岩石学报  2017, Vol. 33 Issue (8): 2479-2493   PDF    
冈底斯带南部桑日高分异I型花岗岩的岩石成因及其动力学意义
王珍珍, 刘栋, 赵志丹, 闫晶晶, 石卿尚, 莫宣学     
地质过程与矿产资源国家重点实验室, 中国地质大学地球科学与资源学院, 北京 100083
摘要: 冈底斯岩浆岩带位于西藏南部的拉萨地体南缘,它形成于特提斯洋和印度-亚洲大陆长期俯冲碰撞过程中,是青藏高原花岗岩最发育的地区。前人对冈底斯岩浆带中各类型花岗岩的成因、源区、时空分布以及其地球动力学意义进行了详细大量的研究,但是对高分异花岗岩的具体成因、演化过程以及在70~65Ma拉萨地块的地球动力学演化过程研究较少。本文选择冈底斯南缘白垩纪末桑日花岗岩进行研究,揭示了桑日花岗岩的岩石学特征、锆石U-Pb年龄、锆石Hf同位素特征和地球化学特征。本文样品LA-ICP-MS测得的锆石U-Pb年龄为67~66Ma。桑日花岗岩属于高钾钙碱性系列,具有高SiO2(74.26%~76.93%)、高K2O+Na2O(7.87%~8.56%),低P2O5(0.02%~0.04%)和CaO(0.28%~1.00%),以及富集K、Rb、Th,亏损Nb、P、Ti的高分异I型花岗岩的特征。在锆石Hf同位素上,桑日花岗岩εHft)>0(+4.6~+10.9),且具有Hf不均一的特征。结合前人研究,本文认为桑日花岗岩是高分异I型花岗岩,在特提斯洋板块北向俯冲过程中,板片回转,俯冲洋壳脱水产生的流体进入地幔楔,引发地幔楔发生部分熔融产生镁铁质幔源物质并底侵上涌,导致浅部地壳发生部分熔融,并与幔源岩浆混合,从而在浅部形成混源岩浆房,最终在侵位与成岩后期经历高程度的分异演化形成的。
关键词: 冈底斯     桑日花岗岩     高分异I型花岗岩     板片回转    
The Sangri highly fractionated I-type granites in southern Gangdese:Petrogenesis and dynamic implication
WANG ZhenZhen, LIU Dong, ZHAO ZhiDan, YAN JingJing, SHI QingShang, MO XuanXue     
State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract: Long-term subduction of the Neo-Tethyan oceanic lithosphere beneath an active continental margin gave rise to prolonged plutonic activity, which is illustrated by the vast chain of Gangdese batholith in the south margin of Lhasa Terrane, Southern Tibet. Although extensive studies have performed on the source regions, spatial-temporal associations and geotectonic implications of the granitic rocks within the batholith, the magmatic evolution, petrogenesis of highly fractionated I-type granite and the geodynamical evolution process in 70~65Ma have not been well studied. Here we present zircon U-Pb geochronology, Hf isotope and bulk-rock geochemistry of the Late Cretaceous Sangri granites in order to shed light on this issue. Zircon U-Pb geochronology demonstrates the plutonic activity emplaced at 67~66Ma. The Sangri granites belong to high-K calc-alkaline series, displaying highly fractionated I-type signature with high content of SiO2 (74.26%~76.93%), K2O+Na2O (7.87%~8.56%), but low content of CaO (0.28%~1.00%) and P2O5 (0.02%~0.04%) and pronounced depletion in Nb, P and Ti, and enrichment in K, Rb, Th. The affinity of mantle component in the Sangri granites that was elucidated by positive zircon εHf(t) of +4.6~+10.9, which makes it indistinguishable from other granitic rocks within Gangdese batholith. Tectonic models of evolution of the Neo-Tethyan Ocean suggest that the rollback of the oceanic slab is required in order to generate magmatism in Gangdese batholith during 70~65Ma. Combined with the previous research in Gangdese, we suggest the magma of Sangri granites had been derived from juvenile lower crust mingled with mantle component upwelling through the window of Neo-Tethyan oceanic slab, and were subjected to high degree of fractionation in the magma chamber.
Key words: Gangdese     Sangri pluton     Highly fractionated I-type granite     Slab rollback    
1 引言

冈底斯岩浆岩带形成于特提斯洋俯冲和印度-亚洲大陆碰撞过程中,其中包含了大量的地球动力学与成岩成矿的信息。因此,研究冈底斯岩浆岩对于了解青藏高原的深部过程,印度-亚欧大陆碰撞过程都有着十分重要的意义(朱弟成等, 2009a; 侯增谦等, 2006a)。前人对冈底斯岩浆岩进行了多方面卓有成就的研究(Zhang et al., 2016; Dong et al., 2005; 莫宣学等, 2005),但是以往的工作主要针对基性超基性岩、埃达克质火山岩、超钾质火山岩、淡色花岗岩等岩石类型的成因和地球动力学进行探讨,而对高分异花岗岩的成因类型、源区特征和演化过程研究较少。

除此之外,众多学者就岩浆岩的地球化学、同位素等特征重点展开特提斯洋俯冲、印度-亚洲大陆碰撞时限的讨论,初步得出约260Ma,特提斯洋板块开始北向俯冲到冈底斯板块之下(黄丰等, 2015; 朱弟成等, 2009a)。100~70Ma,特提斯洋板片处于俯冲阶段末期(Ma et al., 2013a, b; Zheng et al., 2014)。到65~50Ma左右,印度大陆与亚洲大陆发生碰撞(Zhu et al., 2015; 莫宣学等, 2005, 2007)。随后进入后碰撞阶段。其中,前人对印度亚洲大陆碰撞的时限讨论较多(约为65Ma)(侯增谦等, 2006b; 莫宣学, 2011; 莫宣学等, 2005, 2007),但对碰撞之前板片俯冲的动力学机制讨论较少且争论较大,主要观点有:(1) 平板俯冲或者低角度俯冲,随后发生拆沉,回转和断离(Chung et al., 2005; Wen et al., 2008a, b; Lee and Anderson, 2015);(2) 正常角度俯冲,随后发生回转断离(王莉等, 2013)或洋脊俯冲(管琪等, 2010; Zhang et al., 2010; Zheng et al., 2014)。本文通过研究冈底斯带南缘67~66Ma桑日花岗岩的岩相学、锆石U-Pb年代学、Hf同位素、岩石地球化学特征,确定了桑日花岗岩的成因类型为高分异I型花岗岩。同时,结合冈底斯南带120~10Ma岩浆岩特征进行对比讨论,认为在70~65Ma之前,特提斯洋板片为低角度俯冲,而在70~65Ma左右,俯冲板片在重力的作用下发生回转。

