岩石学报  2017, Vol. 33 Issue (6): 1705-1728   PDF    
湘中紫云山岩体的成因:锆石U-Pb年代学、元素地球化学及Hf-O同位素制约
鲁玉龙1,2, 彭建堂1,3, 阳杰华3, 胡阿香1, 李玉坤1, 谭辉跃2, 肖秋越2    
1. 中南大学地球科学与信息物理学院, 有色金属成矿预测教育部重点实验室, 长沙 410083;
2. 湖南省有色地质勘查局二总队, 湘潭 411102;
3. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550002
摘要: 位于湘中盆地周缘的紫云山岩体主要由似斑状石英二长岩(主体)和二云母花岗岩(补体)组成,前者分布于该岩体的周边,后者分布于其内部,岩体内可见有大量岩浆结构的镁铁质暗色包体。利用高精度SIMS锆石U-Pb定年方法得到主体岩体的年龄为225.2±1.7Ma和225.6±1.4Ma,补体岩体的年龄为227.0±2.2Ma,两者均形成于印支晚期,基本上是同时形成的。该区两类岩石均具有富SiO2、Na2O和K2O,贫CaO、MgO和Al2O3的特征,A/CNK比值为0.85~1.05,固结指数较高,主体岩石为3.61~5.05,补体岩石为4.13~14.06;其微量元素均表现出富集Rb、U、La、Nd和Zr,亏损Ba、Nb、Ta、Sr、P和Ti的特征;稀土元素配分模式均呈明显的右倾"V"字型,轻重稀土分馏明显((La/Yb)N=7.35~11.7),Eu负异常较显著(δEu=0.32~0.70);该区花岗岩的主体和补体的锆石Hf-O同位素组成非常相似,εHft)值为-10.0~-1.6,δ18O值为7.8~11.4,两阶段模式年龄tDM2为1.22~1.79Ga;各类岩石主要氧化物之间表现出良好的线性协变关系,且明显沿I型花岗岩演化趋势线分布,反映主体和补体岩石具有密切的亲缘关系,均应归属于高分异的I型花岗岩。各类岩石样品沿岩浆混合趋势线分布、而远离结晶分异趋势线,结合Hf-O同位素分析,认为该岩体来源于扬子地块中元古代下地壳变质杂砂岩重熔,与部分幔源岩浆形成的壳幔混合岩浆源区。该岩体形成于碰撞后构造背景,暗示华南地块受太平洋板块及印支地块的双重影响,在印支晚期处于伸展-减薄的构造环境。通过与华南地块其它印支期花岗岩对比分析,提出扬子地块与华夏地块的拼合带在湖南境内应沿"攸县-双牌"一线展布。
关键词: 地球化学特征     SIMS锆石U-Pb年龄     Hf-O同位素     地壳伸展     紫云山岩体     湘中    
Petrogenesis of the Ziyunshan pluton in central Hunan, South China: Constraints from zircon U-Pb dating, element geochemistry and Hf-O isotopes
LU YuLong1,2, PENG JianTang1,3, YANG JieHua3, HU A'Xiang1, LI YuKun1, TAN HuiYue2, XIAO QiuYue2    
1. MOE Key Laboratory of Non-ferrous Metals Metallogenic Prediction; School of Geosciences and Info-physics, Central South University, Changsha 410083, China;
2. The Second Geological Party of Hunan Bureau of Nonferrous Geological Prospecting, Xiangtan 411102, China;
3. State Key Laboratory of Ore Deposit Geochemistry; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Abstract: The Ziyunshan pluton, located along the Xiangzhong basin in Hunan, consists mainly of porphyroid monzonitic granite and two-mica granite, the former is located in the surrounding of the pluton and constitutes its main intrusive granite, while the later occurs in its interior and belongs to late intrusive granite. The dark-colored mafic enclave with magmatic textures is usually observed in the intrusive bodies. The emplacement time of the Ziyunshan pluton is determined by high-precision SIMS zircon U-Pb dating. The main intrusive granite is dated at 225.2±1.7Ma and 225.6±1.4Ma and the late intrusive granite is dated at 227.0±2.2Ma, thus both granitic rocks were basically contemporary and emplaced during the Late Indosinian. Both two types of granite in this study are rich in SiO2, Na2O and K2O, and depleted in CaO, MgO and Al2O3, and its A/CNK index are 0.85~1.05 with high consolidation index, 3.61~5.05 for the main intrusive ganite and 4.13~14.06 for the late intrusive granite. Both granitic rocks are characterized by Rb, U, La, Nd, Zr enrichment, and Ba, Nb, Ta, Sr, P, Ti depletion; the chondrite-normalized distribution pattern of REEs is characterized by "V"-shaped pattern, obvious LREE-enrichment ((La/Yb)N=7.35~11.7) and negative Eu anomaly (δEu=0.32~0.70). The zircon isotopes of both granites display similar signatures, the εHf(t) values of the Ziyunshan pluton display similar signatures -10.0~-1.6, and its δ18O values fall in the range of 7.8~11.4. The tDM2 model ages are estimated at 1.22~1.79Ga. The major oxides for all granite samples display good covariant relationships, and are obviously distributed along I-type granite evolution line, indicating threr are a intrinsic genetic relationship between the main intrusive granite and the late intrusive granite, both are of highly-differentiated I-type granite. All samples are distributed along the magmatic mxing trend line but away from the crystallization differentiation trend line, combined with the Hf-O isotope resluts, it is shown that the Ziyunshan pluton was derived from the re-melting of Lower Proterozoic crustal meta-greywacke of Yangtze craton, and mixed with some mantle-sourced magma. The intrusive granite was formed under post-collision tectonic background, indicating South China block was subjected to the influences by both Pacific plate and Indosinian block under extension-thinning tectonic environment in the Late Indosinian. Compared with other Indosinian granites in South China block, it is considered that the suture region of Yangtze block and Cathaysia block lies along "Youxian-Shuangpai" region in Hunan.
Key words: Geochemistry     Zircon SIMS U-Pb dating     Hf-O isotope     Crustal extension     Ziyunshan pluton     Central Hunan    
1 引言

印支期强烈的构造事件引发了华南陆块广泛的陆内变形、地壳增厚及大规模的岩浆活动和伴生的成矿作用(王岳军等, 2005; 柏道远等, 2007b; 郭春丽等, 2012; 张龙升等, 2012, 2014; 李建华等, 2014)。该期构造事件产生的花岗岩,以分布局限,整体呈面状,且较分散,缺乏共生的火山岩为特征(周新民, 2003; 丁兴等, 2005)。相对于华南燕山期花岗岩而言,该区印支期花岗岩的研究程度较低。位于湘中盆地周缘的紫云山岩体属典型的印支期花岗岩,该岩体呈南北向不规则展布,出露面积达280km2(图 1)。在该岩体的周围3km范围内,分布有很多贵金属和有色金属的矿床(点),如岩体北侧分布有包金山金矿、铃山金矿及丫头山铅锌铜矿床等;西部外接触带有南冲金矿、清家湾金矿和朱家冲金矿等。近年来在岩体内部还发现了大坪铷-铌-钽矿。尽管前人已对该岩体开展了一些研究(王凯兴等, 2011; 刘凯等, 2014),但该岩体的总体研究程度仍偏低,其成岩时间、岩石成因及形成构造背景、成岩-成矿的关系等方面的研究尤为薄弱,这严重制约了对该区成岩、成矿作用的认识。

图 1 湘中紫云山岩体区域地质略图(据Jin et al., 2012改编) Fig. 1 Regional geological map of the Ziyunshan pluton, central Hunan (after Jin et al., 2012)

本文对紫云山岩体进行了较系统的岩相学和地球化学研究,重点探讨了紫云山岩体的侵位时间、地球化学特征,并分析了其岩石成因及形成的构造背景,为进一步研究华南陆块早中生代大地构造演化历史奠定基础,并有助于加深对该区成岩作用的认识。

2 岩体地质特征

紫云山岩体位于扬子地块与华夏地块汇聚带的北侧(图 1),属湘中盆地的东缘。NE向断裂与SN向断裂构成了该区的基本构造格架,岩体南侧受NE向的长寿街-双牌深大断裂带控制。岩体大部分侵入新元古界板溪群中,南侧被白垩纪地层覆盖(图 1)。紫云山岩体的主体为似斑状石英二长岩(含少量花岗闪长岩),分布于岩体的边部(图 2a);补体为二云母花岗岩(图 2d),分布于岩体的中心部位。两者均含有镁铁质暗色包体(图 2a, d),这些暗色包体整体上具定向排列,长轴大小从数厘米到数米,呈浑圆状、透镜状、撕裂状,偶见岩墙状和镰刀状,部分暗色微粒包体有明显的拖尾现象,偶可见反向脉。

