岩石学报  2017, Vol. 33 Issue (8): 2467-2478   PDF    
东喜马拉雅构造结石榴角闪岩变质作用P-T-t轨迹:相平衡模拟与锆石年代学
田作林, 康东艳, 穆虹辰     
中国地质科学院地质研究所, 北京 100037
摘要: 东喜马拉雅构造结南迦巴瓦杂岩由多种类型的高级变质岩组成,包括片岩、片麻岩、大理岩、石榴角闪岩和基性麻粒岩。石榴角闪岩呈透镜状产出在片麻岩中,可见不连续分布的规模不等的浅色体。石榴角闪岩由石榴石、角闪石、黑云母、斜长石、石英、金红石、钛铁矿和榍石组成,石榴石变斑晶可见由浅色矿物组成的"白眼圈"。岩相学、矿物化学和相平衡模拟表明石榴角闪岩经历了一条顺时针型的P-T演化轨迹,可划分为两个阶段:(Ⅰ)升温升压的进变质阶段,由石榴石和斜长石斑晶记录,峰期矿物组合为石榴石+角闪石+黑云母+斜长石+石英+金红石+钛铁矿。运用石榴石变斑晶边部和斜长石变斑晶边部成分在视剖面图上的投点确定出峰期温压条件为~11.5kbar、790℃,达到了高压麻粒岩相条件,并经历了部分熔融,产生至少9%的熔体;(Ⅱ)降温降压的退变质阶段,由石榴石边部"白眼圈"冠状体记录。运用平均温压法计算冠状体中黑云母+斜长石+角闪石+石榴石组合的形成温压条件为~7kbar、~750℃。该阶段金红石消失,熔体结晶,并与早期矿物发生回反应。在石榴石角闪岩的锆石中获得了从29.2Ma到10.2Ma的连续变质年龄。由于锆石通常在熔体结晶过程中生长,因此确定该组年龄代表石榴石角闪岩退变质年龄。本文和以前的研究结果表明,南迦巴瓦杂岩中的高温和中温麻粒岩相亚单元具有相似的降温降压P-T轨迹,但高温单元具有较高的变质压力条件,表明其俯冲到了更大的深度。
关键词: 石榴角闪岩     P-T-t轨迹     相平衡     锆石U-Pb定年     东喜马拉雅构造结    
Metamorphic P-T-t path of garnet amphibolite from the Eastern Himalayan Syntaxis:Phase equilibria and zircon chronology
TIAN ZuoLin, KANG DongYan, MU HongChen     
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: In the Eastern Himalayan Syntaxis, the Namche Barwa Complex consists of various types of high grade metamorphic rocks, including schists, gneiss, marble, garnet amphibolite and basic granulite. Garnet amphibolites occur as lens in gneiss and have various scales of discontinuous leucosomes. Garnet amphibolites are composed of garnet, amphibole, biotite, plagioclase, quartz, rutile, ilmenite and titanite. The garnet porphyroblasts are surrounded by the "white corona" consisting of light-coloured minerals. The petrographic observation, mineral chemistry and phase equilibria indicate that the garnet amphibolites have experienced a clockwise P-T path which is subdivided into two stages. Stage Ⅰ is the prograde stage with increase in pressure and temperature, which was recorded by garnet and plagioclase porphyroblasts. The peak mineral assemblage was garnet+amphibole+biotite+plagioclase+quartz+rutile+ilmenite. The peak P-T condition was estimated to be~11.5kbar and 790℃ base on the compositions of garnet rim and plagioclase rim. This indicates that the garnet amphibolites have experienced high-pressure granulite facies metamorphism and partial melting, generating about 9% of melt at least. Stage Ⅱ is the retrograde stage with decrease in pressure and temperature, which was recorded by the "white corona" around garnet rim. On the basis of the average PT method, the P-T condition of biotite+plagioclase+amphibole+garnet in the corona was calculated to be~7kbar and~750℃. Rutile became unstable during this stage as well as the melt crystallized and reacted with the early minerals. The ages of metamorphic zircon in the garnet amphibolite are continuous from 29.2Ma to 10.2Ma. Because the growth of zircon is related to the crystallization of melt in granulites, we prefer to interpret the age range to represent the cooling process during the retrograde stage. This study, together with previous investigations, shows that the high-and medium-temperature granulite sub-units of the Namche Barwa Complex have similar decompressional cooling P-T paths. However, the former sub-unit has higher peak metamorphic conditions, indicating a greater depth of subduction.
Key words: Garnet amphibolite     P-T-t path     Phase equilibria     Zircon U-Pb dating     Eastern Himalayan Syntaxis    
1 引言

