晚三叠世,代表辉腾花岗岩体岩浆结晶年龄。
3.2 岩石地球化学本次研究采集辉腾花岗岩不同岩性9件样品进行岩石地球化学分析,测试结果见表 2。岩石地球化学分析结果显示,岩石具有高硅(SiO2=68.90%~75.11%,平均为70.11%)、富碱(ALK=7.94%~10.46%,平均为9.65%)、高钾低钠(K2O/Na2O=1.33~2.64,平均为2.00)、低钛(TiO2=0.13%~0.50%,平均为0.32%)等特征,在TAS图解中样品主体落入碱性花岗岩(图 4a)。岩石Al2O3含量较高(平均为14.99%),铝饱和指数(A/CNK)介于1.03~1.05,属于弱过铝质花岗岩,与A/CNK-A/NK图解(图 4b)判别结果一致。里特曼指数(σ)平均值为3.40,碱度率(AR)平均值为4.09,表明岩石具有碱性岩石特征,在AR-SiO2图解(图 4c)中得到相同的结论。岩石K2O含量较高,在SiO2-K2O图解(图 4d)中表现出钾玄岩系列岩石特征,指示岩浆源区富钾,具有壳源特征。
|
|
表 2 阿尔泰地区辉腾花岗岩主量元素(wt%)、微量元素(×10-6)含量 Table 2 Major (wt%) and trace (×10-6) elements concentration of the Huiteng granites in the Altay area |
|
图 4 阿尔泰地区辉腾花岗岩体主量元素判别图解 (a)图据Wilson,1989;(b)图据Maniar and Piccoli, 1989;(c)图据Wright,1969;(d)图据Peccerillo and Taylor, 1976 Fig. 4 Major element diagram of Huiteng granites in Altay area |
岩石稀土元素含量变化较大,ΣREE=157.9×10-6~362.6×10-6,(平均值为249.1×10-6),轻、重稀土元素分异明显((La/Yb)N=4.85~14.5,平均值为10.3) 且轻稀土相对富集(ΣLREE/ΣHREE=6.40~13.0,平均值为10.2),轻稀土分异明显((La/Sm)N=3.17~4.10,平均值为3.66) 而重稀土分异相对较弱((Ga/Yb)N=0.90~2.00,平均值为1.56),球粒陨石标准化配分曲线呈右倾型分布模式(图 5a),显示有弱-中等程度负Eu异常(δEu=0.54~0.92,平均值为0.67),这与岩石富含钾长石、斜长石为贫Ca的钠长石特征相一致,指示岩浆在部分熔融过程中源区有斜长石的残留或岩浆在结晶过程中存在斜长石的分离结晶作用。在原始地幔标准化微量元素蛛网图中(图 5b),Cs、Rb、Th、La、Ce、Nd等元素相对富集,Ba、Sr、P、Ti等元素相对亏损,总体呈左高右低的曲线样式。
|
图 5 阿尔泰地区辉腾花岗岩球粒陨石标准化稀土元素配分模式(a,标准化值据Boynton et al., 1984)和原始地幔标准化微量元素蛛网图(b,标准化值据Sun and McDonough, 1989) Fig. 5 Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams (b, normalization values after Sun and McDonough, 1989) for Huiteng granites in Altay area |
选自辉腾花岗岩体5件样品的Sr-Nd同位素组成见表 3。计算时采用的年龄是本文新测得的LA-ICP-MS锆石U-Pb年龄202Ma。样品的87Rb/86Sr(3.058~9.534)、147Sm/144Nd(0.1085~0.1148) 变化较大,Sr的初始值低(0.70394~0.70665),指示它们的Rb-Sr同位素体系可能受到一定程度扰动。样品的Nd同位素组成相对均一,147Sm/144Nd为0.1085~0.1148,143Nd/144Nd为0.512470~0.512511,Sm/Nd比值为0.18~0.19,fSm/Nd变化于-0.45~-0.42之间,表明它们没有发生明显的Sm、Nd同位素分异,所测结果可以用于有关问题的讨论。εNd(t)(-1.2~-0.3) 接近于0,两阶段模式(t2DM)年龄为1.01~1.08Ga,表明其源区可能为一套中元古代的物质,这与区域上早中生代花岗岩特征相似(Wang et al., 2009)。
|
|
表 3 阿尔泰地区辉腾花岗岩Sr-Nd组成 Table 3 Representative Sr-Nd isotope compositions for Huiteng granites in Altay area |
研究区内的辉腾岩体地球化学显示高SiO2、Al2O3、ALK,低TiO2、MnO、MgO、P2O5的特征,矿物组合中以钾长石、斜长石、黑云母等矿物为主,未见角闪石,并且在CIPW标准矿物中出现刚玉分子(平均为0.93),具有弱过铝质钾玄岩特征。在蛛网图解中,岩石明显亏损Ba、Sr、P、Ti、Nb、Ta等元素,而Rb、Th、K、La等元素相对富集,指示岩石的形成与地壳熔融和结晶分异有关,样品Rb/Nb比值(介于6.40~16.16,平均为10.33) 明显高于全球上地壳的Rb/Nb比值(4.5,Taylor and McLenann, 1985),进一步表明辉腾花岗岩的形成与地壳物质部分熔融密切相关。Nb、Ta、Ti元素的不同程度亏损,指示该岩体可能为与俯冲作用相关的岛弧岩浆岩,但Ba、Sr元素的相对亏损,指示具有非造山花岗岩的特征。在1000×Ga/Al-Nd和(Zr+Nb+Ce+Y)-(Fe2O3T/MgO)等图解中样品主体落入A型花岗岩区或其边界附近(图 6),类似于铝质A型花岗岩(邱检生等,2000),但是岩石的微量元素特征显示它并不是典型的A型花岗岩,如Rb/Sr(1.09~3.29) 和Rb/Ba(0.37~1.91) 比值高于典型的I型花岗岩,低于或接近于A型花岗岩;又如Nb、Ta亏损显示岩石不具有典型A型花岗岩。综合判别图解和特征比值,岩石显示出I型和A型过渡的特点,尤其是Ba的强烈亏损,指示岩石具有强烈分异的I型花岗岩或A型花岗岩的特征。此外,岩石中出现少量的白云母矿物,可能是高分异作用的产物,所以辉腾花岗岩体是具有I-A型过渡特点的高分异碱性花岗岩,与中国境内中亚造山带大量存在的这类高分异花岗岩具有相似性(王涛等,2005)。
|
图 6 阿尔泰地区辉腾花岗岩A型花岗岩判别图解(据Whalen et al., 1987) Fig. 6 Nb vs. 10000×Ga/Al diagram (a) and Fe2O3T/MgO vs. (Zr+Nb+Ce+Y) diagram (b) for Huiteng granites in Altay area(after Whalen et al., 1987) |
研究认为大量过铝质花岗岩只有泥砂质沉积岩类部分熔融可能形成,不可能由基性岩部分熔融产生(Chappell et al., 1974;Vielzeuf and Montel, 1994)。过铝质花岗岩CaO/Na2O主要依赖于斜长石/粘土比值,CaO/Na2O小于0.3为泥质岩石的局部熔融,大于0.3为杂砂岩的局部熔融(Patiño-Douce and Johnston, 1991;Skjerlie and Johnston, 1996)。同时,有研究认为Rb/Sr大于0.1、Rb/Ba大于0.3,源岩为泥质岩(Sylvester,1998)。辉腾花岗岩CaO/Na2O=0.21~0.40(平均为0.36),Rb/Sr=1.09~3.29(平均为1.55),Rb/Ba=0.37~1.91(平均为0.66),显示辉腾花岗岩为泥质岩的局部熔融,并含有一定程度的杂砂岩。在Rb/Ba-Rb/Sr判别图解中样品落入贫粘土源岩区(图 7a),在A/MF-C/MF图解中,样品落入变泥质岩和变杂砂岩部分熔融区(图 7b),这与岩石地球化学特征比值指示结果一致,表明辉腾花岗岩主要是变泥质岩部分熔融作用的结果。Sylvester(1998)研究认为过铝质花岗岩Al2O3/TiO2比值能反映岩浆岩的形成温度,Al2O3/TiO2>100为低温(<875℃),Al2O3/TiO2<100为高温(>875℃),研究区花岗岩Al2O3/TiO2平均为56.4,均小于100,反映其部分熔融温度为高温。