图 2 紫云山花岗岩的野外(a、d)照片和显微照片(b、c、e、f) (a)似斑状石英二长岩,暗色包体呈定向排列;(b)斜长石的环带及聚片双晶;(c)斜长石的聚片双晶;(d)二云母花岗岩,含暗色包体;(e)补体花岗岩中的黑云母和白云母;(f)斜长石的聚片双晶 Fig. 2 Field outcrop (a, d) and microscopic photographs (b, c, e, f) of the Ziyunshan granite

似斑状石英二长岩,呈灰白色,中-粗粒似斑状结构为主,偶见斑晶集中分布,斑晶含量一般为20%~40%。主要矿物为斜长石(An=20~40,更-中长石,20%~45%)、钾长石(25%~40%)、石英(20%~25%),次要矿物为黑云母(>5%)及少量角闪石;副矿物有磷灰石、锆石、榍石、褐帘石等,次生矿物有绢云母、绿泥石、高岭石等。斑晶主要由斜长石组成,颗粒较粗,自形程度较高,长宽比较大。斜长石为自形、半自形板状,多数属于中长石,偏光显微镜下为无色,干涉色I级灰白色,具有聚片双晶、卡钠复合双晶、局部可见环带结构(图 2b, c)。钾长石见卡斯巴双晶和少量格状双晶。石英为半自形粒状,部分为细粒集合体,常沿边缘、裂隙嵌布黑云母,本身亦可作为条纹长石的包裹体产出,粒度较粗。黑云母和角闪石分布不均匀,局部较为富集,前者呈自形、半自形板状、片状,后者多为短柱状,菱形解理较为发育。

二云母花岗岩,呈灰白色,细-中粒花岗结构,其中南部颗粒较粗,白云母含量较高,北部偶见长石斑晶。主要矿物为斜长石(An=25~35,更-中长石,15%~35%)、钾长石(30%~50%)和石英(25%~40%),次要矿物为黑云母和白云母(图 2e),副矿物为磷灰石、锆石、榍石、褐帘石等,次生矿物为绢云母、绿泥石和高岭石等。斜长石为半自形板状,聚片双晶较发育(图 2f),少数具有钠式和卡钠复合双晶,个别可见环带现象,表面发生不同程度的绢云母化;正长石呈他形-半自形板状,格状双晶发育,钠长石条纹较发育,呈短纹状,较大晶体中常见其它矿物包体;石英产出形式分为两种:一是呈自形、半自形粒状沿长石的边缘、粒间分布;二是呈隐晶质、微晶质以针状、柱状或脉状沿长石裂隙充填分布,集合体粒度较为细小;白云母和黑云母为自形片状,局部较为富集,沿长石边缘分布。

3 样品采集及测试分析

在野外地质调查的基础上,根据1/5万地质图,笔者对紫云山岩体不同地段和不同岩性的花岗岩进行较系统地采样。共采集了三组样品:第一组样品为采自岩体北部的似斑状石英二长岩(9件);第二组样品为分布于岩体中心的二云母花岗岩(8件);第三组样品为采自岩体南部的似斑状石英二长岩(7件)。

本次研究对所采集的所有样品均进行了主量元素和微量元素分析,并对其中最有代表性的样品ZYS-5、ZYS-13和ZYS-24进行了锆石的SIMS U-Pb年龄测定及原位Hf-O同位素分析。

3.1 锆石U-Pb年龄测定

供本次测年的花岗岩样品均采自采石场,样品新鲜,肉眼和镜下均未见风化、蚀变现象。锆石的挑选由河北省廊坊市诚信地质服务有限公司完成,样品破碎至0.3mm以下,用人工淘洗和电磁选方法富集锆石,再在双目镜下精选锆石,选矿过程未使用任何化学药剂。将精选的锆石用无色透明环氧树脂固定并进行抛光,使内部暴露,进行透射光和反射光下照相,并利用阴极发光照相,以了解锆石的内部结构,在系统对比的基础上选出最理想的锆石颗粒,供U-Pb同位素定年。锆石阴极发光(CL)内部结构照相在中国科学院地质与地球物理研究所Cameca电子探针仪器上完成,分析电压为50kV,电流为15nA。锆石U-Pb定年在中国科学院地质与地球物理研究所离子探针实验室的Cameca IMS-1280型二次离子质谱仪(SIMS)上进行,详细的分析流程见Li et al. (2009)。锆石样品的Pb/U比值用标准锆石TEMORA 2(417Ma)(Black et al., 2004)的ln(206Pb/238U)与ln(238U16O2/238U)之间的线性关系校正(Whitehouse et al., 1997);Th和U含量用标准锆石91500(Wiedenbeck et al., 1995)校正获得;普通Pb校正采用实测204Pb值,用现代地壳的平均Pb同位素组成(Ireland and Williams, 2003; Stacey and Kramers, 1975)作为普通Pb组成进行校正。单点分析的同位素比值及年龄误差为1σ,U-Pb平均年龄误差为95%置信度。

3.2 锆石原位Hf-O同位素分析

锆石微区原位Hf同位素采用激光剥蚀多接收杯等离子体质谱(LA-MC-ICP-MS)分析方法,在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)的IMS-1280型双离子源多接收器二次离子质谱仪上进行。激光剥蚀系统为GeoLas 2005(Lambda Physik, 德国),配备了信号平滑装置,使用氦气作为载气,并引入少量氮气来提升元素的灵敏度(Hu et al., 2008)。详细仪器操作条件和分析方法参照Hu et al. (2012)。锆石样品自身的βYb用于干扰校正(Woodhead et al., 2004);179Hf/177Hf=0.7325和173Yb/171Yb=1.132685(Fisher et al., 2014)用于计算Hf和Yb的质量分馏系数βHfβYb179Hf/177Hf和173Yb/171Yb的比值用于计算Hf (βHf)和Yb (βYb)的质量偏差;使用176Yb/173Yb=0.79639(Fisher et al., 2014)来扣除176Yb对176Hf的同量异位干扰;使用176Lu/175Lu=0.02656(Blichert-Toft et al., 1997)来扣除干扰程度相对较小的176Lu对176Hf的同量异位干扰;采用Yb的质量分馏系数βYb来校正Lu的质量分馏行为。分析数据的离线处理(包括对样品和空白信号的选择、同位素质量分馏校正)采用软件ICP-MS Data Cal (Liu et al., 2010)完成。

锆石微区原位O同位素分析利用中国科学院地质与地球物理研究所离子探针实验室的Cameca二次离子探针完成。将做过SIMS锆石U-Pb定年的样品靶再次磨去~5μm,以消除前期在U-Pb定年时造成的氧污染,详细的分析流程见Li et al.(2009, 2010)。仪器质量分馏校正采用91500锆石标准,其中91500标准锆石的δ18O=9.9‰(Wiedenbeck et al., 2004),测量的18O/16O比值通过VSMOW值(18O/16O=0.0020052) 校正后,加上仪器质量分馏校正因子IMF即为该点的δ18O值:δ18OSample=(δ18O)M+IMF,(δ18O)M=((18O/16O)M/0.0020052-1)×1000(‰),IMF=(δ18O)M(standard)-(δ18O)V-SMOW

3.3 主、微量元素和稀土元素分析

主量元素XRF分析在中南大学地球科学与信息物理学院完成,使用的仪器为日本理学ZSX Primus Ⅱ型X射线荧光光谱仪,测试精度优于5%。标样GSR-1、GSR-2和GSR-3的分析结果与推荐值相当一致。微量元素和稀土元素由中国科学院地球化学研究所矿床地球化学国家重点实验室完成,所使用的仪器为ELAN DRC-e型电感耦合等离子体质谱(ICP-MS),含量大于10×10-6的元素测试精度优于5%,而小于10×10-6的元素测试精度为10%。标样AGV-2、AMH-1和GBPG-1的分析结果与推荐值相当吻合。

4 分析结果4.1 锆石U-Pb年龄

供U-Pb同位素定年的3件紫云山花岗岩样品中的锆石,均具有清晰韵律环带结构的晶体(图 3),并且锆石的Th/U比值主要介于0.11~0.77(表 1),仅ZYS-13-3和ZYS-13-22分析点为0.07和0.02,表明本次挑选的锆石均为岩浆结晶形成的(Belousova et al., 2002)。在Isoplot(Ludwig, 2001)软件绘制的谐和曲线及谐和年龄的投影图中(图 4),本次分析得到的数据点均分布于谐和线上或谐和线附近,表明所测的锆石颗粒在形成后其U-Pb同位素体系是封闭的,基本未发生U或Pb的加入和丢失(Xu et al., 2003; 袁洪林等, 2003; 丁兴等, 2005)。