碰撞造山带内陆壳的变质作用演化、部分熔融时代和持续时间研究是揭示造山带构造演化的关键(Faccenda et al., 2008Rubatto et al., 2013)。许多造山带都广泛分布着具有不同全岩成分的混合岩,如变杂砂岩、变泥质岩和变基性岩,重建这些混合岩的变质作用P-T-t演化过程能够更好地阐释造山带的演化历史。喜马拉雅造山带是印度板块和亚洲板块碰撞的结果,造山带核部的大喜马拉雅结晶岩系中的新生代混合岩没有受到后期造山事件的再次改造,是研究喜马拉雅造山带演化历史的天然实验室。在东喜马拉雅构造结,南迦巴瓦杂岩中出露的典型高压麻粒岩相变质岩石受到了广泛关注,但这些变质岩的变质演化、形成时代以及部分熔融过程一直存有较大争议(Ding and Zhong, 1999Guilmette et al., 2011Liu et al., 2007Liu and Zhong, 1997Su et al., 2012Tian et al., 2016Xu et al., 2010Zhang et al., 2010, 2015刘凤麟和张立飞,2014张泽明等,2007)。近年来,随着适用于泥质和长英质岩石体系的矿物固溶体模型的逐渐完善,相应体系下麻粒岩相变质相平衡研究方法得到了不断发展(Johnson et al., 2008White and Powell, 2002White et al., 2014),使得南迦巴瓦杂岩带中泥质和长英质麻粒岩变质作用研究得以深化(Guilmette et al., 2011Tian et al., 2016Zhang et al., 2015向华等,2013)。但是,对基性麻粒岩的变质作用研究相对较少,争议较大。钟大赉和丁林(1995) 最早报道了南迦巴瓦杂岩中基性高压麻粒岩,他们根据矿物温压计确定其峰期温压条件为14~15kbar和800℃。此后,张泽明等(2007)认为该地区石榴辉石岩可能经历过榴辉岩相变质作用,估算的峰期温压条件为26~28kbar和800~900℃。刘凤麟和张立飞(2014)最近获得的高压麻粒岩峰期温压条件为13.7kbar和904℃。此外,前人报道的南迦巴瓦杂岩的锆石U-Pb年龄可从40Ma变化到7Ma (Ding et al., 2001Liu et al., 2007Su et al., 2012Xu et al., 2010Zhang et al., 2010, 2015)。对这些定年结果有不同的解释,高压峰期的变质时代也有较大争议,如40~30Ma(Ding et al., 2001Zhang et al., 2010, 2015)以及25~20Ma(Liu et al., 2007Su et al., 2012Xu et al., 2010Zhang et al., 2012刘凤麟和张立飞,2014)。

本文对东喜马拉雅构造结南迦巴瓦杂岩中大面积出露的石榴角闪岩进行了变质岩石学和年代学研究。基于最新发表的基性岩体系固溶体模型(Green et al., 2016),利用相平衡模拟方法计算了峰期变质条件、限定了P-T轨迹和熔体行为,并基于锆石定年确定了石榴角闪岩的变质时代,进而探讨了东喜马拉雅构造结基性麻粒岩的成因及其构造意义。

2 地质背景和样品描述

东喜马拉雅构造结(EHS)位于喜马拉雅造山带的最东端(图 1)。南迦巴瓦杂岩(NBC)出露在东喜马拉雅构造结核部,代表了大喜马拉雅结晶岩系(GHC)的东端。南迦巴瓦杂岩被三个岩石构造单元包围(图 1a):(ⅰ)特提斯喜马拉雅岩系(THS),它主要由古生代和中生代的沉积岩组成,经历了绿片岩相到绿帘角闪岩相的变质作用;(ⅱ)雅鲁藏布缝合带(YZSZ),由强变形和变质的蛇绿岩残片组成,是新特提斯洋的残余;(ⅲ)拉萨地块,代表亚洲板块南缘(Yin and Harrison, 2000)。

图 1 东喜马拉雅构造结地质简图(a, 据Zhang et al., 2012修改)和南迦巴瓦杂岩岩石构造单元剖面图(A-A’)及样品位置(b) YZSZ-雅鲁藏布缝合带;ATF-Altyn Tagh断裂;BNSZ-班公-怒江缝合带;JPF-Jiali-Parlung断裂;MMT-主地幔断裂;MCT-主中央断裂;STD-藏南拆离系;MBT-主边界断裂;EHS-东喜马拉雅构造结.LZ14代表刘凤麟和张立飞(2014)基性麻粒岩采样位置 Fig. 1 Sketch geological map of the Eastern Himalayan Syntaxis (a, modified after Zhang et al., 2012) and Namche Barwa Complex cross-section (A-A') showing the tectonic units and sampling location (b) YZSZ-Yarlung-Zangbo Suture Zone; ATF-Altyn Tagh Fault; BNSZ-Bangong-Nujiang Suture Zone; JPF-Jiali-Parlung Fault; MMT-Main Mantle Thrust; MCT-Main Central Thrust; STD-South Tibetan Detachment; MBT-Main Boundary Thrust; EHS-Eastern Himalayan Syntaxis. LZ14 represents the location of basic granulite from Liu and Zhang (2014)

南迦巴瓦杂岩主要由高角闪岩相到麻粒岩相变质作用的正片麻岩、副片麻岩、角闪岩、大理岩、麻粒岩和混合岩组成(Zhang et al., 2012)。曾经被命名为南迦巴瓦群(Geng et al., 2006)。这一杂岩可进一步划分为三个亚单元,从北到南分别为中温麻粒岩相单元、高温麻粒岩相单元和角闪岩相单元,它们之间的界限为南迦巴瓦拆离断层和那木拉逆冲断层(图 1Tian et al., 2016)。最近的研究表明正片麻岩的原岩形成于~1610Ma的晚元古代和~500Ma的早古生代,角闪岩的原岩是形成于1650~1600Ma的基性岩浆岩(Zhang et al., 2010, 2012)。副片麻岩中的碎屑锆石具有从新太古代到早古生代的年龄,年龄峰值集中在2490Ma、1640Ma、990Ma和480Ma(Zhang et al., 2012)。基性麻粒岩和泥质片岩以透镜体或薄层状产于长英质片麻岩中(Booth et al., 2004, 2009Ding and Zhong, 1999Guilmette et al., 2011Liu and Zhong, 1997Tian et al., 2016Zhang et al., 2015)。

南迦巴瓦杂岩北部的中温麻粒岩相单元以含石榴石长英质片麻岩为主(图 1),夹泥质片岩(麻粒岩)层,局部包裹基性麻粒岩和石榴角闪岩透镜体(图 1b)。在露头尺度,石榴角闪岩中可见不连续分布的浅色体,宽度从几厘米到几十厘米不等(图 2a),表明其经历了部分熔融。石榴石变斑晶周围可见由后成合晶矿物组成的“白眼圈”(图 2a),表明石榴角闪岩经历过显著的降压过程。本文所研究的石榴角闪岩采自图 2a中含较少浅色体的部分。本文所使用矿物代号据Whitney and Evans(2010)