2 地质背景和样品

冈底斯地体位于班公湖-怒江缝合带(BNSZ)以南,雅鲁藏布缝合带(IYZSZ)以北,呈近东西方向延伸,自西向东构造结逐渐变窄直至转变为近南北走向。冈底斯地体又称为拉萨地体,以洛巴堆-米拉山断裂(LMF),和狮泉河-纳木错蛇绿混杂岩带(SNMZ)为界,由南向北可以将拉萨地块划分为南部拉萨地块(SL)、中部拉萨地块(CL)、北部拉萨地块(NL)(图 1a)。冈底斯的沉积盖层主要由上古生界(石炭系、二叠系)和中生界沉积组成(中国地质科学院, 1990)。其中,南部拉萨地块的沉积盖层主要集中在东部,包括奥陶纪弱变质碎屑岩、碳酸盐岩层、桑日群-碎屑岩地层和白垩纪灰岩-碎屑岩地层。中部拉萨地块的古老基底主要被大范围的晚侏罗纪-早白垩纪的海陆交互相沉积地层和火山岩夹层覆盖,除此之外还可见到少量碳酸盐地层及双峰式火山岩地层。北部拉萨地块东部主要覆盖着三叠纪-侏罗纪碎屑岩沉积地层,而白垩纪含火山岩夹层的海相沉积地层则遍布整个北部拉萨地块(Mo et al., 2008; Zhu et al., 2012, 2013; Ding et al., 2005; Wu et al., 2010)。

由于特提斯洋和印度-亚洲大陆长期俯冲碰撞过程,拉萨地块上大面积出露中新生代火山岩和冈底斯花岗岩岩基带。拉萨地块中-新生代花岗岩可以分为南、北两带。北带的中生代花岗岩和晚侏罗纪-早白垩纪火山岩主要分布在北部和中部拉萨地块之上,被认为是班公湖-怒江新特提斯洋壳岩石圈向南俯冲消减最终发生板片断离的产物。而南部拉萨地块上呈东西向展布的I型花岗岩带即冈底斯岩基带。南部冈底斯岩基被认为是雅鲁藏布新特提斯洋岩石圈向北低角度俯冲,拆沉,回转和断离过程中的产物(Zhu et al., 2011, 2013; Ji et al., 2009; Green and Falloon, 2015; Wen et al., 2008a, b)。冈底斯花岗岩带的主体位于南拉萨地块雅鲁藏布缝合带北侧,隆格尔-工布江达断隆带以南的地区,主要是由岩基及大的复合岩体构成,并伴有同时代大规模的中酸性火山岩,这二者共占冈底斯岩浆岩带总面积的60%以上。该带主要由俯冲型花岗岩类、同碰撞花岗岩类、同碰撞-后碰撞强过铝花岗3类岩石构成,其中,俯冲花岗岩和同碰撞花岗岩类的出露最为广泛(图 1b)。

图 1 藏南桑日地区地质简图和采样位置 (a)青藏高原构造单元划分地质简图;(b)拉萨地体中-新生代岩浆活动分布简图(据Zhu et al., 2009);(c)采样区地质简图. JSSZ:金沙江缝合带;BNSZ:班公湖-怒江缝合带;SNMZ:狮泉河-纳木错蛇绿混杂岩带;LMF:洛巴堆-米拉山断裂带;IYZSZ:雅鲁藏布缝合带;NL:北拉萨地块;CL:中拉萨地块;SL:南拉萨地块 Fig. 1 Simplified geological map of Sangri in southern Tibet and the location of sampling (a) tectonic subdivision of the Tibetan Plateau; (b) simplified Mesozoic-Cenozoic magmatic activity distribution of Lhasa Terrane (after Zhu et al., 2009); (c) simplified geological map of sampling area. JSSZ: Jinsha suture zone; BNSZ: Bangong-Nujiang suture zone; SNMZ: Shiquanhe-Nam Tso Mélange Zone; LMF: Luobadui-Milashan Fault; IYZSZ: Indus-Yarlung Zangbo Suture Zone; NL: Northern Lhasa Terrane; CL: Central Lhasa Terrane; SL: Southern Lhasa Terrane

本文样品采自南冈底斯东部的桑日县附近,该地区中新生代岩浆岩大片侵入到中生代的林布宗组、楚木龙组、设兴组、塔克那组及新生代的林子宗群(图 1c)。新生代侵入岩散布于整块区域,并多侵入于中生代侵入岩中。桑日花岗岩野外呈浅灰白色,花岗结构,块状构造,多为黑云母花岗岩,部分为二云母花岗岩。矿物成分由石英(30%~40%)、斜长石(1%~5%)、钾长石(20%~35%)、黑云母(3%~5%)、白云母( < 1%)、磁铁矿( < 1%)等组成见(图 2)。其中,石英为他形粒状,粒度不等,粒径为2~7mm(图 2a)。斜长石为自形-半自形板状,多有聚片双晶或卡纳复合双晶,表面偶见绿泥石化。斜长石亚族中的中长石内部可见明显的环带结构,部分可见卡钠复合双晶(图 2b)。钾长石为自形-半自形板状或粒状,表面可见高岭土化而成土褐色,多见卡式双晶。黑云母粒度变化较大,粒度由0.2~2mm不等,多呈半自形-他形片状(图 2c, d)。白云母粒度较小,为0.1~0.5mm,呈半自形-他形(图 2a)。磁铁矿粒度较小,多与黑云母伴生(图 2c)。

图 2 桑日花岗岩显微照片 (a) SR1201-1;(b) SR1202-3;(c) SR1202-3;(d) SR1203-1.左为单偏光,右为正交光.Pl:斜长石; MS:白云母;Q:石英;Pth:条纹长石;Bi:黑云母;Mt:磁铁矿.比例尺为400μm Fig. 2 Photomicrographs of the Sangri granites Left: plane-polarized light; right: cross-polarized light. Pl: plagioclase; MS: muscovite; Q: quartz; Pth: perthite; Bi: biotite; Mt: magnetite. The scale is 400μm
3 分析方法

本文中全岩主量与微量元素分析均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)进行。全岩主量元素含量测定利用XRF分析完成,分析精度优于5%。全岩微量元素含量利用Agilent 7500a ICP-MS分析完成,分析精度优于5%~10%,详细的样品消解处理过程同Liu et al. (2008)

锆石微量元素含量和U-Pb同位素定年在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)利用LA-ICP-MS同时分析完成。激光剥蚀系统为Geo Las 2005,ICP-MS为Agilent 7500a。对分析数据的离线处理采用软件ICPMSDataCa 9.11完成。详细的仪器操作条件和数据处理方法同Liu et al. (2010)。锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot 3完成。

锆石Hf同位素测试在中国科学院地质与地球物理研究所MC-ICP-MS实验室进行, 本文选择已经调试过的锆石U-Pb定年分析的剥蚀坑的位置进行Hf同位素分析。束斑直径为40μm,剥蚀速率8Hz条件下,标准锆石91500的180Hf的信号强度约为5V左右。详细的测试流程和数据校正方法见Wu et al. (2006)

4 结果 4.1 锆石U-Pb年龄和Hf同位素

本文对样品SR1201-2和SR1203-1进行了锆石LA-ICPMS U-Pb年龄分析,分析结果见表 1。本文用于定年的锆石多为浅黄白色,柱状或长柱状,具有较好晶型,颗粒较大且多数具有震荡环带(图 3a-1, 1b-1)。文中所测锆石的Th/U比值范围为0.52~1.43,为典型的岩浆成因锆石(Hoskin and Schaltegger, 2003)。SR1201-2共测试18个锆石颗粒,其中12个锆石颗粒的206Pb/238U的值靠近谐和线,得到206Pb/238U加权平均年龄为66.4±1.6Ma(MSWD=2.1)(图 3a-2)。样品SR1203-1同样测试18个锆石颗粒,其中11个锆石颗粒的206Pb/238U的值靠近谐和线,得到206Pb/238U加权平均年龄67.3±1.0Ma(MSWD=2.4)(图 3b-2)。

