2. 青岛海洋科学与技术国家实验室海洋地质功能实验室, 青岛 266061 ;
3. 吉林大学地球科学学院, 长春 130061 ;
4. 中国地质科学院地质研究所, 北京 100037 ;
5. 天津大学表层地球科学系统科学研究院, 天津 300072
2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China ;
3. College of Earth Sciences, Jilin University, Changchun 130061, China ;
4. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China ;
5. Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
地壳深熔作用是造山带中最重要的地质作用之一,它有效地改变了深部岩石的物理性质,影响了深部岩石的构造变形机制和样式,并为地壳的流变学行为以及造山作用机制的研究提供重要依据(Brown,2001; Andersson et al.,2002; Whitney et al.,2003)。近年来大量的岩石学和实验研究表明虽然大陆深俯冲和碰撞过程中难以释放出充分的流体交代上覆地幔楔形成岛弧岩浆岩(Zheng et al.,2003,2011; Xia et al.,2008),但碰撞造山带中超高压变质岩在形成和折返过程中的深熔作用已广泛报道,如大别-苏鲁造山带、挪威西片麻岩单元、哈萨克斯坦的科克切塔夫造山带和格陵兰加里东造山带(Korsakov and Hermann,2006; Lang and Gilotti,2007; Liu et al.,2010a,2012a; Labrousse et al.,2011; Chen et al.,2013)。大陆碰撞造山带深熔作用不仅表现为强烈的混合岩化作用和大规模同构造花岗岩脉和花岗岩体的出现(Liu et al.,2010a,2012a; Chen et al.,2013; Johnson et al.,2013),而且表现为薄片尺度熔体包裹体、显微花岗岩(如:nanogranite)、多相固体包裹体等(Holness and Sawyer,2008; Holness et al.,2011;Gao et al.,2012a)。研究大陆碰撞造山带的部分熔融作用,不仅对于理解大陆俯冲隧道中矿物反应,元素迁移和壳幔相互作用等方面均具有重要意义,也会为研究造山带热演化历史和折返动力学机制提供重要依据(Hermann,2002; Liu et al.,2010a,2012a; Labrousse et al.,2011; Zheng et al.,2011; Chen et al.,2013)。
南阿尔金-柴北缘是近十余年所厘定的一条主要由榴辉岩、石榴橄榄岩及相关片麻岩组成的大陆碰撞造山带(Yang et al.,1998,2006; Song et al.,2003a,b,2004,2005,2006,2007; Zhang et al.,2005a,b,2008a,b,2009a,b,c,d,2010; Mattinson et al.,2006,2007; Yang and Powell,2008; Yu et al.,2013,2014)。前人已经对高压/超高压榴辉岩、石榴橄榄岩、高压/超高温麻粒岩及相关片麻岩开展了岩石学、年代学和地球化学方面工作,并取得了一系列重要研究成果,确定陆壳俯冲深度大于100km。近年来,与高压-超高压变质岩石形成和折返有关的深熔作用也开始引起了一些学者重视,已有的岩石学、年代学和地球化学资料显示柴北缘早古生代大陆碰撞造山带可能经历了多期性质不同的深熔作用(Yu et al.,2011,2012,2014,2015a,b; Chen et al.,2012; Song et al.,2014)。但到目前为止,关于南阿尔金超高压变质带地壳深熔作用的研究还鲜有报道。鉴于此,本文拟选取南阿尔金超高压变质带的高级变质岩及部分熔融作用相关的浅色体为研究对象,通过系统的野外观察,结合室内岩相学、锆石的U-Pb年代学和地球化学的综合研究,厘定南阿尔金超高压变质带地壳深熔作用的形成时代及成因机制。
2 区域地质背景南阿尔金高压-超高压变质带地处阿尔金山的最南端,北邻阿尔金地块,向南并被阿尔金断裂所截,主要以发育榴辉岩、石榴橄榄岩、高压麻粒岩和相关片麻岩为特征(图 1a)。根据岩石组合、变质演化历史等特征的明显差异,南阿尔金高压-超高压带自东向西可识别出两个次级构造单元,即巴什瓦克石榴橄榄岩-高压麻粒岩单元和江尕勒萨依榴辉岩-片麻岩单元(Zhang et al.,2001)。
|
图 1 阿尔金造山带构造格架简图(a)和阿尔金吐拉地区区域地质简图及采样位置(b) Fig. 1 Schematic map of the Altyn Mountains showing major tectonic units(a)and geological sketch map of the Tula area showing the geological setting and sample locations(b) |
巴什瓦克石榴橄榄岩-高压麻粒岩单元分布在阿尔金中段的若羌南英吉利萨依-巴什瓦克一带,其中长英质高压麻粒岩、基性高压麻粒岩和超基性岩构成了一个大约5km宽的构造岩石单元,其南北分别为韧性剪切带与角闪岩相的片麻岩接触,而东西方向的野外关系不清楚。锆石U-Pb 定年结果显示高压麻粒岩和石榴橄榄岩的峰期变质时代为490~500Ma(Liu et al.,2004,2005; Zhang et al.,2005b,2014)。
江尕勒萨依榴辉岩-片麻岩单元分布在阿尔金山的西南段且末以东的江尕勒萨依-玉石矿沟一带(刘良等,1998;张建新等,1999,2002;Zhang et al.,2001,2005b)。本单元主要由含夕线石(蓝晶石)、石榴子石的副片麻岩和花岗片麻岩所组成,同时含有少量的大理岩和变基性岩(图 1b)。榴辉岩主要以透镜体形式或布丁状产于含石榴子石长英质片麻岩、含石榴子石斜长角闪片麻岩等片麻岩之中,在江尕勒萨依沟还可见退变质的榴辉岩呈透镜体产于含夕线石榴钾长片麻岩之中(Zhang et al.,2005b;张建新等,2007)。前人研究结果显示榴辉岩及其围岩片麻岩的峰期变质时代为490~500Ma,而后期角闪岩-麻粒岩相变质作用叠加的时代为~450Ma(张建新等,2007;Liu et al.,2012b)。本次研究的样品主要采自于吐拉西侧20km的范围内的一套富含夕线石的麻粒岩相岩石组合,其主要岩石类型包括夕线石榴黑云片麻岩(片岩)、石榴角闪二长片麻岩、含石墨夕线石榴黑云片麻岩等富铝片麻岩和呈透镜状或薄层状产出于片麻岩中的石榴角闪二辉麻粒岩等。前人的研究认为这套岩石组合具有典型孔兹岩系的特征(张建新等,1999)。
