2. 中国地质科学院地质研究所, 北京 100037;
3. 武警黄金第十支队, 昆明 637350;
4. 麦考瑞大学, 悉尼 2109;
5. 联邦科学与工业研究组织, 珀斯 6151
2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. Gold Detachment No. 10 of CAPF, Kunming 637350, China;
4. Macquarie University, Sydney, NSW2109, Australia;
5. CSIRO Mineral Resources Flagship, Perth, WA6151, Australia
地球上60%~70%大陆地壳形成于太古代(3~2.5Ga)(Hawkesworth et al., 2013; Belousova et al., 2010),平均厚度40km(Christensen and Mooney, 1995;Rudnick and Fountain, 1995)。大陆地壳成分为安山质(SiO2 53%~66%)已成共识(Rudnick and Gao, 2003),其既不同于镁铁质的洋壳(SiO2 45%~53%),也不同于上地幔的超镁铁质橄榄岩(SiO2<45%)。但关于大陆下地壳的成分仍存有争议。Heier and Adams(1965)提出下地壳由麻粒岩相变质岩组成。Smithson(1978) 通过地震波研究认为地壳分为上、中、下三层,下地壳由火成岩和变质岩混合构成,其成分从花岗质到辉长质,整体为闪长质成分。Kay and Kay (1988)认为在不同构造区域内,大陆下地壳成分也有所不同。Rudnick and Gao(2003)通过对全球麻粒岩相地体、地震波、深部捕虏体数据的总结研究,认为大陆地壳分为上地壳、中地壳、下地壳。而80%下地壳成分为镁铁质(SiO2 45%~53%),厚度约17km。而Hacker et al.(2015)和Kelemen and Behn(2016)则认为北美大陆西侧俯冲带地区的大陆地壳分为上地壳和下地壳,其下地壳为长英质。综上,前人研究认为下地壳的岩石组成以麻粒岩相变质岩为主,包括变沉积岩或变火成岩(Fountain et al., 1992; Fountain and Salisbury, 1981)。但在不同的构造区域内,大陆下地壳的成分各不相同(Hacker et al., 2015;Kelemen and Behn, 2016),说明不同的构造活动对于下地壳的成分有重要影响。
六合地区位于扬子克拉通西缘,其深部地壳岩石被新元古代-新生代地层所覆盖。目前发现的深部地壳样品来自该区新生代幔源长英质侵入体中的捕虏体。前人研究表明捕虏体为镁铁质岩石,岩性包括石榴石透辉石岩、石榴石透辉角闪岩。其中石榴石透辉岩源自上地幔(87~95km),石榴石透辉角闪岩形成于下地壳(45~55km)。它们是源于富集地幔的玄武质岩浆在壳-幔过渡带、下地壳以及中、下地壳分凝结晶的产物(王建等,2002;赵欣等,2003)。而扬子克拉通的古老下地壳的锆石U-Pb年龄为2.86~2.73Ga,其岩石类型包括:(1) 闪长质、石英闪长质、奥长花岗质片麻岩(DTT);(2) 变沉积岩;(3) 少量角闪岩和镁铁质麻粒岩(Gao et al., 1999, 2001)。该地区的下地壳捕虏体与扬子克拉通的古老下地壳岩石的明显不同,说明该地区下地壳受到构造-岩浆事件的改造作用。但对于该区下地壳岩石的形成时代和机制,受到何种构造-岩浆事件作用等问题前人都尚未研究。
本文通过对新生代幔源长英质侵入体中所携带的深源捕虏体进行岩相学、矿物学、锆石U-Pb年龄、锆石Hf同位素、Sr-Nd同位素等方面的研究,深入探讨了六合地区下地壳的岩石组成类型、形成机制、形成时代以及受到何种构造-岩浆事件作用等问题,以期在时间序列上阐述该地区下地壳的演化过程。
2 区域地质背景扬子克拉通北临秦岭-大别山碰撞造山带,西靠青藏高原,南接华夏板块(图 1a)。其古老下地壳为崆岭高级变质岩,形成于太古代(2.86~2.73Ga),古老下地壳岩石主要为变火成岩和变沉积岩(Gao et al., 1999, 2001)。在古元古代时期(1.7~1.5Ga),由于哥伦比亚超级大陆的裂解使得扬子克拉通受到岩浆改造(Chen et al., 2013;Zhao et al., 2010)。在新元古代时期,扬子克拉通西缘分布约1000km的岩浆-变质杂岩带(Sun and Zhou, 2008),如花岗岩、玄武岩、辉长岩(Zhou et al., 2002, 2006; Zhao and Zhou, 2007a, b),但关于扬子克拉通西缘在这一时期发生的构造-岩浆事件尚存争议。Wang et al.(2009)认为扬子克拉通西缘在1050~860Ma板块俯冲作用,而在825~750Ma则受到一个长时间的地幔柱作用。但Zhou et al.(2002, 2006)和Zhao and Zhou(2007a, b)则认为扬子克拉通在新元古代时期(850~750Ma)受到南-北的双向俯冲,在其西缘形成从北部的汉南至西部的攀西近1000km的攀西-汉南弧。Sun et al.(2009)通过研究扬子克拉通西缘地层中的碎屑锆石认为1000~740Ma扬子克拉通西缘发生持续俯冲作用,进一步证实扬子克拉通西缘受到板块的俯冲作用。从新元古代晚期到早三叠世(740~220Ma),扬子克拉通始终在古太平洋西侧成为一个孤立陆块,其西缘成为被动大陆边缘,沉积大量的海相碎屑岩(Li, 1998; Pullen et al., 2008)。晚二叠世到早三叠世(260~250Ma),在扬子克拉通西缘爆发了地幔柱岩浆事件,形成峨嵋山大火山岩省(Xiao et al., 2004; Xu et al., 2001)。其持续时间短(260~250Ma),分布面积约2.5×105km2,产出众多玄武岩、超镁铁-镁铁质和长英质的岩体(Luo et al., 2013; Zhong and Zhu, 2006; Zhong et al., 2007, 2009)。从新生代早期(65Ma)开始,由于印度岩石圈的俯冲导致印度板块和亚洲板块持续碰撞,进而形成了喜马拉雅造山带和青藏高原(邓军等, 2011, 2016;Lee and Lawver, 1995; Yin and Harrison, 2000; Chung et al., 2005)。碰撞作用使得扬子克拉通西缘从西至东发育巴塘-丽江断裂、红河断裂、鲜水河断裂、冕宁-德昌断裂、小江断裂(侯增谦等,2006;Wang et al., 2001;Leloup et al., 1995;钟大赉,1998;Liu et al., 2015a)。从巴塘-丽江断裂延红河断裂发育近1000km的新生代富碱斑岩带(Wang et al., 2001;Guo et al., 2005)。主要岩相包括富钾的花岗质斑岩、正长岩、正长斑岩、粗面岩、粗面斑岩等,其同位素年龄集中于41~27Ma,峰期在36Ma(张玉泉等,1987;Chung et al., 1998;Wang et al., 2001;Hou and Cook, 2009;Lu et al., 2013)(图 1b)。同时还出露有许多呈脉状,零星分布的,与富碱侵入岩分布时空一致的煌斑岩脉和钾质火山岩,如碱玄岩、安粗岩、粗面岩、碧玄岩和钾质云煌岩等(Guo et al., 2005; Huang et al., 2010)。
|
图 1 扬子克拉通西缘地质简图(据侯增谦等,2015;Zhao et al., 2010修改) (a)中国南部板块构造简图;(b)扬子克拉通西缘岩浆岩和六合捕虏体分布图 Fig. 1 Simplified geological map of western edge of Yangzte Craton (modified after Hou et al., 2015; Zhao et al., 2010) (a) simplified plate tectonic map of South China; (b) map showing the distribution of igneous rocks and location of Liuhe xenoliths in western edge of Yangtze Craton |
深部地壳捕掳体被新生代幔源正长斑岩(侯增谦等,2015;Hou et al., 2017)所携带(图 2a)。捕掳体岩性为石榴石透辉岩、石榴石角闪透辉岩、石榴石角闪岩。三者皆属麻粒岩相正变质岩。
|
图 2 捕虏体野外露头与岩相学照片 (a)捕虏体野外露头;(b)石榴石透辉岩;(c)石榴石角闪透辉岩;(d)石榴石角闪岩.Am(Ⅰ)-原生角闪石;Am(Ⅱ)-次生角闪石;Ap-磷灰石;Bi-黑云母;Di-透辉石;Gt-石榴石;Mt-磁铁矿;Pl-斜长石;Qtz-石英 Fig. 2 Photographs showing field outcrop of xenolith and petrology (a) field outcrop of xenolith; (b) garnet pyroxenite; (c) garnet amphibole pyroxenite; (d) garnet amphibolite. Am(Ⅰ)-protogenetic amphibole; Am(Ⅱ)-secondary amphibole; Ap-apatite; Bi-biotite; Di-diopside; Gt-garnet; Mt-magnetite:Pl-plagioclase; Qtz-quartz |
不等粒变晶结构,块状构造。主要矿物为石榴石、单斜辉石,次要矿物为角闪石、磁铁矿、磷灰石、石英(图 2b),矿物排列定相性明显。石榴石淡黄色,圆粒状,粒径大(2~3mm), 体积分数达30%~40%。内部沿裂隙分布石英、钠长石、磷灰石。边部有不透明暗化边,矿物主要为磁铁矿。单斜辉石呈黄绿色,自形长柱状,体积分数约50%,黄绿色角闪石产于石榴子边部,呈褐色,体积分数3%~5%。石榴石边部的磁铁矿,内部裂隙的次生长石、石英为退变质矿物。
3.2 石榴石角闪透辉岩不等粒变晶结构, 块状构造。主要矿物为石榴石、单斜辉石、角闪石,次要矿物为磁铁矿、少量斜长石、黑云母、磷灰石(图 2c),矿物排列定向性较弱。石榴石呈灰白色, 多为圆粒状或似圆粒状,粒径1.0~0.5mm, 体积分数可达35%~40%。单斜辉石为浅绿色,体积分数约55%,他形结晶。角闪石的体积分数约为10%~15%, 具棕黄色-黄绿色多色性,半自形柱状。石榴石内部、外部包含了大量磁铁矿。斜长石体积分数很少, 无色, 粒度较小,属钠长石。黑云母呈红褐色,他形片状。部分石榴石内部含有角闪石、石英等次生矿物。石榴子石边部退变大量磁铁矿等后成合晶(图 2e, f)。