表 1 桑日花岗岩锆石U-Pb年龄数据 Table 1 Zircon U-Pb isotopic data of the Sangri granites

图 3 桑日花岗岩锆石阴极发光图像和U-Pb年龄谐和图 (a) SR1201-2; (b) SR1203-1 Fig. 3 CL images and U-Pb concordia diagrams of the Sangri granites

本文对已测锆石年龄的SR1201-2和SR1203-1进行了Lu-Hf同位素分析,测试结果见表 2

表 2 桑日花岗岩锆石Hf同位素数据 Table 2 Zircon Hf isotopic data of the Sangri granites

样品SR1201-2的锆石176Hf/177Hf比值为0.282860~0.283041,εHf(t)值为+4.6~+10.9,地幔模式年龄为303~562Ma,地壳模式年龄tDMC为439~888Ma。样品SR1203-1的锆石176Hf/177Hf比值为0.282888~0.282998,εHf(t)值为+5.6~+9.5,地幔模式年龄为373~526Ma,地壳模式年龄tDMC为537~785Ma。

4.2 全岩地球化学

桑日花岗岩全岩主微量元素测试结果见表 3。桑日花岗岩的SiO2含量为74.26%~76.93%,在TAS地球化学判别图解中显示为花岗岩和碱性花岗岩(图 4)。岩石总体具有较高的K2O含量(4.47%~4.96%)及K2O/Na2O比值(1.31~1.38)、全碱含量偏低Na2O+K2O(7.87%~8.56%),里特曼指数(σ=(K2O+Na2O)2/(SiO2-43))为1.89~2.33,在SiO2-K2O的地球化学判别图解中,样品显示为高钾钙碱性系列的花岗岩(图 5)。Al2O3含量(13.00%~14.19%),铝饱和指数A/CNK为(1.08~1.16)。P2O5(0.02%~0.04%)、TiO2(0.12%~0.19%)、MgO(0.1%~0.35%)含量较低,且随着SiO2的含量增加而呈减少趋势。

表 3 桑日花岗岩主量(wt%)和微量(×10-6)元素成分 Table 3 Whole-rock major (wt%) and trace (×10-6) elements compositions of the Sangri granite


图 5 桑日花岗岩K2O-SiO2图解(底图据Peccerillo and Taylor, 1976) Fig. 5 SiO2 vs. K2O diagram of the Sangri rocks (after Peccerillo and Taylor, 1976)

微量元素组成上,桑日花岗岩的稀土总量较低(ΣREE=90.7×10-6~122.0×10-6)。在球粒陨石标准化图解(图 6)中,桑日花岗岩显示轻重稀土元素分馏,轻稀土元素相对富集(ΣLREE=77.8×10-6~91.9×10-6),重稀土元素亏损(ΣHREE=12.3×10-6~19.9×10-6),(La/Yb)N为4.62~6.68,(Ce/Yb)N为3.91~5.05,铕负异常较为明显(δEu=0.26~0.56)。在原始地幔标准化微量元素蜘蛛图解(图 7)中,样品显示富集大离子亲石元素Rb、Ba、Th和K,亏损高场强元素Nb、P、Ti。

图 6 桑日花岗岩球粒陨石标准化稀土元素配分曲线图(标准化值据Boynton, 1984) Fig. 6 Chondrite-normalized REE patterns of the Sangri granites (normalization values after Boynton, 1984)

图 7 桑日花岗岩原始地幔标准化微量元素配分曲线图(标准化值据Sun and McDonough, 1989) Fig. 7 Primitive mantle-normalized trace-element spidergrams of the Sangri granites (normalization values after Sun and McDonough, 1989)
5 讨论 5.1 桑日花岗岩成因类型

桑日花岗岩主量元素显示高硅(SiO2:74.26%~76.93%),高碱(K2O:4.47%~4.96%;Na2O:3.4%~3.62%),高铝饱和指数(A/CNK:1.08%~1.16%)的特点。同时具有低磷(P2O5:0.02%~0.04%)、低镁(MgO:0.1%~0.35%)、低钛(TiO2:0.12%~0.19%)等特征。在微量元素中,桑日花岗岩具有较为明显的铕负异常(δEu=0.26~0.56),富集Rb等大离子亲石元素,相对亏损Nb等高场强元素。这些特征使得桑日花岗岩既显示有A型花岗岩富硅,富钾,贫磷的特点,又同高硅、过铝质的S型花岗岩相似,同时又具有I型花岗岩富钠,高εHf(t)的特征。因此,桑日花岗岩的成因类型便成为一个值得讨论的问题。

通常情况下,按照花岗岩的源岩性质将花岗岩分为I型、S型、A型花岗岩。各类花岗岩之间的区分特征,前人多有研究(Eby, 1992; Champion and Chappell, 1992; Chappell and Stephens, 1987; Chappell and White, 1992, 2001; Hine et al., 1978; King et al., 2001; Yang et al., 2006; 吴福元等, 2007)。其中A型花岗岩在矿物学上,通常含有钠闪石-钠铁闪石、霓石-霓辉石、铁橄榄石等标志性碱性暗色矿物(Chappell, 1999);在化学成分上,通常富硅、富钾、富Ga、Zr、Nb、Ta等高场强元素以及具有高的成岩温度,属于高温花岗岩(King et al., 2001; Watson, 1979; Watson and Harrison, 1983)。桑日花岗岩在薄片中没有观察到典型的A型花岗岩矿物,且根据全岩主量元素含量及Zr含量,桑日的全岩锆石饱和温度为718~735℃,明显低于A型花岗岩平均温度833℃(刘昌实等, 2003)。在微量元素上,桑日花岗岩具有相对较低的Ga、Zr、Nb等高场强元素,在10000Ga/Al和Zr+Nb+Ce+Y值的范围均低于A型花岗岩的下限值。同时,在FeO*/MgO-(Zr+Nb+Ce+Y)和(K2O+Na2O)/CaO-(Zr+Nb+Ce+Y)的判别图解上(图 8),桑日花岗岩的数据也均落入了非A型花岗岩类的范围中,而是大多落在了分异的长英质花岗岩的区域。由此,可以判断桑日花岗岩不属于A型花岗岩,而应该属于分异的I型或者S型花岗岩。

图 8 桑日花岗岩地球化学分类图解(据Whalen et al., 1987) (a) FeO*/MgO-(Zr+Nb+Ce+Y);(b) (K2O+Na2O)/CaO-(Zr+Nb+Ce+Y). FG:分异的长英质花岗岩;OGT:未分异的M、I、S花岗岩 Fig. 8 The geochemical classifacation diagrams of Sangri granites (after Whalen et al., 1987) FG: Fractionated felsic granites; OGT: unfractionated M-, I-and S-type granites

