岩石学报  2017, Vol. 33 Issue (3): 843-858   PDF    
广东锡坪钼铜多金属矿床辉钼矿Re-Os同位素定年及其地质意义
郑伟1, 欧阳荷根1, 赵海杰1, 赵财胜2, 于晓飞3,4, 罗大略5, 黄华谷5, 欧阳志侠6     
1. 中国地质科学院矿产资源研究所, 国土资源部成矿作用与资源评价重点开放实验室, 北京 100037;
2. 国土资源部科技与国际合作司, 北京 100812;
3. 中国地质调查局发展研究中心, 北京 100037;
4. 国土资源部矿产勘查技术指导中心, 北京 100120;
5. 广东省地质调查院, 广州 510080;
6. 广东省有色金属地质局, 广州 510080
摘要: 广东锡坪钼铜多金属矿床位于钦杭成矿带的西南端,为一大型的斑岩型矿床。本文利用辉钼矿Re-Os同位素定年方法对锡坪钼铜多金属矿床4件辉钼矿样品进行了成矿年代学测定,获得的模式年龄为85.15~88.34Ma,加权平均值为86.1±2.3Ma,对应的等时线年龄为89.9±3.4Ma,模式年龄和等时线年龄结果在误差范围内基本一致,指示锡坪钼铜多金属矿床的成矿时限为晚白垩世。锡坪钼铜多金属矿辉钼矿样品的Re含量较低,表明其成矿物质可能主要来自于壳源。钦杭成矿带成岩成矿作用以中生代燕山期为主,存在180~150Ma、110~80Ma两个爆发期,两期成岩成矿作用可能均与太平洋板块的俯冲有一定的关系。锡坪钼铜多金属矿床是在岩石圈伸展减薄环境下发生的大规模成矿作用的产物。
关键词: 辉钼矿     Re-Os同位素定年     锡坪钼铜多金属矿床     广东     钦杭成矿带    
Re-Os dating for the molybdenite from the Xiping Mo-Cu polymetallic deposit in Guangdong Province and its geological significance
ZHENG Wei1, OUYANG HeGen1, ZHAO HaiJie1, ZHAO CaiSheng2, YU XiaoFei3,4, LUO DaLue5, HUANG HuaGu5, OUYANG ZhiXia6     
1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Technology and International Cooperation Department, Ministry of Land and Resources, Beijing 100812, China;
3. Development and Research Center of China Geological Survey, Beijing 100037, China;
4. Technology Guiding Center of Mineral Prospecting, Ministry of Land and Resources, Beijing 100120, China;
5. Geological Survey of Guangdong Province, Guangzhou 510080, China;
6. Geology Bureau for Nonferrous Metals of Guangdong Province, Guangzhou 510080, China
Abstract: The Xiping Mo-Cu polymetallic deposit is a large porphyry deposit located in the southwestern of the Qin-Hang metallogenic belt. Four molybdenite samples from the Xiping Mo-Cu polymetallic deposit were collected to perform the Re-Os dating. The Re-Os dating yield model ages ranging from 85.15Ma to 88.34Ma, with a weighted mean age of 86.1±2.3Ma, and obtain an isochron age of 89.9±3.4Ma. Evidently, model ages are consistent with isochron age within the error ranges, so we can constrain the ore-forming age of Xiping Mo-Cu polymetallic deposit at the Late Cretaceous. The molybdenites from the Xiping deposit have a very low content of Re, probably showing a crustal source for the ore-forming materials. The granitic magmatism and mineralization in the Qin-Hang metallogenic belt occur mainly in the Mesozoic, especially Yanshanian-aged, and can be divided into two groups:The first group in the Mid-Late Jurassic (180~150Ma), and the second group in the Cretaceous (110~80Ma). Combining the tectonic geological evolution, it is proposed that the large-scale magmatism and mineralization in the two stages is probably related to subduction of the Pacific plate. The Xiping Mo-Cu polymetallic deposit formed in the Late Yanshanian lithospheric extensional and thinning environment.
Key words: Molybdenite     Re-Os isotopic ages     Xiping Mo-Cu polymetallic deposit     Guangdong Province     The Qin-Hang metallogenic belt    
1 引言

钦州-杭州成矿带 (简称钦杭带),作为我国重要成矿带之一,在大地构造上属于扬子与华夏两个古陆块在新元古代时期碰撞拼接所形成的板块结合带 (毛景文等, 2011; 图 1)。该成矿带南西起自广西钦洲湾,经湘东和赣中,往北东延伸至浙江杭州湾,总体呈NE向反“S”状弧形展布,全长约2000km,宽100~150km (杨明桂和梅勇文等, 1997)。钦杭成矿带成矿地质条件优越,铜、钼、铅锌、金、银、铌钽、铀和非金属等矿产在我国占有重要地位,不仅是华南地区最为重要的Cu-Pb-Zn-Au-Ag多金属成矿带 (杨明桂等, 2009),也是世界上最大的钨锡成矿带之一,尤其是带内金铜铅锌铁等紧缺矿产资源找矿前景良好,并且引起越来越多的关注和研究 (毛景文等, 2011; 周永章等, 2012, 2015; 梁锦等, 2012; 曾长育等, 2015; 赵海杰等, 2012; 郑伟, 2016; 邢波等, 2016; Mao et al., 2013, 2014)。毛景文等 (2011)将钦杭带及旁侧矿床归纳为新元古代海底喷流沉积型铜锌矿床和燕山期与花岗岩有关的钨锡铜铅锌多金属矿床两个成矿系列,绝大多数矿床形成于中晚侏罗世至白垩纪。周永章等 (2012)将钦杭结合带分为北 (东)、中和南 (西)3段 (图 1)。其中中段与南岭带大体一致,主要分布在北纬24°~27°之间,是世界著名的花岗岩省和重要的钨锡多金属矿产地;北段指南岭以北地区,即绍兴-江山-萍乡一带,优势矿种为铜、铁和贵金属;南段位于南岭以南区域,大致与云开-十万大山带相当,优势矿种有金、银、铜钼多金属等。南段相对于北段而言,研究程度低,未发现确切的拼合地质标志,而北段蛇绿混杂岩、岛弧岩浆岩、高压变质岩及大型韧性剪切带出露齐全 (曾长育等, 2015)。

图 1 钦-杭结合带斑岩铜多金属矿床分布示意图 (据梁锦等, 2012; 周永章等, 2015) Fig. 1 Simplified tectonic division of Qinzhou-Hangzhou combined belt, showing locations of key porphyry copper polymetallic deposits (after Liang et al., 2012; Zhou et al., 2015)

尽管对钦杭成矿带的研究已经取得了一定的认识,但依然存在较大的争议,尤其是中生代大规模构造-岩浆作用与成矿的关系。斑岩-矽卡岩型矿床作为钦杭成矿带最重要的矿床类型,首先在北段的发现以德兴斑岩铜矿和永平斑岩铜矿最为典型,中段如铜山岭铜多金属矿、水口山铜多金属矿及宝山铜多金属矿等,南段斑岩型铜矿主要有石菉铜钼矿、锡坪斑岩型钼铜多金属矿、南和铜钼矿以及天堂铜钼多金属矿等。近年来,随着国家对找矿工作的重视,又相继发现了一大批中大型甚至超大型的斑岩-矽卡岩铜多金属矿床,如广东圆珠顶铜钼矿、鹦鹉岭钨钼铜多金属矿、陂头面铜铁矿和旗鼓岭铜钼矿,广西腾县大黎斑岩型钼多金属矿,浙江开化桐村铜钼矿以及位于紫金山矿田东北侧的罗卜岭大型斑岩铜钼矿。而南段由于覆盖严重以及发现时间较晚等原因,区内斑岩型矿床及其相关岩浆岩的研究程度相对较低,成岩成矿时代缺乏精确的厘定,成矿规律不明晰。因此,本文以结合带内的锡坪斑岩型钼铜多金属矿床为对象进行研究。