图 3 紫云山花岗岩锆石CL图像及分析点位图 Fig. 3 Zircon cathodeluminescence (CL) images and analytical point bitmaps of the Ziyunshan granite

表 1 紫云山花岗岩样品锆石U-Pb同位素(SIMS)分析结果 Table 1 Zircon U-Pb (SIMS) analytical results of different samples collected from the Ziyunshan granite

图 4 紫云山花岗岩锆石U-Pb年龄谐和图 Fig. 4 Zircon U-Pb concordia diagrams of the Ziyunshan granite

样品ZYS-5(似斑状石英二长岩)共进行了26个点的定年分析,其中有11个测点(1、2、5、9、12、18、20、22、23、25、26) 年龄值存在不同程度的偏低或偏高,为离群值,其余15个测点206Pb/238U数据得到加权平均年龄为225.5±3.8Ma(95%置信度,MSWD=0.34),谐和年龄为225.2±1.7Ma(95%置信度,MSWD=0.38)。

样品ZYS-13(二云母花岗岩)共进行了25个点的定年分析,该样品具有高U效应(表 1),所以谐和度相对较差。其中有8个测点(1、5、7、10、19、22、24、25) 的年龄值存在不同程度的偏低或偏高现象,为离群值,其余17个测点206Pb/238U数据得到的加权平均年龄为228.0±3.7Ma(95%置信度,MSWD=0.38),谐和年龄为227.9±2.2Ma(95%置信度,MSWD=19)。

样品ZYS-24(似斑状石英二长岩)共进行了25个点的定年分析,其中有2个测点(4、10) 年龄值存在偏低或偏高现象,为离群值,其余23个测点206Pb/238U数据得到的加权平均年龄为225.7±3.1Ma(95%置信度,MSWD=0.28),谐和年龄为225.6±1.4Ma(95%置信度,MSWD=2.0)。

因此,紫云山岩体的主体(似斑状石英二长岩)形成年龄为225.2±1.7Ma和225.6±1.4Ma,其补体(二云母花岗岩)的形成年龄为227.0±2.2Ma。尽管紫云山岩体存在两种岩性明显不同的花岗岩,但其形成时间在误差范围内基本一致。刘凯等(2014)利用锆石LA-ICP-MS U-Pb定年方法,测得紫云山岩体的主体年龄为222.5±1.0Ma,补体年龄为222.3±1.8Ma,与本文所得数据大体吻合。因此,紫云山岩体应形成于印支晚期,其补体和主体的形成时间大体一致,均在225Ma左右。

值得注意地是,紫云山岩体邻近的歇马岩体,其锆石SHRIMP U-Pb年龄为218±3Ma(Wang et al., 2007);南岳岩体锆石LA-ICP-MS U-Pb年龄为215.5±1.5Ma(马铁球等, 2013);沩山岩体单颗粒黑云母Rb-Sr等时线年龄为227.0±13Ma和221.9±5.8Ma(丁兴等, 2012);大神山花岗岩的形成年龄为224.3±1.0Ma(张龙升等, 2012),这表明印支晚期的岩浆活动在湖南衡阳-双峰-宁乡-安化-桃江一带普遍存在,湖南境内存在一次较大规模的晚印支期岩浆活动事件。

4.2 锆石Hf-O同位素组成

对花岗岩样品ZYS-5、ZYS-13和ZYS-24的锆石颗粒(包括定年的锆石)进行了原位Hf-O同位素测定,其分析结果见表 2

表 2 紫云山花岗岩锆石Hf-O同位素分析结果 Table 2 Ziron Hf-O isotopic analytical results of different samples collected from the Ziyunshan granite

样品ZYS-5的锆石的Hf-O同位素组成:176Hf/177Hf=0.282179~0.282583,平均为0.282511,对应的εHf(t)=-5.9~-1.9,平均为-3.96,两阶段模式年龄tDM2=1.23~1.79Ga,平均为1.36Ga;锆石的δ18O值为7.8‰~9.4‰,平均为8.92‰。

样品ZYS-13的锆石的Hf-O同位素组成:176Hf/177Hf=0.282286~0.282592,平均为0.282495,对应的εHf(t)=-10.0~-1.6,平均为-4.76,两阶段模式年龄tDM2=1.22~1.76Ga,平均为1.40Ga;锆石的δ18O=8.3‰~11.4‰,平均为9.10‰。

样品ZYS-24的锆石的Hf-O同位素变化范围相对较小:176Hf/177Hf=0.282498~0.282573,平均为0.282532,对应的εHf(t)=-4.7~-2.3,平均为-3.72;两阶段模式年龄tDM2=1.25~1.40Ga,平均为1.33Ga;锆石的δ18O为8.6‰~9.8‰,平均为9.12‰。

4.3 主量元素

紫云山岩体不同岩石类型的主量元素组成见表 3

表 3 紫云山花岗岩的主量元素含量(wt%) Table 3 Major element compositions of the Ziyunshan granite (wt%)

紫云山主体和补体落在不同岩性区域,分布于岩体外侧的主体落入石英二长岩的范围,而位于岩体中心的补体则落入花岗岩的范围中(图 5a)。前者SiO2的含量(62.98%~72.80%)明显低于后者(72.14%~74.23%);两者的Al2O3含量分别为13.46%~15.50%和12.48%~13.69%(表 3),A/CNK值均小于1.1,A/NK值分别为1.12~1.43和1.06~1.20,在A/CNK-A/NK图解中,紫云山岩体的样品点主要分布于准铝质区域中(图 5b),属准铝质-弱过铝质花岗岩。

图 5 紫云山花岗岩TAS图解(a, 据Middlemost, 1994)、A/CNK-A/NK图解(b, 据Peccerillo and Taylor, 1976)和K2O-SiO2图解(c, 据Peccerillo and Taylor, 1976; Middlemost, 1985) Fig. 5 Diagrams of TAS (a, after Middlemost, 1994), A/CNK vs. A/NK (b, after Peccerillo and Taylor, 1976) and K2O vs. SiO2 (c, after Peccerillo and Taylor, 1976; Middlemost, 1985) of the Ziyunshan granite

主体和补体的K2O+Na2O含量均较高,分别为7.79%~9.10%和8.46%~9.65%(表 3),K2O/Na2O比值分别为0.80~1.57(多数大于1) 和1.32~1.70之间,均表现出相对富钾的特征;里特曼指数σ分别为2.66~3.64和2.29~3.20,大都小于3.3,属钙碱性系列;在K2O-SiO2图解中,两类岩石样品点主要落入钾玄岩-高钾钙碱性系列区域(图 5c),表明其均为钾玄岩-高钾钙碱性系列花岗岩。

紫云山两类岩石的CaO和MgO含量均较低,且二云母花岗岩CaO和MgO的含量更低;两类岩石的固结指数SI值分别为4.13~14.06(平均10.31) 和3.61~5.05(平均4.29),反映出该岩体的分异程度均较高,且内部的二云母花岗岩(补体)较外部的似斑状石英二长岩(主体)的分异程度更高。

与华南地区印支期花岗岩的平均值(南京大学地质学系, 1981)比较,紫云山花岗岩具有主体酸度低,而碱度高,相对富钙和镁的特点;补体酸度高,贫钙和镁的特点。

4.4 微量元素

紫云山花岗岩的三组样品的微量元素组成见表 4。该区两类岩石均具有不相容元素Rb、U、La、Nd和Zr相对富集,而Ba、Nb、Ta、Sr、P和Ti明显亏损的特征(图 6a)。二云母花岗岩较似斑状石英二长岩具有较明显的“谷”和“峰”差异,表现出较强的分异特征。元素Ba、Sr的亏损说明有斜长石的熔融残留相或结晶分离相存在(Patiño Douce and Johnston, 1991; Patiño Douce and Beard, 1995),元素P和Ti的强亏损可能与磷灰石、钛铁矿的分离结晶有关。

表 4 紫云山花岗岩的微量元素含量(×10-6)及其相关参数 Table 4 Trace element compositions (×10-6) and related parameters of the Ziyunshan granite

