2. 中山大学地球科学与地质工程学院, 广州 510275;
3. 中山大学地球环境与地球资源研究中心, 广州 510275
2. School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou 510275, China;
3. Center for Earth Environment & Resources, Sun Yat-sen University, Guangzhou 510275, China
混杂岩 (mélange) 是俯冲-碰撞过程形成的成分、时代、来源不同的特殊地质体 (Hsü, 1974; Raymond, 1984; Festa et al., 2010)。洋壳俯冲消减及后续大陆碰撞过程中,洋壳板片及沉积物、岛弧、弧后盆地等残片与大陆边缘物质混杂并最终在俯冲带中就位形成混杂岩,其分布可达到制图规模 (Chang et al., 2001; Festa et al., 2010)。因此,板块边界中的混杂岩是揭示洋壳俯冲地球动力学演化以及厘定俯冲-碰撞带的重要依据 (Göncüoglu et al., 2010; Kimura et al., 2012)。世界典型造山带均有混杂岩产出,如圣弗朗西斯科混杂岩 (Hsü, 1969; Ukar, 2012)、台湾造山带利吉混杂岩 (Chang et al., 2000, 2001)、秦岭-大别造山带勉略混杂岩 (张国伟等, 1995; 李亚林等, 2001)、钦-杭结合带赣东北蛇绿混杂岩 (Shu and Charvet, 1996; Li, 1999) 等。
钦-杭结合带 (图 1a,简称钦杭带) 是位于华南扬子地块和华夏地块间的巨型结合带,记录了新元古代早期洋壳板块俯冲-陆陆碰撞过程 (水涛等, 1986; 杨明桂和梅勇文, 1997; 毛景文等, 2011; 徐德明等, 2012; 周永章等, 2012, 2015, 2017; Zheng et al., 2016)。学者根据其内部不均一性分为北、中、南三段 (周永章等, 2012, 2015, 2017; 梁锦等, 2012; 曾长育等, 2015)。新元古代早期,扬子地块和华夏地块沿江山-绍兴断裂拼贴汇聚,留下了许多板块俯冲的证据 (Zhao and Cawood, 1999; 舒良树, 2012)。例如,钦杭带北段江山-绍兴断裂带、东乡-德兴断裂带分布的970~880Ma蛇绿岩套,洋壳俯冲形成的0.9Ga岛弧岩浆岩 (Gao et al., 2009; Li and Li, 2003; Zhou et al., 2009; Zhang et al., 2013a);中段桂北地区830Ma岛弧性质基性-超基性岩墙 (Li et al., 1999; 周金城等, 2003);但对于南段,学者的认识并不统一。南段是否存在该时期的俯冲作用?俯冲具体位置在哪里?这涉及钦杭带西延以及南东界限问题。
![]() |
图 1 钦-杭结合带云开地区地质及贵子混杂岩剖面简图 (据郭良田等, 2005; 覃小锋等, 2005; Wang et al., 2013修改) 图b括号内数字:(1)郭良田等, 2005;(2)覃小锋等, 2005;(3)彭松柏等, 2006;(4)覃小锋等, 2007;(5)Zhang et al., 2012 Fig. 1 Geological sketch maps for Yunkai and Guizi mélange of Qin-Hang junction Belt (modified after Guo et al., 2005; Qin et al., 2005; Wang et al., 2013) The number in brackets in Fig. 1b: (1) Guo et al., 2005; (2) Qin et al., 2005; (3) Peng et al., 2006; (4) Qin et al., 2007; (5) Zhang et al., 2012 |
云开地区出露的元古宙基性-超基性岩为研究钦杭带南段新元古代板块俯冲提供了线索。这些岩石缺乏详细的岩石组合特征剖析以及精确的地质年代学和地球化学制约,导致学界对其形成的大地构造背景认识不一。前人主要观点有:南华纪裂谷盆地细碧-角斑岩系 (郭良田等, 2005),中-新元古代洋中脊玄武岩类 (覃小锋等, 2005, 2007),新元古代-早古生代洋中脊蛇绿混杂岩 (彭松柏等, 2006; 何卫红等, 2014) 以及新元古代早期岛弧-弧后盆地玄武岩类 (Zhang et al., 2012; Wang et al., 2013)。
本文研究的南段云开地区贵子混杂岩,岩石组合包括变基性岩块、硅泥质岩、绿泥石片岩、石英岩等。鉴于云开复杂的地质构造,作了详细的野外地质调查,查明地质特征,剖析其岩石组合性质;并对其中变基性岩进行岩相学、锆石U-Pb地质年代学、地球化学研究,探讨新元古代早期古华南洋俯冲在钦杭带南段是否留有记录,进而为钦杭带的南东界限提供重要线索。
2 地质概况云开地区位于粤西和桂东交界,北起广宁四会,南至廉江以南,东西为吴川-四会断裂带和博白-岑溪断裂带所围限的NE-NNE向区域 (图 1b), 大地构造上位于钦杭带南段的南端 (图 1a)。
云开地块是华夏地块古老基底出露的重要区域之一,记录了古老的基底信息 (Zhou et al., 1995; 周国强等, 1996; 王祖伟等, 1997; 叶真华等, 2000)。前寒武系天堂山岩群 (高州岩群) 和云开群的古老基底分布于云开核部 (图 1b),多受加里东期和印支期构造-岩浆活动的改造。天堂山岩群出露于广东高州、信宜北部,广西陆川-容县天堂山地区,主要由角闪岩相 (局部达麻粒岩相) 深层变质岩组成。云开岩群广泛分布于云开地区,主要由绿片岩相 (局部达角闪岩相) 浅层变质岩组成。古生代、中生代、新生代地层分布在周缘。
云开核部广西容县、北流、岑溪,广东罗定、高州、信宜、陆川等地分布了大量的元古宙基性-超基性岩石,大多经历了绿片岩相-角闪岩相变质,形成变玄武岩、斜长角闪岩、角闪岩、变辉长岩、变辉绿岩等。前人研究了其岩石学、地球化学、地质年代学等特征,认为是中元古代-新元古代裂谷、洋中脊、岛弧/弧后盆地残片 (图 1b, 郭良田等, 2005; 覃小锋等, 2005, 2007; 彭松柏等, 2006; Zhang et al., 2012; Wang et al., 2013; 何卫红等, 2014)。区内出露大量加里东期、印支期、燕山期花岗质岩石,响应了华南多期次强烈的构造-岩浆活动。
贵子混杂岩位于粤西信宜,与周边前寒武系基底岩系、加里东期花岗岩类呈断层接触,混杂岩之间亦被断裂错开 (图 1c)。信宜贵子杂岩剖面中可清晰辨认出构造岩块和基质,呈现整体无序、局部有序的特点 (图 1d)。构造岩块为强烈变形-变质的变基性岩、深海硅质岩。
3 变基性岩变基性岩呈黑色-灰绿色,规模大到几百米,小到几米甚至几厘米,经历了一定蚀变和风化,野外难以辨别岩性 (图 2a, b)。
![]() |
图 2 信宜贵子混杂岩变基性岩野外及镜下照片 (a) 黑色变基性岩块;(b) 灰绿色变基性岩块;(c) 角闪岩;(d) 斜长角闪岩.缩写:Pl-斜长石;Amp-角闪石;Tr-透闪石;Chl-绿泥石;Ser-绢云母;Qtz-石英;Py-黄铁矿 Fig. 2 Field photos and microphotographs for the metabasite in Guizi mélange (a) black metabasite block; (b) grey-green metabasite block; (c) amphibolite; (d) plagioclase amphibolite. Abbreviations: Pl-plagioclase; Amp-amphibole; Tr-tremolite; Chl-chlorite; Ser-sericite; Qtz-quartz; Py-pyrite |
镜下特征表明,变基性岩大多为斜长角闪岩-角闪岩,经历了绿片岩相-角闪岩相变质作用,原岩可能为玄武岩、辉长岩、辉绿岩等。其中,角闪岩定向明显,角闪石含量约65%~70%,斜长石约15%~20%(图 2c),另有少量绢云母、石英、透闪石、绿泥石等。斜长角闪岩弱定向性,主要矿物为角闪石 (约40%~45%),斜长石 (约35%~40%),含少量绢云母、绿泥石等 (图 2d)。
4 样品采集及测试方法 4.1 锆石U-Pb年代学采用人工重砂法选出锆石,在双目镜下挑选出代表性的锆石颗粒置于环氧树脂,制成直径为1.4cm的样品靶。抛光后进行显微镜下观察和透射光、反射光照相,并在中山大学地球科学与地质工程学院采用ΣIGMATM场发射扫描电镜仪进行CL图像分析。