金属矿床的成矿时代,对于正确认识矿床成因和控矿因素、总结成矿规律并指导找矿勘探工作都具有极为重要的意义 (翟裕生等, 1992; 陈毓川等, 1994; Yuan et al., 2008, 2011; 郑伟等, 2013a; Zheng et al., 2016)。本文在详细研究锡坪钼铜多金属矿床地质特征的基础上,通过对该矿床辉钼矿单矿物的Re-Os同位素测年,试图精确厘定其成矿年龄,为矿床成矿作用研究提供年代学证据,同时对区内晚中生代成岩成矿作用作一简要探讨。

2 区域地质及矿床地质特征

锡坪钼铜多金属矿床位于钦杭成矿带的西南端 (图 1),是一大型的斑岩型矿床 (广东省地质矿产局, 1993)。矿区出露的地层为新元古界云开群b组的一套类复理石建造沉积变质岩系,主要为变粒岩夹云母片岩及多层由透闪石、阳起石、透辉石、绿帘石、石榴子石和石英等矿物组成的绿片岩。矿区构造以断裂为主,按其走向分为:(1) NW组:走向300°~320°,具张扭性特征,有些被石英斑岩脉和细粒花岗岩脉所充填,该组为控岩构造;(2) EW组:该组最为发育,规模也最大,平面上雁列出现,发育破碎带和糜棱岩化带,具压扭性特征;(3) NE组:主要发育于矿区中部,规模较小。

①广东省地质矿产局. 1993. 1:5万合水、思贺幅区域地质调查报告

锡坪矿区出露的岩浆岩为燕山晚期的复式花岗岩体,由石英斑岩、花岗斑岩和中细粒花岗岩等组成,地表仅呈小岩脉出露。根据岩石之间的突变接触和穿插关系,可分为两个阶段:第一阶段主体为花岗斑岩,呈岩枝状产于复式岩体的边部和顶部,在花岗斑岩的上部及地表有呈岩脉和岩墙状产出的石英斑岩;第二阶段为中细粒花岗岩,侵入于第一阶段岩体的核部,与花岗斑岩呈突变接触 (陈炳辉, 1994)。通过对岩体进行全岩K-Ar法同位素年龄测定,结果表明第一阶段石英斑岩形成于81Ma左右,而第二阶段花岗岩大约为80.5~85Ma (陈炳辉, 1994),两者均为燕山晚期的产物。

矿区的矿体主要包括铜矿体、钼矿体、锡钼矿体以及铜铁锡矿体等。不同的矿体产出位置有所不同:锡-锡钼矿体产于斑岩体与后期中细粒花岗岩接触带;钼矿体呈细脉状、网脉状、浸染状产出于斑岩体内及其与围岩的内接触带,平面上呈岩筒状和同心圆状;铜铁锡矿体呈层状、似层状和透镜状产出于斑岩体与围岩的外接触带。由斑岩体中心向外矿化元素常具有一定的分带性,如图 2所示依次为锡钼→钼→铜铁锡。矿石常见自形晶结构、他形粒状结构、鳞片状结构、半自形粒状结构以及残余结构等。矿石构造主要有块状构造、浸染状构造和网脉状构造等。矿石中主要金属矿物包括有辉钼矿、黄铁矿、黄铜矿、锡石、磁铁矿和磁黄铁矿等,脉石矿物主要有石榴子石、绿帘石、绿泥石、方解石和石英等。

图 2 锡坪钼铜多金属矿床1线勘探剖面图 (据广东有色地质勘查局933地质队,2005) 1-新元古界云开群b组复理石浅变质岩类;2-燕山晚期第二阶段花岗岩;3-燕山晚期第一阶段石英斑岩;4-燕山晚期第一阶段花岗斑岩;5-片岩;6-变粒岩;7-绿片岩;8-铜矿体;9-铁矿体;10-锡矿体;11-钼矿体;12-钻孔及编号 Fig. 2 The geological cross-section of the exploration line No.1 in the Xiping Mo-Cu polymetallic deposit 1-Neoproterozoic Yunkai Group of flysch metamorphic rocks; 2-granite of Late Yanshanian; 3-quartz porphyry of Late Yanshanian; 4-granite porphyry of Late Yanshanian; 5-schist; 6-leptynite; 7-greenschist; 8-Cu orebody; 9-Fe orebody; 10-Sn orebody; 11-Mo orebody; 12-holes and numbers

①广东有色地质勘查局933地质队. 2005.广东省信宜市锡坪钼铜铁锡矿区矿产资源储量核实报告

矿床近矿围岩蚀变发育且同样具有一定的分带性,从岩体中心向围岩方向,主要产出有云英岩化、黄玉化→钾化、硅化、云英岩化、青磐石化→透闪石-阳起石化、绿泥石化、绿帘石化、矽卡岩化、硅化。围岩的硅化、钾化增强时,往往钼、钨矿化增强,云英岩化增强时,往往锡矿化也增强;对于钨富集的地段,钼品位较高,但钼品位较高时,钨不一定富集。

3 样品采集及位置

为了进行对比研究和精确确定锡坪钼铜多金属矿床的成矿年龄,本文对该矿床进行了Re-Os同位素测年。用于Re-Os测年的4件辉钼矿样品均采自1号矿洞的采坑 (22°29′57″ N、111°21′27″ E)。辉钼矿主要以脉状、树枝状和浸染状等形式产出 (图 3)。

图 3 锡坪钼铜多金属矿床钼矿石主要类型及辉钼矿特征 (a) 围岩中的浸染状辉钼矿;(b) 石英脉中的辉钼矿;(c) 树枝状辉钼矿和脉状、粒状黄铜矿;(d) 鳞片状辉钼矿;(e) 辉钼矿呈不连续的脉状;(f) 浸染状辉钼矿、自形黄铁矿及少量黄铜矿 Fig. 3 Photographs of main Mo ores type and occurrence of molybdenite from the Xiping Mo-Cu polymetallic deposit (a) disseminated molybdenite in wallrock; (b) molybdenite aggregates in quartz vein; (c) dendritic molybdenite, veinlet and granular chalcopyrite; (d) lepidosome molybdenite; (e) discontinuous veinlike molybdenite; (f) disseminated molybdenite, euhedral pyrite and a little chalcopyrite
4 分析方法及流程

本文年龄测试在中国地质科学院国家地质实验测试中心Re-Os同位素实验室完成,分析流程如下,实验采用Carius tube熔样法,所用的190Os和185Re稀释剂来自于美国橡树岭国家实验室。质谱测定所用仪器是美国TJA公司生产的电感耦合等离子体质谱仪TJA X-series ICP-MS。Re-Os同位素分析原理及详细分析流程参照Shirey and Walker (1995)Du et al. (2004),先简述如下。

4.1 分解样品

准确称取待分析样品,通过长细颈漏斗加入到Carius管底部。缓慢加液氮到有半杯乙醇的保温杯中,调节温度到摄氏-50~-80℃。将装好样的Carius管放到该保温杯中,通过长细颈漏斗把准确称取的185Re和190Os混合稀释剂加入到Carius管底部,再加入2mL 10mol/L的HCl,6mL 16mol/L的HNO3。当管底溶液冰冻后,用丙烷氧气火焰加热封好Carius管的细颈部分。待回升至室温后,逐渐升温到230℃,保温12h。在底部冷冻的情况下,打开Carius管,并用40mL水将管中溶液转入蒸馏瓶中。

4.2 蒸馏分离Os

将蒸馏瓶中的溶液在105~110℃蒸馏50min,然后用10mL水吸收蒸出的OsO4,用ICP-MS (等离子体质谱仪) 测定Os同位素比值。将蒸馏残液倒入150mL Teflon烧杯中待分离Os。

4.3 萃取分离Re

将第一次蒸馏残液置于电热板上,加热近干。再加少量水,加热近干。重复两次以降低酸度,加入10mL 5mol/L的NaOH,稍微加热,转为碱性介质。转入50mL聚丙烯离心管中,离心,取上层清液转入120mL Teflon分液漏斗中。加入10mL丙酮,震荡5min,萃取Re。静止分相,弃去水相。加2mL 5mol/L的NaOH溶液到分液漏斗中,振荡2min,洗去丙酮相中的杂质。弃去水相,将丙酮排到150mL已加有2mL水的Teflon烧杯中。在电热板上50℃加热以蒸发丙酮,加热溶液至干。加数滴浓硝酸和30%过氧化氢,再加热蒸干以除去残存的Os。用数毫升稀HNO3溶解残渣,稀释到硝酸浓度为2%。备ICP-MS测定Re同位素比值,如含Re溶液中盐量超过1mg/mL,需采用阳离子交换柱除去Na。