|
图 7 阿尔泰地区辉腾花岗岩Rb/Ba-Rb/Sr图解(a,据Sylvester,1998)和A/MF-C/MF图解(b,据Altherr et al., 2000) Fig. 7 Rb/Ba vs. Rb/Sr diagram(a, after Sylvester, 1998) and A/MF vs. C/MF diagram(b, after Altherr et al., 2000)for Huiteng granites in Altay area |
研究表明,地壳部分熔融形成的过铝质花岗岩熔体的不同特征能反映其源区的不同成分,如由云母类脱水形成的熔体富含Rb、Cs并具有较高的K2O/Na2O比值特征,而由角闪石脱水熔融形成的熔体富含Na、Ca并且具有较低的K2O/Na2O比值特征(Altherr and Siebel, 2002;赵永久等,2007)。辉腾花岗岩富集Rb、Cs并具有高钾低钠的特征,指示可能与云母的源区脱水熔融有关。实验研究认为,白云母的脱水熔融只能产生少量的岩浆,黑云母的脱水熔融能产生大量的岩浆,而且变泥质岩类在水不饱和的条件下产生的过铝质熔体具有较高Rb/Sr(3~6)、低Sr/Ba(0.2~0.1) 的特征,而在水饱和状态是产生的岩浆具有低Rb/Sr(0.7~1.6)、高Sr/Ba(0.5~1.6) 的特征(Clemens and Vielzeuf, 1987;Harris and Inger, 1992;Stevens et al., 1997)。辉腾花岗岩具有低Rb/Sr(平均值1.55)、高Sr/Ba(平均值0.41) 的特实,结合岩体源区高温熔融条件和高钾的地球化学特征,指示花岗质熔体可能是在水饱和条件下由富含黑云母的泥质岩和少量杂砂岩脱水熔融形成。
花岗岩的Nd模式年龄反映了源区物质的平均地壳存留年龄,辉腾花岗岩两阶段模式(t2DM)年龄为1.01~1.08Ga,表明其源区可能为一套中元古代的物质。岩石Sr初始值(0.70394~0.70665) 比壳源花岗岩低,εNd(t)(-1.2~-0.3) 接近于0,比壳源花岗岩高,Th/U比值(平均6.60) 高于地壳平均值3.8(Taylor and McLenann, 1985),暗示成岩过程有地幔物质的加入,这一点与岩体中普遍含有暗色微粒包体的宏观特征相一致。岩石高Y和Yb含量及高Zr/Sm比值暗示部分熔融位于石榴石稳定区之上,并且是在较低的压力下发生的部分熔融。同时,岩石的低CaO及Sr、Eu、Ti、P的负异常暗示辉腾岩体源区有富钙斜长石、钛铁矿及磷灰石的残留。
综上所述,辉腾花岗岩可能由富含黑云母的变泥质岩和少量变杂砂岩在较低压力和较高温度下经历脱水熔融形成,其源区有富钙斜长石、钛铁矿和磷灰石的残留,同时幔源物质有一定的混入。
4.2 构造环境分析阿尔泰造山带是中亚造山带的重要组成部分,发育大量的花岗岩侵入体,具有多类型、多阶段、多成因的特点,目前关于印支期花岗岩的构造属性问题存在较多争议,有研究认为阿尔泰造山带~270Ma以来进入陆内演化阶段,印支期花岗岩多形成于板内构造环境(Wang et al., 2009;王涛等,2010);也有研究认为该期花岗岩是构造体制转换的产物,是由挤压构造背景向伸展构造背景转化的物质记录(Lv et al., 2012);另外国外学者认为阿尔泰构造带印支期谎言与西伯利亚超级地幔柱密切相关,属于非造山花岗岩类,是地幔柱演化最后阶段的产物(Potseluev et al., 2006)。
王涛等(2010)研究认为,中国阿尔泰早中生代花岗岩多具有高钾钙碱性和钾玄质特点,多数具有高分异I型花岗岩和S型花岗岩特点,俄罗斯阿尔泰与中国阿尔泰中生代花岗岩具有相似的地球化学特征和Sr-Nd同位素组成特征,出露于中阿尔泰构造带的中生代花岗岩εNd(t)为负值(-4.2~-0.5) 并有较老的Nd模式年龄(0.94~1.48Ga),该期岩浆时间伴生有大量的伟晶岩脉,显示出相对伸展的构造环境。
研究认为,中国阿尔泰造山带主造山期为早古生代(437~375Ma),并在晚古生代(290~270Ma)结束造山作用,此后进入板内演化阶段(王涛等,2010)。区域上,二叠系主体为一套陆相沉积地层,晚二叠世特斯巴汗组角度不整合于下伏地层之上,上二叠统为一套巨砾岩和陆相火山岩,与区域上以A型花岗岩为主的二叠纪花岗岩同时表明阿尔泰造山带二叠纪时期进入后碰撞造山带演化阶段(张亚峰等,2015)。辉腾花岗岩体呈近圆形或椭圆形,未发生变形,呈被动侵位于中元古界苏普特岩群,切割围岩构造线,显示出典型的后构造特点,结合辉腾花岗岩具有钾玄质和A型花岗岩的地球化学特征,指示其形成于板内伸展构造背景。在Y-Nb构造环境判别图解中(图 8),样品主体落入或靠近板内构造环境,少数落入岛弧+同碰撞构造环境,指示辉腾花岗岩形成于板内构造环境。区域上,在中国阿尔泰发育大量同时代的花岗岩(如将军山岩体、阿拉尔岩体、尚克兰岩体等),岩石具有A型花岗岩或高分异I型花岗岩的特征,形成于板内伸展构造环境,属于板内非造山构造背景,可能与地幔柱活动有关(王涛等,2010;Wang et al., 2014)。此外,在蒙古中部地区识别出同时代的双峰式火山岩(209±2Ma,SHRIMP)和A型花岗岩(213±3Ma,SHRIMP),认为该岩石组合形成于弧后盆地伸展构造背景,是蒙古-鄂霍次克洋向南俯冲的产物(Dash et al., 2016; Zhu et al., 2016)。
|
图 8 阿尔泰地区辉腾花岗岩构造环境判别图解(据Pearce et al., 1984) Fig. 8 Diagrams of the tectonic setting for Huiteng granites in Altay area(after Pearce et al., 1984) |
研究资料显示,古亚洲洋在晚二叠世已完全关闭(Xiao et al., 2008),并且当时蒙古-鄂霍次克洋的规模较小,对中国阿尔泰地区中生代花岗岩的形成影响力有限(Wang et al., 2014)。区域上,西伯利亚南部发育早中生代基性侵入岩(237~250Ma),形成于伸展构造背景(Vasyukova et al., 2011);同样,在阿尔泰-萨彦褶皱区发育三叠纪高Ti拉斑玄武岩(250~248Ma),形成于伸展构造背景,被认为苏伯利亚超级地幔柱活动的产物(Buslov et al., 2010)。另外,在中国阿尔泰喀拉苏识别出超高温变质岩,其变质年龄为278Ma(锆石U-Pb年龄),并且具有顺时针P-T轨迹,代表了中国阿尔泰造山带中生代伸展构造事件,同时区域上发育同期的镁铁质侵入岩(~280Ma),与塔里木地幔柱的发生时间较为一致(~275Ma),因此研究认为该期伸展构造事件与塔里木地幔柱活动有关(Tong et al., 2014)。以上研究成果进一步说明阿尔泰造山带在早中生代为板内构造演化阶段,但其伸展机制与苏伯利亚超级地幔柱的远程效应有关,还是与塔里木地幔柱的活动有关,需要进一步探究。
综上所述,出露于中阿尔泰构造带的辉腾花岗岩为I-A过渡型花岗岩,其具有负的εNd(t)(-0.7~-0.3) 和较老的两阶段模式(t2DM)年龄(1.01~1.08Ga),主要来源于地壳物质的部分熔融,可能有少量的地幔物质混入,形成于板内伸展构造环境,其弧岩浆岩特征可能与早期俯冲作用密切相关,是对源区特征的继承。