锆石U-Pb年代学测试是在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,采用美国Resonetics公司生产的RESOlution M-50激光剥蚀系统和Neptune Plus MC-ICP-MS联机,运用单点剥蚀的方法,激光剥蚀斑束直径为39μm,频率为8Hz。元素含量外标采用硅酸盐玻璃标准参考物质NIST610,元素内标采用29Si测定锆石中U、Th和Pb的含量,锆石年龄外标采用Temora,详细实验流程和试验参数见文献 (Yuan et al., 2003)。锆石原位测试的数据采用ICPMSDataCal (V7.8) 处理 (Liu et al., 2010),加权平均年龄及谐和图采用Isoplot 3.0完成 (Ludwig, 2003),分析和计算误差均为1σ,加权平均值为95%的置信度。
4.2 元素地球化学选取贵子混杂岩中变基性岩新鲜岩石样品,先去除表面,选取其中无缝隙坚硬部分,超纯水3次震荡清洗,并用玛瑙碾钵粉碎过筛至200目以下。元素地球化学分析是在广东省地质过程与矿产资源探查重点实验室完成。主量元素采用日本Rigaku公司ZSX primus型X射线荧光光谱仪 (XRF) 分析。准确称取0.5g样品于坩埚中,置于100℃烘箱加热2h,冷却后称量并置于950℃马弗炉中灼烧2h,待冷却称量用以计算烧失量 (LOI);再从坩埚中称取0.57g (±0.005g) 烘干样品置于塑料瓶中并加入7倍Li2B4O7助熔剂混合均匀,加入5滴10% LiBr脱模剂于铂金坩埚中,倒入样品,1150℃熔融,制成玻璃片以备测试。微量元素采用美国Thermo公司X2型电感耦合等离子体质谱 (ICP-MS) 分析,灵敏度高、检出限低。称取50mg样品置于Teflon坩埚中,依次加入1mL HNO3和1mL HF并置于烘箱 (190℃) 加热48小时;冷却后置于115℃电热板蒸干,加入1mL HNO3蒸干后,依次加入1mL去离子水、1mL HNO3和1mL铟内标 (1×10-6) 并将其套入钢套,置于烘箱 (190℃) 加热12h;待冷却溶液用2% HNO3移入PET瓶并稀释至100g,密闭保存测试。主量元素的分析精度优于1%,微量元素分析精度优于5%。
5 结果 5.1 锆石U-Pb年代学贵子混杂岩中变基性岩 (CZW-03) 所含锆石多为半自形,阴极发光图像显示锆石发育较明显韵律环带结构,粒度80~150μm,长宽比约为1:1~3:1(图 3)。挑选晶型完整、无裂缝的锆石进行了12个测点的LA-ICP-MS分析,U-Pb同位素分析结果见表 1。
![]() |
表 1 贵子混杂岩中角闪岩LA-ICP-MS锆石U-Pb年龄测定结果 Table 1 LA-ICP-MS U-Pb dating analysis of zircons from metabasite in Guizi mélange |
Th含量32.9×10-6~586.1×10-6(平均162.1×10-6),U含量121.3×10-6~998.7×10-6(平均426.9×10-6),Th/U值除一个测点比值小于0.1(0.06),其余均大于0.1(0.14~2.07,平均0.55),表现为岩浆锆石的特点 (Wu and Zheng, 2004)。206Pb/238U表观年龄可以分为两组:第一组为中元古代-太古代1545~2537Ma,被解释为岩浆捕获的古老锆石,年龄与云开地区的古老基底类似 (Yu et al., 2010);第二组年龄为新元古代早期936~955Ma,分布范围集中,加权平均年龄为948±11Ma (MSWD=0.14),代表变基性岩的结晶年龄 (图 3、表 1)。
![]() |
图 3 贵子混杂岩中变基性岩锆石阴极发光、分析点位及LA-ICP-MS锆石U-Pb年龄谐和图 Fig. 3 Cathode luminescence images, locations of the points for LA-ICP-MS measurements and U-Pb concordant diagram of zircons of metabasite in Guizi mélange |
主量元素分析结果见表 2。SiO2含量48.14%~51.87%,平均50.45%;Mg#值43.9~62.2,平均53.6。具有高TiO2(含量1.38%~2.93%,平均1.85%),高P2O5(含量0.16%~0.30%,平均0.21%) 特征。Alk (Na2O+K2O) 含量2.45%~4.26%,平均3.39%;贫K富Na,Na2O/K2O为1.51~7.23(平均3.65)。TAS以及SiO2-K2O图解显示其均为亚碱性系列,且除少部分为低钾 (拉斑) 系列外,其余均为钙碱性系列 (图 4a, b)。CIPW标准矿物计算中,所有样品均未出现霞石 (Ne),均出现紫苏辉石 (Hy,含量为10.64%~16.81%),6个样品出现石英 (Q,含量为2.25%~10.82%),2个样品出现橄榄石 (Ol,含量为1.50%~2.09%)。在玄武岩标准矿物命名图 (OQNH图) 中属石英拉斑玄武岩-橄榄拉斑玄武岩组合 (图未附)。哈克图解中,SiO2与Fe2O3T,MgO弱负相关 (图 5a, b);MgO对CaO、CaO/Al2O3相关性较复杂,MgO < 6.5%表现为CaO、CaO/Al2O3值随MgO增大趋于稳定,MgO>6.5%转而呈明显正相关 (图 5c, d)。
![]() |
表 2 信宜贵子混杂岩中变基性岩主量元素 (wt%)、微量元素 (×10-6) 分析结果 Table 2 Major (wt%) and trace (×10-6) elements data for the metabasite in Guizi mélange |
![]() |
图 4 贵子混杂岩中变基性岩岩性判别和岩石系列图解 (a) (Na2O+K2O)-SiO2(Le Maitre et al., 1989);(b) K2O-SiO2(Peccerillo and Taylor, 1976) Fig. 4 Diagrams of lithological discrimination and rock series for the metabasite in Guizi mélange |
![]() |
图 5 贵子混杂岩中变基性岩哈克图解 Fig. 5 Harker diagrams for the metabasite in Guizi mélange |
贵子混杂岩中变基性岩稀土元素分析结果见表 2。ΣREE为69.09×10-6~113.8×10-6,平均87.55×10-6,LREE/HREE=3.18~3.60,(La/Yb)N=2.65~3.89,无或轻微负Eu异常,暗示无斜长石分离结晶。球粒陨石标准化配分曲线微右倾,近似与E-MORB平行,与OIB和N-MORB差异明显 (图 6a),可能表明熔体来自类似E-MORB的源区。
![]() |
图 6 贵子混杂岩中变基性岩球粒陨石标准化稀土元素配分曲线 (a) 及原始地幔标准化微量元素蛛网图 (b)(球粒陨石、原始地幔、OIB、E-MORB和N-MORB值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE distribution (a) and primitive mantle-normalized trace elements spidergram (b) for the metabasite in Guizi mélange (the data of chondrite, primaitive mantle, OIB, E-MORB and N-MORB are from Sun and McDonough, 1989) |
相容元素Cr含量17.55×10-6~374.6×10-6,平均168.3×10-6。Ni含量11.67×10-6~107.2×10-6,平均65.70×10-6。地幔标准化蛛网图显示:大离子亲石元素Rb、Ba、Th、U富集,高场强元素Nb、Zr、Hf轻微亏损,暗示可能具有俯冲带组分 (图 6b, Condie, 1989)。较典型岛弧玄武岩具有高TiO2(平均1.85%)、P2O5(平均0.21%)、Nb (7.56×10-6~16.11×10-6,均大于7×10-6)、Nb/U (18.39~25.65)、(Nb/La)N(0.76~0.94) 特点,类似于富Nb玄武岩 (图 7a-c, Sajona et al., 1993, 1996)。
![]() |