图 2 石榴角闪岩野外露头照片和显微照片 (a)石榴角闪岩及其中不连续分布的浅色体,石榴石变斑晶边缘可见“白眼圈”;(b)石榴石变斑晶包裹斜长石、钛铁矿和金红石,石榴石边部生长以斜长石为主的“白眼圈”冠状体,基质为角闪石、黑云母、斜长石和石英;(c)半自形角闪石变斑晶包裹斜长石、黑云母和榍石;(d)半自形斜长石变斑晶包裹黑云母,An值从核部到边部逐渐降低;(e)石榴石边部被黑云母+角闪石+斜长石冠状体取代;(f)石榴石边部被黑云母+角闪石+钛铁矿+斜长石冠状体取代 Fig. 2 Outcrop photos and photomicrographs of the garnet amphibolite from the NBC (a)discontinuous leucosomes in garnet amphibolite, garnet porphyroblast surrounded by "white corona"; (b)garnet porphyroblast includes plagioclase, ilmenite and rutile, garnet rim is surrounded by plagioclase-rich "white corona", the matrix is amphibole, biotite, plagioclase and quartz; (c)subhedral amphibole porphyroblast includes plagioclase, biotite and titanite; (d)subhedral plagioclase porphyroblast includes biotite, the An content decreases from core to rim; (e)garnet rim is replaced by the corona of biotite+amphibole+plagioclase; (f)garnet rim is replaced by the corona of biotite+amphibole+ilmenite+plagioclase
3 测试方法

矿物化学成分在中国地质科学院地质研究所,采用JEOL JXA 8900型电子探针进行分析。运行条件为:15kV加速电压,5nA射速电流,峰值和背景的计数时间均为10s。束斑设定为5μm。采用天然和合成标准样品进行校正。典型电子探针成分见表 1

表 1 石榴角闪岩代表性矿物电子探针分析(wt%) Table 1 EPMA analysis(wt%)of representative minerals of garnet amphibolite

锆石U-Pb定年和微量元素分析在中国地质大学(武汉)地质过程和矿产资源国家重点实验室,采用激光等离子质谱仪(LA-ICP-MS)进行测试。有关激光系统和ICP-MS仪器的运行条件参考Hu et al.(2011)Liu et al.(2010)。锆石定年结果的精度为1%。谐和图使用Isoplot/Ex_ver4软件计算(Ludwig,2003)。锆石微量元素成分依据多外标(BCR-2G和BIR-1G)和内标法进行校正。锆石U-Pb定年结果和稀土元素见表 2表 3

表 2 石榴角闪岩中锆石U-Pb定年结果 Table 2 Zircon U-Pb data for garnet amphibolite
4 岩相学和矿物化学 4.1 岩相学

石榴角闪岩由石榴石、角闪石、黑云母、斜长石、石英、金红石、钛铁矿、榍石和磷灰石组成,可见定向分布的厘米级长英质浅色体。石榴石变斑晶多为半自形,含斜长石、金红石、钛铁矿和石英包体(图 2b),其边部被以斜长石为主,加少量黑云母、角闪石和钛铁矿组成的后成合晶冠状体替代(图 2bef)。这样的冠状体在标本上显示为“白眼圈”。多数角闪石为他形,少量呈半自形,包裹黑云母、斜长石和榍石包体(图 2c)。斜长石多为细粒他形,少量颗粒呈半自形变斑晶,含黑云母包体(图 2d)。黑云母均为细粒(图 2b)。

4.2 矿物化学

石榴石变斑晶具很好的进变质生长成分环带(图 3a),从核部到边部,锰铝榴石组分(XMn)逐渐降低,镁铝榴石组分(XMg)逐渐升高,钙铝榴石(XCa)和铁铝榴石(XFe)组分几乎不变。与“白眼圈”冠状体接触的石榴石最边部(图 2f)的镁铝榴石组分明显降低,锰铝榴石组分明显升高(图 3a),呈现出受到扩散影响的退变质环带特征。这可能与冷却过程中石榴石边部和黑云母之间的Fe-Mg交换有关(Caddick et al., 2010Florence and Spear, 1991Kohn and Spear, 2000Spear, 1991),也可能与石榴石的分解有关(Escuder Viruete et al., 2000Kohn and Spear, 2000)。包裹在角闪石和斜长石中黑云母的XMg值(0.46~0.47) 略高于基质中黑云母的(0.44),但略低于石榴石冠状体中黑云母XMg值(0.48~0.52)(图 2cd)。黑云母包体具有最高的Ti含量(0.31)(图 3b)。斜长石变斑晶表现出从核部到边部An值逐渐降低的成分环带特征(0.40~0.30),边部成分与包裹在石榴石边部(An=0.32) 和角闪石边部(An=0.28~0.33) 的斜长石成分类似(图 3c);石榴石冠状体中斜长石则具有更高的An值(0.59~0.66)(图 3c)。虽然角闪石也有很多产状,包括变斑晶、基质和呈石榴石冠状体,但是其成分比较均一,可归类为绿钠闪石((Na)M4 < 0.50;5.5 < Si < 6.5;(Na+K)A > 0.50;Mg/(Mg+Fe2+) < 0.50;VIAl < Fe3+)或镁角闪石((Na)M4 < 0.50;6.5 < Si < 7.5;(Na+K)A < 0.50;Mg/(Mg+Fe2+) > 0.50)(图 3deLeake et al., 1997)。

图 3 石榴角闪岩代表性矿物成分图 (a)石榴石;(b)黑云母;(c)斜长石;(d、e)角闪石 Fig. 3 Chemical compositions of representative minerals of the garnet amphibolite (a)garnet; (b)biotite; (c)plagioclase; (d, e)amphibole
4.3 矿物组合演化期次