3.3 石榴石角闪岩等粒变晶结构, 块状构造。主要矿物为角闪石、石榴石,次要矿物为单斜辉石、斜长石、黑云母、磁铁矿(图 2d),矿物排列定向性弱。角闪石的体积分数约为50%~60%, 具棕黄色-黄绿色多色性, 呈自形-半自形柱状,边部与磁铁矿共生。石榴石的体积分数约为30%~40%, 无色, 圆粒状,个别石榴石内部包含长石。单斜辉石为浅绿色,体积分数约10%,结晶粒度小。斜长石的体积分数约为10%, 灰白色, 椭圆粒状。边部磁铁矿为角闪石后成合晶,少量透辉石退变为角闪石(图 2e)。
4 分析技术 4.1 锆石SHRIMP U-Pb定年捕掳体样品中锆石应用SHRIMP U-Pb定年技术。把锆石从捕虏体样品中分选出来, 在双目镜下挑纯。将待测锆石与数粒锆石标样TEM置于环氧树脂中做成样品靶。将靶上的锆石磨至约一半, 以使锆石内部暴露, 用于锆石透射光、反射光和阴极发光(CL)研究锆石结构。CL图象在北京离子探针中心电镜室完成, 其目的是在进行SHRIMP U-Pb分析时, 需参考锆石颗粒剖面的阴极发光图像, 以便对锆石颗粒的不同区域U、Th、Pb同位素成分进行分析。SHRIMP U-Pb测试在中国地质科学院地质研究所北京离子探针中心的SHRIMP Ⅱ上完成。一次离子源气体为氧气, 将其电离后, 由O2-打击锆石颗粒, 激发出锆、铅、铀、钍的氧化物离子或金属离子。一次离子为约4.5nA、10kV的O2打到锆石上束斑的直径为~25μm, 质量分辨率约5400 (1%峰高)。待分析点与标样TEM的点交叉进行分析。应用RSES的锆石SL13 (572Ma, 238×10-6)标定样品的U、Th、Pb含量, TEM (417Ma)进行年龄校正。数据处理采用Ludwig的SQUID1.02及ISOPLOT程序。普通铅根据实测的204 Pb进行校正, 单个分析点数据误差为1σ, 加权平均年龄具95%的置信度。详细实验流程和原理参考Compston et al. (1984)、Williams (1992)。
4.2 全岩地球化学主、微量元素分析测试均在北京大学造山带与地壳演化教育部重点实验室完成。主量元素分析是在顺序式X-荧光光谱仪(ADVANT XP+)上完成的,取样品10g左右,放入干燥箱中。在105℃烘4h。将四硼酸锂,偏硼酸锂,氟化锂混合熔剂放入箱式电阻炉中在680℃下烘1h。取出冷却,放入塑料瓶中。将塑料瓶放在保干器中保存。准确称取4g四硼酸锂,偏硼酸锂,氟化锂混合熔剂,准确称取0.4g样品放入铂金坩埚中用搅拌均匀。加入3~4滴饱和溴化胺溶液,在高频熔融机中熔样。熔好的样品用称量纸包好放入塑料袋中。在保干器中保存,等待测试。主量元素的分析精度优于1%。微量元素的分析则在Agilent ICPMS 7500ce型电感耦合等离子体质谱(ICP-MS)上完成,首先将粉碎200目的岩石样品在电热板上50℃左右烘干过夜,准确称取烘好的样品25mg于用酸浸泡并去离子水冲洗并烘干的聚四氟的坩埚中,加入氢氟酸2mL,电子纯的硝酸0.6mL,和10滴的高氯酸。再将坩埚放于180℃的电热板上加热消解样品72h,将坩埚从电热板上取下冷却后,打开盖,在150℃的电热板上蒸酸,至近干,样品呈湿盐状,取下冷却。之后在坩埚中加入2%的硝酸10mL左右,盖上坩埚盖,放在105℃的电热板上提取样品过夜。最后将样品溶液转移于25mL的容量瓶中,用2%的硝酸定容,摇均,待仪器测试。微量元素的分析精度大都优于10%。
4.3 锆石Lu-Hf同位素锆石Lu-Hf同位素比值测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)利用激光剥蚀多接收杯等离子体质谱(LA-MC-ICP-MS)完成。实验采用该装置即使激光脉冲频率为1Hz,实时获取了锆石样品自身的βYb用于干扰校正。179Hf/177Hf=0.7325和173Yb/171Yb=1.132685(Fisher et al., 2014)被用于计算Hf和Yb的质量分馏系数βHf和βYb。179Hf/177Hf和173Yb/171Yb的比值被用于计算Hf (βHf) and Yb (βYb)的质量偏差。使用176Yb/173Yb=0.79639(Fisher et al., 2014)来扣除176Yb对176Hf的同量异位干扰。使用176Lu/175Lu=0.02656 (Blichert-Toft et al., 1997)来扣除干扰程度相对较小的176Lu对176Hf的同量异位干扰。由于Yb和Lu具有相似的物理化学属性,在本实验中采用Yb的质量分馏系数βYb来校正Lu的质量分馏行为。分析数据的离线处理(包括对样品和空白信号的选择、同位素质量分馏校正)采用软件ICP-MS Data Cal (Liu et al., 2010)完成。详细仪器操作条件和分析方法可参照Hu et al. (2012)。
4.4 全岩Rb-Sr、Sm-Nd同位素全岩Rb-Sr、Sm-Nd同位素分析在中国科学技术大学放射性成因同位素地球化学实验室完成。准确地称取粉末样品100~150mg左右于15mL的Teflon闷罐中,滴入纯化HClO4酸8~10滴摇匀后,加入2~3mL纯化HF酸,密闭加热一周左右以充分溶解样品。Rb-Sr同位素和REE分离纯化在装有5mL AG50W-X12交换树脂(200~400目)的石英交换柱中完成,Sm-Nd同位素的分离纯化在装有1.7mL Teflon粉末的石英交换柱中完成。同位素比值的测试在MAT-262热电离质谱计完成,Rb-Sr同位素比值测定采用Ta金属带和Ta发射剂;Sm-Nd同位素比值测定采用Re金属带。标准溶液NBS987的重复测量结果为87Sr/86Sr=0.710249±0.000012 (2σ, n=38),标准溶液La Jolla的重复测量结果为143Nd/144Nd=0.511869±0.000006 (2σ, n=25)。Sr和Nd同位素比值测量精度优于0.003%。测量得到的同位素比值采用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219进行质量分馏校正。重复分析标准溶液NBS 987和La Jolla,分别得到87Sr/86Sr值为0.710249±0.000012和143Nd/144Nd值0.511869±0.000006。全岩Rb-Sr、Sm-Nd同位素分析的全流程本底分别是<200pg、<100pg。详细的同位素分析流程可以参见Chen et al.(2000, 2002, 2007)。
4.5 电子探针探针片喷碳与样品测试工作在中国地质科学院矿产资源研究所电子探针实验室完成。分析采用日本电子JOEL公司生产的JXA-8230型电子探针分析仪,实验中的加速电压为15kV,束流为20nA,束斑大小为5μm,测试的主量元素包括Na2O、MgO、Al2O3、SiO2、CaO、K2O、FeO、MnO、TiO2、P2O5等,主量元素的检出限约为0.01%。标样矿物分别为Na、Al、Si(硬玉)、Mg(镁橄榄石)、K(钾长石)、Ca(硅灰石)、Fe(赤铁矿)、Ti(金红石)、P(磷灰石)等。详细的同位素分析流程可以参见Liu et al. (2015b)。
5 分析结果 5.1 矿物成分特征捕虏体中的单斜辉石都为透辉石(Wo42-50En35-36Fs9-22)(表 1),其与石榴石平衡共生,透辉石边部产出部分次生角闪石,说明在捕虏上升过程中辉石发生了退变质。其石榴石角闪岩的Mg#=0.70~0.77,石榴石角闪透辉岩和石榴石透辉岩的Mg#=0.80~0.83(表 1)。地幔中的高镁堆晶岩中的单斜辉石Mg #>0.85,而下地壳的低镁堆晶岩的单斜辉石Mg#=0.78~0.85(Lee et al., 2006)。矿物成分显示明石榴石角闪岩、石榴石角闪透辉岩和石榴石透辉岩的透辉石都具有与地壳堆晶岩相同的矿物特征。
|
|
表 1 六合下地壳捕虏体矿物成分数据(wt%) Table 1 Mineral composition of lower crustal xenoliths in Liuhe (wt%) |
捕虏体中的石榴石为铁铝榴石(Pyr12-27Gro26-32Alm40-51)。捕虏体石榴石有次生边和裂隙。次生边由磁铁矿组成,而石英、斜长石、角闪石等次生矿物沿裂隙充填于石榴石中,说明在捕虏上升过程中石榴石发生了退变质。同时地幔岩石中的石榴石多为镁铝榴石,而下地壳的低镁堆晶岩的石榴石为铁铝榴石。矿物成分显示捕虏体的石榴石成分与地壳堆晶岩的石榴石成分相近。
捕虏体中的角闪石都为韭闪石(表 1),分别为原生角闪石和次生角闪石。原生角闪石与石榴石、辉石平衡共生,而次生次生角闪石产于石榴石裂隙中,为退变质矿物。
用石榴石-单斜辉石Mg-Fe交换地质温度计(Ellis and Green, 1979;Krogh,1988)计算得知石榴石角闪岩(LH14-2-7和LH14-03) 的形成温度为753~755℃,石榴石角闪透辉岩(LH14-07和LH14-42) 和石榴石透辉岩(LH14-08) 的形成温度803~829℃(表 1)。依据镁铁质和超镁铁质岩石的地热等温线16℃/km(Wang et al., 2016)计算得知石榴石角闪岩形成深度为45~47km,石榴石透辉岩和石榴石角闪透辉岩的形成深度为48~51km,根据地球物理数据得知扬子克拉通西缘的地壳厚度为42~45km(钟大赉等, 2000),故石榴石角闪岩,石榴石透辉岩和石榴石角闪透辉岩位于陆壳下部。
5.2 锆石U-Pb年龄和成因锆石测试样品分别从样品LH14-03和LH14-09样品挑选。LH14-03的锆石为变质锆石,内部结构多为面状分带、无分带、弱分带等。无典型岩浆锆石的振荡环带和扇形分带结构(图 3)。其中3.1、3.6号锆石为继承锆石,环带与核部分带明显(图 3)。1号锆石环带无明显结晶结构,Th/U低,为变质增生作用形成。6号锆石环带结晶结构明显,Th/U高,为深熔作用形成(简平等,2001)。而其余变质锆石(3.2、3.3、3.4、3.5、3.7号)Th/U 0.22~0.95,不同于典型的变质锆石(Th/U<0.1)。从锆石结构观察并无受到流体改造出现淋滤和溶蚀现象。而重结晶作用会使得Pb流失,但锆石的206Pb并未亏损(表 2)。而深熔作用形成的锆石大多有核部(Hoskin and Schaltegger, 2003)。故3.2~3.7号锆石为变质增生作用形成,但在高级变质相(麻粒岩相-角闪岩相),锆石生长速度与生长介质之间不能或部分达到化学平衡,会导致Th/U较高(吴元保和郑永飞,2004)。通过7颗独立锆石测得206U/238Pb年龄259±9Ma(图 4a)。
|
图 3 捕掳体锆石阴极发光(CL)图像示U-Pb年龄和Th/U比值 Fig. 3 Cathodoluminescence images of xenoliths zircons showing their U-Pb ages and Th/U ratios |
|
|
表 2 六合下地壳捕虏体锆石U-Pb年龄数据 Table 2 Zircon U-Pb age data of lower crustal xenoliths in Liuhe |