3 岩石学特征基性麻粒岩主要呈透镜状分布在泥质(或长英质)片麻岩中,其峰期矿物组合主要包括石榴子石、单斜辉石、斜方辉石、褐色角闪石、斜长石和少量黑云母;而石榴子石、单斜辉石和斜方辉石等矿物周围发育的绿色角闪石则可能形成于后期角闪岩相退变质阶段(图 2a,b)。已有的研究显示石榴子石以富集铁铝榴石为主要特征,单斜辉石硬玉分子含量较低,属普通辉石;而斜方辉石则属铁紫苏辉石。采用二辉石温度计和石榴子石斜方辉石压力计获得麻粒岩相变质条件为750~850℃和0.8~1.2GPa(张建新等,1999,2015)。
|
图 2 吐拉地区基性麻粒岩和混合片麻岩的显微结构特征 (a、b)基性麻粒岩的峰期矿物组合为石榴子石+单斜辉石+斜方辉石+长石+石英(AQ11-8i);(c)石榴子石内部发育有钾长石、斜长石和石英组成的矿物集合体,可能代表了早期熔体的假象(AQ11-8a);(d)云母颗粒边界发育尖锐的、不规则的钾长石(或微斜长石),指示深熔作用过程中云母的分解(T08-3-5.3);(e)石英、斜长石或石榴石颗粒边界发育圆珠状不规则的钾长石,而且颗粒边界或三联点中尖锐状钾长石与周围矿物的形成较小的二面角,有些甚至相互连通呈网络状,这也与它们继承了熔体结构特征一致(T08-3-5.3);(f)不规则钾长石(或微斜长石)分布在石榴石和夕线石附近,指示石榴子石和夕线石可能为深熔作用的残留相(AQ11-8b).矿物缩写据Kretz,1983 Fig. 2 Mircotextures of mafic granulite and migmatic gneiss in the Tula area (a,b)peak mineral assemblage of mafic granulite is grt+cpx+opx+fsp+qtz(AQ11-8i);(c)mineral assemblage of Kfs+Pl+Qz within garnet represents pseudomorphism of earlier melts(AQ11-8a);(d)feldspar(or microcline)recognized along grain boundary of irregular biotite,indicating breakdown of biotite(T08-3-5.3);(e)string of K-feldspar along boundary of quartz,plagioclase or K-feldspar(T08-3-5.3);(f)irregular K-feldspar along garnet and sillimanite,suggest that the garnet and sillimanite represent the residuum(AQ11-8b). Mineral abbreviation is after Kretz,1983 |
|
图 3 阿尔金吐拉地区混合片麻岩的野外产出特征 (a、b)长英质浅色体成层状或脉状分布在泥质片麻岩中;(c、d)长英质浅色体(熔体)的分离和迁移 Fig. 3 Field macroscopic character of migmatic gneisses in the Tula area (a,b)thin layers and veinlet of felsic leucosome within pelitic gneiss;(c,d)segregation and migration of felsic leucosome |
泥质片麻岩(片岩)主要由石榴子石、黑云母、夕线石、斜长石、石英和/或石墨等矿物组成,黑云母和夕线石等定向生长组成面理和线理。在泥质片麻岩中可以见到无数的浅色条带或脉体,这些浅色脉体主要呈层状、似脉状或网络状分布在片麻岩中,或与泥质片麻岩在露头上互层产出,局部显示出混合岩化的特征(图 3a,b)。浅色体宽度可从几毫米变化到十几厘米,在浅色体中偶尔可见粗粒石榴子石、夕线石等暗色矿物,可能代表了深熔作用的转熔相。在局部区域也可见到无数浅色体汇聚到一起(图 3c),可能代表了熔体的分离和迁移,但熔体的迁移并不是很远,仍然保留在源区或古成体中,属源区浅色体(in-source leucosome)。在变形较强区域,可见暗色的长英质片麻岩在浅色体中成布丁状分布,显示原地部分熔融作用的特征。相比于泥质片麻岩而言,灰白色浅色体的粒度更粗,且主要由斜长石、石英和钾长石等浅色矿物组成(图 3d),也见少量石榴石和夕线石等转熔矿物,其中长石+石英含量一般都大于80%。值得注意的是,一些混合岩化泥质片麻岩中保存了深熔作用相关的显微结构证据:如(1) 石榴子石内部发育有钾长石、石英和斜长石组成的矿物集合体,可能代表了早期熔体的假象(图 2c);(2) 云母颗粒边界发育尖锐的、不规则的微斜长石,而且云母边界溶蚀明显,形成锯齿状不规则的边界,指示深熔作用可能与云母的分解密切相关,即云母可能为深熔作用的反应相(图 2d,e);(3) 石英、斜长石或石榴石颗粒边界发育圆珠状不规则的钾长石(图 2e,f),而且颗粒边界或三联点中尖锐状钾长石与周围矿物的形成的二面角(小于40°)明显小于结构平衡时固相-固相矿物之间的二面角(通常为120°),有些甚至相互连通呈网络状,这也与它们继承了熔体结构特征一致;(4) 不规则钾长石(或微斜长石)分布在石榴石和夕线石附近,指示石榴石和夕线石可能为深熔作用的残留相(图 2f)。
4 分析方法 4.1 U-Pb 锆石定年锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,锆石定年分析所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用斑束直径为25μm,频率为10Hz,能量密度约为2.5J/cm2,以He为载气。信号较小的207Pb、206Pb、204Pb(+204Hg)、202Hg用离子计数器(multi-ion-counters)接收,208Pb、232Th、238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U的测试精度均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1进行调试仪器,使之达到最优状态,锆石U-Pb定年以锆石GJ-1为外标,U、Th含量以锆石M127(U: 923×10-6; Th: 439×10-6; Th/U: 0.475; Nasdala et al.,2008)为外标进行校正。测试过程中在每测定5~7个样品前后重复测定两个锆石GJ1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal程序(Liu et al.,2010b),测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb由离子计数器检测,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序获得。详细实验测试过程可参见侯可军等(2009) 。