图 6 紫云山花岗岩(a)和邻近花岗岩(b)的原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989) Fig. 6 The primitive mantle-normalized trace elements spidergrams for the Ziyunshan granite (a) and other adjacent Indosinian granite (b) (normalization values after Sun and McDonough, 1989)

主体较补体岩石具有较高的Ba/Rb、Nb/Ta、Rb/Sr、K/Rb值,较低的Ni/Co和Zr/Hf值。上述微量元素特征与湖南的南岳、白马山及大神山岩体的微量元素特征非常相似(图 6b)。

4.5 稀土元素

该区不同类型岩石的稀土元素组成见表 5。该区花岗岩的ΣREE含量均较高,二云母花岗岩和似斑状石英二长岩分别为125.1×10-6~257.8×10-6和133.8×10-6~214.1×10-6;前者较后者具有较显著的负Eu异常,较高的ΣLREE/ΣHREE值(分别为11.3~15.5和6.66~12.9) 和(La/Yb)N值(分别为15.5~22.7和6.06~17.4),显示出前者较后者的轻、重稀土分馏更为强烈。

表 5 紫云山花岗岩稀土元素含量(×10-6)及其相关参数 Table 5 The rare earth element compositions (×10-6) and related parameters of the Ziyunshan granite

所有样品的稀土元素配分模式呈明显的右倾“V”字型,重稀土部分较为平坦,Eu显示负异常(图 7a),均属轻稀土富集型。HREE的相对亏损可能与普通角闪石、锆石等矿物的分离结晶有关。紫云山花岗岩的稀土元素特征与湖南印支晚期的白马山、南岳、大神山岩体的稀土元素特征极为相似(图 7b),暗示湘中地区印支期晚期的岩浆作用应是一个广泛分布的区域性地质事件。

图 7 湘中紫云山花岗岩(a)和邻近印支期花岗岩(b)的球粒陨石标准化稀土元素模式图(标准化值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized REE distribution patterns for Ziyunshan granite (a) and other adjacent Indosinian granite (b) in central Hunan (normalization values after Sun and McDonough, 1989)
5 讨论5.1 岩石的成因类型

本次获得紫云山花岗岩A/CNK值均小于1.1,多数小于1.0,所有样品点均落于准铝质-弱过铝质区域(图 5b),具有I型花岗岩的特征(Chappell and White, 1992);从岩石化学组成来看,紫云山花岗岩的主量元素具有富Si、Na、K,贫Ca、Mg、Al的特征,碱质含量高,属于碱性花岗岩(赵振华, 2007);微量元素具有富集Rb、U、La、Nd、Zr,亏损Ba、Nb、Ta、Sr、P、Ti的特征;稀土元素具有典型的右倾“V”字型,较显著负Eu异常,ΣREE含量高,轻、重稀土分馏明显,表现出A型花岗岩的特征(苏玉平和唐红峰, 2005; 苏玉平等, 2006; 吴锁平等, 2007; 李小伟等, 2010; 张旗等, 2012; 张旗, 2013)。该岩体的固结指数较高,主体为3.61~5.05(平均4.29),补体为4.13~14.06(平均10.31),表明该岩体的分异程度均较高,且补体较主体的分异程度更高的特征。

鉴于该岩体为高碱质花岗岩,选择张旗(2013)推荐的Ga/Al比值图解进行判别,在图 8a中确实有部分样品点(尤其是主体花岗岩)落入A型花岗岩区域;但是在图 8b中,样品点(尤其是主体花岗岩)却主要落在高分异的I型花岗岩区域,表明该岩体同时具有I型和A型花岗岩的特征。但该岩体未见碱性暗色矿物,且Ga/Al值为2.30~2.83,多数小于2.6。因此,该岩体应该不属于A型花岗岩,其具有A型花岗岩的特征可能为高度分异的结果(Whalen et al., 1987; Wu et al., 2002; 吴福元等, 2007b)。

图 8 紫云山岩体Na2O+K2O-10000×Ga/Al判别图解(a, 据Whalen et al., 1987)和10000×Ga/Al-(Zr+Nb+Ce+Y)判别图解(b, 据Eby, 1992) 图 8图 9图 12-图 15的图例同图 5 Fig. 8 Discrimination diagram of Na2O+K2O vs. 10000×Ga/Al (a, after Whalen et al., 1987) and Discrimination diagram of 10000×Ga/Al vs. (Zr+Nb+Ce+Y) (b, after Eby, 1992) for the Ziyunshan granite Legends in Fig. 8, Fig. 9 and Fig. 12-Fig. 15 are same as those in Fig. 5b

刘凯等(2014)测得的黑云母花岗岩的样品部分落于过铝质区域(图 5b),所以认为补体花岗岩为S型花岗岩。而陶继华等(2013)认为P2O5-SiO2相关关系是判断初始岩浆是I型还是S型的重要指标,该岩体样品明显沿I型花岗岩演化趋势线分布(图 9j)。尽管主体和补体之间的主量元素,存在一定的差距(图 9),但两者的微量元素特征高度一致。因此,认为紫云山岩体的主体和补体岩石应该具有相同的岩石成因,均应划归为高分异的I型花岗岩。

图 9 紫云山花岗岩主量、微量元素Harker图解(图 9j, 据陶继华等, 2013) Fig. 9 Harker diagrams showing major and trace elements of the Ziyunshan granite (Fig. 9j after Tao et al., 2013)
5.2 岩浆源区

在研究岩浆源区时,锆石原位微区Hf-O同位素比全岩同位素体系更有优势,且可通过与锆石U-Pb定年及Hf-O同位素研究相结合,能够对岩石的源区给出更直接、更精确的限制(Vervoort and Patchett, 1996; Scherer et al., 2000; Griffin et al., 2002; 吴福元等, 2007a; Zhang et al., 2012; Chen et al., 2015)。

对锆石原位微区Hf-O同位素数据统计表明,紫云山岩体中不同锆石样品的Hf-O同位素组成非常相似,甚至可以重叠(图 10a, b),其初始176Hf/177Hf比值集中分布在0.2825附近,对应的εHf(t)值分布在-10~-1.6之间,表明该岩体中不同岩性的花岗岩很可能是同一岩浆不同演化阶段的产物。该岩体的两阶段模式年龄tDM2为1.79~1.22Ga,平均为1.36Ga,表明该区花岗岩的源区为中元古代的岩石。

图 10 紫云山花岗岩的Hf、O同位素组成 Fig. 10 The Hf-O isotope compositions for the Ziyunshan granite

该岩体的δ18O值(7.8~11.4) 明显大于地幔δ18O值(5.3±0.3‰, Valley et al., 1998),且紫云山岩体的所有样品点均落在下地壳岩石演化区域(图 11a),表明该岩体具有壳源的特征。紫云山主体岩石相对于补体岩石具有较低的Al2O3/(Mg+FeOT)值,前者主要落在靠近变质杂砂岩和变质基性岩的交界处,而后者落于变质杂砂岩区(图 12a);在图 12b中,前者主要落于变质杂砂岩和角闪岩的交汇叠覆区,而后者主要落于变质杂砂岩区,因此刘凯等(2014)认为两者的源区不同。在Harker图解中(图 9),紫云山岩体的主体和补体花岗岩的化学组成存在一定的间断,但整体具有明显的线性变化趋势,表明两者应为同一岩浆演化的产物(周珣若, 1994; Kwon et al., 1989)。两者的主要氧化物比值也表现出良好的协变关系,它们在同分母氧化物比值协变图中表现为线性相关(图 13a, b),在多元素不同分母比值图(图 13c, d)中表现为双曲线演化关系,暗示它们在成因上可能存在密切的联系(陈迪等, 2014; 张晓琳等, 2005)。考虑到在如此小的范围内,同时代形成的岩体应该为同源。因此,我们认为该岩体不同岩石均应为变质杂砂岩熔融的产物。

图 11 紫云山花岗岩体εHf(t)-U/Pb (a, 据Altherr et al., 2000)和δ18O-εHf(t) (b, 据李献华等, 2009)图解 Fig. 11 Plot of εHf(t) vs. U/Pb (a, after Altherr et al., 2000) and δ18O vs. εHf(t) (b, after Li et al., 2009) for the Ziyunshan granite

图 12 紫云山岩体CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)(a, 据Altherr et al., 2000)和(Na2O+K2O)/(MgO+FeOT+TiO2)-Na2O+K2O+MgO+FeOT+TiO2(b, 据Patiño Douce, 1999)判别图解 Fig. 12 Plots of CaO/(MgO+FeOT) vs. Al2O3/(MgO+FeOT) (a, after Altherr et al., 2000) and (Na2O+K2O)/(MgO+FeOT+TiO2) vs. (Na2O+K2O+MgO+FeOT+TiO2) (b, after Patiño Douce, 1999) in the Ziyunshan granite