4.4 质谱测定

对于Re,选择测定185Re和187Re。用190Os监测187Os来避免残留的187Os对187Re测定的影响。如果在测试过程中观测到微弱的190Os信号,那么要用Os稀释剂的187Os/190Os比值来修正187Re信号中的187Os。对于Os,选择测定187Os、190Os和192Os。类似的,用185Re来监测187Re,用稀释剂的185Re/187Re比值进行修正。

Re、Os含量的不确定度包括样品和稀释剂的称量误差、稀释剂的标定误差、质谱测量的分馏校正误差、待分析样品同位素比值测量误差。模式年龄的不确定度还包括衰变常数的不确定度 (1.02%),置信水平95%。

测试中Re、Os和187Os的空白水平分别为3.5×10-6,0.1×10-6和0.21×10-6,为了保证实验结果的可靠性,同时对实验标准物质GBW04436(JDC) 中的Re、Os进行了测定,测试结果见表 1。辉钼矿的标准样品给出的模式年龄值为139.8±2.0Ma,校正后的值为139.6±3.8Ma。辉钼矿的模式年龄计算采用公式如下:

表 1 实验标准物质GBW04436 JDC测定值及标准值 Table 1 Certificated values and analytical data of Re-Os isotopes for standard sample JDC

上式中187Re衰变常数λ=1.666×10-11a-1(相对不确定度1.02%)(Shen et al., 1996)。

5 分析结果

选自锡坪钼铜多金属矿床的4个辉钼矿样品的Re-Os同位素测试结果如表 2所示。由表 2可见,辉钼矿中187Re和187Os含量变化非常小,187Re为0.37×10-6~1.21×10-6187Os为0.52×10-9~1.78×10-9187Re与187Os具有很好的正相关性 (图 4),这就验证了辉钼矿中的187Os基本上都是由187Re经β衰变而来,说明用辉钼矿Re-Os定年是可行的,且普Os含量为0.0243×10-9~0.0564×10-9,远远小于所测样品中的Re、Os含量。因此,不会影响实验中Re、Os含量的准确测定。

表 2 锡坪钼铜多金属矿床辉钼矿Re-Os同位素含量及模式年龄 Table 2 Re-Os isotopic contents and model age of molybdenite from the Xiping Mo-Cu polymetallic deposit

图 4 锡坪钼铜多金属矿床辉钼矿187Re-187Os关系图 Fig. 4 Diagrams of 187Re vs. 187Os of molybdenites from the Xiping Mo-Cu polymetallic deposit

将4个数据进行187Re-187Os等时线拟和,构成一条良好的187Re-187Os等时线 (图 5),等时线年龄为89.9±3.4Ma,MSWD=7.4。4个辉钼矿样品的Re-Os模式年龄非常接近,为85.15~88.34Ma,利用Isoplot软件 (Ludwig, 2003) 得到其加权平均年龄为86.1±2.3Ma,加权平均方差MSWD=7.9(图 5)。

图 5 广东锡坪钼铜多金属矿床辉钼矿Re-Os等时线年龄和加权平均图 Fig. 5 Re-Os isochron and weighted model age of molybdenites from the Xiping Mo-Cu polymetallic deposit in Guangdong Province
6 讨论 6.1 成矿时代和成矿期次

成矿时代是矿床成因研究的重要途经之一,可以有助于探讨矿床的区域时空分布规律和演化特点。利用金属矿物进行同位素测年可以直接获取成矿年龄,并随着分析测试技术的快速发展正逐渐成为成矿年代学研究的趋势 (Yuan et al., 2008; 郑伟等, 2013a, b)。目前,辉钼矿同位素测年体系被公认为是较为成熟的金属矿物测年手段,已广泛应用于国内外各类矿床成矿时限的研究 (Stein et al., 2001; Mao et al., 1999, 2008; 赵海杰等, 2012; 郑伟等, 2013b; Zheng et al., 2016)。Re和Os元素作为亲铜和亲铁元素 (Allégre and Luck, 1980),在硫化物中相对富集。对于大多数热液成因矿床来说,辉钼矿是Re元素最富集的矿物 (McCandless et al., 1993),而且辉钼矿Re-Os同位素体系封闭温度相对较高 (约500℃, Suzuki et al., 1996),故受后期热液、变质和构造事件影响较小 (Stein et al., 2001)。除此之外,辉钼矿中含有极少量普Os,其所测定的187Os几乎全部为187Re的β衰变产物,因此Re-Os年龄代表的是辉钼矿单矿物的形成年龄。锡坪矿床成矿元素以钼、铜、锡为主,均属于同一成矿系统,因此辉钼矿的形成年龄代表了锡坪矿床的成矿时代。

但是有时辉钼矿Re-Os定年也存在失耦效应,其与辉钼矿的取样量及颗粒大小关系密切,样品量少、颗粒较大时不能产生准确且重现性好的结果,即Re与187Os的失耦现象 (杜安道等, 2007)。本文测试的4件辉钼矿样品粒度远远小于2mm,而且锡坪矿床的成矿时代比较年轻,失耦效应对测年结果的影响可以忽略 (Xie et al., 2007; 郑伟等, 2013b)。本次测试的4件辉钼矿样品的加权平均年龄为86.1±2.3Ma,等时线年龄为89.9±3.4Ma,模式年龄和等时线年龄结果基本一致,为锡坪钼铜多金属矿床提供了一个准确的形成时限,进一步证实了测试数据的可靠性。

陈炳辉 (1994)通过岩体的全岩K-Ar法同位素年龄测定结果表明第一阶段石英斑岩形成时代为81Ma,第二阶段细粒花岗岩成岩年龄为80.5~85Ma,均为燕山晚期的产物。尽管全岩K-Ar等时线法通常记录着成岩或成矿末期的同位素封闭时间,但也间接说明辉钼矿Re-Os年龄对成矿时代厘定的可行性,同时也表明了锡坪钼铜多金属矿床是中国东部燕山晚期大规模成矿作用的产物。

6.2 成矿物质来源

Re-Os同位素体系不仅可以精确确定矿床形成的时间,而且还可以示踪成矿物质来源以及指示成矿过程中不同来源的物质混入的程度。Mao et al. (1999)Stein et al. (2001)的研究认为,从壳源、壳幔混源到幔源,辉钼矿的Re含量各递升一个数量级,从n×10-6、n×10-5变化到n×10-4。然而,有时即使在同一个含钼矿床中,辉钼矿Re含量也会有较大的变化,如山西篦子沟铜多金属矿床 (黄典豪等, 1996),辽西肖家营子钼多金属矿床 (代军治等, 2007) 等。相对多金属矿床来说,单钼矿床的Re含量一般较低,变化范围较小,如西拉沐沦成矿带中的小东沟钼矿床 (张作伦等, 2009),东秦岭的东沟钼矿床 (叶会寿等, 2006) 等。Selby and Creaser (2001)在研究Endako钼矿床及附近Nithi山钼矿点时发现,可能因不同组分由部分熔融转化为挥发相难易程度的不同而造成了Re含量的变化。Berzina et al. (2005)通过对比分析世界上75个钼-铜矿床的辉钼矿Re含量后得出以钼为主矿床的辉钼矿Re含量低于以铜为主矿床的辉钼矿Re含量。郭保健等 (2006)在研究秋树湾铜钼矿时认为Re含量的差异可能主要由含矿主岩造成,进而反映了形成时物理化学条件不同。