4.2 全岩主量及微量地球化学全岩主量及微量元素的测试在国土资源部国家地质实验测试中心进行。主量元素通过XRF(X荧光光谱仪3080E)方法测试,其中氧化物FeO的检测方法依据为GB/T 14506.14—1993; H2O+的检测方法依据为GB/T 14506.2—1993; LOI的检测方法依据为LYT 1253—1999; CO2的检测方法依据GB 1835—1988; 其余主量元素的检测方法依据为GB/T 14506.28—1993,分析精度5%。微量元素和稀土元素(REE)通过等离子质谱仪(ICP-MS-Excel)分析,检测方法依据DZ/T 0223—2001,其中Nb、Ta、Zr和Hf是用碱溶法和沉淀酸提取,用等离子质谱法测定。微量元素和稀土元素含量大于 10×10-6的元素的测试精度为 5%,而小于 10×10-6的元素精度为 10%。个别在样品中含量低的元素,测试误差大于10%。
|
|
表 1 阿尔金吐拉地区基性麻粒岩和混合片麻岩中锆石LA-ICP-MS U-Pb 定年结果 Table 1 LA-ICP-MS U-Pb data of zircon from mafic granulite and migmatic gneiss in Tula area of the Altyn Mountains |
|
图 4 基性麻粒岩和混合岩化泥质片麻岩中锆石的阴极发光特征 Fig. 4 Cathodoluminescence images(CL)showing internal textures of zircons from migmatic gneiss |
本文对吐拉地区基性麻粒岩和混合岩化泥质片麻岩进行了锆石U-Pb定年,详细的数据结果见表 1。基性麻粒岩AQ11-8i中锆石以透明浑圆状为特征,粒径为100~200μm。阴极发光图像显示锆石颗粒比较均匀,并呈现出杉树叶或扇形内部结构特征(图 4a-c),为典型的麻粒岩相变质锆石(Vavra et al.,1996)。拉曼光谱结果显示锆石内部发育有石榴子石、单斜辉石、斜方辉石、斜长石和石英等矿物包裹体。16个数据点给出的206Pb/238U年龄在440±5Ma到454±11Ma之间,其年龄加权平均值为447±4Ma(MSWD=0.66),代表了变质锆石生长年龄(图 5a)。
|
图 5 基性麻粒岩和混合岩化泥质片麻岩锆石LA-ICP-MS U-Pb年龄结果谐和图 Fig. 5 Zircon LA-ICP-MS U-Pb results for migmatic gneiss |
混合岩化石榴夕线黑云片麻岩T08-3-5.3中锆石以透明浑圆状或柱状为特征,粒径为80~150μm。阴极发光图像显示锆石具有明显的核-边结构,部分锆石的边部呈震荡环带或不规则分带的特征(I类)(4d-f);另一部分锆石的边部显示出无分带、斑杂状分带或杉树叶形内部结构特征(II类)(图 4g-i),锆石内部发育石榴子石、斜长石和石英等矿物包裹体。本文对混合岩中两类锆石进行了系统的LA-ICP-MS U-Pb定年研究,详细的分析结果见表 1。总共22个测点给出的206Pb/238U表面年龄分布在440±3Ma和451±2Ma之间,而且锆石的年龄结果与锆石的内部结构和测点位置没有明显的相关性,即两类锆石给出的年龄结果在误差范围内基本一致。其表面年龄加权平均值为446±2Ma(MSWD=0.72),而少量碎屑锆石核给出的206Pb/238U年龄主要变化于602~908Ma之间(图 5b)。另外,两类锆石的Th/U比值略有差别,其中I类锆石Th/U比值均小于0.1,而II类锆石Th/U比值主要变化于0.06~0.26之间。
|
图 6 混合岩化泥质片麻岩中浅色体和暗色体的球粒陨石标准化稀土元素配分曲线图(a)和原始地幔标准化微量元素配分曲线图(b)(标准化值据Sun and McDonough,1989) Fig. 6 Chondrite-normalized REE distribution patterns(a)and primitive mantle-normalized trace element distribution patterns(b)for leucosome and melanosome in migmatic gneisses(normalization values after Sun and McDonough,1989) |
本文对混合岩化泥质片麻岩中的浅色体和暗色体进行了全岩地球化学分析,详细的数据结果见表 2。总体上讲,暗色体SiO2(57.88%~59.75%)和Na2O(0.66%~0.90%)含量较低,而 FeOT(8.74%~8.93%),MnO(0.08%~0.19%),MgO(3.22%~3.93%)和TiO2 (0.95%~1.22%)含量较高。相比较而言,浅色体的SiO2含量较高,介于71.57%~73.43%之间,而FeO、MgO、MnO和TiO2含量则相对较低。
浅色体和暗色体的微量元素也有着明显的差异。暗色体的微量元素特征主要如下:(1) 重稀土相对平坦,(Ho/Yb)N =1.00~1.09;(2) 显示明显的负Eu异常,Eu/Eu*值介于0.43~0.56之间;(3) 亏损Nb和Ta等高场强元素(图 6)。相比较而言,浅色体具有更低的稀土元素和微量元素,具体特征如下:(1) 浅色体同样相对富集大离子亲石元素(如 Rb、Ba、K、Sr等),而亏损高场强元素(如Nb和Ta等);(2) 浅色体显示明显的正Eu异常,其Eu/Eu*值介于3.1~4.0之间
6 讨论与结论 6.1 变质作用和深熔作用时代阴极发光图像显示基性麻粒岩中的锆石总体呈冷杉叶状分带、弱分带或无分带的特征,属典型变质成因锆石
|
|
表 2 混合片麻岩中浅色体和暗色体全岩地球化学特征(主量元素:wt%;稀土和微量元素:×10-6) Table 2 Major(wt%)and trace(×10-6)element compositions of leucosomes and melansomes in migmatic gneisses |