图 13 紫云山花岗岩体主量元素协变图解(据陈迪等, 2014) Fig. 13 Covariant diagram for major elements of the Ziyunshan granite (after Chen et al., 2014)

δ18O-εHf(t)图解中(图 11b),紫云山岩体的Hf-O同位素全部落在以大容山过铝质花岗岩为代表的地壳端元区域以外,表明该岩体有幔源物质的加入,且加入地幔物质的比例至少可达20%(陶继华等, 2013; 李献华等, 2009)。不同岩石样品基本上都在钾玄岩-高钾钙碱性系列岩石区域(图 5c),并沿岩浆混合趋势线分布、而远离结晶分异趋势线(图 13a),岩体内见有岩浆结构的铁镁质暗色包体(图 2),均指示有幔源岩浆参与了该岩体的成岩作用(陈迪等, 2014; Langmuir et al., 1978)。

与扬子地块和华夏地块的Hf同位素组成对比发现(图 11),紫云山花岗岩落于华夏地块三个主要生长期的演化线之外(Yu et al., 2007; Kemp et al., 2006),而与扬子地块地壳物质形成较好的演化趋势,指示紫云山花岗岩很可能由扬子地块古老物质演化而来。

综上所述,紫云山岩体的源区为扬子地块中元古代下地壳变质杂砂岩重熔,且与部分幔源岩浆形成的混合岩浆源区。

5.3 形成的构造背景

在常见的构造环境判别图解中,不同区域常常发生重叠或同一个区域代表两种构造环境的现象。因此,借助于岩石地球化学组成来判定花岗岩形成的构造背景时,必须选择与所研究的岩石类型相一致的构造环境判别图,并且应综合应用多个图解进行判别(赵振华, 2007)。对于碱性花岗岩而言,在进行构造环境判别时应选用该类花岗岩的特征元素(如Nb、Rb、Ga、Y)进行判别(Eby, 1992; 赵振华, 2007)。

Pearce et al. (1984)利用不同构造环境花岗岩的微量元素组成特点,将花岗岩分为洋脊花岗岩(ORG)、火山弧花岗岩(VAG)、板内花岗岩(WPG)和同碰撞型花岗岩(VAG+Syn-COLG)。在Nb-Y判别图解中(图 14a),紫云山花岗岩样品点落入VAG+Syn-COLG区域内;在Rb-(Y+Nb)图解中(图 14b),紫云山花岗岩样品点主要投在碰撞后区域内Pearce (1996)。在Rb-Hf-Ta图解中(图 15),紫云山样品点落于碰撞后构造环境区域内,表明该岩体形成于碰撞后的环境(Harris et al., 1986)。

图 14 紫云山岩体Nb-Y判别图解(a, 据Pearce et al., 1984)和Rb-(Y+Nb)判别图解(b, 据Pearce, 1996) Fig. 14 Post-collision diagram of Nb vs. Y (a, after Pearce et al., 1984) and Rb vs. (Y+Nb) (b, after Pearce, 1996) in the Ziyunshan granite

图 15 紫云山岩体Rb-Hf-Ta三元图解(据Harris et al., 1986) Fig. 15 Rb-Hf-Ta ternary diagram of the Ziyunshan granite (after Harris et al., 1986)

因此,紫云山岩体为碰撞后构造环境下的产物。

5.4 地质意义及成岩启示

华南地块位于秦岭-大别山和Song Ma两条印支期缝合带之间(图 1)。在印支早期,印支地块与华南地块的南缘发生陆-陆碰撞,导致华南地块与华北地块碰撞形成秦岭造山带(Meng and Zhang, 2000; Carter et al., 2001),对华南地块的北部形成约束;同时,还受太平洋板块的俯冲作用,华南地块与Sibumasu地块相互碰撞形成松潘-甘孜造山带(Bruguier et al., 1997; Carter et al., 2001; 梁新权和郭定良, 2003; Li and Li, 2007),对华南地块的西侧形成限制。在此构造背景下,华南地块形成大量NE走向的褶皱、逆冲推覆构造,并导致了地层的加厚。之后10~20Myr的时间,即印支晚期,受热-应力的松弛作用,华南地块进入伸展应力体制(Wang et al., 2002; 周新民, 2003; 王岳军等, 2005; Patiño Douce et al., 1990; 周新民, 2003; 张龙升等, 2012)。受该期构造运动的影响,华南地块形成了早、晚两期花岗岩,早期(约250Ma)花岗岩形成于同碰撞背景,晚期(约225Ma)花岗岩形成于碰撞后背景(Lepvrier et al., 1997; Nam et al., 1998; Carter et al., 2001; 丁兴等, 2005; Wang et al., 2007; 于津海等, 2007; Mao et al., 2011; Zhao et al., 2013; 蔡杨等, 2013)。

本次采用高精度SIMS锆石测年方法获得的紫云山岩体年龄(227.0±2.2Ma~225.2±1.7Ma),属典型的印支晚期的产物。本次研究证实该岩体形成于碰撞后构造背景,尤其是在华南地块印支晚期A型花岗岩的逐渐确认,如湖南的锡田岩体、浙江的大爽岩体、江西蔡江岩体和福建高溪岩体等(Sun et al., 2005; 陈卫锋等, 2006; 柏道远等, 2007b; Wang et al., 2007; 郭春丽等, 2012; Mao et al., 2013),表明印支晚期华南地块的花岗岩与伸展构造环境有关。本次研究确认紫云山岩体具有壳、幔岩浆混合成因,表明华南地块进入伸展阶段还诱发了幔源岩浆的底侵。Zhang et al.(2005, 2008)综合地球物理资料认为华夏中地壳下部20km左右存在一个厚约5km的辉长岩-玄武岩层,也间接证实了幔源岩浆的底侵作用。因此,认为紫云山岩体为碰撞后地壳发生伸展-减薄,地幔物质底侵诱发地壳物质部分熔融,形成壳、幔岩浆混合成因的岩体。

花岗岩的地球化学特征往往能够反映源区的性质(Chappell, 1990)。华南印支期花岗岩主要为古-中元古代(2.09~1.63Ga)地壳物质熔融的产物(郭春丽等, 2012),在该时期扬子地块和华夏地块还未拼合,地壳成分存在着一定的差异(Jin et al., 2012; 马振东和陈颖军, 2000)。因此,在印支期由上述不同块体熔融演化而来的花岗岩,其地球化学特征必然也存在一定差异。

位于华夏地块腹地的冒峰、柯树岭、王仙岭等湖南境内的印支期花岗岩体为强过铝质花岗岩,具有较高的SiO2、K2O+Na2O含量以及Rb/Sr、Rb/Ba比值,稀土元素总量明显偏低,且较强的Eu负异常,轻重稀土之间分馏不明显,分布曲线呈水平型,源区以变质泥岩为主,成因类型多为S型(郭春丽等, 2011; 郑佳浩和郭春丽, 2012; 郭春丽等, 2012)。湖南阳明山、栗木、邓阜仙、红山等印支期花岗岩体也具有类似的地球化学特征(陈卫锋等, 2006; 柏道远等, 2007a; 郭春丽等, 2012; 蔡杨等, 2013),表明这些岩体均由华夏地块演化而来。

而湖南境内分布于扬子地块南缘的大神山、白马山、沩山、紫云山、南岳、锡田及十万大山等印支期花岗岩体明显不同(柏道远等, 2007a; Wang et al., 2007; 郭春丽等, 2012; 张龙升等, 2012; 李建华等, 2014; 丁兴等, 2005; 刘凯等, 2014; 马铁球等, 2013; 本文),为准铝质-弱过铝质花岗岩,含有更高的FeOT、MgO、TiO2、Sr、Ba、Zr含量、εNd(t)值,稀土元素总量偏高,有较弱的Eu负异常,轻、重稀土元素分馏明显,分布曲线呈右倾型,源区以变质杂砂岩为主,成因类型多为I型,表明这些花岗岩体应该不是来自华夏地块古老物质熔融,而很可能是由扬子地块古老物质熔融形成。本次锆石原位微区Hf同位素研究,也指示紫云山岩体是由扬子地块古老物质演化而来。

根据以上分析,推断以锡田岩体-阳明山岩体-栗木岩体-十万大山岩体一线为界(图 1),南、北两侧的印支期花岗岩的源区分别属于华夏地块和扬子地块。进而我们可推测扬子地块和华夏地块的拼合带在湖南境内应为“攸县-双牌”一线(图 1a)。