上述岩相学和矿物化学特征表明,石榴角闪岩包括3期矿物组合:(1) Grt1+Pl1+Bt1+Rt1+Ilm1+Hbl1+Qz,即石榴石变斑晶核部及包裹的金红石和钛铁矿,斜长石变斑晶核部及包裹的黑云母,以及角闪石核部;(2) Grt2+Pl2+Bt2+Rt2+Ilm2+Hbl2+Qz,即石榴石变斑晶边部及包裹的金红石和斜长石,斜长石变斑晶边部,角闪石边部及包裹的黑云母和斜长石,基质中的黑云母和钛铁矿;(3) Grt3+Pl3+Bt3+Ilm3+Hbl3+Qz,即石榴石最边部及冠状体中的斜长石、黑云母、角闪石和钛铁矿。判断依据为:(1) 石榴石变斑晶边部(Grt2)包裹的斜长石(Pl2)和斜长石变斑晶边部(Pl2)成分一致(图 3c),表明石榴石变斑晶(Grt1-2)和斜长石变斑晶(Pl1-2)在同一期次生长;(2) 角闪石边部(Hbl2)包裹的斜长石(Pl2)成分和斜长石变斑晶边部成分一致,表明角闪石(Hbl1-2)与斜长石变斑晶(Pl1-2)同属一个生长期次;(3) 角闪石边部(Hbl2)包裹的黑云母(Bt2)和斜长石(Pl2)为共生关系(图 2c),因此斜长石变斑晶核部(Pl1)包裹的黑云母(Bt1)形成时间应早于角闪石边部包裹的黑云母(Bt2)。基质中黑云母(Bt2)与角闪石包裹的黑云母属同一期次,或稍晚于黑云母包体(Bt1-2)的生长期次;(4) 石榴石最边部冠状体中斜长石(Pl3)含有更高的An值,黑云母(Bt3)也含有更高的XMg,以及受到退变质改造的石榴石(Grt3)和角闪石(Hbl3)最晚期生长;(5) 金红石只以包体形式产于石榴石变斑晶中,并且个别金红石颗粒边部退变为钛铁矿,因此金红石(Rt1-2)和钛铁矿(Ilm1-2)包体应与石榴石变斑晶同属一个期次,基质中的钛铁矿(Ilm2)的生长期次稍晚,石榴石变斑晶冠状体中钛铁矿(Ilm3)生长期次最晚。

5 锆石定年

石榴角闪岩中锆石为浑圆状或短柱状,少数颗粒具有不规则状的继承核,多数颗粒为无继承核变质锆石(图 4a)。锆石的Th/U比值介于0.009到0.101之间(表 2),稀土元素总量为25×10-6~201×10-6(表 3),并呈现重稀土(HREE)富集,Eu轻微负异常(图 4c)。由于锆石中U含量比较低(100×10-6~499×10-6)以及放射性成因207Pb含量也比较低并接近LA-ICP-MS的检测限,导致207Pb/235U年龄误差较大,多数分析点不谐和(图 4b)。所获得的206Pb/238U年龄在29.2~10.2Ma之间(图 4b)。一个锆石颗粒在阴极发光(CL)图像上可区分处较亮的核部和较暗的边部,核部具有较老的年龄(29.2Ma),边部具有较年轻的年龄(17.5Ma)(图 4a)。

图 4 石榴角闪岩中锆石阴极发光图像(CL)以及测试位置和对应的年龄(Ma)(a)、锆石U-Pb谐和图(b)和锆石球粒陨石标准化稀土元素配分图(c) Fig. 4 Cathodoluminescence (CL) images of zircon from the garnet amphibolite, showing locations of the analyzed spots and relevant ages (Ma) (a), zircon U-Pb concordia diagram (b) and chondrite-normalized REE patterns of zircon (c)

表 3 石榴角闪岩中锆石稀土元素(×10-6) Table 3 The REE analysis of zircon for garnet amphibolite (×10-6)
6 相平衡模拟

基于上述矿物组合与矿物化学成分特征,我们选择在NCKFMASHTO(Na2O-CaO-K2O-FeOtotal-MgO-Al2O3-SiO2-H2O-TiO2-O(Fe2O3))体系下进行相平衡模拟。流体组分设为纯H2O。视剖面图采用THERMOCALC软件3.45版本计算(Powell et al., 1998;2016年更新),内部一致性热力学数据库采用Holland and Powell(2011)发表的最新版ds62.txt,固溶体采用最新发表的适用于模拟基性岩高温变质作用的NCKFMASHTO体系的模型(Green et al., 2016Powell et al., 2014)。由于本文研究的石榴角闪岩含有规模不等的浅色体,导致岩石不均匀,所以通过岩石粉末测试的全岩成分可能并不能很好地模拟薄片下观察到的变质演化过程。因此,本文采用质量平衡方法来计算有效全岩成分,即在薄片中详细统计所有矿物的体积百分数(Grt:8%,Hbl:48%,Bt:10%,Pl:20%,Qz:12%,Rt:1%,Ilm:1%),与相应电子探针分析数据结合计算有效全岩成分。

图 5为石榴角闪岩P-T视剖面图,固相线出现在660~730℃温度区间,压力小于7kbar条件下为饱和水固相线,大于7kbar条件下为干固相线;石榴石稳定在压力大于7~8kbar;金红石在压力大于5~11kbar条件下稳定;黑云母在温度大于770~830℃条件下消失;斜方辉石稳定于低压高温区域,压力小于9kbar,温度高于750℃;白云母只在低温高压区域出现,压力大于9kbar,温度小于760℃;普通辉石出现在温度高于770~830℃的区域。在石榴石稳定区域,镁铝榴石含量等值线与压力轴近平行,并随温度升高而逐渐升高(gm10→gm17);斜长石中An含量等值线与温度轴近平行,并随压力升高而逐渐降低(pc40→pc28);黑云母中XMg等值线呈中等负斜率,随温度压力升高而逐渐降低(bm47→bm44)。