(Andersson et al.,2002); 而且部分锆石内部发育有石榴子石、单斜辉石、斜方辉石、斜长石和石英等矿物包裹体,因此可以认为~447Ma的年龄结果应代表了麻粒岩的峰期变质时代。部分锆石的Th/U比值相对较高,可能是重结晶锆石继承了原岩岩浆锆石的特征,抑或与一些富Th矿物(独居石或者帘石类的矿物)的分解有关(Hermann,2002)。从阴极发光图像上看,混合片麻岩中I类锆石呈弱分带或不规则分带特征,而且具有极低的Th/U比值(0.04~0.08),与深熔作用或混合岩化过程中熔体结晶的锆石特征较为相似(Andersson,2002; Liati,2005)。II类锆石具有无分带或斑杂状分带特征,与变质成因锆石相类似,而且锆石内部发育石榴子石、斜长石和石英等矿物包裹体进一步证实了其变质成因。从年龄结果来看,两类锆石(深熔和变质)给出的年龄结果在误差范围内基本一致,而且与前面的基性麻粒岩的峰期变质时代基本一致。因此,根据现有的年代学资料可以认为南阿尔金吐土拉地区中压麻粒岩相变质作用和深熔作用是近同时发生的。类似的麻粒岩相变质作用和深熔作用近同时发生的现象在其它麻粒岩-角闪岩单位也有报道,如Yu et al.(2014) 等报道柴北缘都兰地区高压麻粒岩相变质作用和深熔作用时代分别为434~435Ma和433~438Ma;而Stowell et al.(2010) 通过对新西兰Fiordland地区高压麻粒岩中石榴子石等时线和锆石U-Pb定年研究,证实深熔作用时代要比高压麻粒岩的峰期变质作用时代晚3~10Myr。Gao et al.(2012b)证实喜马拉雅的雅拉香波穹窿内角闪岩相变质作用和部分熔融作用时限相差2~4Myr。
6.2 深熔作用的成因机制探讨本文在南阿尔金吐拉地区泥质片麻岩中识别的长英质浅色体具有明显的花岗结构,而且主要由石英和长石类矿物组成,同时部分斜长石具有典型反条纹长石,与典型泥质片麻岩部分熔融形成的浅色体的矿物组合及其结构特征十分接近(Lang and Gilotti,2007)。另外,野外关系、岩相学特征、年代学和地球化学同样指示吐拉地区长英质浅色体可能主要来自于泥质片麻岩的深熔作用,主要证据如下:(1) 从野外关系上看,长英质浅色体主要呈层状、似脉状或网脉状分布在灰色-灰白色的泥质片麻岩中(图 3),或与泥质片麻岩在露头上互层产出,并显示出混合岩化的特征,与典型的原地深熔作用的野外特征基本一致;(2) 从显微结构来看,泥质片麻岩保留了明显的深熔作用相关的显微结构特征;(3) 泥质片麻岩和长英质浅色体具有近乎一致的Sr-Nd同位素特征(于胜尧等,未刊资料)。
已有的实验岩石学和相平衡模拟结果指示云母、帘石和角闪石通常被认为是引发高级变质岩深熔作用的重要含水矿物,但这些含水矿物发生脱水部分熔融的温压条件以及产生熔体的化学成分都有很大差别。根据显微结构和地球化学特征,黑云母的分解可能是引起吐拉地区泥质片麻岩发生深熔作用的主要机制,其关键证据主要包括:(1) 黑云母颗粒边界溶蚀明显,形成锯齿状不规则的边界,而且在黑云母边界有新生的长石和石英等矿物形成,指示黑云母可能为深熔作用的反应相;(2) 圆珠状不规则的钾长石颗粒(先前熔体)边界或内部有少量细粒的不规则黑云母颗粒,同样代表了黑云母为早期反应相的残留;(3) 长英质浅色体显示出高K和高Si的地球化学特征,与黑云母脱水熔融实验结果较为一致。因此,深熔作用可能的反应为:黑云母+石英=石榴子石+夕线石+钾长石+熔体。已有的研究显示混合岩中的浅色体成分可能并非深熔作用的初始熔体成分,而更有可能是经历分离结晶作用的熔体或是初始熔体与围岩成分交换后的产物(Brown,2013)。本次研究中的花岗质浅色体具有明显的正Eu异常和较高的Sr含量(与古成体对比),这可能并非深熔作用初始熔体的成分,而更可能代表了在熔体中最先结晶的斜长石和石英等主要矿物组成的堆晶(cumulate)。这种堆晶一般是初始熔体在迁移过程中遇到相对更冷的围岩而造成长石和石英等矿物率先结晶而形成的,类似的情形在苏格兰的Lewisian complex和挪威待Western Gneiss Region等地区也有报道(Sawyer,1987; Korhonen et al.,2010; Johnson et al.,2012; Brown,2013; Ganzhorn et al.,2014)。
6.3 区域构造意义以上研究资料显示,南阿尔金吐拉地区所出露的变质泥质岩和变质基性岩普遍经历了中压麻粒岩相的变质作用,其中变泥质岩以出现石榴子石+夕线石+长石+黑云母+石英为特征,而基性麻粒岩则以石榴子石+单斜辉石+紫苏辉石+斜长石+石英为特征,具有典型中压相系的麻粒岩相变质作用组合,即显示“巴罗式”变质作用特征。野外宏观和显微结构特征均显示这套变泥质岩普遍经历了原地深熔作用,并局部发生混合岩化作用。锆石U-Pb定年结果显示麻粒岩相变质作用和相关深熔作用时代基本一致,主要发生在~450Ma。已有的研究显示南阿尔金地区高压-超高压变质作用主要发生在485~500Ma之间,如巴什瓦克石榴橄榄岩和高压麻粒岩峰期变质时代为490~500Ma(Zhang et al.,2005b,2014);江格勒萨依-玉石矿沟一带的榴辉岩相变质作用时代也为490~500Ma(Zhang et al.,2001; Liu et al.,2012b),而木纳布拉克地区高压泥质麻粒岩的峰期变质时代为485~490Ma(曹玉亭等,2013)。因此,吐拉地区的中压麻粒岩相变质作用和深熔作用明显要晚于南阿尔金地区榴辉岩和高压麻粒岩的峰期变质时代40~50Myr,而是与榴辉岩折返过程中麻粒岩相叠加变质作用的时代较为接近(Liu et al.,2012b)。另外,前人的研究结果也显示巴什瓦克高压麻粒岩同样经历了450Ma左右的中压麻粒岩相变质作用的叠加(Zhang et al.,2014)。同时,我们还获得土拉地区S型花岗岩的岩浆结晶时代同样为~450Ma(Yu et al.,未刊资料),类似的440~460Ma的花岗岩在南阿尔金地区普遍存在(曹玉亭等,2010;杨文强等,2012;康磊等,2013),这些花岗岩浆作用与巴罗式变质作用和深熔作用时代接近,均明显晚于超高压变质作用时代。类似的情形在许多碰撞造山带中均有报道,如在喜马拉雅造山带中,代表大陆深俯冲的榴辉岩相变质作用发生在50Ma前,而在25Ma发生了广泛的巴罗式的区域变质作用,并伴随深熔作用及淡色花岗岩的形成(Liou et al.,2004);在挪威西部加里东造山带、柴北缘和秦岭造山带也有类似的报道(Hacker and Gans,2005; Zhang et al.,2008b)。正是发生在高压-超高压变质作用之后的广泛的巴罗式的区域变质作用和深熔作用的存在,才使早期与俯冲作用有关的高压-超高压变质事件的记录很难保存。当然,早期榴辉岩-高压麻粒岩相变质作用与晚期中压麻粒岩相变质作用时间相差50Myr,不排除~450Ma的变质作用、深熔作用和岩浆作用为独立的构造热事件的产物,这还需要今后进一步的工作去验证。