|
图 4 捕虏体锆石U-Pb和全岩Sm-Nd同位素年代学特征图 (a、b)捕虏体锆石U-Pb年龄图;(c、d)捕虏体Sm-Nd等时线年龄图 Fig. 4 Plot shows characteristics of zircon U-Pb and whole-rock Sm-Nd isotopic geochronology of xenoliths (a, b) plots show zircon U-Pb concordia ages of xenoliths; (c, d) plots show Sm-Nd isochron ages of xenoliths |
LH14-09的锆石也多为变质锆石,内部结构多为面状分带、无分带、弱分带等,无典型岩浆锆石结构(图 3)。9.1、9.4号锆石为继承锆石,环带与核部分带明显(图 3)。9.1号锆石环带结晶结构不明显,但Th/U高。9.4号锆石环带结晶结构明显,Th/U高。故9.1和9.4号锆石为深熔作用形成。而其余变质锆石(9.2、9.3、9.5、9.6、9.7、9.8号)Th/U为0.11~0.62,参照上段对LH14-03锆石的分析思路,这些锆石亦是由变质增生作用形成。通过7颗独立锆石测得206U/238Pb年龄773±23Ma(图 4b)。
结合锆石U-Pb年龄和成因,捕虏体分别在259±9Ma(新元古代)和773±23Ma(晚二叠世)受到变质作用,在35Ma受到深熔作用。
5.3 地球化学特征捕虏体经历进变质和退变质作用,岩石保持较好的结晶结构,无交代变质结构(图 2),低岩石烧失量(1.62%~3.07%)(表 3),说明岩石处于一个封闭环境,其全岩主量、微量元素组分可以反映原始岩浆的地球化学性质。
|
|
表 3 六合下地壳捕虏体全岩地球化学数据(主量元素:wt%;稀土和微量元素:×10-6) Table 3 Whole-rock geochemical data of lower crustal xenoliths in Liuhe (major elements: wt%; trace elements: ×10-6) |
LH14-08和LH14-09的石榴石透辉岩SiO2=44.10%~44.24%,MgO=14.59%~14.77%,Fe2O3T=13.30%~13.46%,Cr=612×10-6~616×10-6,Mg#=0.64。LH151-8和LH14-42的石榴石角闪透辉岩SiO2=45.83%~45.90%,MgO=10.95%~12.41%,Fe2O3T=11.34%~12.87%,Cr=352×10-6~442×10-6,Mg#=0.65。LH151-12和LH15-2-7的石榴石角闪岩SiO2=46.06%~50.32%,MgO=6.83%~8.23%,Fe2O3T=9.18%~14.55%,Cr=87×10-6~201×10-6,Mg#=0.50~0.58。三类岩石的LREE与HREE分异程度低((La/Yb)N=2.23~6.08),Eu无明显异常(δEu=0.80~6.08), 富集Rb、Ba、Sr等大离子亲石元素(LILE),亏损P、Zr、Hf、Nb、Ta、Ti等高场强元素(HFSE)(图 5a)。
|
图 5 捕虏体全岩地球化学微量元素蛛网图 (a)新元古代捕虏体微量元素蛛网图;(b)晚二叠世捕虏体微量元素蛛网图.1000~740Ma辉长岩数据引自Zhao and Zhou, 2007a;260~250Ma辉长岩数据引自Luo et al., 2013;扬子克拉通古老下地壳岩石数据引自Gao et al., 1999;全球大陆下地壳岩石数据引自Rudnick and Gao, 2003 Fig. 5 Whole-rock geochemical trace-element distribution pattern diagram of xenoliths (a) Neoproterozoic cumulates trace-element spider diagram; (b) Late Permian cumulates trace-element spider diagram. 1000~740Ma gabbro from Zhao and Zhou, 2007a; 260~250Ma gabbro from Luo et al., 2013; ancient lower crust of Yangtze Craton from Gao et al., 1999; continental lower crust from Rudnick and Gao, 2003 |
LH14-07和LH14-06的石榴石角闪透辉岩SiO2=45.85%~46.34%,MgO=10.49%~10.63%,Fe2O3T=12.55%~12.69%,Cr=306×10-6~319×10-6,Mg#=0.61。LH14-03和LH14-05石榴石角闪岩SiO2=43.24%~43.54%,MgO=10.35%~10.38%,Fe2O3T=14.36%~14.74%,Cr=175×10-6,Mg#=0.56~0.57。二者皆LREE与HREE分异程度低((La/Yb)N=7.80~8.22),Eu无明显异常(δEu=0.80~1.09), 富集Rb、Ba、Sr等大离子亲石元素,轻度亏损P、Zr、Hf、Nb、Ta、Ti等高场强元素(图 5b)。
Sm-Nd在地质作用下不易发生迁移和分离。如果没有流体参与,角闪岩相甚至麻粒岩相的岩石,仍能使Sm-Nd同位素系统保持封闭,从而获得较正确的变质岩原岩的年龄信息。捕虏体为镁铁质和超镁铁质岩石,其Sm/Nd比值变化较大(表 4),易获得较好的Sm-Nd等时线年龄。且岩石处于封闭环境,故测得捕虏体的Sm-Nd等时线年龄分别为251±4Ma(晚二叠世)和809±64Ma(新元古代)(图 4c, d)。新元古代捕虏体εNd(t)=-5.28~4.36,87Sr/86Sr=0.707308~0.707361。晚二叠世捕虏体εNd(t)=-5.68~2.33,87Sr/86Sr=0.70717~0.708825(表 4)。新元古代的样品靠近新元古代弧岩浆岩的范围,εNd(t)、87Sr/86Sr变化范围小。晚二叠世的样品落入峨眉山玄武岩和镁铁质岩石的范围内,其εNd(t)、87Sr/86Sr变化范围大(图 6b)。
|
|
表 4 六合下地壳捕虏体全岩Sr-Nd同位素数据 Table 4 Whole-rock Sr-Nd isotopic data of lower crustal xenoliths in Liuhe |
|
图 6 εHf(t)-锆石U-Pb年龄图(a)和εNd(t)-87Sr/86Sr图(b) 新元古代岩浆锆石数据引自Sun et al., 2009;晚二叠世岩浆锆石数据引自Luo et al., 2013;新元古代镁铁质岩数据引自Zhao and Zhou, 2007a;峨眉山玄武岩与镁铁质岩石数据引自Xu et al., 2001; Zhong et al., 2007, 2009; Xiao et al., 2004; OIB数据引自White and Duncan, 1995 Fig. 6 Plots of εHf(t) vs. zircon U-Pb age diagram (a) and εNd(t) vs. 87Sr/86Sr diagram (b) Neoproterozoic magmatic zircon data from Sun et al., 2009; Late Permian magmatic zircon data from Luo et al., 2013; Neoproterozoic mafic rock data from Zhao and Zhou, 2007a; Emeishan basalt and mafic rock data from Xu et al., 2001; Zhong et al., 2007, 2009; Xiao et al., 2004; OIB data from White and Duncan, 1995 |
晚二叠世锆石样品LH14-3的176Lu/177Hf=0.00536~0.002804,176Hf/177Hf=0.2821~0.2829,εHf(t)=-4.86~10.5,tDM1=499~1102Ma,tDM2=627~1597Ma。其样品与晚二叠世岩浆锆石重叠(图 6a)。新元古代LH14-8的176Lu/177Hf=0.000536~0.003752,176Hf/177Hf=0.282465~0.282828,εHf(t)=6.68~16.6,tDM1=748~1110Ma,tDM2=802~1287Ma(表 5)。其样品与新元古代岩浆锆石重叠(图 6a)。晚二叠世捕虏体的锆石U-Pb年龄远小于Hf的模式年龄,说明其岩浆源区受到地壳混染或来自富集地幔。新元古代捕虏体的锆石U-Pb年龄与Hf的模式年龄相近,说明其源自亏损地幔(吴福元等,2007)。
|
|
表 5 六合下地壳捕虏体锆石Hf同位素数据 Table 5 Zircon Hf isotopic data of lower crustal xenoliths in Liuhe |
高级变质岩(如麻粒岩、角闪岩)普遍形成于大陆碰撞带和幔源岩浆底侵形成的加厚下地壳(Yardley, 1989; Harley, 1989; Ellis, 1987)。而其准确的变质年龄和结晶年龄对于认知地壳的演化以及相关的构造事件极其重要。上一节已知捕虏体的锆石U-Pb年龄分别为259±9Ma和773±23Ma(图 4a,b),代表捕虏体受到变质作用的时间。而捕虏体的Sm-Nd等时线年龄分别为251±4Ma和809±64Ma(图 4c, d),代表捕虏体的形成时间。两组年龄数据相近,说明捕虏体的形成和变质是同期的。故扬子克拉通西缘在新元古代(809~773Ma)和晚二叠世(259~251Ma)受到构造-岩浆事件引起地壳增生,并同时发生变质作用。