图 7 贵子混杂岩中变基性岩富Nb判别图解 (a, 据Defant et al., 1992; b、c, 据Kepezhinskas et al., 1996) Fig. 7 Nb-enrichment discrimination diagrams for the metabasite in Guizi mélange (a, after Defant et al., 1992; b, c, after Kepezhinskas et al., 1996) |
野外工作中,采集新鲜、风化作用影响较小的变基性岩样品进行元素地球化学分析。镜下特征及LOI值 (0.50%~1.28%) 显示岩石经历了不同程度蚀变。蚀变过程中,活动性元素 (Na、K等) 往往容易发生迁移,难以反映原岩性质 (Deniel, 1998)。LOI与主量元素变异图显示除Na2O、K2O外,SiO2、Fe2O3T、MgO、CaO、P2O5、TiO2并无明显的相关性 (图略),表明这些元素在蚀变过程中基本保持稳定。运用不活动元素及其比值探讨岩浆岩源区特征和构造环境是学界常用的手段 (李曙光, 1993; Kepezhinskas et al., 1997; 赵振华, 2007)。因此,本文使用蚀变过程中较稳定的主量元素以及难以迁移的不相容元素 (如HFSE、REE、Th、U等) 研究变基性岩岩浆演化过程,示踪它的岩浆源区并探讨其形成构造环境。
6.2 岩浆过程岩浆在上升侵位或喷出过程中,可能经历了围岩的同化混染。简单的模型显示可能需要40%~60%的壳源物质混入E-MORB源区才能匹配其Nb/La (0.79~0.98) 特征,但如此大比例的壳源物质混入与变基性岩的主微量元素不符 (表 2)。另外,由Nb/La与Sm/Nd、La/Sm间的关系可知,变基性岩可能并未经历明显的地壳或大陆岩石圈地幔的同化混染作用 (图 8a, b)。
![]() |
图 8 贵子混杂岩中变基性岩同化混染判别图 Fig. 8 Assimilation and contamination discrimination diagrams for the metabasite in Guizi mélange |
Mg#值43.9~62.2,平均53.6,略低于原生岩浆 (Mg#=68~75, Wilson, 1989),反映岩浆经历了一定程度的结晶分异作用 (周新华等, 2009)。SiO2与Fe2O3T、MgO弱负相关表明可能经历了橄榄石的分离结晶 (图 5a, b),MgO与Cr、Ni正相关特征也支持此推断 (图 5e, f)。MgO与CaO、CaO/Al2O3特殊的变异图解暗示岩浆经历了橄榄石和辉石的结晶分异 (图 5c, d)。另外,MgO与Sr、Eu特征显示斜长石结晶分异不明显 (图 5g, h)。因此,贵子变基性岩可能经历了橄榄石和单斜辉石的结晶分异,但斜长石结晶分异不明显。
6.3 岩浆源区特征贵子变基性岩高TiO2、P2O5、Nb、Nb/U、(Nb/La)N特征显示,其为富Nb玄武岩 (图 7a-c)。OIB和俯冲带交代地幔楔岩浆源被认为是富Nb玄武岩可能的岩浆源区 (Stern, 2002; 赵振华等, 2006; Macpherson et al., 2010; Wang et al., 2013)。但贵子富Nb玄武岩源区可能不是OIB,理由有:(1) 贵子富Nb玄武岩ΣREE=69.09×10-6~113.8×10-6,均小于OIB (ΣREE=199.0×10-6, Sun and McDonough, 1989),OIB球粒陨石标准化配分曲线强烈右倾,具强轻重稀土分馏作用,LREE/HREE=8.58,(La/Yb)N=12.29,均大于贵子富Nb玄武岩LREE/HREE (平均3.28),(La/Yb)N(平均2.81);(2) 不相容元素蛛网图形态差异明显,贵子富Nb玄武岩具弱Nb、Zr、Hf、P、Ti负异常,U正异常及低Ti/V (30.2~38.6) 特征均与OIB不一致。因此,它更有可能是来自俯冲带的交代地幔楔,即板片熔体交代楔形地幔橄榄岩发生部分熔融 (Sajona et al., 1993, 1996),与变基性岩Ti-V-Sc-Sm体系指示的MORB特征一致 (图 9a, b),符合与板片熔体交代相关的性质 (图 9d),而且Hf-Th-Nb图解也显示其产于岛弧环境 (图 9c)。事实上,尽管富Nb玄武岩相比于典型岛弧玄武岩具有高TiO2、P2O5、Nb、Nb/U、(Nb/La)N的性质,但它仍可以形成于岛弧 (Defant et al., 1992; Yogodzinski et al., 2001)。富集的楔形地幔源区有两种可能,即古老俯冲带的改造以及新生板片俯冲交代作用。但Th/Ce (0.068~0.085) 均小于古老俯冲带改造地幔源的Th/Ce (>0.1)(Hawkesworth et al., 1997; Hollings and Kerrich, 2004; Wang et al., 2013)。因此,变基性岩更有可能是来自新生板片的俯冲交代作用。熔融源区可能发生在La/Yb-Sm/Yb以及La/Sm-Sm/Yb图解指示的尖晶石-石榴石稳定区,约10%的尖晶石-石榴石二辉橄榄岩 (石榴石含量高于尖晶石) 部分熔融 (图 9e, f)。其低的Ce/Y (0.74~0.88) 显示熔融深度可能为约60~80km (McKenzie and Bickle, 1988)。因此,本文认为贵子变基性岩是新元古代早期洋壳板片俯冲交代楔形地幔橄榄岩,在60~80km处尖晶石-石榴石稳定区约10%尖晶石-石榴石二辉橄榄岩熔融形成。
![]() |
图 9 贵子混杂岩中变基性岩构造背景及源区判别 (a、b, 据Vermeesch, 2006; c, 据Wood, 1980; d, 据Kepezhinskas et al., 1997; e, 据Xu et al., 2005; f, 据McKenzie and O’Nions, 1991) e, f图中:数字代表熔融比例. e图源岩矿物组分和矿物熔融比例数据据Johnson et al., 1990, 元素分配系数据McKenzie and O’Nions, 1991 Fig. 9 The tectonic setting and magma source discrimination diagrams for the metabasite in Guizi mélange (a, b, after Vermeesch, 2006; c, after Wood, 1980; d, after Kepezhinskas et al., 1997; e, after Xu et al., 2005; f, after McKenzie and O'Nions, 1991) The number in Fig. 9e, f represents the melting ratio. In Fig. 9e: Source rock mineral composition and melting rate are from Johnson et al., 1990; element distribution coefficient data is from McKenzie and O'Nions, 1991 |
华南经历了复杂的构造演化过程。新元古代早期,位于扬子地块和华夏地块间的古华南洋俯冲消减,两板块沿江山-绍兴断裂带拼贴形成钦杭带 (图 1a)。多年来,学者研究的焦点为江南造山带 (大致相当于钦杭带北段、中段),其中存在蛇绿岩套、岛弧岩浆岩、高压变质岩等确切的洋壳俯冲-碰撞记录 (Gao et al., 2009; Li and Li, 2003; Zhou et al., 2002, 2009; Zhang et al., 2013a, b; Li et al., 1999; 周金城等, 2003; Shu et al., 1994)。南段被南华纪以来的厚层沉积覆盖,而且经历了强烈变形-变质改造作用,极少ca. 1.0Ga火成岩的报道,缺乏洋壳俯冲的直接佐证。但南段副变质岩中存在大量0.9~1.0Ga新元古代早期碎屑锆石,并在年龄谱中呈现很明显的峰值特征 (Yu et al., 2008, 2010)。近年来研究表明,江南造山带西延至粤桂-钦防海槽 (即钦杭带的西南延) 存在可靠证据,且南段与钦杭带整体具有一致性的演化历史 (周永章等, 2012,2017; 梁锦等, 2012)。彭松柏等 (2006)、何卫红等 (2014)认为云开地区存在新元古代-早古生代的蛇绿混杂岩,代表该时期的古华南洋遗迹;Zhang et al. (2012)和Wang et al. (2013)研究表明,南段在新元古代时期存在岛弧-弧后盆地。本文研究的粤西贵子构造混杂岩,构造岩块为强烈变形-变质的变基性岩、深海硅质岩;基质岩石为石英岩、云母片岩、具鲍马序列富锰质硅泥质岩等。变基性岩年龄为948±11Ma,具有高TiO2、P2O5、Nb、(Nb/La)N、Nb/U特征,为一套富Nb玄武岩 (图 9a-d)。典型的富Nb玄武岩分布于菲律宾南部 (Sajona et al., 1993, 1996; Castillo et al., 2002)、俄罗斯Kamchatka岛弧 (Kepezhinskas et al., 1996, 1997) 等地,具有特殊的构造意义。近年来,在云开地区也发现了具有富Nb特性的玄武质岩石,形成在岛弧-弧后盆地体系中,是新元古代俯冲作用中的重要产物 (郭良田等, 2005; 彭松柏等, 2006; Zhang et al., 2012; Wang et al., 2013)。结合前述变基性岩的岩浆源区特征以及构造环境判别,本文认为其应产于岛弧环境;在板块俯冲 (和后续碰撞) 过程中,这些富Nb玄武岩类与活动大陆边缘沉积物 (如云开地区同时代或老基底物质) 发生混杂作用,形成构造混杂岩。