致谢 感谢中国地质科学院地质研究所孟繁聪研究员和董昕副研究员在评审过程中提出的宝贵意见!| [] | Andersson J, Möller C, Johonsson L. 2002. Zircon geochronology of migmatite gneisses along Mylonite zone (S Sweden): A major Sveconorwegian terrane boundary in the Baltic Shield. Precambrian Research , 114 (1-2) :121–147. DOI:10.1016/S0301-9268(01)00220-0 |
| [] | Brown M. 2001. Orogeny, migmatites and leucogranites: A review. Journal of Earth System Science , 110 (4) :313–336. DOI:10.1007/BF02702898 |
| [] | Brown M. 2013. Granite: From genesis to emplacement. Geological Society of America Bulletin , 125 (7-8) :1079–1113. DOI:10.1130/B30877.1 |
| [] | Cao YT, Liu L, Wang C, Yang WQ, Zhu XH. 2010. Geochemical, zircon U-Pb dating and Hf isotope compositions studies for Takelekebulake granite in South Altyn Tagh. Acta Petrologica Sinica , 26 (11) :3259–3271. |
| [] | Cao YT, Liu L, Wang C, Kang L, Yang WQ, Liang S, Liao XY, Wang YW. 2013. Determination and implication of the HP politic granulite from the Munabulake area in the South Altyn Tagh. Acta Petrologica Sinica , 29 (5) :1727–1739. |
| [] | Chen DL, Liu L, Sun Y, Sun WD, Zhu XH, Liu XM, Guo CL. 2012. Felsic veins within UHP eclogite at xitieshan in North Qaidam, NW China: Partial melting during exhumation. Lithos , 136-139 :187–200. DOI:10.1016/j.lithos.2011.11.006 |
| [] | Chen YX, Zheng YF, Hu ZC. 2013. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. Journal of Metamorphic Geology , 31 (4) :389–413. DOI:10.1111/jmg.2013.31.issue-4 |
| [] | Ganzhorn AC, Labrousse L, Prouteau G, Leroy C, Vrijmoed JC, Andersen TB, Arbaret L. 2014. Structural, petrological and chemical analysis of syn-kinematic migmatites: Insights from the Western Gneiss Region, Norway. Journal of Metamorphic Geology , 32 (6) :647–673. DOI:10.1111/jmg.2014.32.issue-6 |
| [] | Gao LE, Zeng LS, Xie KJ. 2012b. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin , 57 (6) :639–650. DOI:10.1007/s11434-011-4805-4 |
| [] | Gao XY, Zheng YF, Chen YX. 2012a. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. Journal of Metamorphic Geology , 30 (2) :193–212. DOI:10.1111/jmg.2012.30.issue-2 |
| [] | Hacker BR, Gans PB. 2005. Continental collisions and the creation of ultrahigh-pressure terranes: Petrology and thermochronology of nappes in the central Scandinavian Caledonides. Geological Society of America Bulletin , 117 (1-2) :117–134. |
| [] | Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contributions to Mineralogy and Petrology , 143 (2) :219–235. DOI:10.1007/s00410-001-0336-3 |
| [] | Holness MB, Sawyer EW. 2008. On the pseudomorphing of melt-filled pores during the crystallization of migmatites. Journal of Petrology , 49 (7) :1343–1363. DOI:10.1093/petrology/egn028 |
| [] | Holness MB, Cesare B, Sawyer EW. 2011. Melted rocks under the microscope: Microstructures and their interpretation. Elements , 7 (4) :247–252. DOI:10.2113/gselements.7.4.247 |
| [] | Hou KJ, Li YH, Tian YY. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits , 28 (4) :481–492. |