饶家荣等(2012)利用地球物理方法判断华夏地块与扬子地块的深部结合带的北西边界在安徽歙县-南昌-湖南大围山-沩山-城步-广西河池一线,结合带的南东边界为江山-绍兴-新余-萍乡-衡东-双牌-桂林-柳州一线。本次研究结论与之相符,而本次对该结合带位置的限制更为明确。

6 结论

紫云山岩体主要由似斑状石英二长岩(主体)和二云母花岗岩(补体)组成。前者锆石SIMS U-Pb年龄为225.2±1.7Ma和225.6±1.4Ma,后者为227.0±2.2Ma,两者的侵位时间基本一致,属典型印支晚期的花岗岩体。

该岩体的主体和补体岩石具有密切的亲缘关系,均为高分异的I型花岗岩;该岩体两类岩石εHf(t)均为负值,且δ18O值大于地幔值,两阶段模式年龄tDM2为1.79~1.22Ga,其源区为扬子地块中元古代下地壳变质杂砂岩重熔,与部分幔源岩浆形成的壳、幔混合岩浆源区;该岩体形成于碰撞后伸展-减薄构造背景。

扬子地块与华夏地块的拼合带在湖南境内应沿“攸县-双牌”一带展布。

致谢 野外研究得到了湖南省有色地质勘查局二总队相关领导的支持和帮助,李干龙、王卫波工程师参与了部分野外工作,在此一并致以诚挚的谢意!
参考文献
[] Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51–73. DOI:10.1016/S0024-4937(99)00052-3
[] Bai DY, Zhou L, Ma TQ, Wang XH. 2007a. Genesis and tectonic setting of Indosinian granites in Southeast Hunan. Acta Petrologica et Mineralogica, 26(3): 197–212.
[] Bai DY, Jia BH, Ma TQ, Wang XH, Zhang XY, Chen BH. 2007b. Relationship of petro-geochemical characteristics to metallogenic capacity differences between Indosinian and Early Yanshanian granites in southeastern Hunan. Acta Petrologica et Mineralogica, 26(5): 387–398.
[] Belousova EA, Griffin WL, O'Reilly SY, Fisher NI. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602–622. DOI:10.1007/s00410-002-0364-7
[] Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2): 115–140. DOI:10.1016/j.chemgeo.2004.01.003
[] Blichert-Toft J, Chauvel C, Albarède F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260. DOI:10.1007/s004100050278
[] Bruguier O, Lancelot JR, Malavieille J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations. Earth and Planetary Science Letters, 152(1-4): 217–231. DOI:10.1016/S0012-821X(97)00138-6
[] Cai Y, Lu JJ, Ma DS, Huang H, Zhang HF. 2013. Chronology and geochemical characteristics of Late Indosinian Dengfuxian two-mica granite in eastern Hunan Province, China, and its significance. Acta Petrologica Sinica, 29(12): 4215–4231.
[] Carter A, Roques D, Bristow C, Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29(3): 211–214. DOI:10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2
[] Chappell BW. 1990. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535–551.
[] Chappell BW, White AJR. 1992. I- and S-type granites in the Lachlan fold belt. Earth and Environmental Science Transactions of the Royal Society, 83(1-2): 1–26. DOI:10.1017/S0263593300007720
[] Chen D, Chen YM, Ma AJ, Liu W, Liu YR, Ni YJ. 2014. Magma mixing in the Xitian pluton of Hunan Province: Evidence from petrography, geochemistry and zircon U-Pb age. Geology in China, 41(1): 61–78.
[] Chen WF, Chen PR, Zhou XM, Huang HY, Ding X, Sun T. 2006. Single-zircon La-ICP-MS U-Pb dating of the Yangmingshan granitic pluton in Hunan, South China and its petrogenetic study. Acta Geologica Sinica, 80(7): 1065–1077.
[] Chen YP, Wei CJ, Zhang JR, Chu H. 2015. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Science Bulletin, 60(19): 1698–1707. DOI:10.1007/s11434-015-0890-0
[] Department of Geology, Nanjing University. 1981. Granites of Different Ages in South China and Their Metallogenetic Relations. Beijing: Science Press: 1-395.
[] Ding X, Chen PR, Chen WF, Huang HY, Zhou XM. 2006. Single zircon LA-ICPMS U-Pb dating of Weishan granite (Hunan, South China) and its petrogenetic significance. Science in China (Series D), 49(8): 816–827. DOI:10.1007/s11430-006-0816-4
[] Ding X, Sun WD, Wang FY, Chen LL, Li QL, Chen FK. 2012. Single-grain mica Rb-Sr isochron ages and mineral chemistry for the Weishan pluton in Hunan Province and implications on petrogenesis and mineralization of Mesozoic composite granite in South China. Acta Petrologica Sinica, 28(12): 3823–3840.
[] Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641–644. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[] Fisher CM, Vervoort JD, Hanchar JM. 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical Geology, 363: 125–133. DOI:10.1016/j.chemgeo.2013.10.019
[] Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS, Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237–269. DOI:10.1016/S0024-4937(02)00082-8
[] Guo CL, Chen YC, Lin ZY, Lou FS, Zeng ZL. 2011. SHRIMP zircon U-Pb dating, geochemistry and zircon Hf isotopic characteristics of granitoids in Keshuling granites, Jiangxi Province and their genetic analysis. Acta Petrologica et Mineralogica, 30(4): 567–580.
[] Guo CL, Zheng JH, Luo FS, Zeng ZL. 2012. Petrography, genetic types and geological dynamical settings of the Indosinian granitoids in South China. Geotectonica et Metallogenia, 36(3): 457–472.
[] Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward MP and Reis AC (eds.). Collision Tectonics. Geological Society, London, Special Publications, 19(1): 67-81
[] Hu ZC, Gao S, Liu YS, Hu SH, Chen HH, Yuan HL. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101. DOI:10.1039/b804760j
[] Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. DOI:10.1039/c2ja30078h
[] Ireland TR, Williams IS. 2003. Considerations in zircon geochronology by SIMS. Reviews in Mineralogy and Geochemistry, 53(1): 215–241. DOI:10.2113/0530215
[] Jin HY, Suzanne YO, Mei FZ, Griffinb WL, Li JW. 2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu complex, southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia block. Precambrian Research(222–223): 424–449.
[] Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439(7076): 580–583. DOI:10.1038/nature04505
[] Kwon ST, Tilton GR, Coleman RG, Feng Y. 1989. Isotopic studies bearing on the tectonics of the West Junggar region, Xinjiang, China. Tectonics, 8(4): 719–927. DOI:10.1029/TC008i004p00719
[] Langmuir CH, Vocke Jr RD, Hanson GN, Hart SR. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3): 380–392. DOI:10.1016/0012-821X(78)90053-5
[] Lepvrier C, Maluski H, Van Vuong N, Roques D, Axente V, Rangin C. 1997. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam): 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 283(1-4): 105–127. DOI:10.1016/S0040-1951(97)00151-0
[] Li JH, Zhang YQ, Xu XB, Li HL, Dong SW, Li TD. 2014. SHRIMP U-Pb dating of zircons from the Baimashan Longtan super-unit and Wawutang granites in Hunan Province and its geological implication. Journal of Jilin University (Earth Science Edition), 44(1): 158–175.
[] Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010.
[] Li XH, Li XW, Wang XC, Li QL, Liu Y, Tang GQ. 2009. Role of mantle-derived magma in genesis of Early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints. Science in China (Series D), 52(9): 1262–1278. DOI:10.1007/s11430-009-0117-9
[] Li XH, Li WX, Li QL, Wang XC, Liu Y, Yang YH. 2010. Petrogenesis and tectonic significance of the ~850Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry. Lithos, 114: 1–15. DOI:10.1016/j.lithos.2009.07.011