陈炳辉 (1994)通过对比研究锡坪岩体的钾长石单矿物和矿石矿物磁黄铁矿和黄铁矿的铅同位素组成,发现矿石的铅同位索组成 (206Pb/204Pb为18.668~18.730、206Pb/204Pb为15.583~15.598、206Pb/204Pb为38.954~39.005) 与花岗岩的铅同位索组成 (206Pb/204Pb为18.347~18.860、206Pb/204Pb为15.495~15.552、206Pb/204Pb为38.760~38.982) 相近,说明成矿物质与花岗岩的成岩物质来源一致。另外,矿石和花岗岩的稀土球粒陨石标准化分布型式也相似,均呈“V”字型,同样表明成矿与成岩物质来源一致,而岩体属壳源重熔型成因系列。矿石中石英的氧同位素与花岗岩氧同位素接近,都具有高δ18O (‰)(>9.7) 值,暗示成矿物质主要来源于花岗岩 (陈炳辉, 1994)。在δDH2O (‰)-δ18OH2O (‰) 图上落在岩浆水与大气降水之间,靠近前者,表明成矿溶液主要来自于岩浆水,同时有大气降水的混入。矿石矿物δ34S集中分布在1.09‰~1.40‰之间,显示岩浆硫的特征 (广东有色地质勘查局933地质队, 2005)。综上所述,锡坪钼铜多金属矿床的成矿物质和成矿热液均主要来自于花岗质岩浆。由表 2可以看出,锡坪钼铜多金属矿床4个辉钼矿的Re含量基本都在0.58×10-6与1.92×10-6之间,变化范围较小。通过以上综合分析研究,初步认为该矿床的成矿物质可能主要来自于地壳。

6.3 区域成岩成矿关系

大量高精度成岩成矿年龄数据的积累,对认识重大成岩成矿事件非常重要。钦杭成矿带斑岩-矽卡岩矿床经常以铜、钼、金等多金属矿种共生的方式产出,并且在北、中和南段均有出现,中生代成岩成矿年龄主要集中于180~150Ma (梁锦等, 2012),如德兴斑岩铜矿 (铜厂,171.1±1.3Ma;富家坞,171.1±5.9Ma;朱砂红,170.0±1.3Ma,Guo et al., 2012)、永平斑岩铜矿 (156.7±2.8Ma, Li et al., 2013a)、浙江桐村铜钼矿床 (163.9±1.9Ma, Zeng et al., 2013)、宝山铜多金属矿 (160.0±2.0Ma, 路远发等, 2006)、铜山岭铜多金属矿 (161±1Ma, 卢友月等, 2015)、封开圆珠顶铜钼多金属矿 (155.6±3.4Ma, Zhong et al., 2010)、大宝山铜多金属矿 (163.9±1.3Ma, 王磊等, 2012)。近年来,随着大量高精度测年数据的发表,又相继报道了一大批产于110~80Ma的铜钼多金属矿床,如本文研究的锡坪钼铜多金属矿床 (89.9±3.4Ma)、广东天堂铜钼铅锌多金属矿 (98.1±1.6Ma, 郑伟等, 2013a)、鹦鹉岭钼铜多金属矿 (83.0±1.7Ma, 郑伟等, 2013b)、石菉铜钼矿 (104.1±1.3Ma, 赵海杰等, 2012)、银岩斑岩锡钼矿为 (78.65±0.98Ma, Zheng et al., 2016)、福建罗卜岭铜钼矿 (104.9±1.6Ma, 梁清玲等, 2012)。钦杭成矿带中12个矿床75个辉钼矿Re-Os等时线年龄和1个闪锌矿Rb-Sr等时线年龄如表 3所示:主要集中在2个区间,第一期成矿时代为 (180~150Ma),第二期成矿时代为 (105~78Ma)。

表 3 钦杭成矿带铜钼多金属矿床成矿年龄 Table 3 Ore-forming ages of Cu-Mo polymetallic deposits in the Qin-Hang metallogenic belt

将钦杭成矿带与多金属矿床有关的侵入岩年龄数据列于表 4。部分矿区岩体年龄数据采用K-Ar法和Rb-Sr法,这些年龄的精度有所欠缺,但可以大体反映年龄范围。同样主要分布于180~148Ma (如德兴、桐村、宝山、永平、圆珠顶、铜山岭、大宝山) 和110~80Ma (锡坪、大黎、天堂、鹦鹉岭、红山、南和、石菉、罗卜岭、银岩) 两个区间。这2个年龄区间与铜钼多金属成矿区间 (180~150Ma、105~78Ma) 有一定的对应关系,表明成岩与成矿作用同时相伴发生。

表 4 钦杭成矿带铜钼多金属矿床成岩年龄 Table 4 Petrogenetic ages of plutons ralted to Cu-Mo polymetallic deposits in the Qin-Hang metallogenic belt
6.4 壳幔相互作用对成岩成矿的响应

近年来华南地区花岗岩研究的一项重要成果即是识别出了一系列NE-NNE向具有高εNd(t)-低tDM值的花岗岩带 (Gilder et al., 1996; 洪大卫等, 2002)。Gilder et al.(1996)通过对华南地区中生代花岗岩Sm-Nd和Rb-Sr同位素的研究,首先发现一条由高Sr、Nd含量和高εNd值花岗岩体构成的北东向的低tDM带,并称之为“十杭带”;洪大卫等 (2002)认为该低tDM带是扬子板块与华夏板块元古代碰撞对接带,两者多次沿该带开合,并发生了强烈的壳幔相互作用。现将钦杭成矿带12个多金属矿床的Re、普Os、187Re和187Os含量列于表 5中。由表 5可见这些铜钼多金属矿床的辉钼矿Re含量主要为0.13×10-9~1571×10-9,绝大多数为壳幔混源,极少数为地壳来源。综上所述,壳幔相互作用可能对钦杭成矿带大规模的花岗质岩浆活动及铜钼多金属的爆发式成矿作用具有重要贡献,地幔不仅为成岩成矿事件提供了主要的热动力来源,而且为成岩成矿作用贡献了部分幔源物质。

表 5 钦杭成矿带铜钼多金属矿床辉钼矿Re-Os同位素分析结果 Table 5 Re-Os isotopic analyses of molybdenite from Cu-Mo polymetallic deposits in the Qin-Hang metallogenic belt
6.5 动力学背景

华南地区中生代成矿作用的最大特点是几乎绝大多数矿床的形成均与花岗质岩浆活动关系密切 (毛景文等, 2004),钦杭结合带作为区内一条典型的构造-岩浆活动带,也不例外,其成岩成矿作用主要集中于180~150Ma和110~80Ma两个阶段。斑岩铜多金属矿的成岩成矿作用可以为钦-杭成矿带构造演化的研究提供有利通道,前人也对区内中生代构造-岩浆作用和大规模成矿地球动力学背景进行了一定的研究。毛景文等 (2011)认为中晚侏罗世斑岩-矽卡岩-热液脉状铜多金属矿床可能是俯冲板片沿古钦杭结合部位发生局部重熔,形成高钾钙碱性花岗岩,然后上侵定位与成矿。而135Ma之后,由于俯冲板片运动方向发生调整,从斜俯冲变成几乎平行大陆边缘运动,使得中国大陆处于持续伸展阶段 (Mao et al., 2008),相应绝大多数不同来源的矿产资源聚集在火山盆地和断陷盆地。Li and Li (2007)提出在水平俯冲过程发生了岩石圈的断裂拆离,从而导致中-晚侏罗世大规模的板内岩浆活动。Sun et al.(2010, 2015) 认为华南地区的中生代斑岩铜矿与洋中脊俯冲关系密切,洋中脊俯冲提供了能量和物质来源。Wang et al.(2011)认为区内岩浆活动与成矿与南美具有类似性,认为是太平洋斜向俯冲所致。周永章等 (2012)和梁锦等 (2012)认为钦-杭成矿带内斑岩铜矿成矿岩体的岩浆来源于元古宙古俯冲残余洋壳重熔。深部地球物理资料表明,钦杭古板块结合带岩石圈为一条显著的岩石圈不连续带和上地幔凹陷带 (朱介寿等, 2005),同时也反映了岩石圈古俯冲带的存在 (饶家荣等, 2012)。由上可知,对大规模成矿岩体的岩浆来源以及动力学背景目前仍然存在一定的争议,但均认为带内两期的成岩成矿作用与太平洋板块的俯冲具有密切的关系,尤其是第二期成岩成矿作用所处的岩石圈伸展体制已经得到普遍认同。

7 结论

(1) 对锡坪铜多金属矿床的4件辉钼矿样品进行了Re-Os同位素精确定年,获得模式年龄的变化范围为85.15~88.34Ma,加权平均年龄为86.1±2.3Ma,等时线年龄为89.9±3.4Ma,表明成矿作用发生于晚白垩世。