6.2 捕虏体成因长英质岩浆岩中所携捕虏体的来源有以下四种可能:(1) 围岩捕虏体(Maas et al., 1997);(2) 源区岩石部分熔融后的残留物质(Barbarin and Didier, 1992; Collins et al., 2006);(3) 早期岩浆底侵地壳形成的堆晶岩或分离结晶形成的矿物堆晶(Dahlquist, 2002; Donaire et al., 2005; Richards, 2009);(4) 长英质岩浆与同期镁铁质岩浆混合的产物(Barbarin, 2005; Clemens, 2003)。由于六合捕虏体缺少淬火边(图 2a),具有变质矿物组合和堆晶结构(图 2b-d),且全岩MgO含量高(表 3)。故该捕虏体并不是围岩捕虏体或分离结晶的矿物堆晶,也非岩浆混合作用的产物,而是早期岩浆底侵地壳形成的堆晶岩。前人对六合地区深部捕虏体成因的已有认识包括:(1) 深源包体是在白垩纪以前由原始地幔部分熔融的结晶产物, 在成岩后至富碱岩浆挟带其进入地壳前经历了较长时期的地幔流体交代作用(刘显凡等,1999);(2) 镁铁质深源包体是源于富集地幔的玄武质岩浆在壳-幔过渡带、下地壳以及中、下地壳分凝结晶的产物(王建等,2002)。全球的大陆下地壳普遍富集Rb、Ba、Sr,亏损U、Nb、Ta、P、Ti。扬子克拉通古老下地壳富集Th、U、Sr,亏损Nb、Ta、P、Ti(图 5)。捕虏体的微量元素配分模式与二者皆有不同(图 5),加之岩性的差异,说明六合地区的下地壳不同于扬子克拉通的古老下地壳和普通大陆下地壳。在板片俯冲作用下,来自亏损地幔的原始岩浆在地幔中先分异并残留高MgO(>15%)的石榴石堆晶岩,后底侵地壳经历熔融-同化-堆积-均一过程(MASH)后残留低镁的石榴石堆晶岩(MgO<15%、Mg#<0.8)(Lee et al., 2006, Richards, 2009)。捕虏体MgO=6.83%~14.77%,Cr= 87×10-6~616 ×10-6,Ni=19×10-6~143×10-6(表 3),其锆石εHf(t)=5~17 (表 5),说明捕虏体源自亏损地幔端元,属于低镁石榴石堆晶岩(图 7)。其中捕虏体的透辉石Mg#<0.85(表 1),加之矿物温压计算显示捕虏体形成于45~51km。全岩化学数据和矿物成分数据皆显示出地壳堆晶岩的特征,且地幔堆晶岩的石榴石含量少(<20%)、辉石含量多(>70%)(Lee et al., 2006),不同于捕虏体的矿物含量。以上数据说明石榴石角闪岩、石榴石透辉岩和石榴石角闪透辉岩为来自亏损地幔的岩浆底侵地壳时经历熔融-同化-堆积-均一过程(MASH)后残留的低镁石榴石堆晶岩,位于地壳下部。上节测得捕虏体的Sm-Nd等时线年龄分别为251±4Ma和809±64Ma(图 4c, d),故251Ma和809Ma的各类捕虏体皆由各自时期的岩浆结晶形成。而新元古代和晚二叠世的捕虏体在何种构造-岩浆事件下形成将于下一节阐述。
|
图 7 捕虏体哈克图解 (a) MgO-Cr图解;(b)MgO-Ni图解.低镁和高镁石榴石辉石岩数据引自Lee et al., 2006 Fig. 7 Hacker diagram of xenoliths (a) diagram of MgO vs. Cr; (b) diagram of MgO vs. Ni. Low MgO and high MgO cumulates data from Lee et al., 2006 |
众多研究表明在新元古代时期,扬子克拉通西缘产出大量的镁铁质岩体、花岗岩与埃达克岩,形成年龄900~740Ma,富集Rb、Sr、Ba、K等大离子亲石元素(LILE),亏损Nb、Ta、Zr、Hf、Ti等高场强元素(HFSE),显示弧岩浆特征(Zhou et al., 2002, 2006; Zhao and Zhou, 2007a, b)。同时扬子克拉通西缘碎屑锆石的研究显示在1000~740Ma发生持续俯冲作用(Sun et al., 2009)。以上证据表明扬子克拉通西缘在新元古代时期为俯冲环境。区域分布的镁铁质岩体包括辉长岩和玄武岩。辉长岩锆石年龄738~748Ma(Zhao and Zhou, 2007a),辉长质岩浆源自板片俯冲脱水流体交代的地幔楔,岩浆由石榴石-尖晶石橄榄岩20%部分熔融形成(图 8a)。但Wang et al.(2009)通过研究区域玄武岩认为在810~800Ma和790~760Ma扬子克拉通西缘是一个大陆裂谷环境,岩浆活动主要为地幔柱活动。
|
图 8 Sm/Yb-Sm(a)和Dy/Yb-La/Yb(b)图 新生代辉长岩数据和图 9a批式熔融模式引自Zhao and Zhou, 2007a;晚二叠世辉长岩和图 9b批式熔融模式引自Luo et al., 2013 Fig. 8 Plots of Sm/Yb vs. Sm(a) and Dy/Yb vs. La/Yb(b) Neoproterozoic gabbro data and model of batch melting in Fig. 9a from Zhao and Zhou, 2007a; Late Permian gabbro data and model of batch melting in Fig. 9b from Luo et al., 2013 |
|
图 9 六合地区新元古代-新生代下地壳演化示意图 (a)俯冲板片脱水,地幔楔部分熔融产生的岩浆底侵地壳形成镁铁质新生下地壳; (b)地幔柱与岩石圈地幔相互作用,地幔部分熔融产生的玄武质岩浆底侵地壳形成镁铁质新生下地壳; (c)岩石圈拆沉导致软流圈上涌使得新生下地壳深熔,其部分熔融形成埃达克质岩浆 Fig. 9 Plot illustrating the lower crustal evolution of Liuhe area from the Neoproterozoic to Cenozoic (a) the juvenile lower crust was formed by basalt, triggered by subduction-slab dehydrate, was derived by partial melting of mantle wedge; (b) the juvenile lower crust was formed by basalt, under plume-lithosphere mantle interaction, derived by partial melting of lithosphere mantle; (c) adakitic magmas was derived by partial melting of thickened lower crust(also. anatexis), which was triggered by asthenosphere upwelling |
本次研究的新元古代捕虏体岩性包括石榴石透辉岩、石榴石角闪透辉岩、石榴石角闪岩。其微量元素配分模式、Sr-Nd同位素数值相近(图 5a、图 6b),说明三者源自同一原始岩浆。而产于弧环境或弧后盆地的地幔熔体亏损高场强元素(HFSE)(Woodhead et al., 1993; Elliott et al., 1997; Grove et al., 2002),地幔楔熔融的镁铁质岩浆继承这一特征。Zhao and Zhou(2007a, b)证实扬子克拉通西缘的岩石圈地幔分别受到俯冲板片熔融产生的熔体和脱水流体交代改造。较之脱水流体交代,地幔楔受到板片熔融交代后会富集HREE、HFSE(Elliott et al., 1997),所以捕虏体富集LILE,亏损HFSE显示源区受到板片脱水流体交代。加之新元古代石榴石捕虏体亏损Nb、Ta、Ti(图 5a),εHf(t)=6.68~16.6(表 5),富集Rb、Ba、Sr等大离子亲石元素(LILE)(图 5a),且其微量元素配分模式、Sr-Nd同位素与新元古代镁铁质弧岩浆重合。以上数据显示新元古代捕虏体源自板片俯冲环境,捕虏体的母岩浆源自受板片俯冲脱水交代的地幔楔。图 6b显示捕虏体的86Sr/87Sr、εNd(t)范围小,岩石亏损Zr-Hf(图 5a)显示岩浆没有受到明显的地壳物质混染。由于Sm、Yb对尖晶石的元素分配系数相近,反之对石榴石的元素分配系数差别大(Johnson, 1994)。据此模拟岩浆批次熔融,石榴石堆晶岩的变化范围大,部分与辉长岩重合,两者化学特征相似,故新元古代的捕虏体的母岩浆由石榴石-尖晶石橄榄岩30%~20%熔融形成(图 8a)。
综上,在新元古代时期(809~773Ma),六合地区的地壳受到板块俯冲作用形成新生下地壳,底侵岩浆由交代地幔楔部分熔融形成(图 9a)。
6.2.2 晚二叠世捕虏体成因前人研究表明在晚二叠世时期,扬子克拉通西缘受到地幔柱作用,形成峨眉山大火山岩省,岩石类型以峨眉山玄武岩为主,包括众多辉长岩、花岗岩、正长岩。岩浆活动时间260~250Ma(Luo et al., 2013;Xu et al., 2001; Zhong and Zhu, 2006; Zhong et al., 2007, 2009; Xiao et al., 2004)。峨眉山玄武岩分为高钛玄武岩和低钛玄武岩,低钛玄武岩由石榴石-尖晶石橄榄岩16%部分熔融而成,高钛玄武岩由地幔橄榄岩1.5%部分熔融形成(Xu et al., 2001)。花岗岩包括Ⅰ型和A型花岗岩,Ⅰ型花岗岩由镁铁质岩浆侵入中元古代地壳熔融形成,A型花岗岩由玄武质岩浆分离结晶形成(Zhong et al., 2009)。正长岩由新元古代的新生下地壳部分熔融形成(Luo et al., 2013)。在地幔柱-岩石圈地幔作用下,辉长岩由地幔尖晶石橄榄岩10%部分熔融形成(Luo et al., 2013, 图 8b)。
晚二叠世捕虏体包括石榴石角闪透辉岩和石榴石角闪岩,二者微量元素配分模式相近,表明为二者源自同一原始岩浆。同时大火山岩省是由地幔柱上升使得软流圈-岩石圈作用形成的大规模岩浆岩组合(Zhong et al., 2011),其岩浆特征类似洋岛玄武岩(OIB),Nb、Ta含量较高(Edwards et al., 1994, Zou et al., 2000)。晚二叠世捕虏体Nb、Ta含量略高于同时期辉长岩(图 5b),且捕虏体微量元素、Sr-Nd同位素与晚二叠世辉长岩重合(图 5b、图 6b),表明晚二叠世捕虏体与同时期辉长岩的母岩浆特征相似,说明其成因与地幔柱相关。捕虏体的εHf(t)=-4.86~10.5显示亏损和富集地幔两种特征,说明其原始岩浆混合了富集地幔物质。其εNd(t)=-5.68~2.33(表 4、表 5),与εHf(t)出现失耦现象。而Nd-Hf同位素失耦的原因包括(1) 岩浆混合使得εNd(t)降低(Wu et al., 2006);(2) 在化学风化和古老地壳熔融时,岩浆锆石保持其母岩浆Hf同位素特征,使得εHf(t)较高(Zheng et al., 2007);(3) 受到俯冲作用改造的岩石圈地幔,不论板片脱水还是熔融,残留的石榴石保留并大量Lu,Hf进入地幔,使得εHf(t)升高(Vervoort et al., 2000)。上一节已证实在新元古代时期,岩石圈地幔受到俯冲改造形成富集地幔。同时捕虏体Zr-Hf含量较高,εNd(t)、87Sr/86Sr变化范围大,说明捕虏体的母岩浆为地幔柱-岩石圈地幔作用形成的原始岩浆,其在上升过程中混合了富集地幔和地壳物质。由于HREE在尖晶石中是不相容元素,在石榴石中是相容元素(Kinzler, 1997),而捕虏体的LREE与HREE分异不明显,说明源区有尖晶石存在。据此模拟岩浆批次熔融,捕虏体母岩浆的幔源组分其由石榴石-尖晶石橄榄岩20%~10%部分熔融(图 8b)。