5 结论(1) 中阿尔泰构造带辉腾花岗岩主要由似斑状碱长花岗岩、似斑状正长花岗岩和似斑状二长花岗岩。LA-ICP-MS锆石U-Pb年代学研究结果表明,其形成时代为202.3±2.2Ma(MSWD=0.81),为晚三叠世。
(2) 研究区内的辉腾岩体地球化学属性具有高SiO2、Al2O3和ALK,低TiO2、MnO、MgO和P2O5的特征,轻稀土富集、轻重稀土分馏明显,具有Eu的负异常,富集Cs、Rb、Th、La、Ce、Nd等元素,亏损Ba、Sr、P、Ti等元素,显示出I-A过渡型花岗岩的特征,具有负的εNd(t)(-1.2~-0.3) 特征和较老的两阶段模式(t2DM)年龄(1.01~1.08Ga)。
(3) 辉腾花岗岩可能为富含黑云母的变泥质岩和少量变杂砂岩在较低压力和较高温度下经历脱水熔融形成,其源区有富钙斜长石、钛铁矿和磷灰石的残留,同时幔源物质有一定的混入,形成于板内构造环境。
| [] | Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51–73. DOI:10.1016/S0024-4937(99)00052-3 |
| [] | Altherr R, Siebel W. 2002. I-type plutonism in a continental back-arc setting:Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143: 397–415. DOI:10.1007/s00410-002-0352-y |
| [] | Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59–79. DOI:10.1016/S0009-2541(02)00195-X |
| [] | Annikova IY, Vladimirov AG, Vystavnoi SA, Zhuravlev DZ, Kruk NN, Lepekhina EN, Matukov DI, Moroz EN, Palesskii SV, Ponomarchuk VA, Rudnev SN, Sergeev SA. 2006. U-Pb and 39Ar/40Ar dating and Sm-Nd and Pb-Pb isotopic study of the Kalguty molybdenum-tungsten ore-magmatic system, southern Altai. Petrology, 14(1): 81–97. DOI:10.1134/S0869591106010073 |
| [] | Boynton WV. 1984. Geochemistry of the rare earth elements:Meteorite studies. In:Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam:Elsevier, 63-114 |
| [] | Buslov MM, Safonova IY, Fedoseev GS, Reichow MK, Davies K, Babin GA. 2010. Permo-Triassic plume magmatism of the Kuznetsk Basin, Central Asia:Geology, geochronology, and geochemistry. Russian Geology and Geophysics, 51(9): 1021–1036. DOI:10.1016/j.rgg.2010.08.010 |
| [] | Cai KD, Sun M, Jahn BM, Xiao WJ, Yuan C, Long XP, Chen HY, Tumurkhuu D. 2015. A synthesis of zircon U-Pb ages and Hf isotopic compositions of granitoids from Southwest Mongolia:Implications for crustal nature and tectonic evolution of the Altai Superterrane. Lithos, 232: 131–142. DOI:10.1016/j.lithos.2015.06.014 |
| [] | Chai FM, Dong LH, Yang FQ, Liu F, Geng XX, Huang CK. 2010. Age, geochemistry and petrogenesis of Tiemierte granites in the Kelang basin at the southern margin of Altay, Xinjiang. Acts Petrologica Sinica, 26(2): 377–386. |
| [] | Chappell BW, White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173–174. |
| [] | Chappell BW, White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2): 1–26. DOI:10.1017/S0263593300007720 |
| [] | Chen F, Li H, Wang D, Cai H, Chen W. 2000. New chronological evidence for Yanshanian diagenetic mineralization in China's Altay orogenic belt. China Science Bulletin, 45: 108–114. DOI:10.1007/BF02884652 |
| [] | Clemens JD, Vielzeuf D. 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86(2-4): 287–306. DOI:10.1016/0012-821X(87)90227-5 |
| [] | Collins WJ, Beams SD, White AJR, Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. DOI:10.1007/BF00374895 |
| [] | Dash B, Boldbaatar E, Zorigtkhuu OE, Yin A. 2016. Geochronology, geochemistry and tectonic implications of Late Triassic granites in the Mongolian Altai Mountains. Journal of Asian Earth Sciences, 117: 225–241. DOI:10.1016/j.jseaes.2015.11.024 |
| [] | Dong LH, Qu X, Zhao TY, Xu SQ, Zhou RH, Wang KZ, Zhu ZX. 2012. Magmatic sequence of Early Palaeozoic granitic intrusions and its tectonic implications in North Altay orogen, Xinjiang. Acta Petrologica Sinica, 28(8): 2307–2316. |
| [] | Harris NBW, Inger S. 1992. Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology, 110(1): 46–56. DOI:10.1007/BF00310881 |