关于古华南洋的俯冲极性,学界一直存在往南东向华夏地块、南西向扬子地块或双向俯冲的争议 (Shui, 1988; Cawood et al., 2013; Zhao et al., 2015)。本文研究认为新元古代早期在华夏地块的西缘存在洋壳俯冲 (彭松柏等, 2006; Zhang et al., 2012; Wang et al., 2013),古华南洋存在往南东方向华夏地块俯冲消减过程。另外,关于钦杭带湘桂段以南的南东界限认识不统一 (杨明桂和梅勇文, 1997; 饶家荣等, 2012),本研究证实云开地区存在板块俯冲,为该带的南东边界提供了重要线索。
7 结论(1) 钦-杭结合带南段贵子杂岩为构造混杂岩,构造岩块为强烈变形-变质的变基性岩、深海硅质岩;基质岩石为石英岩、云母片岩、具鲍马序列富锰质硅泥质岩等。
(2) 混杂岩中变基性岩LA-ICP-MS锆石U-Pb年龄为948±11Ma,为新元古代早期基性岩类。
(3) 变基性岩具高TiO2、P2O5、Nb、Nb/U、(Nb/La)N地球化学特征,为富Nb玄武岩。
(4) 粤西贵子混杂岩是新元古代古华南洋俯冲在钦杭带南段的记录,为该带的南东边界提供了重要线索。
致谢 野外工作得到了中国地质大学 (北京) 邓晋福教授、肖庆辉教授的宝贵指导;锆石LA-ICP-MS测试得到中国科学院广州地球化学研究所所孙卫东研究员、李聪颖博士的帮助;与广西地质调查院曾长育博士、国家海洋局第二海洋研究所梁锦博士的讨论深受启发;两位审稿人提供了建设性修改意见;在此一并感谢![] | Castillo PR, Solidum RU, Punongbayan RS. 2002. Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology, 30(8): 707–710. DOI:10.1130/0091-7613(2002)030<0707:OOHFSE>2.0.CO;2 |
[] | Cawood PA, Wang YJ, Xu YJ, Zhao GC. 2013. Locating South China in Rodinia and Gondwana:A fragment of greater India lithosphere?. Geology, 41(8): 903–906. DOI:10.1130/G34395.1 |
[] | Chang CP, Angelier J, Huang CY. 2000. Origin and evolution of a mélange:The active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(1-2): 43–62. DOI:10.1016/S0040-1951(00)00130-X |
[] | Chang CP, Angelier J, Huang CY, Liu CS. 2001. Structural evolution and significance of a mélange in a collision belt:The Lichi Mélange and the Taiwan arc-continent collision. Geological Magazine, 138(6): 633–651. |
[] | Condie KC. 1989. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary:Identification and significance. Lithos, 23(1-2): 1–18. DOI:10.1016/0024-4937(89)90020-0 |
[] | Defant MJ, Jackson TE, Drummond MS, De Boer JZ, Bellon H, Feigenson MD, Maury RC, Stewart RH. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica:An overview. Journal of the Geological Society, 149(4): 569–579. DOI:10.1144/gsjgs.149.4.0569 |
[] | Deniel C. 1998. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean). Chemical Geology, 144(3-4): 281–303. DOI:10.1016/S0009-2541(97)00139-3 |
[] | Festa A, Pini GA, Dilek Y, Codegone G. 2010. Mélanges and mélange-forming processes:A historical overview and new concepts. International Geology Review, 52(10-12): 1040–1105. DOI:10.1080/00206810903557704 |
[] | Gao J, Klemd R, Long LL, Xiong XM, Qian Q. 2009. Adakitic signature formed by fractional crystallization:An interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic mélange belt, South China. Lithos, 110(1-4): 277–293. DOI:10.1016/j.lithos.2009.01.009 |
[] | Göncüoglu MC, Sayit K, Tekin UK. 2010. Oceanization of the northern Neotethys:Geochemical evidence from ophiolitic mélange basalts within the I·zmir-Ankara suture belt, NW Turkey. Lithos, 116(1-2): 175–187. DOI:10.1016/j.lithos.2010.01.007 |
[] | Guo LT, Hong YR, Huang JC, Chen YH, Huang YH, Xu HS. 2005. Discovery of the Kengping spilite-kratophyre series in Xinyi, western Guangdong, China and its geological significance. Geological Bulletin of China, 24(7): 648–654. |
[] | Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P. 1997. U-Th isotopes in arc magmas:Implications for element transfer from the subducted crust. Science, 276(5312): 551–555. DOI:10.1126/science.276.5312.551 |
[] | He WH, Tang TT, Yue ML, Deng JF, Pan GT, Xing GF, Luo MS, Xu YD, Wei Y, Zhang ZX, Xiao YF, Zhang KX. 2014. Sedimentary and tectonic evolution of Nanhua-Permian in South China. Earth Science, 39(8): 929–953. |