(2) 锡坪铜多金属矿床辉钼矿的187Re为0.58×10-6~1.92×10-6,通过综合分析本区成岩成矿物质的稀土元素地球化学及Pb、S、H-O同位素地球化学研究,初步认为该矿床的成矿物质可能主要来自于地壳。

(3) 钦杭成矿带成岩成矿作用以中生代燕山期为主,存在180~150Ma、110~80Ma两个爆发期。两次大规模的成岩成矿作用可能与太平洋板块俯冲有密切的关系,绝大多数伴随着强烈的壳幔相互作用。

致谢 野外地质工作期间得到了广东省地质调查院和广东省有色地质勘查院的大力支持和帮助;在测试工作中得到国家地质实验测试中心李超副研究员的精心指导;本文初稿得到了中山大学郑义老师的热情指导和帮助;审稿专家给论文提出了许多建设性的意见;在此一并感谢!
参考文献
[] Allégre CJ, Luck JM. 1980. Osmium isotopes as petrogenetic and geological tracers. Earth and Planetary Science Letters, 48(1): 148–154. DOI:10.1016/0012-821X(80)90177-6
[] Berzina AN, Sotnikov VI, Economou-Eliopoulous M, Eliopoulos DG. 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26(1-2): 91–113. DOI:10.1016/j.oregeorev.2004.12.002
[] Chen BH. 1994. Metallogenic characteristics and mechanism of Xiping greisen type tin ore in western Guangdong Province. Guangdong Geology, 9(2): 9–17.
[] Chen FW, Li HQ, Wang DH, Xiao GM, Yang XJ, Gao YW, Mei YP, Lin XG. 2012. Geological characteristics and diagenetic-metallogenic chorological study of the Yuanzhuding porphyry Cu-Mo deposit, western Guangdong Province. Acta Geologica Sinica, 86(8): 1298–1305.
[] Chen MH, Li ZY, Li Q, Wei ZR, Huang HW, Zhang ZQ, Xiao LY. 2015. A preliminary study of multi-stage granitoids and related metallogenic series in Dayaoshan area of Guangxi, China. Earth Science Frontiers, 22(2): 41–53.
[] Chen SZ, Huang ZQ, Zhu XT, Chen G, Ma M. 2013. Magmatism and ore-forming background of the main deposits in Taoxi circular structure along the Wuyishan ore belt. Geology in China, 40(5): 1569–1582.
[] Chen YC, Wang PA, Qin KL, Zhao DH, Mao JW. 1994. Metallogenic series of main ore deposits and regional metallogeny in the Qinling area. Mineral Deposits, 13(4): 289–298.
[] Dai JZ, Mao JW, Du AD, Xie GQ, Bai J, Yang FQ, Qu WJ. 2007. Re-Os dating of molybdenite from the Xiaojiayingzi Mo (Fe) deposit in western Liaoning and its geological significance. Acta Geologica Sinica, 81(7): 917–923.
[] Ding X, Jiang SY, Ni P, Gu LX, Jiang YH. 2005. Zircon SIMS U-Pb geochronology of host granitoids in Wushan and Yongping copper deposits, Jiangxi Province. Geological Journal of China Universities, 11(3): 383–389.
[] Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Markey R, Stein H, Morgan J, Malinovskiy D. 2004. Preparation and certification of Re-Os dating reference materials:Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41–52. DOI:10.1111/ggr.2004.28.issue-1
[] Du AD, Qu WJ, Wang DH, Li HM, Feng CY, Liu H, Ren J, Zeng FG. 2007. Subgrain-size decoupling of Re and 187Os within molybdenite. Mineral Deposits, 26(5): 572–580.
[] Gilder SA, Gill JB, Coe RS, Zhao XX, Liu ZW, Wang GX, Yuan KR, Liu WL, Kuang GD, Wu HR. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. Journal of Geophysical Research, 101(B7): 16137–16154. DOI:10.1029/96JB00662
[] Guo BJ, Mao JW, Li HM, Qu WJ, Qiu JJ, Ye HS, Li MW, Zhu XL. 2006. Re-Os dating of the molybdenite from the Qiushuwan Cu-Mo deposit in the East Qinling and its geological significance. Acta Petrologica Sinica, 22(9): 2341–2348.
[] Guo S, Zhao YY, Qu HC, Wu DX, Xu H, Li C, Liu Y, Zhu XY, Wang ZK. 2012. Geological characteristics and ore-forming time of the Dexing porphyry copper ore mine in Jiangxi Province. Acta Geologica Sinica, 86(3): 691–699. DOI:10.1111/acgs.2012.86.issue-3
[] Hong DW, Xie XL, Zhang JS. 2002. Geological significance of the Hangzhou-Zhuguangshan-Huashan high-εNd granite belt. Geological Bulletin of China, 21(6): 348–354.
[] Hu SQ, Zhou GF, Peng SB, Zhang XJ, Yi SH, Tang GS. 2012. Chronology and geochemical characteristics of quartz monzonite (porphyry) in the Dali copper-molybdenum deposit and its geological significance. Acta Geoscientica Sinica, 33(1): 23–37.
[] Hu XZ. 1989. The origin and petrology of the Yinyan tin-bearing granite porphyry. Geochimica(3): 251–259.
[] Huang DH, Du AD, Wu CY, Liu LS, Sun YL, Zou XQ. 1996. Metallochronology of molybdenum (-copper) deposits in the North China platform:Re-Os age of molybdenite and its geological significance. Mineral Deposits, 15(4): 365–373.
[] Huang WT, Li J, Liang HY, Wang CL, Lin SP, Wang XZ. 2013. Zircon LA-ICP-MS U-Pb ages and highly oxidized features of magma associated with Luoboling porphyry Cu-Mo deposit in Zijinshan ore field, Fujian Province. Acta Petrologica Sinica, 29(1): 283–293.
[] Jia SH, Zhao YY, Wang ZQ, Wu YD, Wang T, Chen L. 2014. Zircon U-Pb dating and geochemical characteristics of granodiorite-porphyry in the Linghou copper deposit, western Zhejiang, and their geological significance. Acta Geologica Sinica, 88(11): 2071–2085.
[] Li XF, Yasushi W, Hua RM, Mao JW. 2008. Mesozoic Cu-(Mo)-W-Sn mineralization and ridge/triple subduction in South China. Acta Geologica Sinica, 82(5): 625–640.
[] Li XF, Watanabe Y, Yi XK. 2013a. Ages and sources of ore-related porphyries at Yongping Cu-Mo deposit in Jiangxi Province, Southeast China. Resource Geology, 63(3): 288–312. DOI:10.1111/rge.12009
[] Li XF, Hu RZ, Rusk B, Xiao R, Wang CY, Yang F. 2013b. U-Pb and Ar-Ar geochronology of the Fujiawu porphyry Cu-Mo deposit, Dexing district, Southeast China:Implications for magmatism, hydrothermal alteration, and mineralization. Journal of Asian Earth Sciences, 74: 330–342. DOI:10.1016/j.jseaes.2013.04.012
[] Li ZX, Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology, 35(2): 179–182. DOI:10.1130/G23193A.1
[] Liang J, Zhou YZ, Li HZ, Yin ZZ, Zhou LY, Zeng CY, Yu PP. 2012. Geological characteristics and genesis of porphyry copper deposits in Qinzhou-Hangzhou suture zone, South China. Acta Petrologica Sinica, 28(10): 3361–3372.
[] Liang QL, Jiang SH, Wang SH, Li C, Zeng FG. 2012. Re-Os dating of molybdenite from the Luoboling porphyry Cu-Mo deposit in the Zijinshan ore field of Fujian Province and its geological significance. Acta Geologica Sinica, 86(7): 1113–1118.