| [] | He GQ, Han BF, Yue YJ and Wang JH. 1990. Tectonic division and crustal evolution of Altay Orogenic Belt in China. In:Xinjiang Geological Sciences Editorial Board (ed.). Xinjiang Geoscience (1). Beijing:Geological Publishing House:9-20 (in Chinese) |
| [] | He GQ, Li MS., Liu DQ, Zhou NH. 1994. Palaeozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumqi: Xinjiang People's Publishing House: 1-437. |
| [] | Hu AQ, Jahn BM, Zhang GX, Chen YB, Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang:Nd isotopic evidence, Part I. Isotopic characteristics of basement rocks. Tectonophysics, 328: 15–51. |
| [] | Jahn BM, Wu FY, Chen B. 2000a. Massive granitoid generation in central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82–92. |
| [] | Jahn BM, Wu FY, Hong DW. 2000b. Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia. Journal of Earth System Science, 109(1): 5–20. DOI:10.1007/BF02719146 |
| [] | Jahn BM, Capdevila R, Liu D, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia:Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5): 629–653. DOI:10.1016/S1367-9120(03)00125-1 |
| [] | Jahn BM, Litvinovsky BA, Zanvilevich AN, Reichow M. 2009. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt:Evolution, petrogenesis and tectonic significance. Lithos, 113(3-4): 521–539. DOI:10.1016/j.lithos.2009.06.015 |
| [] | Li CF, Li XH, Li QL, Guo JH, Li XH, Yang YH. 2012. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Analytica Chimica Acta, 727: 54–60. DOI:10.1016/j.aca.2012.03.040 |
| [] | Li CF, Chu ZY, Guo JH, Li YL, Yang YH, Li XH. 2015. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry. Analytical Methods, 7(11): 4793–4802. DOI:10.1039/C4AY02896A |
| [] | Li JY, Xiao WJ, Wang KZ, Sun GH and Gao LM. 2003. Neoproterozoec-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjian, NW China. In:Mao JW, Goldfarb RJ, Seltman R, Wang DH, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. IAGOD Guidebook Series10. London:CERCAM/NHM, 31-74 |
| [] | Li S, Wang T, Wilde SA, Tong Y. 2013. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews, 126: 206–234. DOI:10.1016/j.earscirev.2013.06.001 |
| [] | Litvinovsky BA, Tsygankov AA, Jahn BM, Katzir Y, Be'eri-Shlevin Y. 2011. Origin and evolution of overlapping calc-alkaline and alkaline magmas:The Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). Lithos, 125(3-4): 845–874. DOI:10.1016/j.lithos.2011.04.007 |
| [] | Liu F, Yang FQ, Mao JW, Chai FM, Geng XX. 2009. Study on chronology and geochemistry for Abagong granite in Altay orogen. Acta Petrologica Sinica, 25(6): 1416–1425. |
| [] | Liu F, Zhang ZX, Li Q, Qu WJ, Li C. 2012. New age constraints on Koktokay pegmatite No. 3 Vein, Altay Mountains, Xinjiang:Evidence from molybdenite Re-Os dating. Mineral Deposits, 31(5): 1111–1118. |
| [] | Liu F, Cao F, Zhang ZX, Li Q. 2014. Chronology and geochemistry of the granite near the Keketuohai No. 3 pegmatite in Xinjiang. Acta Petrologica Sinica, 30(1): 1–15. |
| [] | Liu W. 1990. Petrogenetic epoches and peculiarities of genetic types of granitoids in the Altai MTs., Xinjiang Uygur Autonomous Region, China. Geotectonica et Metallogenia, 14(1): 43–56. |
| [] | Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082 |
| [] | Ludwig KR. 2001. Isoplot/Ex version 2.49:A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center Special Publication 1a, 1-56 |