分异的I型或者S型花岗岩往往具有相似的主量元素特征和矿物组合,其成因类型难以准确识别(吴福元等, 2007)。但是Pichavant et al. (1992)指出,磷在强过铝质的熔体中,具有高的溶解度,并随着分异程度的增加含量升高;而在偏铝质或弱过铝质的熔体中,具有很低的溶解度,且随分异程度的增加含量降低。在保证演化样品属于同一岩套的前提下,P2O5和SiO2的关系可以作为一种有效的判别手段。桑日花岗岩具有很低的P2O5含量,且随着SiO2含量增加而降低(图 9);桑日花岗岩Th、Y含量较高,且与Rb呈正相关关系(图 10),因此桑日花岗岩源区很可能为偏铝质或弱过铝质。桑日花岗岩具有较高的Na2O(>3.2%),SiO2与Ba、Zr、La具有正相关关系,与典型的S型花岗岩特征截然不同(Hine et al., 1978; Chappell, 1999)。在矿物学上,除了样品SR1201-1和SR1201-2含有少量白云母之外,其他样品均未见到典型的S型花岗岩富铝矿物如刚玉、电气石、堇青石、石榴石等(Zen, 1986)。此外,桑日高分异I型花岗岩同高分异的淡色花岗岩相比,具有环带清晰的新生锆石,同时明显不同于淡色花岗岩地球化学特征及分类(Gao et al., 2017; 吴福元等, 2015),因此本文认为桑日花岗岩为高分异I型花岗岩。

图 9 SiO2-P2O5图解 Fig. 9 SiO2 vs. P2O5 variation diagram

图 10 Rb-Th图解 Fig. 10 Rb vs. Th variation diagram
5.2 桑日花岗岩岩浆源区与演化

前人资料显示,高分异的I型花岗岩可能有以下两种成因:(1) 由于幔源分异的岩浆底侵,导致地壳物质发生部分熔融形成高分异I型花岗岩(Richards, 2011; Wang et al., 2014; Wu et al., 2003a, 2003b);(2) 幔源分异的基性岩浆底侵到下地壳并与壳源长英质岩浆混合在浅源形成混源岩浆房并在后期发生分离结晶作用形成的(邱检生等, 2008; Champion and Chappell, 1992)。

本文倾向于将桑日花岗岩成因解释为岩浆混合和后期分离结晶的共同作用。证据如下:在岩相学上,桑日岩体具有相似微量特征的基性岩脉出露(SR1201-3,SiO2含量为50.88%,坐标为N 29°38′38.8″,E 92°24′18.4″,未发表数据);邻近的朱拉岩体同样发现65Ma左右的镁铁质暗色包体,这些野外证据均反映桑日地区在65Ma左右曾发生过岩浆混合作用(李奋其等, 2012)。镜下鉴定中,SR1202-3中出现斜长石斑晶(图 11a)且核部存在黑云母小包体,这可能是由于高温的基性岩浆注入酸性岩浆,导致长石再次生长,并将基性暗色矿物包裹其中(李胜荣等, 2006),同时还发现了淬冷的标志性矿物针状磷灰石(图 11b)。

图 11 桑日花岗岩矿物不平衡现象 (a) SR1202-3黑云母包体;(b) SR1202-3针状磷灰石. Ap:磷灰石 Fig. 11 Mineral disequilibrium of the Sangri granites (a) SR1201-1 biotite inclusion; (b) SR1202-3 needle-like apatite. Ap: apatite

在地球化学上,桑日花岗岩与南冈底斯60~70Ma的侵入岩在哈克图解中,TiO2、MgO、Fe2O3T、Al2O3、CaO、MnO、P2O5均呈现良好线性关系,桑日花岗岩可能经历了岩浆混合作用(图 12)。桑日花岗岩锆石的Hf同位素具有明显的不均一性,每个样品的εHf(t)值的变化均大于4ε。这种Hf的不均一可能是由岩浆混合或者部分熔融过程中锆石的差异溶解造成的(Tang et al., 2014)。但是,锆石差异溶解主要发生高Zr(>100×10-6)的地壳深熔过程中,上文已提到,桑日高分异I型花岗岩的源区为偏铝质或弱过铝质,Zr含量较低,因此发生部分熔融的可能性较低。因此Hf的不均一性也可能指示岩浆在演化过程中有新的源区加入(Cherniak et al., 1997a, b)。

图 12 桑日花岗岩哈克图解 南冈底斯60~70Ma岩浆岩数据来源于Mo et al., 2008; Zhu et al., 2009, 2015a; 纪伟强, 2010; 李奋其等, 2012; 徐旺春, 2010 Fig. 12 Harker diagram of Sangri granites Southern Gangdese 60~70Ma magmatite data from Mo et al., 2008; Zhu et al., 2009, 2015a; Ji, 2010; Li et al., 2012; Xu, 2010

桑日花岗岩特殊的地球化学特征,反映了其源区岩浆混合后,还经历了高程度的结晶分异作用。其中微量元素Sr、Ba、Eu的亏损反映了岩浆冷却结晶的成岩过程中斜长石和钾长石发生了分离结晶(邱检生等, 2005)。根据Ba-Sr的地球化学图解(图 13),桑日花岗岩微量元素含量的变化趋势,同造岩矿物钾长石和斜长石分离结晶趋势一致,因此,桑日花岗岩花岗质岩浆在演化过程中,主要经历了斜长石、钾长石的分异结晶,这些造岩矿物的分离结晶控制了桑日花岗岩主量元素以及Sr、Ba、Eu的变化。与此同时,桑日高分异I型花岗岩具有较低的Zr含量和Zr/Hf比值(24.2~27.5),可能与锆石的分离结晶有关。因此本文认为桑日岩体的花岗岩先由基性岩浆与酸性岩浆混合,在钾长石、斜长石、锆石等矿物分离结晶的控制下,经历了高程度的分异形成的。

图 13 桑日花岗岩造岩矿物Ba-Sr图(据Hanson, 1978) Fig. 13 The Ba vs. Sr fractional crystallization of rock-forming minerals of Sangri rocks (after Hanson, 1978)
5.3 区域地球动力学意义

众所周知,桑日花岗岩所处的冈底斯岩浆岩南带是青藏高原岩浆作用最发育的地区。这些岩浆岩随着冈底斯带所处的构造环境的不同显示不同的地球化学和同位素特征(纪伟强, 2010)。前人资料显示,从约260Ma左右,自南向北岛弧花岗岩的出露,表明密度较大的特提斯洋板块开始北向俯冲到拉萨地块之下(侯增谦等, 2006a; Niu, 2016);到100~70Ma左右,“软碰撞”阶段出现洋脊俯冲或者加厚下地壳拆沉;到65~50Ma左右,印度大陆与亚洲大陆发生“硬碰撞”,拉萨地块急剧缩短隆升,产生大量同碰撞花岗岩和碰撞后花岗岩(Zhu et al., 2015a; 莫宣学等, 2005; 莫宣学, 2011)。Hf同位素很少或不受岩石演化程度的影响,所以常用εHf(t)来反映花岗岩源区壳幔的组成,tDM1则反映岩浆初始熔融时源区的亏损地幔模式年龄。本文通过使用冈底斯南带各类岩性岩浆岩的εHf(t)值和tDM对其锆石U-Pb年龄投图(图 14a, b),发现从65Ma开始,冈底斯南带岩浆岩的εHf(t)值变化范围开始变大,反映从那时起岩浆源区物质组成多样,既有大量地壳物质的参与,又有幔源物质的加入,因此判断印度-亚洲陆陆碰撞的初始启动时间在65Ma左右。