[] Li XW, Mo XX, Zhao ZD, Zhu DC. 2010. A discussion on how to discriminate A-type granite. Geological Bulletin of China, 29(2-3): 278–285.
[] Li ZX, Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179–182. DOI:10.1130/G23193A.1
[] Liang XQ, Guo DL. 2003. Mesozoic orogenic process in Hunan Province: Effects of the orogenic belts at the margin of the South China block. Hunan Geology, 22(1): 15–18.
[] Liu K, Mao JR, Zhao XL, Ye HM, Hu Q. 2014. Geological and geochemical characteristics and genetic significance of the Ziyunshan pluton in Hunan Province. Acta Geologica Sinica, 88(2): 208–227.
[] Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537–571. DOI:10.1093/petrology/egp082
[] Ludwig KR. 2001. Users Manual for Isoplot/Ex Rev.2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Centre, Special Publication: 1-56.
[] Ma TQ, Li B, Chen YM, Zhou KJ, Cha JZ. 2013. LA-ICP-MS zircon U-Pb age and geochemical characteristics of Nanyue granites in Hunan Province. Geology in China, 40(6): 1712–1724.
[] Ma ZD, Chen YJ. 2000. Geochemical discussion on Paleo-Mesoproterozoic basement crust of Yangtze and Cathaysia cratons in southern China: Using trace elements as tracers. Geochimica, 29(6): 525–531.
[] Mao JR, Takahashi Y, Kee WS, Li ZL, Ye HM, Zhao XL, Liu K, Zhou J. 2011. Characteristics and geodynamic evolution of Indosinian magmatism in South China: A case study of the Guikeng pluton. Lithos, 127(3-4): 535–551. DOI:10.1016/j.lithos.2011.09.011
[] Mao JR, Ye HM, Liu K, Li ZL, Takahashi Y, Zhao XL, Kee WS. 2013. The Indosinian collision-extension event between the South China block and the Palaeo-Pacific plate: Evidence from Indosinian alkaline granitic rocks in Dashuang, eastern Zhejiang, South China. Lithos, 127-173: 81–97.
[] Meng QR, Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3-4): 183–196. DOI:10.1016/S0040-1951(00)00106-2
[] Middlemost EAK. 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. London: Longman: 1-266.
[] Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215–224. DOI:10.1016/0012-8252(94)90029-9
[] Nam TN. 1998. Thermotectonic events from Early Proterozoic to Miocene in the Indochina craton: Implication of K-Ar ages in Vietnam. Journal of Asian Earth Sciences, 16(5-6): 475–484. DOI:10.1016/S0743-9547(98)00027-0
[] Patiño Douce AE, Humphreys ED, Johnston AD. 1990. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. 期刊名, 97(3-4): 290–315.
[] Patiño Douce AE, Johnston AD. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107(2): 202–218. DOI:10.1007/BF00310707
[] Patiño Douce AE, Beard JS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology, 36(3): 707–738. DOI:10.1093/petrology/36.3.707
[] Patiño Douce AE. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C and Vigneresse JL (eds.). Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications, 168(1): 55-75
[] Pearce JA, Harris NBW, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. DOI:10.1093/petrology/25.4.956
[] Pearce JA. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120–125.
[] Peccerillo A, Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. DOI:10.1007/BF00384745
[] Rao JR, Xiao HY, Liu YR, Bai DY, Deng YL. 2012. Location of the Yangtze-Cathaysia plate convergence zone in Hunan. Chinese Journal of Geophysics, 55(2): 484–502.
[] Scherer EE, Cameron KL, Blichert-Toft J. 2000. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413–3432. DOI:10.1016/S0016-7037(00)00440-3
[] Stacey JS, Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207–221. DOI:10.1016/0012-821X(75)90088-6
[] Su YP, Tang HF. 2005. Trace element geochemistry of A-type granites. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3): 245–251.
[] Su YP, Tang HF, Hou GS, Liu CQ. 2006. Geochemistry of aluminous A-type granites along Darabut tectonic belt in West Junggar, Xinjiang. Geochimica, 35(1): 55–67.
[] Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for Mantle Composition and Processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
[] Sun T, Zhou XM, Chen PR, Li HM, Zhou HY, Wang ZC, Shen WZ. 2005. Strongly peraluminous granites of Mesozoic in eastern Nanling range, southern China: Petrogenesis and implications for tectonics. Science in China (Series D), 48(2): 165–174. DOI:10.1360/03YD0042
[] Tao JH, Li WX, Li XH, Cen T. 2013. Petrogenesis of Early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province: Evidence from zircon U-Pb dating, Hf-O isotope and whole-rock geochemistry. Science China (Earth Sciences), 56(6): 922–939. DOI:10.1007/s11430-013-4593-6
[] Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ. 1998. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133(1-2): 1–11. DOI:10.1007/s004100050432
[] Vervoort JD, Patchett PJ. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustal derived granites. Geochimica et Cosmochimica Acta, 60(19): 3717–3733. DOI:10.1016/0016-7037(96)00201-3
[] Wang KX, Chen WF, Chen PR, Zhao KD, Zhang J. 2011. Research into the genesis of Xiema-Ziyunshan pluton in Hunan. Bulletin of Mineralogy, Petrology and Geochemistry, 30(Suppl.): 97.
[] Wang YJ, Zhang Y, Fan WM, Xi XW, Guo F, Lin G. 2002. Numerical modeling of the formation of Indo-Sinian peraluminous granitoids in Hunan Province: Basaltic underplating versus tectonic thickening. Science in China (Series D), 45(11): 1042–1056. DOI:10.1007/BF02911241
[] Wang YJ, Fan WM, Liang XQ, Peng TP, Shi YR. 2005. SHRIMP zircon U-Pb geochronology of Indosinian granites in Hunan Province and its petrogenetic implications. Chinese Science Bulletin, 50(13): 1395–1403. DOI:10.1360/982004-603
[] Wang YJ, Fan WM, Sun M, Liang XQ, Zhang YH, Peng TP. 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China block: A case study in the Hunan Province. Lithos, 96(3-4): 475–502. DOI:10.1016/j.lithos.2006.11.010
[] Whalen JB, Currie KL, Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. DOI:10.1007/BF00402202
[] Whitehouse MJ, Claesson S, Sunde T, Vestin J. 1997. Ion microprobe U-Pb zircon geochronology and correlation of Archaean gneisses from the Lewisian complex of Gruinard Bay, northwestern Scotland. Geochimica et Cosmochimica Acta, 61(20): 4429–4438. DOI:10.1016/S0016-7037(97)00251-2
[] Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. DOI:10.1111/ggr.1995.19.issue-1
[] Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår O, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng YF. 2004. Further characterization of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9–39. DOI:10.1111/ggr.2004.28.issue-1
[] Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology, 209(1-2): 121–135. DOI:10.1016/j.chemgeo.2004.04.026
[] Wu FY, Sun DY, Li HM, Jahn BM, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143–173. DOI:10.1016/S0009-2541(02)00018-9