| [] | Lv ZH, Zhang H, Tang Y, Guan SJ. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, northwestern China:Evidence from zircon U-Pb and Hf isotopes. Lithos, 154: 374–391. |
| [] | Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635–643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
| [] | Patchett PJ and Samson SD. 2003. Isotopic evolution and crustal growth history. In:Rudnick RL (ed.). Treatise on Geochemistry 3, The Crust. Oxford:Elsevier Pergamon, 321-348 |
| [] | Patiño Douce AE, Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107(2): 202–218. DOI:10.1007/BF00310707 |
| [] | Pavlova GG, Borisenko AS, Goverdovskii VA, Travin AV, Zhukova IA, Tret'yakova IG. 2008. Permian-Triassic magmatism and Ag-Sb mineralization in southeastern Altai and northwestern Mongolia. Russian Geology and Geophysics, 49(7): 545–555. DOI:10.1016/j.rgg.2008.06.010 |
| [] | Pearce JA, Harris NBW, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. DOI:10.1093/petrology/25.4.956 |
| [] | Peccerillo A, Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. DOI:10.1007/BF00384745 |
| [] | Potseluev AA, Babkin DI, Kotegov VI. 2006. The Kalguty complex deposit, the Gorny Altai:Mineralogical and geochemical characteristics and fluid regime of ore formation. Geology of Ore Deposits, 48(5): 384–401. DOI:10.1134/S1075701506050047 |
| [] | Qiu JS, Wang DZ, Kanisawa S, McInnes BA. 2000. Geochemistry and petrogenesis of aluminous A-type granites in the coastal area of Fujian Province. Geochimica, 29(4): 313–321. |
| [] | Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123–138. DOI:10.1016/S0009-2541(01)00355-2 |
| [] | Çengör AM, Natal'in BA, Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299–307. DOI:10.1038/364299a0 |
| [] | Shen XM, Zhang HX, Ma L. 2013. LA-ICP-MS zircon U-Pb dating for Jieerkuduke acidic dykes in the southern Altay Range. Xinjiang Geology, 31(3): 157–161. |
| [] | Skjerlie KP, Johnston AD. 1996. Vapour-Absent melting from 10 to 20kbar of crustal rocks that contain multiple hydrous Phases:Implications for anatexis in the deep to very deep continental crust and active continental margins. Journal of Petrology, 37(3): 661–691. DOI:10.1093/petrology/37.3.661 |
| [] | Stevens G, Clemens JD, Droop GRT. 1997. Melt production during granulite-facies anatexis:Experimental data from "primitive" metasedimentary protoliths. Contributions to Mineralogy and Petrology, 128(4): 352–370. DOI:10.1007/s004100050314 |
| [] | Sun GH, Li JY, Yang TN, Li YP, Zhu ZX, Yang ZQ. 2009. Zircon SHRIMP U-Pb dating of two linear granite plutons in southern Altay Mountains and its tectonic implications. Geology in China, 36(5): 976–987. |
| [] | Sun M, Long XP, Cai KR, Jiang YD, Wang BY, Yuan C, Zhao GC, Xiao WJ, Wu FY. 2009. Early Paleozoic ridge subduction in the Chinese Altai:Insight from the abrupt change in zircon Hf isotopic compositions. Science in China (Series D), 52(9): 1345–1358. DOI:10.1007/s11430-009-0110-3 |
| [] | Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19 |
| [] | Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29–44. DOI:10.1016/S0024-4937(98)00024-3 |
| [] | Taylor SR, McLenann SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell Scientific Publications: 1-312. |