桑日花岗岩的形成年龄在70~65Ma。根据前人研究,70~65Ma之前特提斯洋板片俯冲状态可能为平板俯冲或正常俯冲。深部高压源区,例如加厚下地壳,矿物组合以由角闪石+石榴石为主,其熔体具有高Sr/Y和La/Yb比值特征(Zhu et al., 2017);在浅部低压源区,矿物组合以由斜长石+单斜辉石为主,此时Sr大量与斜长石中的Ca发生类质同象,从而在熔体相中表现亏损(Feeley and Hacker, 1995; Moyen, 2009),具有低的Sr/Y和La/Yb比值特征。因此,岩浆岩中Sr/Y和La/Yb的值往往可以代表地壳的厚度。使用冈底斯中酸性岩浆岩地球化学数据令Sr/Y和La/Yb对锆石U-Pb年龄作图(图 14c, d),可以发现在80~70Ma冈底斯带均有出露高Sr/Y和La/Yb的岩浆岩,说明冈底斯在印度-亚洲大陆碰撞之前发生过类似安第斯山的隆升过程,到了70~65Ma,冈底斯岩基出露的岩浆岩开始变得稀少且不具备加厚下地壳的特征,根据以上证据,本文推论特提斯洋板片在70Ma之前俯冲状态为平板俯冲,且在70~65Ma左右,俯冲板片发生回转或者处于陆陆碰撞的初期(Tian et al., 2016; Li et al., 2016; Wen et al., 2008a, 2008b; 张泽明等, 2009)。含白云母花岗岩的产出标志着构造体制的转换(侯增谦等, 2006a)。Brun and Faccenna (2008)又指出板片回转通常发生在大洋俯冲的末期和陆陆碰撞的早期,且为随后印度大陆板块的深埋腾出空间,因此本文认为桑日花岗岩产自特提斯洋板片回转的初期。而前期研究中65Ma年左右的高温高压变质作用、印度亚洲大陆汇聚速率开始快速增大等证据都证明了在70~65Ma左右,特提斯洋板片启动回转(张泽明等, 2009; Lee and Lawver, 1995)。

图 14 冈底斯南带花岗岩地球化学时间变化图 εHf(t)值(a)、tDM (b)、Sr/Y (c)和La/Yb (d) vs. U-Pb年龄.南冈底斯岩浆岩数据管琪等, 2010; Guan et al., 2012; Mo et al., 2008; Zhu et al., 2009, 2015a; 纪伟强, 2010; 李奋其等, 2012; 尚振, 2016; 王青, 2016; 徐旺春, 2010; 叶丽娟, 2013; Liu et al., 2017 Fig. 14 Time variation of granite geochemistry in the southern Gangdese εHf(t) (a), tDM (b), Sr/Y (c), La/Yb (d) vs. U-Pb ages.The Southern Gangdese magmatite data from Guan et al., 2010, 2012; Mo et al., 2008; Zhu et al., 2009, 2015a; Ji, 2010; Li et al., 2012; Shang, 2016; Wang, 2016; Xu, 2010; Ye, 2013; Liu et al., 2017
6 结论

(1) 桑日花岗岩锆石U-Pb年龄为65.3±1.0Ma~67.3±1.0Ma,为冈底斯岩浆岩带南部晚白垩纪末期岩浆活动的产物。

(2) 白垩纪末桑日花岗岩的主要岩性为黑云母花岗岩和二长花岗岩,具有高SiO2(74.26%~76.93%),高K2O(4.47%~4.96%),铝过饱和(13.00%~14.19%),低P2O5(0.02%~0.04%),富集K、Rb、Th亏损Nb、Ta、P、Ti,锆石εHf(t)>0,且锆石Hf同位素不均一的特征,属于高分异的I型花岗岩。

(3) 桑日花岗岩的形成的地球动力学背景为在特提斯洋板块北向俯冲过程中,板片开始发生回转,俯冲洋壳脱水产生的流体进入地幔楔,引发地幔楔发生部分熔融产生镁铁质幔源物质并底侵上涌,导致浅部地壳发生部分熔融,并与上涌的幔源岩浆混合,从而在浅部形成混源岩浆房,最终在侵位与成岩后期经历高程度的分异演化形成的。