综上,在晚二叠世时期(259~251Ma),六合地区的岩石圈地幔受到地幔柱作用,地幔中的石榴石-尖晶石橄榄岩20%~10%部分熔融形成的熔体混合富集地幔物质后上升,其底侵过程中混染地壳物质形成新生下地壳岩石(图 9b)。
综上所述,六合地区下地壳在新元古代时期(809~773Ma)受到板块俯冲产生的岩浆底侵,残留的新生下地壳堆晶岩同时变质产生石榴石(图 9a)。在晚二叠世时期(259~251Ma),在地幔柱作用下,其新元古代的新生下地壳受热部分熔融形成长英质岩浆,而地幔柱-岩石圈地幔作用部分熔融产生的岩浆底侵再次形成新生下地壳,并同时变质产生石榴石(图 9b)。新生代时期(60~34Ma),扬子克拉通西缘下地壳依次经历碰撞增厚-失稳拆沉的过程(Lu et al., 2013),结合前人对区域埃达克质岩和本次锆石成因的研究证明在35Ma下地壳受热发生深熔作用。同时富集地幔受软流圈热力作用部分熔融产生幔源长英质岩浆(如六合正长斑岩),并捕虏新生下地壳岩石一同上升(图 9c)。
7 结论(1) 六合地区的下部地壳成分不同于扬子克拉通古老下地壳和普通大陆下地壳成分,为镁铁质新生下地壳,岩性包括石榴石角闪岩、石榴石透辉岩和石榴石角闪透辉岩。
(2) 六合地区的地壳在新元古代时期(809~773Ma)受到板块俯冲产生的弧岩浆底侵作用,弧岩浆源自板片流体交代地幔楔。弧岩浆底侵于地壳形成新生下地壳并同时发生变质作用。新生下地壳岩性为石榴石角闪岩、石榴石透辉岩和石榴石角闪透辉岩。
(3) 六合地区的的地壳在晚二叠世时期(259~251Ma)受到地幔柱-岩石圈地幔作用产生的岩浆底侵。底侵岩浆源自地幔柱作用的原始岩浆,岩浆上升过程中混合富集地幔物质和部分地壳物质形成新生下地壳并同时发生变质作用。新生下地壳岩性为石榴石角闪岩和石榴石角闪透辉岩。
(4) 六合地区下地壳自60Ma开始受到碰撞造山作用,经历碰撞增厚-失稳拆沉的过程。在始新世(35Ma),由于富集地幔受软流圈热力作用部分熔融产生的镁铁质岩浆上升,下地壳受热发生深熔作用。
致谢 成文过程中得到了和文言、付强、王梓轩、马睿、沈阳等师兄弟的交流和帮助,在此表示衷心感谢。| [] | Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin, and relations with the hosts. Lithos, 80: 155–177. DOI:10.1016/j.lithos.2004.05.010 |
| [] | Barbarin B, Didier J. 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh Earth-Sciences, 83: 145–153. DOI:10.1017/S0263593300007835 |
| [] | Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O'Reilly SY, Pearson NJ. 2010. The growth of the continental crust:Constraints from zircon Hf-isotope data. Lithos, 119(3-4): 457–466. DOI:10.1016/j.lithos.2010.07.024 |
| [] | Blichert-Toft J, Chauvel C, Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127: 248–260. DOI:10.1007/s004100050278 |
| [] | Chen FK, Hegner E, Todt W. 2000. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany:Evidence for a Cambrian magmatic arc. International Journal of Earth Sciences, 88(4): 791–802. DOI:10.1007/s005310050306 |
| [] | Chen FK, Siebel W, Satir M, Terziogǧlu M, Saka K. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences, 91(3): 469–481. DOI:10.1007/s00531-001-0239-6 |
| [] | Chen FK, Li XH, Wang XL, Li QL, Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179–1194. DOI:10.1007/s00531-006-0146-y |
| [] | Chen WT, Zhou MF, Zhao XF. 2013. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China:Implication for the reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231: 61–77. DOI:10.1016/j.precamres.2013.03.011 |
| [] | Christensen NI, Mooney WD. 1995. Seismic velocity structure and composition of the continental crust:A global view. Journal of Geophysical Research, 100(B6): 9761–9788. DOI:10.1029/95JB00259 |
| [] | Chung SL, Lo CH, Lee TY, Zhang YQ, Xie YW, Li XH, Wang KL, Wang PL. 1998. Diachronous uplift of the Tibetan plateau starting 40Myr ago. Nature, 394(6695): 769–773. DOI:10.1038/29511 |
| [] | Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173–196. |
| [] | Clemens JD. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 61: 1–18. DOI:10.1016/S0012-8252(02)00107-1 |
| [] | Collins WJ, Wiebe RA, Healy B, Richards SW. 2006. Replenishment, crystal accumulation and floor aggradation in the megacrystic Kameruka Suite, Australia. Journal of Petrology, 47: 2073–2104. DOI:10.1093/petrology/egl037 |
| [] | Compston W, Williams IS, Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research, 89(S02): B525–B534. DOI:10.1029/JB089iS02p0B525 |
| [] | Dahlquist JA. 2002. Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth-Sciences, 15(6): 643–655. DOI:10.1016/S0895-9811(02)00112-8 |
| [] | Deng J, Yang LQ, Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501–2509. |
| [] | Deng J, Wang QF, Li GJ. 2016. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt, SW China. Acta Petrologica Sinica, 32(8): 2225–2247. |
| [] | Donaire T, Pascual E, Pin C, Duthou JL. 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks:The case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247–265. DOI:10.1007/s00410-005-0652-0 |
| [] | Edwards CMH, Menzies MA, Thirlwall MF, Morris JD, Leeman WP, Harmon RS. 1994. The transition to potassic alkaline volcanism in island arcs:The Ringgit-Beser complex, east Java, Indonesia. Journal of Petrology, 35(6): 1557–1595. DOI:10.1093/petrology/35.6.1557 |
| [] | Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7): 14991–15019. DOI:10.1029/97JB00788 |
| [] | Ellis DJ, Green DH. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71(1): 13–22. DOI:10.1007/BF00371878 |
| [] | Ellis DJ. 1987. Origin and evolution of granulites in normal and thickened crusts. Geology, 15(2): 167–170. DOI:10.1130/0091-7613(1987)15<167:OAEOGI>2.0.CO;2 |
| [] | Fisher CM, Vervoort JD, Hanchar JM. 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical Geology, 363: 125–133. DOI:10.1016/j.chemgeo.2013.10.019 |