| [] | Tong LX, Xu YG, Cawood PA, Zhou X, Chen YB, Liu Z. 2014. Anticlockwise P-T evolution at~280Ma recorded from ultrahigh-temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume?. Journal of Asian Earth Sciences, 94: 1–11. DOI:10.1016/j.jseaes.2014.07.043 |
| [] | Tong Y. 2006. Geochronology, origin of the late Paleozoic granitoids from the Altai Orogen in China and their geological significance. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences: 12-101. |
| [] | Vasyukova EA, Izokh AE, Borisenko AS, Pavlova GG, Sukhorukov VP, Anh TT. 2011. Early Mesozoic lamprophyres in Gorny Altai:Petrology and age boundaries. Russian Geology and Geophysics, 52(12): 1574–1591. DOI:10.1016/j.rgg.2011.11.010 |
| [] | Vielzeuf D, Montel JM. 1994. Partial melting of metagreywackes. PartⅠ. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117(4): 375–393. DOI:10.1007/BF00307272 |
| [] | Vladimirov AG, Kozlov MS, Shokal'skii SP, Khalilov VA, Rudnev SN, Kruk NN, Vystavnoi SA, Borisov SM, Berezikov YK, Metsner AN, Babin GA, Mamlin Murzin OM, Nazarov GV, Makarov VA. 2001. Major epochs of instrusive magmatism of Kuznetsk Alatau, Altai, and Kalba (from U-Pb isotope dates). Russian Geology and Geophysics, 42: 1157–1178. |
| [] | Vladimirov AG, Kruk NN, Polyanskii OP, Vladimirov VG, Babin GA, Rudnev SN, Annikova IY, Travin AV, Savinykh YV and Palesskii SV. 2005. Correlation of Hercynian deformations, sedimentation and magmatism in the Altai collisional system as refflecting plate-and plum-tectonics. In:Leonov MG (ed.). Problems of Central Asia Tectonics. Moscow:Geosciences, 277-308 (in Russian) |
| [] | Wang DH, Chen YC, Xu ZG, Li TD, Fu XJ. 2002. Mineraogenetic Series of Mineral Deposits and Regularity of Mineralization in the Altai Metallogenic Province, Xinjiang, China. Beijing: Atomic Energy Press: 1-498. |
| [] | Wang T, Zheng YD, Li TB, Gao YJ. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23(5): 715–729. DOI:10.1016/S1367-9120(03)00133-0 |
| [] | Wang T, Hong DW, Tong Y, Han BF, Shi YR. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogeny:Its implications for vertical continental growth. Acta Petrologica Sinica, 21(3): 640–650. |
| [] | Wang T, Hong DW, Jahn BM, Tong Y, Wang JB, Han BF, Wang XX. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China:Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6): 735–751. DOI:10.1086/507617 |
| [] | Wang T, Tong Y, Jahn BM, Zou TR, Wang JB, Hong DW, Han BF. 2007. SHRIMP U-Pb zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32(1-2): 325–336. |
| [] | Wang T, Jahn BM, Kovachet VP, Tong Y, Hong DW, Han BF. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 110(1): 359–372. |
| [] | Wang T, Tong Y, Li S, Zhang J, Shi XJ, Li JY, Han BF, Hong DW. 2010. Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth:Perspectives from Chinese Altay. Acta Petrologica et Mineralogica, 29(6): 595–618. |
| [] | Wang T, Jahn BM, Kovach VP, Tong Y, Wilde SA, Hong DW, Li S, Salnikova EB. 2014. Mesozoic intraplate granitic magmatism in the Altai accretionary orogen, NW China:Implications for the orogenic architecture and crustal growth. American Journal of Science, 314(1): 1–42. DOI:10.2475/01.2014.01 |
| [] | Wang ZG, Zhao ZH, Zou TR. 1998. Geochemistry of the Granitoids in Altay. Beijing: Science Press: 1-152. |
| [] | Whalen JB, Currie KL, Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. DOI:10.1007/BF00402202 |
| [] | Wilson BM. 1989. Igneous Petrogenesis:A Global Tectonic Approach. London: Unwin and Hyman: 1-466. |