图 5 NCKFMASHTO体系下石榴角闪岩P-T视剖面图 使用标准化到摩尔百分比的有效全岩成分计算,SiO2=50.40, Al2O3= 9.32, CaO =7.96, MgO=7.26, FeO=13.41, K2O=0.83, Na2O=2.10, TiO2=3.19, O=1.61;三变域为白色区域,四变域、五变域、六变域和七变域使用渐次加深的紫红色充填.视剖面图绘制了石榴石XMg(如gm12)、斜长石An值(如pc30)、黑云母XMg(如bm47) 和熔体含量(如标记10的白色圆圈)等值线; 粗虚线代表相应矿物的稳定范围; 标记A、B、C和D的黄色圆圈表示沿PT演化轨迹计算矿物含量和成分的点.绿色粗虚线代表P-T轨迹 Fig. 5 P-T pseudosections for garnet amphibolite calculated in the system NCKFMASHTO Using the effective bulk composition that normalized on the basis of mole per cent as SiO2=50.40, Al2O3=9.32, CaO=7.96, MgO=7.26, FeO=13.41, K2O=0.83, Na2O=2.10, TiO2=3.19, O=1.61. Trivariant is in white, quadrivariant; quinivariant, hexavariant and septivariant are increasing heavily shaded. The pseudosections are contoured with isopleths of XMg(e.g. gm12) in garnet, An content(e.g. pc30) in plagioclase, XMg(e.g. bm47) in biotite, and isomodes of melt(e.g. white circle labeled with 10). The thick dashed lines represent the stability fields of relevant minerals. Circles labelled with A, B, C and D represent the PT plots that is used for calculating mineral modes and compositions along the P-T path. The green thick line with arrow represents the inferred P-T path

图 5所示,第1期和第2期矿物组合Grt1+Pl1+Bt1+Rt1+Ilm1+Hbl1+Qz和Grt2+Pl2+Bt2+Rt2+Ilm2+Hbl2+Qz在视剖面图上稳定在710~820℃和9~13kbar的区域。实测石榴石变斑晶的镁铝榴石组分含量从核部(Grt1)到边部(Grt2)逐渐升高(图 3a),在视剖面图的Melt+Grt+Pl+Bt+Rt+Ilm+Hbl+Qz组合稳定区域内表现为逐渐升温的过程;实测斜长石变斑晶An值从核部(Pl1)到边部(Pl2)逐渐降低(图 3c),在视剖面图的Melt+Grt+Pl+Bt+Rt+Ilm+Hbl+Qz稳定区域内表现为逐渐升压的过程。岩相学与矿物化学证据表明石榴石与斜长石变斑晶为同一期次生长,因此我们可以限定一条升温升压的进变质P-T演化轨迹(图 5),峰期温压条件为~11.5kbar和790℃。沿此进变质P-T轨迹,黑云母中XMg值逐渐降低,与实测包体黑云母(Bt1)到基质黑云母(Bt2)的成分变化一致。模拟的峰期矿物组合中包含熔体,表明石榴角闪岩经历了部分熔融,与石榴角闪岩含浅色体现象一致(图 2a)。

第3期退变质矿物组合Grt3+Pl3+Bt3+Ilm3+Hbl3+Qz发育在石榴石边部的“白眼圈”冠状体中(图 2f)。由于这一组合与岩石中的主要矿物不平衡,所以基于全岩成分计算的P-T视剖面图无法很好地限定其形成的温压条件。因此,我们选择THERMOCALC软件中的平均温压法(avPT)计算了这一局部平衡域的温压条件。计算的矿物组合为Grt3、Pl3、Bt3、Hbl3和Qz,所获得的两组平均温压条件分别为6.7kbar和751℃,7.3kbar和751℃,二者平均值位于图 5中D点。因此,我们推测石榴角闪岩峰期之后经历了降温降压的P-T演化过程(图 5)。降温降压的退变质P-T轨迹切割熔体含量降低的等值线,这表明岩石在抬升过程不再产生熔体,保存在岩石中的熔体开始结晶并与残留矿物发生熔融反应的逆反应。

7 讨论 7.1 石榴角闪岩变质作用P-T-t轨迹

通过以上岩相学、矿物化学和相平衡模拟的结果,南迦巴瓦杂岩石榴角闪岩的变质演化过程可划分为两个阶段:(1) 升温升压进变质阶段和(2) 降温降压退变质阶段。

7.1.1 升温升压进变质阶段

升温升压进变质阶段主要由石榴石和斜长石变斑晶成分环带限定,随着温度和压力的升高,石榴石中镁铝榴石组分逐渐升高,斜长石中An值逐渐降低。根据石榴石边部最高镁铝榴石组分含量等值线与斜长石边部最低An值等值线的交点可限定石榴角闪岩的峰期温压条件为~11.5kbar,790℃,达到了高压麻粒岩相变质条件,峰期矿物组合为Hbl+Grt+Pl+Bt+Rt+Ilm+Qz,与岩相学推测的峰期矿物组合一致。沿进变质P-T演化轨迹(A→B),石榴角闪岩发生熔融反应Bt+Hbl=Grt+Pl+Melt,产生约9%的熔体(表 4)。石榴石和斜长石是熔融反应的生成物,可以记录这一变质演化过程。角闪石在进变质过程中减少了约20%,而黑云母只减少了约4%,因此角闪石是进变质过程中的主要熔融矿物。

表 4 图 5中固定P-T条件下模拟计算的矿物含量 Table 4 The mineral modes calculated at the chosen P-T conditions shown in Fig. 5