[] | Hollings P, Kerrich R. 2004. Geochemical systematics of tholeiites from the 2.86Ga Pickle Crow Assemblage, northwestern Ontario:Arc basalts with positive and negative Nb-Hf anomalies. Precambrian Research, 134(1-2): 1–20. DOI:10.1016/j.precamres.2004.05.009 |
[] | Hsü KJ. 1969. Preliminary report and geologic guide to Franciscan melanges of the Morro Bay-San Simeon Area. California: California Division of Mines and Geology Special Publication: 46. |
[] | Hsü KJ. 1974. Mélanges and their distinction from olistostromes. In: Dott RH Jr and Shaver RH (eds.). Modern and Ancient Geosynclinal Sedimentation. SEPM Special Publication, 19: 321-333 |
[] | Johnson KTM, Dick HJB, Shimizu N. 1990. Melting in the oceanic upper mantle:An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 95(B3): 2661–2678. DOI:10.1029/JB095iB03p02661 |
[] | Kepezhinskas P, Defant MJ, Drummond MS. 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217–1229. DOI:10.1016/0016-7037(96)00001-4 |
[] | Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC, Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600. DOI:10.1016/S0016-7037(96)00349-3 |
[] | Kimura G, Yamaguchi A, Hojo M, Kitamura Y, Kameda J, Ujiie K, Hamada Y, Hamahashi M, Hina S. 2012. Tectonic mélange as fault rock of subduction plate boundary. Tectonophysics, 568-569: 25–38. DOI:10.1016/j.tecto.2011.08.025 |
[] | Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, SØrensen H, Streckeisen A, Woolley AR and Zanettin B. 1989. A Classification of Igneou Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences. Subcommision on the Systematics of Igneous Rocks. Oxford: Blackwell |
[] | Li SG. 1993. Ba-Th-Nb-La diagrams used to identify tectonic environments of ophiolite. Acta Petrologica Sinica, 9(2): 146–157. |
[] | Li WX, Li XH. 2003. Adakitic granites within the NE Jiangxi ophiolites, South China:Geochemical and Nd isotopic evidence. Precambrian Research, 122(1-4): 29–44. DOI:10.1016/S0301-9268(02)00206-1 |
[] | Li XH. 1999. Age and origin of the mafic rocks and radiolarian cherts within the NE Jiangxi ophiolite melange:Implications for the tectonic evolution of SE China. Gondwana Research, 2(4): 588–590. DOI:10.1016/S1342-937X(05)70207-0 |
[] | Li YL, Zhang GW, Wang CS, Li SZ, Fang WX, Yin HS. 2001. Characteristics and implication of the tectonic melanges in Mianxian-Lueyang area, Qinling orogenic belt. Acta Petrologica Sinica, 17(3): 476–482. |
[] | Li ZX, Li XH, Kinny PD, Wang J. 1999. The breakup of Rodinia:Did it start with a mantle plume beneath South China?. Earth and Planetary Science Letters, 173(3): 171–181. DOI:10.1016/S0012-821X(99)00240-X |
[] | Liang J, Zhou YZ, Li HZ, Yin ZZ, Zhou LY, Zeng CY, Yu PP. 2012. Geological characteristics and genesis of porphyry copper deposits in Qinzhou-Hangzhou suture zone, South China. Acta Petrologica Sinica, 28(10): 3361–3372. |
[] | Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. DOI:10.1007/s11434-010-3052-4 |
[] | Ludwig KR. 2003. User's manual for ISOPLOT/Ex, Version 3.00:A geochronological toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center Special Publication. Berkeley: Berkeley Geochronology Center Special Publication: 1-70. |
[] | Macpherson CG, Chiang KK, Hall R, Nowell GM, Castillo PR, Thirlwall MF. 2010. Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna peninsula, Sabah, Borneo:Implications for high-Nb basalt in subduction zones. Journal of Volcanology and Geothermal Research, 190(1-2): 25–38. DOI:10.1016/j.jvolgeores.2009.11.004 |
[] | Mao JW, Chen MH, Yuan SD, Guo CL. 2001. Geological characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636–658. |
[] | McKenzie D, Bickle MJ. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625–679. DOI:10.1093/petrology/29.3.625 |