参考文献
[] Bo JW, Yang YC, Li Q, Ma XY, Han SJ. 2016. Formation age and tectonic setting of ore-forming rock body in Bailing copper-zinc deposit, Heilongjiang Province. Mineral Deposits, 35(2): 225–244.
[] Boynton WV. 1984. Cosmochemistry of the rare earth elements:Meteorite studies. Developments in Geochemistry, 2: 63–114. DOI:10.1016/B978-0-444-42148-7.50008-3
[] Brun JP, Faccenna C. 2008. Exhumation of high-pressure rocks driven by slab rollback. Earth and Planetary Science Letters, 272(1-2): 1–7. DOI:10.1016/j.epsl.2008.02.038
[] Champion DC, Chappell BW. 1992. Petrogenesis of felsic I-type granites:An example from northern Queensland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 115–126. DOI:10.1017/S026359330000780X
[] Chappell BW, Stephens WE. 1988. Origin of infracrustal (I-type) granite magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2-3): 71–86. DOI:10.1017/S0263593300014139
[] Chappell BW, White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1–26. DOI:10.1017/S0263593300007720
[] Chappell BW. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535–551. DOI:10.1016/S0024-4937(98)00086-3
[] Chappell BW, White AJR. 2001. Two contrasting granite types:25 years later. Australian Journal of Earth Sciences, 48(4): 489–499. DOI:10.1046/j.1440-0952.2001.00882.x
[] Cherniak DJ, Hanchar JM, Watson EB. 1997a. Diffusion of tetravalent cations in zircon. Contributions to Mineralogy and Petrology, 127(4): 383–390. DOI:10.1007/s004100050287
[] Cherniak DJ, Hanchar JM, Watson EB. 1997b. Rare-earth diffusion in zircon. Chemical Geology, 134(4): 289–301. DOI:10.1016/S0009-2541(96)00098-8
[] Chinese Academy of Geological Sciences. 1990. The Tectonic Evolution of the Himalayan Lithosphere:The Study of Paleomagnetism and the Magnetotelluric in Tibet. Beijing: Geological Publishing House: 72-73.
[] Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173–196.
[] Ding L, Kapp P, Wan XQ. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3): TC3001.
[] Dong GC, MO XX, Zhao ZD, Guo TY, Wang LL, Chen T. 2005. Geochronologic constraints on the magmatic underplating of the Gangdisê Belt in the India-Eurasia collision:Evidence of SHRIMP Ⅱ zircon U-Pb dating. Acta Geologica Sinica, 79(6): 787–794. DOI:10.1111/acgs.2005.79.issue-6
[] Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology, 20(7): 641–644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[] Feeley TC, Hacker MD. 1995. Intracrustal derivation of Na-rich andesitic and Dacitic magmas:An example from Volcán Ollagüe, Andean Central volcanic zone. The Journal of Geology, 103(2): 213–225. DOI:10.1086/629737
[] Gao LE, Zeng LS, Asimow PD. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources:The Himalayan leucogranites. Geology, 45(1): 39–42. DOI:10.1130/G38336.1
[] Green DH, Falloon TJ. 2015. Mantle-derived magmas:Intraplate, hot-spots and mid-ocean ridges. Science Bulletin, 60(22): 1873–1900. DOI:10.1007/s11434-015-0920-y
[] Guan Q, Zhu DC, Zhao ZD, Zhang LL, Liu M, Li XW, Yu F, Mo XX. 2010. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet:Products of Neo-Tethyan ridge subduction?. Acta Petrologica Sinica, 26(7): 2165–2179.
[] Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS, Yuan HL. 2012. Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88–99. DOI:10.1016/j.gr.2011.07.004
[] Hanson GN. 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters, 38(1): 26–43. DOI:10.1016/0012-821X(78)90124-3
[] Hine R, Williams IS, Chappell BW, White AJR. 1978. Contrasts between I-and S-type granitoids of the Kosciusko Batholith. Journal of the Geological Society of Australia, 25(3-4): 219–234. DOI:10.1080/00167617808729029
[] Hoskin PWO, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. DOI:10.2113/0530027
[] Hou ZQ, Mo XX, Gao YF, Yang ZM, Dong GC, Ding L. 2006a. Early processes and tectonic model for the India-Asia continental collision:Evidence from the Cenozoic Gangdese igneous rocks in Tibet. Acta Geologica Sinica, 80(9): 1233–1248.
[] Hou ZQ, Zhao ZD, Gao YF, Yang ZM, Jiang W. 2006b. Tearing and dischronal subduction of the Indian continental slab:Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet. Acta Petrologica Sinica, 22(4): 761–774.
[] Huang F, Xu JF, Chen JL, Kang ZQ, Dong YH. 2015. Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group:Products of continental marginal arc and intra-oceanic arc during the subduction of Neo-Tethys Ocean?. Acta Petrologica Sinica, 31(7): 2089–2100.
[] Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229–245. DOI:10.1016/j.chemgeo.2009.01.020
[] Ji WQ. 2010. Geochronology and petrogenesis of granitic rocks from East Segment of the Gangdese Batholith, Southern Tibet. Ph. D. Dissertation. Beijing:Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-91 (in Chinese with English summary)
[] Jiang XJ, Xu ZY, Liu ZH, Xue W, Yan PB, Xing YJ. 2016. Petrogenesis and tectonic setting of the granites in Honggeertu area, central Inner Mongolia:Constraints from LA-ICP-MS zircon U-Pb chronology and geochemistry. Geological Bulletin of China, 35(5): 750–765.
[] King PL, Chappell BW, Allen CM, White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501–514. DOI:10.1046/j.1440-0952.2001.00881.x
[] Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B, IUGS Subcommission on the Systematics of Igneous Rocks. 1986. A chemical classification of volcanic rocks based on the total Alkali-Silica diagram. Journal of Petrology, 27(3): 745–750. DOI:10.1093/petrology/27.3.745
[] Lee CTA, Anderson DL. 2015. Continental crust formation at arcs, the arclogite "delamination" cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13): 1141–1156. DOI:10.1007/s11434-015-0828-6
[] Lee TY, Lawver LA. 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251(1-4): 85–138. DOI:10.1016/0040-1951(95)00023-2
[] Li BL, Sun YG, Chen GJ, Xi AH, Zhi YB, Chang JJ, Peng B. 2016. Zircon U-Pb geochronology, geochemistry and Hf isotopic composition and its geological implication of the fine-grained syenogranite in Dong'an goldfield from the Lesser Xing'an Mountains. Earth Science, 41(1): 1–16.
[] Li FQ, Liu W, Zhang SZ, Wang BD. 2012. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of Zhula intrusion in eastern Gangdise, Tibet. Geological Bulletin of China, 31(9): 1420–1434.
[] Li SR, Sun L, Zhang HF. 2006. Magma mixing genesis of the Qushui collisional granitoids, Tibet, China:Evidences from genetic mineralogy. Acta Petrologica Sinica, 22(4): 884–894.
[] Li XW, Mo XX, Scheltens M, Guan Q. 2016. Mineral chemistry and crystallization conditions of the Late Cretaceous Mamba pluton from the eastern Gangdese, Southern Tibetan Plateau. Journal of Earth Science, 27(4): 545–570. DOI:10.1007/s12583-016-0713-5
[] Liu CS, Chen XM, Chen PR, Wang RC, Hu H. 2003. Subdivision, discrimination criteria and genesis for A-type rock suites. Geological Journal of China Universities, 9(4): 573–591.