钟大赉和丁林(1995)报道的基性麻粒岩峰期温度是根据石榴石-单斜辉石Fe-Mg交换温度计确定,得到710~920℃的结果,平均800℃,压力则根据800℃条件下斜方辉石和斜长石分解压力限定为14~15kbar,由此可见他们估算的温度和压力条件范围都比较大,存在很大的不确定性。张泽明等(2007)认为石榴辉石岩可能经历过榴辉岩相变质作用,但目前在南迦巴瓦杂岩中并没有发现真正的榴辉岩,因此是否达榴辉岩相高压变质条件还需要进一步研究。刘凤麟和张立飞(2014)虽然使用了不适用于模拟基性岩体系下麻粒岩相变质作用的固溶体模型进行了相平衡计算,但是他们估算的峰期温度904℃与同属“高温麻粒岩相单元”的泥质和长英质麻粒岩的峰期温度一致(Tian et al., 2016Zhang et al., 2015)。此外,本文相平衡模拟结果表明石榴石中镁铝榴石组分含量随变质温度的升高而升高,刘凤麟和张立飞(2014)样品中石榴石含有较高的镁铝榴石组分(0.18~0.38),所以该样品应具有较高的变质峰期温度。因此,刘凤麟和张立飞(2014)所计算的高压麻粒岩峰期温压条件有可能接近真实变质条件。

7.1.2 降温降压退变质阶段

降温降压退变质阶段主要依据石榴石边部冠状体矿物之间的平衡温压限定。使用THERMOCALC软件中avPT方法计算冠状体石榴石、黑云母、斜长石、角闪石和石英之间的平衡温压条件为~7kbar,~750℃。峰期变质之后,P-T轨迹首先穿过金红石消失线,导致金红石完全转变为钛铁矿,这与基质中未见金红石一致。根据相平衡计算,从峰期B点到退变质C点,岩石发生了熔融反应的逆反应,即Grt+Melt=Bt+Hbl+Pl+Qz(表 4),这与石榴石斑晶边部后成合晶冠状体一致。如图 5所示,如果峰期产生的熔体(9%)全部保存在岩石中并参与退变质反应,石榴石会在~8.5kbar,~770℃条件下消失。但是,实验岩石学表明熔融的岩石中矿物间隙最多只能保存7%的熔体,并随粒间压力的增加保存熔体的含量逐渐降低(Rosenberg and Handy, 2005)。考虑到石榴角闪岩经历的压力条件为5~11kbar,大约3%的熔体可以保存在岩石中。此外,Brown (2007)认为岩石中最多只能保存熔体总量的10%。所以本文石榴石角闪岩中可能有1%~3%的熔体留在岩石内,这些熔体与残留矿物反应不足以消耗掉所有的石榴石。

7.2 构造意义

如前文所述,南迦巴瓦杂岩经历了新生代高级变质作用。前人报道的原位锆石U-Pb年龄从40Ma到7Ma(Ding et al., 2001Liu et al., 2007Su et al., 2012Xu et al., 2010Zhang et al., 2010, 2015刘凤麟和张立飞,2014)。但是,这些高级变质岩峰期和退变质时代仍然存在较大争议,主要有两种观点(表 5):第一,峰期变质时代发生在40~30Ma,退变质时代发生在28~7Ma(Ding et al., 2001Liu et al., 2007Zhang et al., 2010, 2015);第二,峰期变质时代发生在25~20Ma,退变质时代发生在18~9Ma(Su et al., 2012Xu et al., 2010Zhang et al., 2012刘凤麟和张立飞,2014)。

表 5 前人发表的南迦巴瓦杂岩带各类麻粒岩锆石年龄 Table 5 Previous reported ages of zircon for various types of granulites from the Namche Barwa Complex

本文报道的石榴角闪岩给出了从29.2Ma到10.2Ma的连续变质年龄,与上述第一种观点的退变质时代(28~7Ma)一致,但却涵盖了第二种观点的峰期和退变质时代年龄范围(25~9Ma)。实际上,前人发表的多数锆石U-Pb年龄都不集中,甚至有些样品的年龄跨度很大(表 5)。比如,Ding et al.(2001)报道的石榴角闪岩变质时代从25Ma持续到11Ma;Xu et al.(2010)报道的基性麻粒岩变质时代从30Ma持续到19Ma;刘凤麟和张立飞(2014)报道的基性麻粒岩变质时代从41Ma持续到15Ma;Zhang et al.(2010)报道的泥质麻粒岩变质时代从39Ma持续到16Ma;Liu et al.(2007)报道的片麻岩变质时代从35Ma持续到22Ma;Zhang et al.(2015)最新报道的泥质麻粒岩变质时代从40Ma持续到7Ma。因此,南迦巴瓦杂岩中高级变质岩多经历过连续的长时间的高温变质作用,这一现象已经在大喜马拉雅结晶岩系的麻粒岩中有广泛报道,包括尼泊尔、锡金、亚东和不丹等地区获得的32~17Ma(Searle et al., 2003),33~13Ma(Cesare et al., 2009Kali et al., 2010),37~20Ma(Kohn and Corrie, 2011)和30~20Ma(Zhang et al., 2017)。此外,我们倾向于把本文获得的锆石U-Pb年龄解释为峰期之后的退变质冷却时代,其理由如下:(1) 在含熔体的麻粒岩相变质过程中,锆石通常只在熔体结晶过程中生长(Kelsey et al., 2008Kelsey and Powell, 2011)。本文的相平衡模拟表明,熔体在峰期之后的退变质阶段结晶(图 5),所以锆石年龄代表该演化阶段的年龄;(2) 记录不同年龄的锆石含有相似的Th/U比值(表 2),相似的稀土配分模式(重稀土富集、元素铕轻微负异常;图 4c)表明锆石与石榴石和斜长石不在同一时间生长。岩相学和相平衡模拟结果表明石榴石和斜长石在峰期之前的进变质阶段生长,所以锆石年龄应代表退变质阶段时代。