| [] | Fountain DM, Salisbury MH. 1981. Exposed cross-sections through the continental crust:Implications for crustal structure, petrology, and evolution. Earth and Planetary Science Letters, 56: 263–277. DOI:10.1016/0012-821X(81)90133-3 |
| [] | Fountain DM, Arculus R, Kay RW. 1992. Continental Lower Crust. Amsterdam: Elsevier. |
| [] | Gao S, Ling WL, Qiu YM, Lian Z, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63(13-14): 2071–2088. DOI:10.1016/S0016-7037(99)00153-2 |
| [] | Gao S, Qiu YM, Ling WL, McNaughton N, Groves DI. 2001. Single zircon U-Pb dating of the Kongling high-grade metamorphic terrain:Evidence for >3. 2Ga old continental crust in the Yangtze craton. Science in China (Series D), 44(4): 326–335. |
| [] | Grove TL, Parman S, Bowring S, Price R, Baker M. 2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contributions to Mineralogy and Petrology, 142(4): 375–396. DOI:10.1007/s004100100299 |
| [] | Guo ZF, Hertogen JAN, Liu JQ, Pasteels P, Boven A, Punzalan LEA, He HY, Luo XJ, Zhang WH. 2005. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China:Geochemical constraints on petrogenesis. Journal of Petrology, 46(1): 33–78. DOI:10.1093/petrology/egh061 |
| [] | Hacker BR, Kelemen PB, Behn MD. 2015. Continental lower crust. Annual Review of Earth and Planetary Sciences, 43: 167–205. DOI:10.1146/annurev-earth-050212-124117 |
| [] | Harley SL. 1989. The origins of granulites:A metamorphic perspective. Geological Magazine, 126(3): 215–247. DOI:10.1017/S0016756800022330 |
| [] | Hawkesworth C, Cawood P, Dhuime B. 2013. Continental growth and the crustal record. Tectonophysics, 609: 651–660. DOI:10.1016/j.tecto.2013.08.013 |
| [] | Heier KS, Adams JAS. 1965. Concentration of radioactive elements in deep crustal material. Geochimica et Cosmochimica Acta, 29(1): 53–61. DOI:10.1016/0016-7037(65)90078-5 |
| [] | Hoskin PWO, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. DOI:10.2113/0530027 |
| [] | Hou ZQ, Pan GT, Wang AJ, Mo XX, Tian SH, Sun XM, Lin D, Wang EQ, Gao YF, Xie YL, Zeng PS, Qin KZ, Xu JF, Qu XM, Yang ZM, Yang ZS, Fei HC, Meng XJ, Li ZQ. 2006. Metallogenesis in Tibetan collisional orogenic belt:Ⅱ. Mineralization in late-collisional transformation setting. Mineral Deposits, 25(5): 521–543. |
| [] | Hou ZQ, Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews, 36(1-3): 2–24. DOI:10.1016/j.oregeorev.2009.05.001 |
| [] | Hou ZQ, Zheng YC, Geng YS. 2015. Metallic refertilization of lithosphere along cratonic edges and its control on Au, Mo and REE ore systems. Mineral Deposits, 34(4): 641–674. |
| [] | Hou ZQ, Zhou Y, Wang R, Zheng YC, He WY, Zhao M, Evans NJ, Weinberg RF. 2017. Recycling of metal-fertilized lower continental crust:Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 45(7): 563–566. |
| [] | Hu ZC, Liu YS, Gao S, Liu WG, Yang L, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. DOI:10.1039/c2ja30078h |
| [] | Huang XL, Niu YL, Xu YG, Chen LL, Yang QJ. 2010. Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from western Yunnan, SW China. Journal of Petrology, 51(8): 1617–1654. DOI:10.1093/petrology/egq032 |
| [] | Jian P, Cheng YQ, Liu DY. 2001. Petrographical study of metamorphic zircon:Basic roles in interpretation of U-Pb age of high grade metamorphic rocks. Earth Science Frontiers, 8(3): 183–191. |
| [] | Johnson KTM. 1994. Experimental cpx/and garnet/melt partitioning of REE and other trace elements at high pressures:Petrogenetic implications. Mineralogical Magazine, 58A(1): 454–455. DOI:10.1180/minmag |
| [] | Kay RW, Kay SM. 1988. Crustal recycling and the Aleutian arc. Geochimica et Cosmochimica Acta, 52(6): 1351–1359. DOI:10.1016/0016-7037(88)90206-2 |
| [] | Kelemen PB, Behn MD. 2016. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nature Geoscience, 9(3): 197–205. DOI:10.1038/ngeo2662 |
| [] | Kinzler RJ. 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition:Application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research, 102(B1): 853–874. DOI:10.1029/96JB00988 |
| [] | Krogh EJ. 1988. The garnet-clinopyroxene Fe-Mg geothermometer:A reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology, 99(1): 44–48. DOI:10.1007/BF00399364 |
| [] | Lee CTA, Cheng X, Horodyskyj U. 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination:Insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology, 151(2): 222–242. DOI:10.1007/s00410-005-0056-1 |
| [] | Lee TY, Lawver LA. 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251(1-4): 85–138. DOI:10.1016/0040-1951(95)00023-2 |
| [] | Leloup PH, Lacassin R, Tapponnier P, Schärer U, Zhong DL, Liu XH, Zhang LS, Ji SC, Trinh PT. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 3–84. DOI:10.1016/0040-1951(95)00070-4 |