[] Liao SB, Chen R, Chu PL, Zeng JW, Wang CZ, Zhang YJ, Huang WC. 2016. Study on geochronology, geochemical of the Luxi granitoids in the Changle area, Zhejiang. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 87–98.
[] Liu D, Zhao ZD, DePaolo DJ, Zhu DC, Meng FY, Shi QS, Wang Q. 2017. Potassic volcanic rocks and adakitic intrusions in southern Tibet:Insights into mantle-crust interaction and mass transfer from Indian plate. Lithos, 268-271: 48–64. DOI:10.1016/j.lithos.2016.10.034
[] Liu Q, Wang WQ, Qiu DM, Bai XH, Zhang JF, Wang X. 2015. Early Carboniferous tectonic attribute of the Central-Northern Margin of North China Craton:Constraints from geochemistry of highly fractionated I-type granites in Cahayouhouqi area. Journal of Jilin University (Earth Science Edition), 45(4): 1121–1131.
[] Liu YS, Zong KQ, Kelemen PB, Gao S. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1-2): 133–153. DOI:10.1016/j.chemgeo.2007.10.016
[] Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. DOI:10.1007/s11434-010-3052-4
[] Ma GX, Wang ZS, Hao XF, Song HR, Wang XQ, Lu TJ. 2016. U-Pb dating, geochemistry and geological setting of I-type granite in Jinjianggou, Arshan area. Global Geology, 35(1): 89–99.
[] Ma L, Wang Q, Wyman DA, Jiang ZQ, Yang JH, Li QL, Gou GN, Guo HF. 2013a. Late Cretaceous crustal growth in the Gangdese area, southern Tibet:Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro. Chemical Geology, 349-350: 54–70. DOI:10.1016/j.chemgeo.2013.04.005
[] Ma L, Wang Q, Wyman DA, Li ZX, Jiang ZQ, Yang JH, Gou GN, Guo HF. 2013b. Late Cretaceous (100~89Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese:Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175-176: 315–332. DOI:10.1016/j.lithos.2013.04.006
[] Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ, Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281–290.
[] Mo XX, Zhao ZD, Zhou S, Dong GC, Liao ZL. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240–1244.
[] Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 250(1-4): 49–67. DOI:10.1016/j.chemgeo.2008.02.003
[] Mo XX. 2011. Magmatism and evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3): 351–367.
[] Moyen JF. 2009. High Sr/Y and La/Yb ratios:The meaning of the "adakitic signature". Lithos, 112(3-4): 556–574. DOI:10.1016/j.lithos.2009.04.001
[] Niu YL. 2016. Testing the geologically testable hypothesis on subduction initiation. Science Bulletin, 61(16): 1231–1235. DOI:10.1007/s11434-016-1144-5
[] Peccerillo A, Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. DOI:10.1007/BF00384745
[] Pichavant M, Montel JM, Richard LR. 1992. Apatite solubility in peraluminous liquids:Experimental data and an extension of the Harrison-Watson model. Geochimica et Cosmochimica Acta, 56(10): 3855–3861. DOI:10.1016/0016-7037(92)90178-L
[] Qiu JS, Hu J, Wang XL, Jiang SY, Wang RC, Xu XS. 2005. The Baishigang pluton in Heyuan, Guangdong Province:A highly fractionated Ⅰ-type granite. Acta Geologica Sinica, 79(4): 503–514.
[] Qiu JS, Xiao E, Hu J, Xu XS, Jiang SY, Li Z. 2008. Petrogenesis of highly fractionated I-type granites in the coastal area of northeastern Fujian Province:Constraints from zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes. Acta Petrologica Sinica, 24(11): 2468–2484.
[] Richards JP. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1–26. DOI:10.1016/j.oregeorev.2011.05.006
[] Shang Z. 2016. Construction and magmatic processes in the Chengba granitic complex of Gangdese batholith, Southern Tibet. Master Degree Thesis. Beijing:China University of Geosciences, 1-75 (in Chinese with English summary)
[] Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313–345. DOI:10.1144/GSL.SP.1989.042.01.19
[] Tang M, Wang XL, Shu XJ, Wang D, Yang T, Gopon P. 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks:Geochemical evaluation and modeling of "zircon effect" in crustal anatexis. Earth and Planetary Science Letters, 389: 188–199. DOI:10.1016/j.epsl.2013.12.036
[] Tian Y, Kohn BP, Phillips D, Hu SB, Gleadow AJW, Carter A. 2016. Late Cretaceous-Earliest Paleogene deformation in the Longmen Shan fold-and-thrust belt, eastern Tibetan Plateau margin:Pre-cenozoic thickened crust?. Tectonics, 35(10): 2293–2312. DOI:10.1002/tect.v35.10
[] Wang L, Zeng LS, Gao LE, Chen ZY. 2013. Early Cretaceous high Mg# and high Sr/Y clinopyroxene-bearing diorite in the Southeast Gangdese batholith, Southern Tibet. Acta Petrologica Sinica, 29(6): 1977–1994.
[] Wang Q. 2016. Origin and petrogenesis of the post-collisional magmatism in both north and south sides of Lhasa Terrane. Ph. D. Dissertation. Beijing:China University of Geosciences (Beijing), 1-132 (in Chinese with English summary)
[] Wang XS, Bi XW, Leng CB, Zhong H, Tang HF, Chen YW, Yin GH, Huang DZ, Zhou MF. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting. Ore Geology Reviews, 61: 73–95. DOI:10.1016/j.oregeorev.2014.01.006
[] Wang YW, Yan DP, Liu HX, Pan CY, Chen F, Meng YF, Ding B, Liu T. 2015. Geochronology, geochemistry and tectonic significance of Huamugou highly fractionated I-type granitoid pluton in northern Yili Block, Western Tianshan. Geoscience, 29(3): 529–541.
[] Watson EB. 1979. Zircon saturation in felsic liquids:Experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70(4): 407–419. DOI:10.1007/BF00371047
[] Watson EB, Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295–304. DOI:10.1016/0012-821X(83)90211-X
[] Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji JQ, Liu DY, Gallet S. 2008a. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications. Lithos, 105(1-2): 1–11. DOI:10.1016/j.lithos.2008.02.005
[] Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH. 2008b. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191–201. DOI:10.1016/j.chemgeo.2008.03.003
[] Whalen JB, Currie KL, Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. DOI:10.1007/BF00402202
[] Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY. 2003a. Highly fractionated I-type granites in NE China (Ⅰ):Geochronology and petrogenesis. Lithos, 66(3-4): 241–273. DOI:10.1016/S0024-4937(02)00222-0
[] Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY. 2003b. Highly fractionated I-type granites in NE China (Ⅱ):Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67(3-4): 191–204. DOI:10.1016/S0024-4937(03)00015-X
[] Wu FY, Yang YH, Xie LW, Yang JH, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105–126. DOI:10.1016/j.chemgeo.2006.05.003
[] Wu FY, Li XH, Yang JH, Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217–1238.
[] Wu FY, Ji WQ, Liu CZ, Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271(1-2): 13–25. DOI:10.1016/j.chemgeo.2009.12.007
[] Wu FY, Liu ZC, Liu XC, Ji WQ. 2015. Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1–36.
[] Xu WC. 2010. Spatial variation of zircon U-Pb ages and Hf isotopic compositions of the Gangdese granitoids and its geologic implications. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-185 (in Chinese with English summary)
[] Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89–106. DOI:10.1016/j.lithos.2005.10.002
[] Ye LJ. 2013. Chronology and geochemistry of magmatic rocks in Namling-Yangbajing at Lhasa Terrane, Tibet. Master Degree Thesis. Beijing:China University of Geosciences, 1-94 (in Chinese with English summary)
[] Zen EA. 1986. Aluminum enrichment in silicate melts by fractional crystallization:Some mineralogic and petrographic constraints. Journal of Petrology, 27(5): 1095–1117. DOI:10.1093/petrology/27.5.1095
[] Zhang C, Liu CZ, Wu FY, Zhang LL, Ji WQ. 2016. Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos, 245: 93–108. DOI:10.1016/j.lithos.2015.06.031
[] Zhang JF, Wang LW, Chen JH, Zhu CH, Liu J, Zhang MY. 2015. Genesis of highly fractionated Ma'anshan rock in Zhejiang and Anhui provinces constrained by U-Pb zircon geochronology and geochemistry. Earth Science-Journal of China University of Geosciences, 40(1): 98–114. DOI:10.3799/dqkx.2015.007
[] Zhang RQ, Lu JJ, Wang RC, Yao Y, Ding T, Hu JB, Zhang HF. 2016. Petrogenesis of W-and Sn-bearing granites and the mechanism of their metallogenic diversity in the Wangxianling area, southern Hunan Province. Geochimica, 45(2): 105–132.
[] Zhang ZM, Wang JL, Dong X, Zhao GC, Yu F, Wang W, Liu F, Geng GS. 2009. Petrology and geochronology of the charnockite from the southern Gangdese belt, Tibet:Evidence for the Andean-type orogen. Acta Petrologica Sinica, 25(7): 1707–1720.
[] Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17(4): 615–631. DOI:10.1016/j.gr.2009.10.007
[] Zheng YC, Hou ZQ, Gong YL, Liang W, Sun QZ, Zhang S, Fu Q, Huang KX, Li QY, Li W. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet:Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190-191: 240–263. DOI:10.1016/j.lithos.2013.12.013
[] Zhou ZM, Ma CQ, Xie CF, Wang LX, Liu YY, Liu W. 2016. Genesis of highly fractionated I-type granites from Fengshun complex:Implications to tectonic evolutions of South China. Journal of Earth Science, 27(3): 444–460. DOI:10.1007/s12583-016-0677-3
[] Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Pan GT, Wu FY. 2009. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet:Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 469(1-4): 48–60. DOI:10.1016/j.tecto.2009.01.017
[] Zhu DC, Mo XX, Zhao ZD, Niu YL, Pan GT, Wang LQ, Liao ZL. 2009a. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution:New perspective. Earth Science Frontiers, 16(2): 1–20.
[] Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY, Yang YH. 2009b. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet:Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223–1239. DOI:10.1007/s11430-009-0132-x
[] Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241–255. DOI:10.1016/j.epsl.2010.11.005
[] Zhu DC, Zhao ZD, Niu YL, Dilek Y, Wang Q, Ji WH, Dong GC, Sui QL, Liu YS, Yuan HL, Mo XX. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290–308. DOI:10.1016/j.chemgeo.2011.12.024
[] Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429–1454. DOI:10.1016/j.gr.2012.02.002
[] Zhu DC, Wang Q, Zhao ZD, Chung SL, Cawood PA, Niu YL, Liu SA, Wu FY, Mo XX. 2015a. Magmatic record of India-Asia collision. Scientific Reports, 5: 17236. DOI:10.1038/srep17236
[] Zhu DC, Wang Q, Cawood PA, Zhao ZD and Mo XX. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research Solid Earth, 122 http://onlinelibrary.wiley.com/doi/10.1002/2016JB013508/full
[] Zhu RZ, Lai SC, Qin JF, Zhao SW. 2015b. Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 100: 145–163. DOI:10.1016/j.jseaes.2015.01.014
[] 薄军委, 杨言辰, 李骞, 马晓阳, 韩世炯. 2016. 黑龙江白岭铜锌矿床成矿岩体形成时代及成矿构造背景. 矿床地质, 35(2): 225–244.
[] 管琪, 朱弟成, 赵志丹, 张亮亮, 刘敏, 李小伟, 于枫, 莫宣学. 2010. 西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?. 岩石学报, 26(7): 2165–2179.
[] 侯增谦, 莫宣学, 高永丰, 杨志明, 董国臣, 丁林. 2006a. 印度大陆与亚洲大陆早期碰撞过程与动力学模型——来自西藏冈底斯新生代火成岩证据. 地质学报, 80(9): 1233–1248.
[] 侯增谦, 赵志丹, 高永丰, 杨志明, 江万. 2006b. 印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761–774.
[] 黄丰, 许继峰, 陈建林, 康志强, 董彦辉. 2015. 早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?. 岩石学报, 31(7): 2089–2100.
[] 纪伟强. 2010. 藏南冈底斯岩基东段花岗岩时代与成因. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-91
[] 蒋孝君, 徐仲元, 刘正宏, 薛伟, 剡鹏兵, 邢亚杰. 2016. 内蒙古中部红格尔图地区花岗岩的成因及构造背景——LA-ICP-MS锆石U-Pb年龄、地球化学的制约. 地质通报, 35(5): 750–765.
[] 李碧乐, 孙永刚, 陈广俊, 郗爱华, 支宇博, 常景娟, 彭勃. 2016. 小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义. 地球科学, 41(1): 1–16. DOI:10.11764/j.issn.1672-1926.2016.01.0001
[] 李奋其, 刘伟, 张士贞, 王保弟. 2012. 冈底斯东段古新世朱拉岩体LA-ICP-MS锆石U-Pb定年和岩石地球化学特征. 地质通报, 31(9): 1420–1434.
[] 李胜荣, 孙丽, 张华锋. 2006. 西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据. 岩石学报, 22(4): 884–894.
[] 廖圣兵, 陈荣, 褚平利, 曾剑威, 王存智, 张彦杰, 黄文成. 2016. 浙江长乐绿溪花岗岩体U-Pb年代学及地球化学研究. 矿物岩石地球化学通报, 35(1): 87–98.
[] 刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573–591.
[] 刘群, 王挽琼, 邱殿明, 白新会, 张金凤, 王新. 2015. 华北板块北缘中段早石炭世构造属性:察哈尔右翼后旗高分异I型花岗岩地球化学的制约. 吉林大学学报(地球科学版), 45(4): 1121–1131.
[] 马国祥, 王之晟, 郝晓飞, 宋海瑞, 王晓奇, 卢天军. 2016. 阿尔山地区金江沟高分异I型花岗岩锆石U-Pb年龄、岩石地球化学及构造意义. 世界地质, 35(1): 89–99.
[] 莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281–290.
[] 莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240–1244. DOI:10.3969/j.issn.1671-2552.2007.10.002
[] 莫宣学. 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351–367.
[] 邱检生, 胡建, 王孝磊, 蒋少涌, 王汝成, 徐夕生. 2005. 广东河源白石冈岩体:一个高分异的I型花岗岩. 地质学报, 79(4): 503–514.
[] 邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008. 福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约. 岩石学报, 24(11): 2468–2484.
[] 尚振. 2016. 藏南冈底斯南缘程巴复合岩体构建机制及岩浆过程. 硕士学位论文. 北京: 中国地质大学, 1-75 http://cdmd.cnki.com.cn/Article/CDMD-11415-1016068535.htm
[] 王莉, 曾令森, 高利娥, 陈振宇. 2013. 藏南冈底斯岩基东南缘早白垩世高镁-高Sr/Y含单斜辉石闪长岩. 岩石学报, 29(6): 1977–1994.
[] 王青. 2016. 拉萨地体南北两侧碰撞后岩浆作用的岩浆起源和岩石成因. 博士学位论文. 北京: 中国地质大学, 1-132 http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067934.htm
[] 王永文, 颜丹平, 刘红旭, 潘澄雨, 陈峰, 孟云飞, 丁波, 刘涛. 2015. 西天山伊犁地块北缘桦木沟高分异I型花岗岩年代学、地球化学及其构造意义. 现代地质, 29(3): 529–541.
[] 吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217–1238.
[] 吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1–36.
[] 徐旺春. 2010. 西藏冈底斯花岗岩类锆石U-Pb年龄和Hf同位素组成的空间变化及其地质意义. 博士学位论文. 北京: 中国地质大学, 1-185 http://cdmd.cnki.com.cn/Article/CDMD-10491-2010250454.htm
[] 叶丽娟. 2013. 西藏拉萨地块南木林-羊八井岩浆岩的年代学和地球化学. 硕士学位论文. 北京: 中国地质大学, 1-94 http://cdmd.cnki.com.cn/Article/CDMD-11415-1013272513.htm
[] 张建芳, 汪隆武, 陈津华, 朱朝晖, 刘健, 章明圆. 2015. 锆石U-Pb年代学和地球化学对浙皖马鞍山高分异岩体成因的约束. 地球科学-中国地质大学学报, 40(1): 98–114.
[] 章荣清, 陆建军, 王汝成, 姚远, 丁腾, 胡加斌, 张怀峰. 2016. 湘南王仙岭地区中生代含钨与含锡花岗岩的岩石成因及其成矿差异机制. 地球化学, 45(2): 105–132.
[] 张泽明, 王金丽, 董昕, 赵国春, 于飞, 王伟, 刘峰, 耿官升. 2009. 青藏高原冈底斯带南部的紫苏花岗岩:安第斯型造山作用的证据. 岩石学报, 25(7): 1707–1720.
[] 中国地质科学院. 1990. 喜马拉雅岩石圈构造演化:西藏古地磁与大地电磁研究. 北京: 地质出版社: 72-73.
[] 朱弟成, 莫宣学, 赵志丹, 牛耀龄, 潘桂棠, 王立全, 廖忠礼. 2009a. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点. 地学前缘, 16(2): 1–20.
[] 朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009b. 西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑), 39(7): 833–848.