[] | McKenzie D, O'nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021–1091. DOI:10.1093/petrology/32.5.1021 |
[] | Peccerillo A, Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58(1): 63–81. DOI:10.1007/BF00384745 |
[] | Peng SB, Jin ZM, Fu JM, He LQ, Cai MH, Liu YH. 2006. The geochemical evidences and tectonic significance of Neoproterozoic ophiolite in Yunkai area, western Guangdong Province, China. Acta Geologica Sinica, 80(6): 814–825. |
[] | Qin XF, Zhou FS, Hu GA, Li GN, Xie LF, Zhou KH, Huang XQ, Pan YW. 2005. First discovery of MORB volcanic rock and its tectonic significance on the northern margin of the Yunkai Block, southeastern Guangxi. Geological Science and Technology Information, 24(3): 20–24. |
[] | Qin XF, Pan YM, Xia B, Li RS, Zhou FS, Hu GA, Lu GB. 2007. Geochemical characteristics and tectonic signification of metabasic volcanic rocks in tectonic belt of northern margin of Yunkai block, southeastern Guangxi. Geochimica, 36(3): 311–322. |
[] | Rao JR, Xiao HY, Liu YR, Bai DY, Deng YL. 2012. Location of the Yangtze-Cathaysia plate convergence zone in Hunan. Chinese Journal of Geophysics, 55(2): 484–502. |
[] | Raymond LA. 1984. Classification of mélanges. In: Raymond LA (ed.). Mélanges: Their Nature, Origin, and Significance. Geological Society of America Special Paper, 198: 7-20 |
[] | Sajona FG, Maury RC, Bellon H, Cotten J, Defant MJ, Pubellier M. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11): 1007–1010. DOI:10.1130/0091-7613(1993)021<1007:IOSATG>2.3.CO;2 |
[] | Sajona FG, Maury RC, Bellon H, Cotton J, Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). Journal of Petrology, 37(3): 693–726. DOI:10.1093/petrology/37.3.693 |
[] | Shu L, Charvet J. 1996. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone:With HP metamorphism and ophiolitic melange (Jiangnan Region, South China). Tectonophysics, 267(1-4): 291–302. DOI:10.1016/S0040-1951(96)00104-7 |
[] | Shu LS, Zhou GQ, Shi YS, Yin J. 1994. Study of the high pressure metamorphic blueschist and its Late Proterozoic age in the eastern Jiangnan belt. Chinese Science Bulletin, 39(14): 1200–1204. |
[] | Shu LS. 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China, 31(7): 1035–1053. |
[] | Shui T, Xu BT, Liang RH, Qiu YS. 1986. Shaoxing-Jiangshan deep-seated fault zone, Zhejiang Province. Chinese Science Bulletin, 31(18): 1250–1255. |
[] | Shui T. 1988. Tectonic framework of the continental basement of Southeast China. Science in China (Series B), 31(7): 885–896. |
[] | Stern RJ. 2002. Subduction zones. Reviews of Geophysics, 40(4): 3–1. |
[] | Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345 |
[] | Ukar E. 2012. Tectonic significance of low-temperature blueschist blocks in the Franciscan mélange at San Simeon, California. Tectonophysics, 568-569: 154–169. DOI:10.1016/j.tecto.2011.12.039 |
[] | Vermeesch P. 2006. Tectonic discrimination diagrams revisited. Geochemistry, Geophysics, Geosystems, 7(6): Q06017. |
[] | Wang YJ, Zhang AM, Cawood PA, Fan WM, Xu JF, Zhang GW, Zhang YZ. 2013. Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an Early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia. Precambrian Research, 231: 343–371. DOI:10.1016/j.precamres.2013.03.020 |
[] | Wang ZW, Zhou YZ, Zhao FQ, Jin WS, Gan XC. 1997. The advance in depth geology research, South China. Advances in Earth Science, 12(3): 259–264. |
[] | Wilson BM. 1989. Igneous Petrogenesis. London: Unwin Hyman: 1-25. |
[] | Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. DOI:10.1016/0012-821X(80)90116-8 |
[] | Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554–1569. DOI:10.1007/BF03184122 |