| [] | Johnson TE, Fischer S, White RW, Brown M, Rollinson HR. 2012. Archaean intracrustal differentiation from partial melting of metagabbro-field and geochemical evidence from the Central Region of the Lewisian Complex, NW Scotland. Journal of Petrology , 53 (10) :2115–2138. DOI:10.1093/petrology/egs046 |
| [] | Johnson TE, Fischer S, White RW. 2013. Field and petrographic evidence for partial melting of TTG gneisses from the central region of the mainland Lewisian complex, NW Scotland. Journal of the Geological Society , 170 (2) :319–326. DOI:10.1144/jgs2012-096 |
| [] | Kang L, Liu L, Cao YT, Wang C, Yang WQ, Liang S. 2013. Geochemistry, zircon U-Pb age and its geological significance of the gneissic granite from the eastern segment of the Tatelekebulake composite granite in the South Altyn Tagh. Acta Petrologica Sinica , 29 (9) :3039–3048. |
| [] | Korhonen FJ, Saito S, Brown M, Siddoway CS, Day JM. 2010. Multiple generations of granite in the Fosdick Mountains, Marie Byrd Land, West Antarctica: Implications for polyphase intracrustal differentiation in a continental margin setting. Journal of Petrology , 51 (3) :627–670. DOI:10.1093/petrology/egp093 |
| [] | Korsakov AV, Hermann J. 2006. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth and Planetary Science Letters , 241 (1-2) :104–118. DOI:10.1016/j.epsl.2005.10.037 |
| [] | Kretz R. 1983. Symbols for rock-forming minerals. American Mineralogist , 68 (1-2) :277–279. |
| [] | Labrousse L, Prouteau G, Ganzhorn AC. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology , 39 (12) :1171–1174. DOI:10.1130/G32316.1 |
| [] | Lang HM, Gilotti JA. 2007. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. Journal of Metamorphic Geology , 25 (2) :129–147. DOI:10.1111/jmg.2007.25.issue-2 |
| [] | Liati A. 2005. Identification of repeated Alpine (ultra) high-pressure metamorphic events by U-Pb SHRIMP geochronology and REE geochemistry of zircon: The Rhodope zone of Northern Greece. Contributions to Mineralogy and Petrology , 150 (6) :608–630. DOI:10.1007/s00410-005-0038-3 |
| [] | Liou JG, Tsujimori T, Zhang RY, Katayama I, Maruyam S. 2004. Global UHP metamorphism and continental subduction/collision: The Himalayan model. International Geology Review , 46 (1) :1–27. DOI:10.2747/0020-6814.46.1.1 |
| [] | Liu FL, Robinson PT, Gerdes A, et al. 2010a. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos , 117 (1-4) :247–268. DOI:10.1016/j.lithos.2010.03.002 |
| [] | Liu FL, Robinson PT, Liu PH. 2012a. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. Journal of Metamorphic Geology , 30 (8) :887–906. DOI:10.1111/jmg.2012.30.issue-8 |
| [] | Liu L, Che ZC, Wang Y, Luo JH, Wang JQ, Gao ZJ. 1998. The evidence of Sm-Nd isochron age for the Early Paleozoic ophiolite in Mangya area, Altun Mountains. Chinese Science Bulletin , 43 (9) :754–756. DOI:10.1007/BF02898953 |