| [] | Li ZX. 1998. Tectonic history of the major East Asian lithospheric blocks since the Mid-Proterozoic:A synthesis. In:Flower MFJ, Chung SL, Lo CH and Lee TY (eds.). Mantle Dynamics and Plate Interactions in East Asia. Washington DC: American Geophysical Union: 221-243. |
| [] | Liu XF, Zhan XZ, Gao ZM, Liu JJ, Li CY, Su WC. 1999. Deep xenoliths in alkalic porphyry, Liuhe, Yunnan, and implications to petrogenesis of alkalic porphyry and associated mineralizations. Science in China (Series D), 42(6): 627–635. DOI:10.1007/BF02877790 |
| [] | Liu Y, Hou ZQ, Tian SH, Zhang QC, Zhu ZM, Liu JH. 2015a. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China:Constraints on the giant REE mineralization belt and its regional geological setting. Ore Geology Review, 64: 554–568. DOI:10.1016/j.oregeorev.2014.03.017 |
| [] | Liu Y, Chen ZY, Yang ZS, Sun X, Zhu ZM, Zhang QC. 2015b. Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit, Sichuan Province, southwestern China. Ore Geology Reviews, 70: 613–636. DOI:10.1016/j.oregeorev.2015.03.006 |
| [] | Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082 |
| [] | Lu YJ, Kerrich R, McCuaig TC, Li ZX, Hart CJR, Cawood PA, Hou ZQ, Bagas L, Cliff J, Belousova EA, Tang SH. 2013. Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China:Petrogenesis and tectonic implications. Journal of Petrology, 54(7): 1309–1348. DOI:10.1093/petrology/egt013 |
| [] | Luo WJ, Zhang ZC, Hou T, Wang M. 2013. Geochronology-geochemistry of the Cida bimodal intrusive complex, central Emeishan large igneous province, Southwest China:Petrogenesis and plume-lithosphere interaction. International Geology Review, 55(1): 88–114. DOI:10.1080/00206814.2012.689128 |
| [] | Maas R, Nicholls IA, Legg C. 1997. Igneous and metamorphic enclaves in the S-type Deddick granodiorite, Lachlan Fold Belt, SE Australia:Petrographic, geochemicaland analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133–147. |
| [] | Pullen A, Kapp P, Gehrels GE, Vervoort JD, Ding L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 36(5): 351–354. DOI:10.1130/G24435A.1 |
| [] | Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247–250. DOI:10.1130/G25451A.1 |
| [] | Rudnick RL, Fountain DM. 1995. Nature and composition of the continental crust:A lower crustal perspective. Reviews of Geophysics, 33(3): 267–309. DOI:10.1029/95RG01302 |
| [] | Rudnick RL, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1–64. |
| [] | Sun WH, Zhou MF. 2008. The~860Ma, Cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China:Implications for the origin of Neoproterozoic magmatism. The Journal of Geology, 116(3): 238–253. DOI:10.1086/587881 |
| [] | Sun WH, Zhou MF, Gao JF, Yang YH, Zhao XF, Zhao JH. 2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Research, 172(1-2): 99–126. DOI:10.1016/j.precamres.2009.03.010 |
| [] | Vervoort JD, Patchett PJ, Albarède F, Blichert-Toft J, Rudnick R, Downes H. 2000. Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 181(1-2): 115–129. DOI:10.1016/S0012-821X(00)00170-9 |
| [] | Wang JH, Yin A, Harrison TM, Grove M, Zhang YQ, Xie GH. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188(1-2): 123–133. DOI:10.1016/S0012-821X(01)00315-6 |
| [] | Wang R, Collins WJ, Weinberg RF, Li JX, Li QY, He WY, Richards JP, Hou ZQ, Zhou LM, Stern RA. 2016. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block:Direct evidence for crust-mantle mixing and metamorphism in the deep crust. Contributions to Mineralogy and Petrology, 171(7): 62. DOI:10.1007/s00410-016-1272-6 |
| [] | Wang XC, Li XH, Li WX, Li ZX. 2009. Variable involvements of mantle plumes in the genesis of Mid-Neoproterozoic basaltic rocks in South China:A review. Gondwana Research, 15(3-4): 381–395. DOI:10.1016/j.gr.2008.08.003 |
| [] | White WM, Duncan RA. 1995. Geochemistry and geochronology of the Society islands:New evidence for deep mantle recycling. Washington DC: The American Geophysical Union: 1-23. |
| [] | Williams IS. 1992. Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 447–458. DOI:10.1017/S0263593300008129 |
| [] | Woodhead J, Eggins S, Gamble J. 1993. High field strength and transition element systematics in island arc and back-arc basin basalts:Evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114(4): 491–504. DOI:10.1016/0012-821X(93)90078-N |
| [] | Wu FY, Li XH, Zheng YF, Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185–220. |
| [] | Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu XM, Wu FY. 2006. Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146(3-4): 179–212. DOI:10.1016/j.precamres.2006.01.012 |
| [] | Wu YB, ZhengYF. 2004. Zircon genetic mineralogy and its constraints on the explaining of the U-Pb age. Chinese Science Bulletin, 49(16): 1589–1604. |