[] | Xu DM, Lin ZY, Long WG, Zhang K, Wang L, Zhou D, Huang H. 2012. Research history and current situation of Qinzhou-Hangzhou metallogenic belt, South China. Geology and Mineral Resources of South China, 28(4): 277–289. |
[] | Xu YG, Ma JL, Frey FA, Feigenson MD, Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224(4): 247–271. DOI:10.1016/j.chemgeo.2005.08.004 |
[] | Yang MG, Mei YW. 1997. Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture. Geology and Mineral Resources of South China, 13(3): 52–59. |
[] | Ye ZH, Lao QY, Hu SL. 2000. Some remarks on the geologic age and stratigraphic sequence of Yunkai Group in Yunkai Mountains. Geological Review, 46(5): 449–454. |
[] | Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Wöerner G, Volynets ON. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500–504. DOI:10.1038/35054039 |
[] | Yu JH, O'Reilly SY, Wang LJ, Griffin WL, Zhang M, Wang RC, Jiang SY, Shu LS. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 164(1-2): 1–15. DOI:10.1016/j.precamres.2008.03.002 |
[] | Yu JH, O'Reilly SY, Wang LJ, Griffin WL, Zhou MF, Zhang M, Shu LS. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China:Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181(1-4): 97–114. DOI:10.1016/j.precamres.2010.05.016 |
[] | Yuan HL, Wu FY, Gao S, Liu XM, Xu P, Sun DY. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411–2421. |
[] | Zeng CY, Zhou YZ, Zheng Y, Yu PP, Niu J, Liang J. 2015. Plate tectonism of Qinzhou Bay-Hangzhou Bay juncture orogenic belt (South China) before Mesozoic tectonic transition event. Earth Science Frontiers, 22(2): 54–63. |
[] | Zhang AM, Wang YJ, Fan WM, Zhang YZ, Yang J. 2012. Earliest Neoproterozoic (ca. 1.0Ga) arc-back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block:Geochronological and geochemical evidence from the metabasite. Precambrian Research, 220-221: 217–233. DOI:10.1016/j.precamres.2012.08.003 |
[] | Zhang CL, Santosh M, Zou HB, Li HK, Huang WC. 2013a. The Fuchuan ophiolite in Jiangnan Orogen:Geochemistry, zircon U-Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China. Lithos, 179: 263–274. DOI:10.1016/j.lithos.2013.08.015 |
[] | Zhang GW, Zhang ZQ, Dong YP. 1995. Nature of main tectono-lithostratigraphic units of the Qinling Orogen:Implications for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101–114. |
[] | Zhang YZ, Wang YJ, Geng HY, Zhang YH, Fan WM, Zhong H. 2013b. Early Neoproterozoic (~850Ma) back-arc basin in the Central Jiangnan Orogen (eastern South China):Geochronological and petrogenetic constraints from meta-basalts. Precambrian Research, 231: 325–342. DOI:10.1016/j.precamres.2013.03.016 |
[] | Zhao GC, Cawood PA. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block:Implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science, 299(4): 309–339. DOI:10.2475/ajs.299.4.309 |
[] | Zhao GC. 2015. Jiangnan Orogen in South China:Developing from divergent double subduction. Gondwana Research, 27(3): 1173–1180. DOI:10.1016/j.gr.2014.09.004 |
[] | Zhao ZH, Wang Q, Xiong XL, Zhang HX, Niu HC, Xu JF, Bai ZH, Qiao YL. 2006. Two types of adakites in North Xinjiang, China. Acta Petrologica Sinica, 22(5): 1249–1265. |
[] | Zhao ZH. 2007. How to use the trace element diagrams to discriminate tectonic settings. Geotectonica et Metallogenia, 31(1): 92–103. |
[] | Zheng Y, Zhou YZ, Wang YJ, Shen WJ, Yang ZJ, Li XY, Xiao F. 2016. A fluid inclusion study of the Hetai goldfield in the Qinzhou Bay-Hangzhou Bay metallogenic belt, South China. Ore Geology Reviews, 73: 346–353. DOI:10.1016/j.oregeorev.2014.09.008 |
[] | Zhou GQ, Zheng YM, Wu AS. 1996. Presinian strata in the Yunkai area in Guangdong and Guangxi provinces. Regional Geology of China(4): 295–303. |
[] | Zhou JC, Wang XL, Qiu JS, Gao JF. 2003. Lithogeochemistry of Meso-and Neoproterozoic mafic-ultramafic rocks from northern Guangxi. Acta Petrologica Sinica, 19(1): 9–18. |