| [] | Liu L, Sun Y, Luo JH, Wang Y, Chen DL, Zhang AD. 2004. Ultra-high pressure metamorphism of granitic gneiss in the Yinggelisayi area, Altun Mountains, NW China. Science in China (Series D) , 47 (4) :338–346. DOI:10.1360/02YD0466 |
| [] | Liu L, Chen DL, Zhang AD, Sun Y, Wang Y, Yang JX, Luo JH. 2005. Ultrahigh pressure (>7GPa) gneissic K-feldspar (-bearing) garnet clinopyroxenite in the Altyn Tagh, NW China: Evidence from clinopyroxene exsolution in garnet. Science in China (Series D) , 48 (7) :1000–1010. DOI:10.1360/04yd0166 |
| [] | Liu L, Wang C, Cao YT, Chen DL, Kang L, Yang WQ, Zhu XH. 2012b. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos , 138-139 :10–26. |
| [] | Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology , 51 (1-2) :537–571. DOI:10.1093/petrology/egp082 |
| [] | Mattinson CG, Wooden JL, Liou JG, Bird DK, Wu CL. 2006. Age and duration of eclogite-facies metamorphism, north Qaidam HP/UHP terrane, western China. American Journal of Science , 306 (9) :683–711. DOI:10.2475/09.2006.01 |
| [] | Mattinson CG, Menold, C A, Zhang JX, Bird DK. 2007. High-and ultrahigh-pressure metamorphism in the North Qaidam and South Altyn terranes, western China. International Geology Review , 49 (11) :969–995. DOI:10.2747/0020-6814.49.11.969 |
| [] | Nasdala L, Hofmeister W, Norberg N, Martinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A, Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research , 32 (3) :247–265. DOI:10.1111/ggr.2008.32.issue-3 |
| [] | Sawyer EW. 1987. The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. Journal of Petrology , 28 (3) :445–473. DOI:10.1093/petrology/28.3.445 |
| [] | Song SG, Yang JS, Liou JG, Wu CL, Shi RD, Xu ZQ. 2003a. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos , 70 (3-4) :195–211. DOI:10.1016/S0024-4937(03)00099-9 |
| [] | Song SG, Yang JS, Xu ZQ, Liou JG, Shi RD. 2003b. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, northern Tibet, NW China. Journal of Metamorphic Geology , 21 (6) :631–644. DOI:10.1046/j.1525-1314.2003.00469.x |
| [] | Song SG, Zhang LF, Niu YL. 2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. American Mineralogist , 89 (8-9) :1330–1336. DOI:10.2138/am-2004-8-922 |
| [] | Song SG, Zhang LF, Niu YL, Su L, Jian P, Liu DY. 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters , 234 (1-2) :99–118. DOI:10.1016/j.epsl.2005.02.036 |
| [] | Song SG, Zhang LF, Niu YL, Su L, Song B, Liu DY. 2006. Evolution from oceanic subduction to continental collision: A case study from the Northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology , 47 (3) :435–455. |
| [] | Song SG, Su L, Niu YL, Zhang LF, Zhang GB. 2007. Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China. Lithos , 96 (1-2) :243–265. DOI:10.1016/j.lithos.2006.09.017 |
| [] | Song SG, Niu YL, Su L, Wei CJ, Zhang LF. 2014. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochimica et Cosmochimica Acta , 130 :42–62. DOI:10.1016/j.gca.2014.01.008 |