| [] | Windley BF, Kröner A, Guo JH, Qu GS, Li YY, Zhang C. 2002. Neoproterozoic to paleozoic geology of the Altai orogen, NW China:New zircon age data and tectonic evolution. The Journal of Geology, 110(6): 719–737. DOI:10.1086/342866 |
| [] | Wright JB. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4): 370–384. DOI:10.1017/S0016756800058222 |
| [] | Wu FY, Jahn BM, Wilde S, Sun DY. 2000. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89–113. DOI:10.1016/S0040-1951(00)00179-7 |
| [] | Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554–1569. DOI:10.1007/BF03184122 |
| [] | Xiao WJ, Windley BF, Badarch G, Sun SL, Li JL, Qin KZ, Wang ZH. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids:Implications for the growth of Central Asia. Journal of the Geological Society, London, 161(3): 339–342. DOI:10.1144/0016-764903-165 |
| [] | Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL, Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China:Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102–117. DOI:10.1016/j.jseaes.2007.10.008 |
| [] | Yang FQ, Mao JW, Yan SH, Liu F, Chai FM, Zhou G, Liu GR, He LX, Geng XX, Dai JZ. 2008. Geochronology, geochemistry and geological implications of the Mengku synorogenic plagiogranite pluton in Altay, Xinjiang. Acta Geologica Sinica, 82(4): 485–499. |
| [] | Yarmolyuk VV, Kovalenko VI, Sal'nikova EB, Budnikov SV, Kovach VP, Kotov AB, Ponomarchuk VA. 2002. Tectono-magmatic zoning, magma sources, and geodynamics of the Early Mesozoic Mongolia-Transbaikal province. Geotectonics, 36(4): 293–311. |
| [] | Yarmolyuk VV, Kovalenko VI, Kozlovsky AM, Vorontsov AA and Savatenkov VM. 2005. Late Paleozoic-Early Mesozoic rift system of the Central Asia:Composition and sources of magmatism, Formation, and geodynamics. In:Kovalenko VI (ed.). Tectonic of Central Asia. Moscow:World of Science Publisher, 197-232 (in Russian) |
| [] | Yuan HL, Gao S, Liu XM, Li HM, Gunther D, Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370. DOI:10.1111/ggr.2004.28.issue-3 |
| [] | Yuan F, Zhou TF, Yue SC. 2001. The age and the genetic types of the granite in the Nurt area, Altay. Xinjiang Geology, 19(4): 292–296. |
| [] | Zeng QS, Chen GH, Wang H, Shan Q. 2007. Geochemical characteristic, SHRIMP zircon U-Pb dating and tectonic implication for granitoids in Chonghuer basin, Altai, Xinjiang. Acta Petrologica Sinica, 23(8): 1921–1932. |
| [] | Zhang QF, Hu AQ, Zhang GX, Fan SK, Pu ZP, Li Q. 1994. Evidence from isotopic age for presence of Mesozoic-Cenozoic magmatic activities in Altai region, Xinjiang. Geochimica, 23(3): 269–280. |
| [] | Zhang YF, Lin XW, Guo QM, Wang X, Zhao DC, Dang C, Yao S. 2015. LA-ICP-MS zircon U-Pb dating and geochemistry of Aral granitic plutons in Koktokay area in the southern Altay margin and their source significance. Acta Geologica Sinica, 89(2): 339–354. |
| [] | Zhang ZX, Chai FM, Wang LF, Liu F, Geng XX. 2014. Geochemical characteristics and its significance of biotite monzogranite in the Keyinbulake copper-zinc deposit at the southern margin of Altay, Xinjiang. Geoscience, 28(3): 461–470. |
| [] | Zhao YJ, Yuan C, Zhou MF, Yan DP, Long XP, Li JL. 2007. Geochemistry and petrogenesis of Laojungou and Mengtonggou granites in western Sichuan, China:Constraints on the nature of Songpan-Ganzi basement. Acta Petrologica Sinica, 23(5): 995–1006. |