[] Lu JJ, Hua RM, Yao CL. 2005. Re-Os age for molybdenite from the Dexing porphyry Cu-Au deposit of Jiangxi Province, China. Geochimica et Cosmochimica Acta, 69(Suppl. A): 882.
[] Lu YF, Ma LY, Qu WJ, Mei YP, Chen XQ. 2006. U-Pb and Re-Os isotope geochronology of Baoshan Cu-Mo polymetallic ore deposit in Hunan Province. Acta Petrologica Sinica, 22(10): 2483–2492.
[] Lu YY, Fu JM, Cheng SB, Liu SS, Li CB, Zhang LG, Ma LY. 2015. Rock-forming and ore-forming ages of Tongshanling copper polymetallic ore-field in southern Hunan Province. Geotectonica et Metallogenia, 39(6): 1061–1071.
[] Ludwig KR. 2003. User's manual for isoplot/Ex.version 3.00:A geochronological toolkit for Microsoft excel. Berkeley Geochronology Center Special Publication: 1-70.
[] Mao JW, Zhang ZC, Zhang ZH, Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the Northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815–1818. DOI:10.1016/S0016-7037(99)00165-9
[] Mao JW, Xie GQ, Li XF, Zhang CQ, Mei YX. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45–55.
[] Mao JW, Xie GQ, Bierlein F, Qü WJ, Du AD, Ye HS, Pirajno F, Li HM, Guo BJ, Li YF, Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72(18): 4607–4626. DOI:10.1016/j.gca.2008.06.027
[] Mao JW, Chen MH, Yuan SD, Guo CL. 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636–658.
[] Mao JW, Cheng YB, Chen MH, Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267–294. DOI:10.1007/s00126-012-0446-z
[] Mao JW, Pirajno F, Lehmann B, Luo MC, Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79: 576–584. DOI:10.1016/j.jseaes.2013.09.002
[] Mao W, Li XF, Yang FC. 2013. Zircon LA-ICP-MS U-Pb ages of granites at Dabaoshan polymetallic deposit and its geological significance, Guangdong, South China. Acta Petrologica Sinica, 29(12): 4104–4120.
[] McCandless TE, Ruiz J, Campbell AR. 1993. Rhenium behavior in molybdenite in hypogene and near-surface environments:Implications for Re-Os geochronometry. Geochimica et Cosmochimica Acta, 57(4): 889–905. DOI:10.1016/0016-7037(93)90176-W
[] Ouyang XC, Di YJ, Zhang D, Xu Y, Yang Q, Wang SY, Chen J, Du B. 2016. Geochemical features and LA-ICP-MS zircon U-Pb ages of the granite porphyry in the Dongxiang copper deposit of Jiangxi Province and their geological significance. Geological Bulletin of China, 35(11): 1869–1883.
[] Qiu JT, Yu XQ, Zhang DH, Dai YP, Li HK, Chen SQ. 2011. LA-ICP-MS zircon U-Pb dating of the Tongcun porphyry in Kaihua County, western Zhejiang Province, and its geological significance. Geological Bulletin of China, 30(9): 1360–1368.
[] Quan TJ, Wang G, Zhong JL, Fei LD, Kong H, Liu SJ, Zhao ZQ, Guo BY. 2013. Petrogenesis of granodiorites in Tongshanling deposit of Hunan Province:Constraints from petrogeochemistry, zircon U-Pb chronology and Hf isotope. Journal of Mineralogy and Petrology, 33(1): 43–52.
[] Rao JH, Xiao HY, Liu YR, Bai DY, Deng YL. 2012. Location of the Yangtze-Cathaysia plate convergence zone in Hunan. Chinese Journal of Geophysics, 55(2): 484–502.
[] Selby D, Creaser RA. 2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, 96(1): 197–204. DOI:10.2113/gsecongeo.96.1.197
[] Shen JJ, Papanastassiou DA, Wasserburg GJ. 1996. Precise Re-Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta, 60(15): 2887–2900. DOI:10.1016/0016-7037(96)00120-2
[] Shirey SB, Walker RJ. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67(13): 2136–2141. DOI:10.1021/ac00109a036
[] Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherstén A. 2001. The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova, 13(6): 479–486. DOI:10.1046/j.1365-3121.2001.00395.x
[] Sun WD, Ling MX, Yang XY, Fan WM, Ding X, Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization:An overview. Science China (Earth Sciences), 53(4): 475–484. DOI:10.1007/s11430-010-0024-0
[] Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE, Ling MX. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97–131. DOI:10.1016/j.oregeorev.2014.09.004
[] Suzuki K, Shimizu H, Masuda A. 1996. Re-Os dating of molybdenites from ore deposits in Japan:Implication for the closure temperature of Re-Os system for molybdenite and cooling history of molybdenum ore deposit. Geochimica et Cosmochimica Acta, 60(16): 3151–3159. DOI:10.1016/0016-7037(96)00164-0
[] Wang FY, Ling MX, Ding X, Hu YH, Zhou JB, Yang XY, Liang HY, Fan WM, Sun WD. 2011. Mesozoic large magmatic events and mineralization in SE China:Oblique subduction of the Pacific plate. International Geology Review, 53(5-6): 704–726. DOI:10.1080/00206814.2010.503736
[] Wang L, Hu MA, Qu WJ, Chen KX, Long WG, Yang Z. 2012. Zircon LA-ICP-MS U-Pb and molybdenite Re-Os dating of the Dabaoshan polymetallic deposit in northern Guangdong Province and its geological implications. Geology in China, 39(1): 29–42.
[] Wang Q, Zhao ZH, Xu JF, Bai ZH, Wang JX, Liu CH. 2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei:(delaminated) lower crustal melting and the genesis of porphyry copper deposit. Acta Petrologica Sinica, 20(2): 351–360.
[] Wang Q, Sun Y, Zhang XH, Zhang SM, Wang YL, Zhang CM. 2012. Zircon LA-ICP-MS U-Pb age of plagiogranite porphyry in the Cunqian copper polymetallic deposit of Jiangxi Province and its geological implications. Geology in China, 39(5): 1143–1150.
[] Wang YJ, Fan WM, Guo F, Li HM, Liang XQ. 2002. U-Pb dating of Early Mesozoic granodioritic intrusions in southeastern Hunan Province, South China and its petrogenetic implications. Science in China (Series D), 45(3): 280–288. DOI:10.1360/02yd9030