| [] | Xiao L, Xu YG, Mei HJ, Zheng YF, He B, Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China:Implications for plume-lithosphere interaction. Earth and Planetary Science Letters, 228(3-4): 525–546. DOI:10.1016/j.epsl.2004.10.002 |
| [] | Xu YG, Chung SL, Jahn BM, Wu GY. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3-4): 145–168. DOI:10.1016/S0024-4937(01)00055-X |
| [] | Yardley BWD. 1989. An Introduction to Metamorphic Petrology. Harlow, UK: Longman. |
| [] | Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. DOI:10.1146/annurev.earth.28.1.211 |
| [] | Zhao JH, Zhou MF. 2007a. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27–47. DOI:10.1016/j.precamres.2006.09.002 |
| [] | Zhao JH, Zhou MF. 2007b. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China. The Journal of Geology, 115(6): 675–689. DOI:10.1086/521610 |
| [] | Zhao X, Mo XX, Yu XH, Lü BX, Zhang J. 2003. Mineralogical characteristics and petrogenesis of deep-derived xenoliths in Cenozoic syenite-porphyry in Liuhe, western Yunnan Province. Earth Science Frontiers, 10(3): 93–104. |
| [] | Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH, Yang JH. 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57–69. DOI:10.1016/j.precamres.2010.06.021 |
| [] | Zhang YQ, Xie YW, Tu GZ. 1987. Preliminary studies of the alkali-rich intrusive rock in the Ailapshan-Jingshanjiang belt and their bearing on rift tectonics. Acta Petrologica Sinica, 43(1): 17–26. |
| [] | Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX, Wu FY. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust. Lithos, 96(1-2): 127–150. DOI:10.1016/j.lithos.2006.10.003 |
| [] | Zhong DL. 1998. Paleo-Tethyan Orogenic Belt in Western Yunnan and Sichuan Provinces. Beijing: Science Press: 1-231. |
| [] | Zhong DL, Ding L, Liu FT, Liu JH, Zhang JJ, Ji JQ, Chen H. 2000. The poly-layered architecture of lithosphere in the orogen and its constraint on Cenozoic magmatism. Science in China (Series D), 30(Suppl.): 1–8. |
| [] | Zhong H, Zhu WG. 2006. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. Mineralium Deposita, 41(6): 599–606. DOI:10.1007/s00126-006-0081-7 |
| [] | Zhong H, Zhu WG, Chu ZY, He DF, Song XY. 2007. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology, 236(1-2): 112–133. DOI:10.1016/j.chemgeo.2006.09.004 |
| [] | Zhong H, Zhu WG, Hu RZ, Xie LW, He DF, Liu F, Chu ZY. 2009. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, Southwest China and implications for growth of juvenile crust. Lithos, 110(1-4): 109–128. DOI:10.1016/j.lithos.2008.12.006 |
| [] | Zhong H, Campbell IH, Zhu WG, Allen CM, Hu RZ, Xie LW, He DF. 2011. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta, 75(5): 1374–1395. DOI:10.1016/j.gca.2010.12.016 |
| [] | Zhou MF, Yan DP, Kennedy AK, Li YQ, Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51–67. DOI:10.1016/S0012-821X(01)00595-7 |
| [] | Zhou MF, Yan DP, Wang CL, Qi L, Kennedy A. 2006. Subduction-related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province, China):Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth and Planetary Science Letters, 248(1-2): 286–300. DOI:10.1016/j.epsl.2006.05.032 |
| [] | Zou HB, Zindler A, Xu XS, Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China:Mantle sources, regional variations, and tectonic significance. Chemical Geology, 171(1-2): 33–47. DOI:10.1016/S0009-2541(00)00243-6 |
| [] | 邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501–2509. |
| [] | 邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统:三江特提斯例析. 岩石学报, 32(8): 2225–2247. |
| [] | 侯增谦, 潘桂棠, 王安建, 莫宣学, 田世洪, 孙晓明, 林丁, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清. 2006. 青藏高原碰撞造山带:Ⅱ. 晚碰撞转换成矿作用.矿床地质, 25(5): 521–543. |
| [] | 侯增谦, 郑远川, 耿元生. 2015. 克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用. 矿床地质, 34(4): 641–674. |
| [] | 简平, 程裕淇, 刘敦一. 2001. 变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据. 地学前缘, 8(3): 183–191. |
| [] | 刘显凡, 战新志, 高振敏, 刘家军, 李朝阳, 苏文超. 1999. 云南六合深源包体与富碱斑岩成岩成矿的关系. 中国科学(D辑), 42(6): 627–635. |
| [] | 王建, 李建平, 王江海, 马志红. 2002. 滇西剑川-大理地区新生代钾玄岩系中深源包体的地质意义. 矿物学报, 22(2): 113–125. |
| [] | 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185–220. |
| [] | 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589–1604. DOI:10.3321/j.issn:0023-074X.2004.16.002 |
| [] | 张玉泉, 谢应雯, 涂光炽. 1987. 哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究. 岩石学报, 3(1): 17–26. |
| [] | 赵欣, 莫宣学, 喻学惠, 吕伯西, 张瑾. 2003. 滇西六合地区新生代正长斑岩中深源包体的矿物学特征与成因意义. 地学前缘, 10(3): 93-104 |
| [] | 钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社: 1-231. |
| [] | 钟大赉, 丁林, 刘福田, 刘建华, 张进江, 季建清, 陈辉. 2000. 造山带岩石层多向层架构造及其对新生代岩浆活动制约——以三江及邻区为例. 中国科学(D辑), 30(增刊): 1–8. |
2017, Vol. 33