图 6所示,本文报道的石榴角闪岩峰期温压条件与Tian et al.(2016)报道的中温型变杂砂岩的温度峰期基本一致,二者都位于中温麻粒岩相亚单元内。相比而言,位于高温麻粒岩相亚单元的长英质、泥质和基性麻粒岩则具有较高的的峰期温压条件(Ding and Zhong, 1999Guilmette et al., 2011Liu and Zhong, 1997Zhang et al., 2015刘凤麟和张立飞,2014)。这一结论再次印证了东喜马拉雅构造结内的大喜马拉雅结晶岩系存在变质-构造不连续界面(Tian et al., 2016)。两个亚单元中的高级变质岩在峰期变质之后都降温降压到4~6kbar和~700~800℃,但高温麻粒岩相亚单元具有较高的峰期温压条件,表明这一单元俯冲到了更深的位置。我们推测在约4~6kbar对应深度处(15~20km)高温与中温麻粒岩相亚单元拼贴到一起后折返到地表。此外,两个亚单元中基性麻粒岩的峰期压力条件( < 13kbar)低于各自单元中的长英质和泥质麻粒岩(13~17kbar)。这有可能表明基性麻粒岩可能在俯冲过程中处在较浅的位置(40~50km),此后被来源于更深部的长英质麻粒岩包裹在一起抬升。

图 6 南迦巴瓦杂岩石榴角闪岩P-T轨迹及其与前人报道研究区内高压麻粒岩P-T轨迹的对比图(变质相边界引自Vernon and Clarke, 2008) Fig. 6 Summary of the inferred P-T paths for the studied Namche Barwa complex (NBC) garnet amphibolite and comparison with those reconstructed for the NBC HP granulites (metamorphic facies boundaries are after Vernon and Clarke, 2008)
8 结论

(1) 首次运用最新的基性岩固溶体模型对东喜马拉雅构造结南迦巴瓦杂岩中的石榴角闪岩进行了相平衡模拟,结合详细的岩石学、矿物化学和锆石年代学分析,构建了石榴角闪岩的P-T-t演化轨迹:升温升压的进变质阶段发生在29.2Ma之前,峰期温压条件为~11.5kbar,790℃,达到了高压麻粒岩相条件;降温降压的退变质阶段发生在29.2~10.2Ma,石榴石边部“白眼圈”冠状体记录的温压条件为~7kbar,~750℃。由此可见,石榴角闪岩经历过持续至少20Ma的高温变质作用。相平衡模拟表明,石榴角闪岩在进变质阶段经历了部分熔融,产生至少9%的熔体。

(2) 本文和以前的研究结果表明,南迦巴瓦杂岩中的高温和中温麻粒岩相亚单元具有相似的降温降压P-T轨迹,但高温单元具有较高的变质压力条件,表明其俯冲到了更大的深度。此外,基性麻粒岩的峰期压力条件普遍低于长英质和泥质麻粒岩,表明基性麻粒岩可能只俯冲到了较浅的位置,此后被来源于更深部的长英质麻粒岩包裹在一起抬升。