[] Xie GQ, Mao JW, Li RL, Qü WJ, Pirajno F, Du AD. 2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei, China. Mineralogy and Petrology, 90(3-4): 249–270. DOI:10.1007/s00710-006-0176-y
[] Xie YC, Lu JJ, Ma DS, Zhang RQ, Gao JF, Yao Y. 2013. Origin of granodiorite porphyry and mafic microgranular enclave in the Baoshan Pb-Zn polymetallic deposit, southern Hunan Province:Zircon U-Pb chronological, geochemical and Sr-Nd-Hf isotopic constraints. Acta Petrologica Sinica, 29(12): 4186–4214.
[] Xing B, Zheng W, Ouyang ZX, Wu XD, Lin WP, Tian Y. 2016. Sulfide microanalysis and S isotope of the Miaoshan Cu polymetallic deposit in western Guangdong Province, and its constraints on the ore genesis. Acta Geologica Sinica, 90(5): 971–986.
[] Yang MG, Mei YW. 1997. Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture. Geology and Mineral Resources of South China(3): 52–59.
[] Yang MG, Huang SB, Lou FS, Tang WX, Mao SB. 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area. Geology in China, 36(3): 528–543.
[] Ye HS, Mao JW, Li YF, Guo BJ, Zhang CQ, Liu J, Yan QR, Liu GY. 2006. SHRIMP zircon U-Pb and molybdenite Re-Os dating for the superlarge Donggou porphyry Mo deposit in East Qinling, China, and its geological implication. Acta Geologica Sinica, 80(7): 1078–1088.
[] Yu SJ, Chen BH. 1988. A study of the Late Yenshanian granites and their related Sn-Mo-W mineralizations in Yinyan-Xipin area, western Guangdong Province, China. Geology and Mineral Resources, 2(1): 48–57.
[] Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP, Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375–382. DOI:10.1007/s00126-007-0166-y
[] Yuan SD, Peng JT, Hao S, Li HM, Geng JZ, Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China:New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235–242. DOI:10.1016/j.oregeorev.2011.08.002
[] Zeng CY, Zhou YZ, Zheng Y, Yu PP, Niu J, Liang J. 2015. Plate tectonism of Qinzhou Bay-Hangzhou Bay juncture orogenic belt (South China) before Mesozoic tectonic transition event. Earth Science Frontiers, 22(2): 54–63.
[] Zeng QD, Wang YB, Zhang S, Liu JM, Qin KZ, Yang JH, Sun WD, Qu WJ. 2013. U-Pb and Re-Os geochronology of the Tongcun molybdenum deposit and Zhilingtou gold-silver deposit in Zhejiang Province, southeast China, and its geological implications. Resource Geology, 63(1): 99–109. DOI:10.1111/rge.2013.63.issue-1
[] Zhai YS, Yao SC, Lin XD, Jin FQ, Zhou XR, Wan TF, Zhou ZG. 1992. Metallogenic regularity of iron and copper deposits in the Middle and Lower Valley of the Yangtze River. Mineral Deposits, 11(1): 1–12.
[] Zhang ZL, Zeng QD, Qu WJ, Liu JM, Sun XG, Zhang RB, Chen WJ, Qin F. 2009. The molybdenite Re-Os dating from the Nianzigou Mo deposit, Inner Mongolia and its geological significance. Acta Petrologica Sinica, 25(1): 212–218.
[] Zhao HJ, Zheng W, Yu CF, Hu YG, Tian Y. 2012. Re-Os dating of molybdenite from the Shilu Cu (Mo) deposit in western Guangdong Province and its geological implications. Geology in China, 39(6): 1604–1613.
[] Zhao PL, Yuan SD, Mao JW, Santosh M, Li C, Hou KJ. 2016. Geochronological and petrogeochemical constraints on the skarn deposits in Tongshanling ore district, southern Hunan Province:Implications for Jurassic Cu and W metallogenic events in South China. Ore Geology Reviews, 78: 120–137. DOI:10.1016/j.oregeorev.2016.03.004
[] Zheng W, Chen MH, Xu LG, Zhao HJ, Ling SB, Wu Y, Hu YG, Tian Y, Wu XD. 2013a. Rb-Sr isochron age of Tiantang Cu-Pb-Zn polymetallic deposit in Guangdong Province and its geological significance. Mineral Deposits, 32(2): 259–272.
[] Zheng W, Zhao HJ, Chen MH, Xu LG, Liu JX, Luo DL, Hu YG. 2013b. Re-Os isotopic dating of molybdenites from the Yingwuling polymetallic deposit in Guangdong Province and its geological significance. Journal of Mineralogy and Petrology, 33(3): 38–46.
[] Zheng W, Chen MH, Zhao HJ, Zhao CS, Hou KJ, Liu JX, Li XM, Chang LZ. 2013c. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Yingwuling to tungsten polymetallic deposit in Guangdong Province and its geological significance. Acta Petrologica Sinica, 29(12): 4121–4135.
[] Zheng W, Mao JW, Pirajno F, Zhao HJ, Zhao CS, Mao ZH, Wang YJ. 2015. Geochronology and geochemistry of the Shilu Cu-Mo deposit in the Yunkai area, Guangdong Province, South China and its implication. Ore Geology Reviews, 67: 382–398. DOI:10.1016/j.oregeorev.2014.12.009
[] Zheng W, Mao JW, Zhao HJ, Zhao CS, Lin WP, Ouyang ZX, Wu XD, Tian Y. 2015. A preliminary study of minerogenetic series and geodynamic background of polymetallic deposit along Yangchun basin in western Guangdong province. Mineral Deposits, 34(3): 465–487.
[] Zheng W. 2016. The Yanshanian minerogenetic series and mineralization of polymetallic deposit in the Yangchun Basin of Yunkai area, South China. Ph. D. Dissertation. Beijing:China University of Geosciences, 1-298 (in Chinese with English summaey)
[] Zheng W, Mao JW, Zhao CS, Ouyang HG, Wang XY. 2016. Re-Os Geochronology of molybdenite from Yinyan porphyry Sn deposit in South China. Resource geology, 66(1): 63–70. DOI:10.1111/rge.2016.66.issue-1
[] Zheng W, Mao JW, Zhao HJ, Zhao CS, Yu XF. 2017. Two Late Cretaceous A-type granites related to the Yingwuling W-Sn polymetallic mineralization in Guangdong Province, South China:Implications for petrogenesis, geodynamic setting, and mineralization. Lithos, 274-275: 106–122. DOI:10.1016/j.lithos.2017.01.002
[] Zhong LF, Liu LW, Xia B, Li J, Lin XG, Xu LF, Lin LZ. 2010. Re-Os geochronology of molybdenite from Yuanzhuding porphyry Cu-Mo deposit in South China. Resource Geology, 60(4): 389–396. DOI:10.1111/rge.2010.60.issue-4