[] Wu FY, Li XH, Zheng YF, Gao S. 2007a. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185–220.
[] Wu FY, Li XH, Yang JH, Zheng YF. 2007b. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217–1238.
[] Wu SP, Wang MY, Qi KJ. 2007. Present situation of researches on A-type granites: A review. Acta Petrologica et Mineralogica, 26(1): 57–66.
[] Xu XS, Deng P, O'Reilly SY, Griffin WL, Zhou XM, Tan ZZ. 2003. Single zircon LAM-ICPMS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance. Chinese Science Bulletin, 48(17): 1892–1899. DOI:10.1007/BF03184074
[] Yu JH, O'Reilly YS, Wang LJ, Griffin WL, Jiang SY, Wang RC, Xu XS. 2007. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chinese Science Bulletin, 52(1): 13–22. DOI:10.1007/s11434-007-0008-4
[] Yu JH, Wang LJ, Wang XL, Qiu JS, Zhao L. 2007. Geochemistry and geochronology of the Fucheng complex in the southeastern Jiangxi Province, China. Acta Petrologica Sinica, 23(6): 1441–1456.
[] Yuan HL, Wu FY, Gao S, Liu XM, Xu P, Sun DY. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411–2421.
[] Zhang DY, Zhang ZC, Encarnación J, Xue CJ, Duan SG, Zhao ZD, Liu JL. 2012. Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implications for tectonic evolution during Late Paleozoic time. Lithos, 146-147: 65–79. DOI:10.1016/j.lithos.2012.04.002
[] Zhang LS, Peng JT, Zhang DJ, Hu AX, Yang JH. 2012. Geochemistry and Petrogenesis of the Indosinian Dashenshan granite, western Hunan, South China. Geotectonica et Metallogenia, 36(1): 137–148.
[] Zhang LS, Peng JT, Hu AX, Lin FM, Zhang T. 2014. Re-Os dating of molybdenite from Darongxi tungsten deposit in western Hunan and its geological implications. Mineral Deposits, 33(1): 181–189.
[] Zhang Q, Ran H, Li CD. 2012. A-type granite: What is the essence?. Acta Petrologica et Mineralogica, 31(4): 621–626.
[] Zhang Q. 2013. The criteria and discrimination for A-type granites: A reply to the question put forward by Wang Yang and some other persons for "A-type granite: What is the essence?". Acta Petrologica et Mineralogica, 32(2): 267–274.
[] Zhang XL, Qiu JS, Wang DZ, Wang RC, Xu XS, Chen XM. 2005. Geochemistry and magmatic mixing of the putuoshan biotite moyites and their enclaves, Zhejiang Province. Acta Petrologica et Mineralogica, 24(2): 81–92.
[] Zhang ZJ, Badal J, Li YK, Chen Y, Yang LQ, Teng JW. 2005. Crust-upper mantle seismic velocity structure across Southeastern China. Tectonophysics, 395(1-2): 137–157. DOI:10.1016/j.tecto.2004.08.008
[] Zhang ZJ, Zhang X, Badal J. 2008. Composition of the crust beneath southeastern China derived from an integrated geophysical data set. Journal of Geophysical Research, 113(B4): B04417.
[] Zhao KD, Jiang SY, Chen WF, Chen PR, Ling HF. 2013. Zircon U-Pb chronology and elemental and Sr-Nd-Hf isotope geochemistry of two Triassic A-type granites in South China: Implication for petrogenesis and Indosinian transtensional tectonism. Lithos, 160-161: 292–306. DOI:10.1016/j.lithos.2012.11.001
[] Zhao ZH. 2007. How to use the trace element diagrams to discriminate tectonic settings. Geotectonica et Metallogenia, 31(1): 92–103.
[] Zheng JH, Guo CL. 2012. Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance. Acta Petrologica Sinica, 28(1): 75–90.
[] Zhou XM. 2003. My thinking about granite geneses of South China. Geological Journal of China Universities, 9(4): 556–565.
[] Zhou XR. 1994. Hybridization in the genesis of granitoids. Earth Science Frontiers, 1(1-2): 87–97.
[] 柏道远, 周亮, 马铁球, 王先辉. 2007a. 湘东南印支期花岗岩成因及构造背景. 岩石矿物学杂志, 26(3): 197–212.
[] 柏道远, 贾宝华, 马铁球, 王先辉, 张晓阳, 陈必河. 2007b. 湘东南印支期与燕山早期花岗岩成矿能力差异与岩石地球化学特征关系探讨. 岩石矿物学杂志, 26(5): 387–398.
[] 蔡杨, 陆建军, 马东升, 黄卉, 张怀峰. 2013. 湖南邓阜仙印支晚期二云母花岗岩年代学、地球化学特征及其意义. 岩石学报, 29(12): 4215–4231.
[] 陈迪, 陈焰明, 马爱军, 刘伟, 刘耀荣, 倪艳军. 2014. 湖南锡田岩体的岩浆混合成因:岩相学、岩石地球化学和U-Pb年龄证据. 中国地质, 41(1): 61–78.
[] 陈卫锋, 陈培荣, 周新民, 黄宏业, 丁兴, 孙涛. 2006. 湖南阳明山岩体的La-ICP-MS锆石U-Pb定年及成因研究. 地质学报, 80(7): 1065–1077.
[] 丁兴, 陈培荣, 陈卫锋, 黄宏业, 周新民. 2005. 湖南沩山花岗岩中锆石LA-ICPMS U-Pb定年:成岩启示和意义. 中国科学(D辑), 37(7): 606–616.
[] 丁兴, 孙卫东, 汪方跃, 陈林丽, 李秋立, 陈福坤. 2012. 湖南沩山岩体多期云母的Rb-Sr同位素年龄和矿物化学组成及其成岩成矿指示意义. 岩石学报, 28(12): 3823–3840.
[] 郭春丽, 陈毓川, 蔺志永, 楼法生, 曾载淋. 2011. 赣南印支期柯树岭花岗岩体SHRIMP锆石U-Pb年龄、地球化学、锆石Hf同位素特征及成因探讨. 岩石矿物学杂志, 30(4): 567–580.
[] 郭春丽, 郑佳浩, 楼法生, 曾载淋. 2012. 华南印支期花岗岩类的岩石特征、成因类型及其构造动力学背景探讨. 大地构造与成矿学, 36(3): 457–472.
[] 李建华, 张岳桥, 徐先兵, 李海龙, 董树文, 李廷栋. 2014. 湖南白马山龙潭超单元、瓦屋塘花岗岩锆石SHRIMP U-Pb年龄及其地质意义. 吉林大学学报(地球科学版), 44(1): 158–175.
[] 李献华, 李武显, 王选策, 李秋立, 刘宇, 唐国强. 2009. 幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约. 中国科学(D辑), 39(7): 872–887.
[] 李小伟, 莫宣学, 赵志丹, 朱弟成. 2010. 关于A型花岗岩判别过程中若干问题的讨论. 地质通报, 29(2-3): 278–285.
[] 梁新权, 郭定良. 2003. 湖南中生代造山过程——华南陆块周缘造山带之影响. 湖南地质, 22(1): 15–18.
[] 刘凯, 毛建仁, 赵希林, 叶海敏, 胡青. 2014. 湖南紫云山岩体的地质地球化学特征及其成因意义. 地质学报, 88(2): 208–227.
[] 南京大学地质学系. 1981. 华南不同时代花岗岩类及其与成矿关系. 北京: 科学出版社: 1-382.
[] 马铁球, 李彬, 陈焰明, 周柯军, 查建章. 2013. 湖南南岳岩体LA-ICP-MS锆石U-Pb年龄及其地球化学特征. 中国地质, 40(6): 1712–1724.
[] 马振东, 陈颖军. 2000. 华南扬子与华夏陆块古-中元古代基底地壳微量元素地球化学示踪探讨. 地球化学, 29(6): 525–531.
[] 饶家荣, 肖海云, 刘耀荣, 柏道远, 邓延林. 2012. 扬子、华夏古板块会聚带在湖南的位置. 地球物理学报, 55(2): 484–502.
[] 苏玉平, 唐红峰. 2005. A型花岗岩的微量元素地球化学. 矿物岩石地球化学通报, 24(3): 245–251.
[] 苏玉平, 唐红峰, 侯广顺, 刘丛强. 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35(1): 55–67.
[] 陶继华, 李武显, 李献华, 岑涛. 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究. 中国科学(地球科学), 43(5): 760–778.
[] 王凯兴, 陈卫锋, 陈培荣, 赵葵东, 章健. 2011. 湖南歇马-紫云山岩体岩石成因研究. 矿物岩石地球化学通报, 30(增刊): 97.
[] 王岳军, 范蔚茗, 梁新权, 彭头平, 石玉若. 2005. 湖南印支期花岗岩SHRIMP锆石U-Pb年龄及其成因启示. 科学通报, 50(12): 1259–1266. DOI:10.3321/j.issn:0023-074X.2005.12.018
[] 吴福元, 李献华, 郑永飞, 高山. 2007a. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185–220.
[] 吴福元, 李献华, 杨进辉, 郑永飞. 2007b. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217–1238.
[] 吴锁平, 王梅英, 戚开静. 2007. A型花岗岩研究现状及其述评. 岩石矿物学杂志, 26(1): 57–66.
[] 于津海, 王丽娟, 王孝磊, 邱检生, 赵蕾. 2007. 赣东南富城杂岩体的地球化学和年代学研究. 岩石学报, 23(6): 1441–1456.
[] 袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有. 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报, 48(14): 1511–1520.
[] 张龙升, 彭建堂, 张东亮, 胡阿香, 阳杰华. 2012. 湘西大神山印支期花岗岩的岩石学和地球化学特征. 大地构造与成矿学, 36(1): 137–148.
[] 张龙升, 彭建堂, 胡阿香, 林芳梅, 张婷. 2014. 湘西大溶溪钨矿床中辉钼矿Re-Os同位素定年及其地质意义. 矿床地质, 33(1): 181–189.
[] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?. 岩石矿物学杂志, 31(4): 621–626.
[] 张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑. 岩石矿物学杂志, 32(2): 267–274.
[] 张晓琳, 邱检生, 王德滋, 王汝成, 徐夕生, 陈小明. 2005. 浙江普陀山黑云母钾长花岗岩及其岩石包体的地球化学与岩浆混合作用. 岩石矿物学杂志, 24(2): 81–92.
[] 赵振华. 2007. 关于岩石微量元素构造环境判别图解使用的有关问题. 大地构造与成矿学, 31(1): 92–103.
[] 郑佳浩, 郭春丽. 2012. 湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义. 岩石学报, 28(1): 75–90.
[] 周新民. 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556–565.
[] 周珣若. 1994. 花岗岩混合作用. 地学前缘, 1(1-2): 87–97.