致谢 感谢赵志丹教授和朱弟成教授在研究工作中的支持与帮助!王伟博士和杜瑾雪博士对本文进行了细致的评阅,提出了有益的修改意见,在此表示感谢!
参考文献
[] Booth AL, Zeitler PK, Kidd WSF, et al. 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10): 889–929. DOI:10.2475/ajs.304.10.889
[] Booth AL, Chamberlain CP, Kidd WSF, Zeitler PK. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geological Society of America Bulletin, 121(3-4): 385–407. DOI:10.1130/B26041.1
[] Brown M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens:Mechanisms and consequences. Journal of the Geological Society, 164(4): 709–730. DOI:10.1144/0016-76492006-171
[] Caddick MJ, Konopásek J, Thompson AB. 2010. Preservation of garnet growth zoning and the duration of prograde metamorphism. Journal of Petrology, 51(11): 2327–2347. DOI:10.1093/petrology/egq059
[] Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D, Cavallo A. 2009. "Nanogranite" and glassy inclusions:The anatectic melt in migmatites and granulites. Geology, 37(7): 627–630. DOI:10.1130/G25759A.1
[] Ding L, Zhong DL. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China (Series D), 42(5): 491–505. DOI:10.1007/BF02875243
[] Ding L, Zhong DL, Yin A, Kapp P, Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423–438. DOI:10.1016/S0012-821X(01)00463-0
[] Escuder Viruete J, Indares A, Arenas R. 2000. P-T paths derived from garnet growth zoning in an extensional setting:An example from the tormes gneiss dome (Iberian Massif, Spain). Journal of Petrology, 41(10): 1489–1515. DOI:10.1093/petrology/41.10.1489
[] Faccenda M, Gerya TV, Chakraborty S. 2008. Styles of post-subduction collisional orogeny:Influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos, 103(1-2): 257–287. DOI:10.1016/j.lithos.2007.09.009
[] Florence FP, Spear FS. 1991. Effects of diffusional modification of garnet growth zoning on P-T path calculations. Contributions to Mineralogy and Petrology, 107(4): 487–500. DOI:10.1007/BF00310683
[] Geng QR, Pan GT, Zheng LL, et al. 2006. The Eastern Himalayan Syntaxis:Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265–285. DOI:10.1016/j.jseaes.2005.03.009
[] Green ECR, White RW, Diener JFA, et al. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845–869. DOI:10.1111/jmg.2016.34.issue-9
[] Guilmette C, Indares A, Hébert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos, 124(1-2): 66–81. DOI:10.1016/j.lithos.2010.09.003
[] Holland TJB, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333–383. DOI:10.1111/jmg.2011.29.issue-3
[] Hu ZC, Liu YS, Chen L, et al. 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425–430. DOI:10.1039/C0JA00145G
[] Johnson TE, White RW, Powell R. 2008. Partial melting of metagreywacke:A calculated mineral equilibria study. Journal of Metamorphic Geology, 26(8): 837–853. DOI:10.1111/jmg.2008.26.issue-8
[] Kali E, Leloup PH, Arnaud N, et al. 2010. Exhumation history of the deepest central Himalayan rocks, Ama Drime range:Key pressure-temperature-deformation-time constraints on orogenic models. Tectonics, 29(2): TC2014.
[] Kelsey DE, Clark C, Hand M. 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems:Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 26(2): 199–212. DOI:10.1111/jmg.2008.26.issue-2
[] Kelsey DE, Powell R. 2011. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks:A thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system. Journal of Metamorphic Geology, 29(1): 151–166. DOI:10.1111/jmg.2010.29.issue-1
[] Kohn MJ, Spear F. 2000. Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology, 28(12): 1127–1130. DOI:10.1130/0091-7613(2000)28<1127:RNTRIF>2.0.CO;2
[] Kohn MJ, Corrie SL. 2011. Preserved Zr-temperatures and U-Pb ages in high-grade metamorphic titanite:Evidence for a static hot channel in the Himalayan orogen. Earth and Planetary Science Letters, 311(1-2): 136–143. DOI:10.1016/j.epsl.2011.09.008
[] Leake BE, Woolley AR, Arps CES, et al. 1997. Nomenclature of amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The American Mineralogist, 82(9-10): 1019–1037.
[] Liu FL, Zhang LF. 2014. High-pressure granulites from Eastern Himalayan Syntaxis:P-T path, zircon U-Pb dating and geological implications. Acta Petrologica Sinica, 30(10): 2808–2820.
[] Liu Y, Zhong D. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451–466. DOI:10.1111/j.1525-1314.1997.00033.x
[] Liu Y, Yang ZQ, Wang M. 2007. History of zircon growth in a high-pressure granulite within the Eastern Himalayan Syntaxis, and tectonic implications. International Geology Review, 49(9): 861–872. DOI:10.2747/0020-6814.49.9.861
[] Liu YS, Gao S, Hu ZC, et al. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082
[] Ludwig KR. 2003. Isoplot/Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center
[] Powell R, Holland T, Worley B. 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4): 577–588. DOI:10.1111/j.1525-1314.1998.00157.x
[] Powell R, White RW, Green ECR, Holland TJB, Diener JFA. 2014. On parameterizing thermodynamic descriptions of minerals for petrological calculations. Journal of Metamorphic Geology, 32(3): 245–260. DOI:10.1111/jmg.2014.32.issue-3
[] Rosenberg CL, Handy MR. 2005. Experimental deformation of partially melted granite revisited:Implications for the continental crust. Journal of Metamorphic Geology, 23(1): 19–28. DOI:10.1111/jmg.2005.23.issue-1
[] Rubatto D, Chakraborty S, Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165(2): 349–372. DOI:10.1007/s00410-012-0812-y
[] Searle MP, Simpson RL, Law RD, Parrish RR, Waters DJ. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society, 160(3): 345–366. DOI:10.1144/0016-764902-126
[] Spear FS. 1991. On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. Journal of Metamorphic Geology, 9(4): 379–388. DOI:10.1111/jmg.1991.9.issue-4
[] Su W, Zhang M, Liu XH, et al. 2012. Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis:New constrains from SIMS U-Pb zircon age. International Journal of Earth Sciences, 101(1): 239–252. DOI:10.1007/s00531-011-0656-0
[] Tian ZL, Zhang ZM, Dong X. 2016. Metamorphism of high-P metagreywacke from the Eastern Himalayan Syntaxis:Phase equilibria and P-T path. Journal of Metamorphic Geology, 34(7): 697–718. DOI:10.1111/jmg.2016.34.issue-7
[] Vernon RH, Clarke GL. 2008. Principles of Metamorphic Petrology. Cambridge: Cambridge University Press.
[] White RW, Powell R. 2002. Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology, 20(7): 621–632.
[] White RW, Powell R, Holland TJB, Johnson TE, Green ECR. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261–286. DOI:10.1111/jmg.2014.32.issue-3
[] Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. DOI:10.2138/am.2010.3371
[] Xiang H, Zhang ZM, Dong X, Qi M, Lin YH, Lei HC. 2013. High-pressure metamorphism and anatexis during the subduction of Indian continent:Phase equilibria modeling of the Namche Barwa complex, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 29(11): 3792–3802.
[] Xu WC, Zhang HF, Parrish R, et al. 2010. Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics, 485(1-4): 231–244. DOI:10.1016/j.tecto.2009.12.023
[] Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. DOI:10.1146/annurev.earth.28.1.211
[] Zhang ZM, Zheng LL, Wang JL, Zhao XD, Shi C. 2007. Garnet pyroxenite in the Namjagbarwa Group-complex in the eastern Himalayan tectonic syntaxis, Tibet, China:Evidence for subduction of the Indian continent beneath the Eurasian plate at 80~100km depth. Geological Bulletin of China, 26(1): 1–12.
[] Zhang ZM, Zhao GC, Santosh M, et al. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719–733.
[] Zhang ZM, Dong X, Santosh M, et al. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123–137. DOI:10.1016/j.gr.2011.02.002
[] Zhang ZM, Xiang H, Dong X, Ding HX, He ZY. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan Orogen, South Tibet. Lithos, 212-215: 1–15. DOI:10.1016/j.lithos.2014.10.009
[] Zhang ZM, Xiang H, Dong X, et al. 2017. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Research, 41: 173–187. DOI:10.1016/j.gr.2015.03.002
[] Zhong DL, Ding L. 1996. Discovery of high-pressure basic granulite in Namjagbarwa area, Tibet, China. Chinese Science Bulletin, 41(1): 87–88.
[] 刘凤麟, 张立飞. 2014. 喜马拉雅东构造结高压麻粒岩PT轨迹、锆石U-Pb定年及其地质意义. 岩石学报, 30(10): 2808–2820.
[] 向华, 张泽明, 董昕, 祁敏, 林彦蒿, 雷恒聪. 2013. 印度大陆俯冲过程中的高压变质与深熔作用:东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究. 岩石学报, 29(11): 3792–3802.
[] 张泽明, 郑来林, 王金丽, 赵旭东, 石超. 2007. 东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩——印度大陆向欧亚板块之下俯冲至80~100km深度的证据. 地质通报, 26(1): 1–12.
[] 钟大赉, 丁林. 1995. 西藏南迦巴瓦峰地区发现高压麻粒岩. 科学通报, 40(14): 1343. DOI:10.3321/j.issn:0023-074X.1995.14.029