[] Zhou Q, Jiang YH, Liao SY, Zhao P, Jin GD, Jia RY, Liu Z, Xu SM. 2012. SHRIMP zircon U-Pb dating and Hf isotope studies of the diorite porphyrite from the Dexing copper deposit. Acta Geologica Sinica, 86(11): 1726–1734.
[] Zhou YZ, Zeng CY, Li HZ, An YF, Liang J, Lü WC, Yang ZJ, He JG, Shen WJ. 2012. Geological evolution and ore-prospecting targets in southern segment of Qinzhou Bay-Hangzhou Bay juncture orogenic belt, southern China. Geological Bulletin of China, 31(2-3): 486–491.
[] Zhou YZ, Zheng Y, Zeng CY, Liang J. 2015. On the understanding of Qinzhou Bay-Hangzhou Bay metallogenic belt, South China. Earth Science Frontiers, 22(2): 1–6.
[] Zhu JS, Cai XL, Cao JM, Gao DZ, Zhao FQ, Du YS. 2005. 3D Lithospheric Structure and Evolution of South China and the East China Sea Area. Beijing: Geological Publishing House: 1-296.
[] 陈炳辉. 1994. 粤西锡坪云英岩型锡矿成矿特征和成矿机理. 广东地质, 9(2): 9–17.
[] 陈富文, 李华芹, 王登红, 肖光铭, 杨晓君, 高亦文, 梅玉萍, 林秀广. 2012. 粤西圆珠顶斑岩型铜钼矿床成矿地质特征及成岩成矿作用年代学研究. 地质学报, 86(8): 1298–1305.
[] 陈懋弘, 李忠阳, 李青, 韦子任, 黄宏伟, 张志强, 肖柳阳. 2015. 初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列. 地学前缘, 22(2): 41–53.
[] 陈世忠, 黄正清, 朱筱婷, 陈刚, 马明. 2013. 武夷山成矿带桃溪环形构造区典型矿床成矿背景. 中国地质, 40(5): 1569–1582.
[] 陈毓川, 王平安, 秦克令, 赵东宏, 毛景文. 1994. 秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨. 矿床地质, 13(4): 289–298.
[] 代军治, 毛景文, 杜安道, 谢桂青, 白杰, 杨富全, 屈文俊. 2007. 辽西肖家营子钼 (铁) 矿床Re-Os年龄及其地质意义. 地质学报, 81(7): 917–923.
[] 丁昕, 蒋少涌, 倪培, 顾连兴, 姜耀辉. 2005. 江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学. 高校地质学报, 11(3): 383–389.
[] 杜安道, 屈文俊, 王登红, 李厚民, 丰成友, 刘华, 任静, 曾法刚. 2007. 辉钼矿亚晶粒范围内Re和187Os的失耦现象. 矿床地质, 26(5): 572–580.
[] 郭保健, 毛景文, 李厚民, 屈文俊, 仇建军, 叶会寿, 李蒙文, 竹学丽. 2006. 秦岭造山带秋树湾铜钼矿床辉钼矿Re-Os定年及其地质意义. 岩石学报, 22(9): 2341–2348.
[] 洪大卫, 谢锡林, 张季生. 2002. 试析杭州-诸广山-花山高εNd值花岗岩带的地质意义. 地质通报, 21(6): 348–354.
[] 胡升奇, 周国发, 彭松柏, 张先进, 易顺华, 唐国胜. 2012. 广西大黎铜钼矿石英二长 (斑) 岩年代学、地球化学特征及其地质意义. 地球学报, 33(1): 23–37.
[] 胡祥昭. 1989. 银岩含锡花岗斑岩的岩石学特征及成因探讨. 地球化学: 251–259.
[] 黄典豪, 杜安道, 吴澄宇, 刘兰笙, 孙亚莉, 邹晓秋. 1996. 华北地台钼 (铜) 矿床成矿年代学研究——辉钼矿铼-锇年龄及其地质意义. 矿床地质, 15(4): 365–373.
[] 黄文婷, 李晶, 梁华英, 王春龙, 林书平, 王秀璋. 2013. 福建紫金山矿田罗卜岭铜钼矿化斑岩锆石LA-ICP-MS U-Pb年龄及成矿岩浆高氧化特征研究. 岩石学报, 29(1): 283–293.
[] 贾少华, 赵元艺, 王宗起, 武昱东, 王涛, 陈雷. 2014. 浙江建德岭后铜矿花岗闪长斑岩锆石U-Pb年龄、地球化学特征及其意义. 地质学报, 88(11): 2071–2085.
[] 李晓峰, YasushiW, 华仁民, 毛景文. 2008. 华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲. 地质学报, 82(5): 625–640.
[] 梁锦, 周永章, 李红中, 尹缀缀, 周留煜, 曾长育, 虞鹏鹏. 2012. 钦-杭结合带斑岩型铜矿的基本地质特征及成因分析. 岩石学报, 28(10): 3361–3372.
[] 梁清玲, 江思宏, 王少怀, 李超, 曾法刚. 2012. 福建紫金山矿田罗卜岭斑岩型铜钼矿床辉钼矿Re-Os定年及地质意义. 地质学报, 86(7): 1113–1118.
[] 路远发, 马丽艳, 屈文俊, 梅玉萍, 陈希清. 2006. 湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究. 岩石学报, 22(10): 2483–2492.
[] 卢友月, 付建明, 程顺波, 刘树生, 黎传标, 张利国, 马丽艳. 2015. 湘南铜山岭铜多金属矿田成岩成矿作用年代学研究. 大地构造与成矿学, 39(6): 1061–1071.
[] 毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45–55.
[] 毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636–658.
[] 毛伟, 李晓峰, 杨富初. 2013. 广东大宝山多金属矿床花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义. 岩石学报, 29(12): 4104–4120.
[] 欧阳学财, 狄永军, 张达, 徐洋, 杨秋, 王守营, 陈杰, 杜斌. 2016. 江西东乡花岗斑岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 地质通报, 35(11): 1869–1883.
[] 邱骏挺, 余心起, 张德会, 代堰培, 李弘珂, 陈帅奇. 2011. 浙西开化地区桐村花岗斑岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 30(9): 1360–1368.
[] 全铁军, 王高, 钟江临, 费利东, 孔华, 刘仕杰, 赵志强, 郭碧莹. 2013. 湖南铜山岭矿区花岗闪长岩岩石成因:岩石地球化学、U-Pb年代学及Hf同位素制约. 矿物岩石, 33(1): 43–52.
[] 饶家荣, 肖海云, 刘耀荣, 柏道远, 邓延林. 2012. 扬子、华夏古板块会聚带在湖南的位置. 地球物理学报, 55(2): 484–502.
[] 王磊, 胡明安, 屈文俊, 陈开旭, 龙文国, 杨振. 2012. 粤北大宝山多金属矿床LA-ICP-MS锆石U-Pb和辉钼矿Re-Os定年及其地质意义. 中国地质, 39(1): 29–42.
[] 王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004. 鄂东南铜山口、殷祖埃达克质 (adakitic) 侵入岩的地球化学特征对比: (拆沉) 下地壳熔融与斑岩铜矿的成因. 岩石学报, 20(2): 351–360.
[] 王强, 孙燕, 张雪辉, 张世铭, 王瑜亮, 张春茂. 2012. 江西省村前铜多金属矿床斜长花岗斑岩LA-ICP-MS锆石U-Pb年龄及地质意义. 中国地质, 39(5): 1143–1150.
[] 王岳军, 范蔚茗, 郭锋, 李惠民, 梁新权. 2001. 湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示. 中国科学 (D辑), 31(9): 745–751.
[] 谢银财, 陆建军, 马东升, 章荣清, 高剑峰, 姚远. 2013. 湘南宝山铅锌多金属矿区花岗闪长斑岩及其暗色包体成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约. 岩石学报, 29(12): 4186–4214.
[] 邢波, 郑伟, 欧阳志侠, 吴晓东, 林玮鹏, 田云. 2016. 粤西庙山铜多金属矿床硫化物原位微区分析及S同位素对矿床成因的制约. 地质学报, 90(5): 971–986.
[] 杨明桂, 梅勇文. 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产(3): 52–59.
[] 杨明桂, 黄水保, 楼法生, 唐维新, 毛素斌. 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528–543.
[] 叶会寿, 毛景文, 李永峰, 郭保健, 张长青, 刘珺, 闫全人, 刘国印. 2006. 东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 地质学报, 80(7): 1078–1088.
[] 俞受鋆, 陈炳辉. 1988. 粤西银岩-锡坪地区燕山晚期花岗岩类成岩特征、演化规律及其与锡、钼、钨成矿关系研究. 矿产与地质, 2(1): 48–57.
[] 曾长育, 周永章, 郑义, 虞鹏鹏, 牛佳, 梁锦. 2015. 钦-杭结合带在中生代构造转折事件以前的板块构造机制. 地学前缘, 22(2): 54–63.
[] 翟裕生, 姚书振, 林新多, 金福全, 周珣若, 万天丰, 周宗桂. 1992. 长江中下游地区铁、铜等成矿规律研究. 矿床地质, 11(1): 1–12.
[] 张作伦, 曾庆栋, 屈文俊, 刘建明, 孙兴国, 张瑞斌, 陈伟军, 覃锋. 2009. 内蒙碾子沟钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 岩石学报, 25(1): 212–218.
[] 赵海杰, 郑伟, 余长发, 胡耀国, 田云. 2012. 粤西石菉铜钼矿床Re-Os同位素年龄及其地质意义. 中国地质, 39(6): 1604–1613.
[] 郑伟, 陈懋弘, 徐林刚, 赵海杰, 凌世彬, 吴越, 胡耀国, 田云, 吴晓东. 2013a. 广东天堂铜铅锌多金属矿床Rb-Sr等时线年龄及其地质意义. 矿床地质, 32(2): 259–272.
[] 郑伟, 赵海杰, 陈懋弘, 徐林刚, 刘建新, 罗大略, 胡耀国. 2013b. 广东鹦鹉岭多金属矿床辉钼矿的Re-Os同位素定年及其意义. 矿物岩石, 33(3): 38–46.
[] 郑伟, 陈懋弘, 赵海杰, 赵财胜, 侯可军, 刘建新, 李学孟, 常利忠. 2013c. 广东鹦鹉岭钨多金属矿床中黑云母花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素特征及其地质意义. 岩石学报, 29(12): 4121–4135.
[] 郑伟, 毛景文, 赵海杰, 赵财胜, 林玮鹏, 欧阳志侠, 吴晓东, 田云. 2015. 粤西阳春盆地多金属矿床成矿系列及动力学背景. 矿床地质, 34(3): 465–487.
[] 郑伟. 2016. 云开地区阳春盆地燕山期多金属矿床成矿系列. 博士学位论文. 北京: 中国地质大学, 1-298
[] 周清, 姜耀辉, 廖世勇, 赵鹏, 靳国栋, 贾儒雅, 刘铮, 徐深谋. 2012. 德兴铜矿闪长玢岩SHRIMP锆石U-Pb定年及原位Hf同位素研究. 地质学报, 86(11): 1726–1734.
[] 周永章, 曾长育, 李红中, 安燕飞, 梁锦, 吕文超, 杨志军, 何俊国, 沈文杰. 2012. 钦州湾-杭州湾构造结合带 (南段) 地质演化和找矿方向. 地质通报, 31(2-3): 486–491.
[] 周永章, 郑义, 曾长育, 梁锦. 2015. 关于钦-杭成矿带的若干认识. 地学前缘, 22(2): 1–6.
[] 朱介寿, 蔡学林, 曹家敏, 高德章, 赵风清, 杜杨松. 2005. 中国华南及东海地区岩石圈三维结构及演化. 北京: 地质出版社: 1-296.