| [] | Zhao ZH, Wang ZG and Zou TR. 1993. The REE, isotopic composition of O, Pb, Sr and Nd and petrogenesis of granitoids in the Altai region. In:Tu GC (ed.). Progress of Solid-Earth Sciences in Northern Xinjiang, China. Beijing:Science Press, 239-266 (in Chinese) |
| [] | Zhou G, Zhang ZC, Luo SB, He B, Wang X, Yin LJ, Zhao H, Li AH, He YK. 2007. Confirmation of high-temperature strongly peraluminous Mayin'ebo granites in the south margin of Altay, Xinjiang:Age, geochemistry and tectonic implications. Acts Petrologica Sinica, 23(8): 1909–1920. |
| [] | Zhu MS, Zhang FC, Miao LC, Baatar M, Anaad C, Yang SH, Li XB. 2016. Geochronology and geochemistry of the Triassic bimodal volcanic rocks and coeval A-type granites of the Olzit area, Middle Mongolia:Implications for the tectonic evolution of Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences, 122: 41–57. DOI:10.1016/j.jseaes.2016.03.001 |
| [] | Zhu YF, Zeng YS, Gu LB. 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China. Journal of Asian Earth Sciences, 27(1): 61–77. |
| [] | 柴凤梅, 董连慧, 杨富全, 刘锋, 耿新霞, 黄承科. 2010. 阿尔泰南缘克朗盆地铁木尔特花岗岩体年龄、地球化学特征及成因. 岩石学报, 26(2): 377–386. |
| [] | 董连慧, 屈迅, 赵同阳, 徐仕琪, 周汝洪, 王克卓, 朱志新. 2012. 新疆北阿尔泰造山带早古生代花岗岩类侵入序列及其构造意义. 岩石学报, 28(8): 2307–2316. |
| [] | 何国琦, 韩宝福, 岳永君, 王嘉桁. 1990. 中国阿尔泰造山带的构造分区和地壳演化. 见: 新疆地质科学编委会编. 新疆地质科学: 第1辑. 北京: 地质出版社, 9-20 |
| [] | 何国琦, 李茂松, 刘德全, 唐延龄, 周汝洪. 1994. 中国新疆古生代地壳演化及成矿. 乌鲁木齐: 新疆人民出版社: 1-437. |
| [] | 刘锋, 杨富全, 毛景文, 柴凤梅, 耿新霞. 2009. 阿尔泰造山带阿巴宫花岗岩体年代学及地球化学研究. 岩石学报, 25(6): 1416–1425. |
| [] | 刘伟. 1990. 中国新疆阿尔泰花岗岩的时代及成因类型特征. 大地构造与成矿学, 14(1): 43–56. |
| [] | 邱检生, 王德滋, 蟹泽聪史, McInnesBA. 2000. 福建沿海铝质A型花岗岩的地球化学及岩石成因. 地球化学, 29(4): 313–321. |
| [] | 沈晓明, 张海祥, 马林. 2013. 阿尔泰南缘杰尔库都克酸性岩脉LA-ICP-MS锆石U-Pb测年. 新疆地质, 31(3): 157–161. |
| [] | 孙桂华, 李锦轶, 杨天南, 李亚萍, 朱志新, 杨之青. 2009. 阿尔泰山脉南部线性花岗岩锆石SHRIMP U-Pb定年及其地质意义. 中国地质, 36(5): 976–987. |
| [] | 孙敏, 龙晓平, 蔡克人, 蒋映德, 王步云, 袁超, 赵国春, 肖文交, 吴福元. 2009. 阿尔泰早古生代末期洋中脊俯冲:锆石Hf同位素组成突变的启示. 中国科学(D辑), 39(7): 935–948. |
| [] | 童英. 2006. 阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义. 博士学位论文. 北京: 中国地质科学院, 12-101 |
| [] | 王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社: 1-498. |
| [] | 王涛, 洪大卫, 童英, 韩宝福, 石玉若. 2005. 中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义. 岩石学报, 21(3): 640–650. |
| [] | 王涛, 童英, 李舢, 张建军, 史兴俊, 李锦轶, 韩宝福, 洪大卫. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例. 岩石矿物学杂志, 29(6): 595–618. |
| [] | 王中刚, 赵振华, 邹天人. 1998. 阿尔泰花岗岩类地球化学. 北京: 科学出版社: 1-152. |
| [] | 杨富全, 毛景文, 闫升好, 刘锋, 柴凤梅, 周刚, 刘国仁, 何立新, 耿新霞, 代军治. 2008. 新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义. 地质学报, 82(4): 485–499. |
| [] | 袁峰, 周涛发, 岳书仓. 2001. 阿尔泰诺尔特地区花岗岩形成时代及成因类型. 新疆地质, 19(4): 292–296. |
| [] | 曾乔松, 陈广浩, 王核, 单强. 2007. 阿尔泰冲乎尔盆地花岗质岩类的锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 23(8): 1921–1932. |
| [] | 张亚峰, 蔺新望, 郭岐明, 王星, 赵端昌, 党晨, 姚珊. 2015. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义. 地质学报, 89(2): 339–354. |
| [] | 张志欣, 柴凤梅, 王丽芬, 刘锋, 耿新霞. 2014. 新疆阿尔泰南缘克因布拉克铜锌矿区黑云母二长花岗岩地球化学特征及意义. 现代地质, 28(3): 461–470. |
| [] | 赵永久, 袁超, 周美夫, 颜丹平, 龙晓平, 李继亮. 2007. 川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约. 岩石学报, 23(5): 995–1006. |
| [] | 赵振华, 王中刚, 邹天人. 1993. 阿尔泰花岗岩类型与成岩模型的REE及O、Pb、Sr、Nd同位素组成依据. 见: 涂光炽. 新疆北部固体地球科学新进展. 北京: 科学出版社, 239-266 |
| [] | 周刚, 张招崇, 罗世宾, 何斌, 王祥, 应立娟, 赵华, 李爱红, 贺永康. 2007. 新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义. 岩石学报, 23(8): 1909–1920. |
2017, Vol. 33