[] | Zhou JC, Wang XL, Qiu JS. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China:Coeval arc magmatism and sedimentation. Precambrian Research, 170(1-2): 27–42. DOI:10.1016/j.precamres.2008.11.002 |
[] | Zhou MF, Yan DP, Kennedy AK, Li YQ, Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51–67. DOI:10.1016/S0012-821X(01)00595-7 |
[] | Zhou XH, Ying JF, Zhang LC, Zhang YT. 2009. The petrogenesis of late Mesozoic volcanic rock and the contributions from ancient micro-continents:Constraints from the Zircon U-Pb dating and Sr-Nd-Pb-Hf isotopic systematics. Earth Science, 34(1): 1–10. |
[] | Zhou YZ, Chown EH, d'Etudes GZ. 1995. Petrology and geochemistry of Upper Precambrian metamorphic strata in the Shidongwuhe-Shijiang-Hetai area, Guangdong Province, China. Scientia Geologica Sinica, 4(1): 33–52. |
[] | Zhou YZ, Zeng CY, Li HZ, An YF, Liang J, Lü WC, Yang ZJ, He JG, Shen WJ. 2012. Geological evolution and ore-prospecting targets in southern segment of Qinzhou Bay-Hangzhou Bay juncture orogenic belt, southern China. Geological Bulletin of China, 31(2-3): 486–491. |
[] | Zhou YZ, Zheng Y, Zeng CY, Liang J. 2015. On the understanding of Qinzhou Bay-Hangzhou Bay metallogenic belt, South China. Earth Science Frontiers, 22(2): 1–6. |
[] | Zhou YZ, Li XY, Zheng Y, Shen WJ, He JG, Yu PP, Niu J, Zeng CY. 2017. Geological settings and metallogenesis of Qinzhou Bay-Hangzhou Bay orogenic juncture belt, South China. Acta Petrologica Sinica, 33(3): 667–681. |
[] | 郭良田, 洪裕荣, 黄继春, 陈宇湖, 黄宇辉, 许汉森. 2005. 粤西信宜地区坑坪细碧-角斑岩系的发现及其地质意义. 地质通报, 24(7): 648–654. |
[] | 何卫红, 唐婷婷, 乐明亮, 邓晋福, 潘桂棠, 邢光福, 骆满生, 徐亚东, 韦一, 张宗言, 肖异凡, 张克信. 2014. 华南南华纪-二叠纪沉积大地构造演化. 地球科学, 39(8): 929–953. |
[] | 李曙光. 1993. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图. 岩石学报, 9(2): 146–157. |
[] | 李亚林, 张国伟, 王成善, 李三忠, 方维萱, 伊海生. 2001. 秦岭勉县-略阳地区的构造混杂岩及其意义. 岩石学报, 17(3): 476–482. |
[] | 梁锦, 周永章, 李红中, 尹缀缀, 周留煜, 曾长育, 虞鹏鹏. 2012. 钦-杭结合带斑岩型铜矿的基本地质特征及成因分析. 岩石学报, 28(10): 3361–3372. |
[] | 毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636–658. |
[] | 彭松柏, 金振民, 付建明, 何龙清, 蔡明海, 刘云华. 2006. 云开地区新元古代蛇绿岩的地球化学证据及其构造意义. 地质学报, 80(6): 814–825. |
[] | 覃小锋, 周府生, 胡贵昂, 李广宁, 谢凌峰, 周开华, 黄锡强, 潘艺文. 2005. 云开地块北缘MORB型火山岩的首次发现及其大地构造意义. 地质科技情报, 24(3): 20–24. |
[] | 覃小锋, 潘元明, 夏斌, 李容森, 周府生, 胡贵昂, 陆国斌. 2007. 云开地块北缘构造带中变质基性火山岩的地球化学特征及其大地构造意义. 地球化学, 36(3): 311–322. |
[] | 饶家荣, 肖海云, 刘耀荣, 柏道远, 邓延林. 2012. 扬子、华夏古板块会聚带在湖南的位置. 地球物理学报, 55(2): 484–502. |
[] | 舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035–1053. |
[] | 水涛, 徐步台, 梁如华, 邱郁双. 1986. 绍兴-江山古陆对接带. 科学通报, 31(6): 444–448. |
[] | 王祖伟, 周永章, 赵凤清, 金文山, 甘晓春. 1997. 华南地区深部地质研究进展. 地球科学进展, 12(3): 259–264. |
[] | 徐德明, 蔺志永, 龙文国, 张鲲, 王磊, 周岱, 黄皓. 2012. 钦杭成矿带的研究历史和现状. 华南地质与矿产, 28(4): 277–289. |
[] | 杨明桂, 梅勇文. 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, 13(3): 52–59. |
[] | 叶真华, 劳秋元, 胡世玲. 2000. 云开大山云开群地层时代和层序的研究现状与新认识. 地质论评, 46(5): 449–454. |
[] | 曾长育, 周永章, 郑义, 虞鹏鹏, 牛佳, 梁锦. 2015. 钦-杭结合带在中生代构造转折事件以前的板块构造机制. 地学前缘, 22(2): 54–63. |
[] | 张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101–114. |
[] | 赵振华, 王强, 熊小林, 张海祥, 牛贺才, 许继峰, 白正华, 乔玉楼. 2006. 新疆北部的两类埃达克岩. 岩石学报, 22(5): 1249–1265. |
[] | 赵振华. 2007. 关于岩石微量元素构造环境判别图解使用的有关问题. 大地构造与成矿学, 31(1): 92–103. |
[] | 周国强, 郑有铭, 吴安生. 1996. 两广云开地区前震旦纪地层. 中国区域地质(4): 295–303. |
[] | 周金城, 王孝磊, 邱检生, 高剑锋. 2003. 桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学. 岩石学报, 19(1): 9–18. |
[] | 周新华, 英基丰, 张连昌, 张玉涛. 2009. 大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约. 地球科学, 34(1): 1–10. |
[] | 周永章, 曾长育, 李红中, 安燕飞, 梁锦, 吕文超, 杨志军, 何俊国, 沈文杰. 2012. 钦州湾-杭州湾构造结合带 (南段) 地质演化和找矿方向. 地质通报, 31(2-3): 486–491. |
[] | 周永章, 郑义, 曾长育, 梁锦. 2015. 关于钦-杭成矿带的若干认识. 地学前缘, 22(2): 1–6. |
[] | 周永章, 李兴远, 郑义, 沈文杰, 何俊国, 虞鹏鹏, 牛佳, 曾长育. 钦杭结合带成矿地质背景及成矿规律. 岩石学报, 33(3): 667–681. |