| [] | Stowell H, Tulloch A, Zuluaga C, Koenig A. 2010. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand. Chemical Geology , 273 (1-2) :91–110. DOI:10.1016/j.chemgeo.2010.02.015 |
| [] | Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication , 42 (1) :313–345. DOI:10.1144/GSL.SP.1989.042.01.19 |
| [] | Vavra G, Gebauer D, Schmid R, Compston W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology , 122 (4) :337–358. DOI:10.1007/s004100050132 |
| [] | Whitney DL, Teyssier C, Fayon AK, Hamilton MA, Heizler M. 2003. Tectonic controls on metamorphism, partial melting, and intrusion: Timing and duration of regional metamorphism and magmatism in the Niğde Massif, Turkey. Tectonophysics , 376 (1-2) :37–60. DOI:10.1016/j.tecto.2003.08.009 |
| [] | Xia QX, Zheng YF, Zhou LG. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chemical Geology , 247 (1-2) :36–65. DOI:10.1016/j.chemgeo.2007.09.013 |
| [] | Yang JJ, Powell R. 2008. Ultrahigh-pressure garnet peridotites from the devolatilization of sea-floor hydrated ultramafic rocks. Journal of Metamorphic Geology , 26 (6) :695–716. DOI:10.1111/jmg.2008.26.issue-6 |
| [] | Yang JS, Xu ZQ, Li HB, Wu CL, Cui JW, Zhang JX, Chen W. 1998. Discovery of eclogite at northern margin of Qaidam basin, NW China. Chinese Science Bulletin , 43 (20) :1755–1760. DOI:10.1007/BF02883981 |
| [] | Yang JS, Wu CL, Zhang JX, Shi RD, Meng FC, Wooden J, Yang HY. 2006. Protolith of eclogites in the North Qaidam and Altun UHP terrane, NW China: Earlier oceanic crust. Journal of Asian Earth Sciences , 28 (2-3) :185–204. DOI:10.1016/j.jseaes.2005.09.020 |
| [] | Yang WQ, Liu L, Ding HB, Xiao PX, Cao YT, Kang L. 2012. Geochemistry, geochronology and zircon Hf isotopes of the Dimunalike granite in South Altyn Tagh and its geological significance. Acta Petrologica Sinica , 28 (12) :4139–4150. |
| [] | Yu SY, Zhang JX, Del Real PG. 2011. Petrology and P-T path of high-pressure granulite from the Dulan area, North Qaidam Mountains, northwestern China. Journal of Asian Earth Sciences , 42 (4) :641–660. DOI:10.1016/j.jseaes.2010.11.009 |
| [] | Yu SY, Zhang JX, Del Real PG. 2012. Geochemistry and zircon U-Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, North Tibet: Constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny. Gondwana Research , 21 (1) :167–179. DOI:10.1016/j.gr.2011.07.024 |
| [] | Yu SY, Zhang JX, Li HK, Hou KJ, Mattinson CG, Gong JH. 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane: New evidence for deep continental subduction. Gondwana Research , 23 (3) :901–919. DOI:10.1016/j.gr.2012.07.018 |
| [] | Yu SY, Zhang JX, Mattinson CG, del Real PG, Li YS, Gong JH. 2014. Paleozoic HP granulite-facies metamorphism and anatexis in the Dulan area of the North Qaidam UHP terrane, western China: Constraints from petrology, zircon U-Pb and amphibole Ar-Ar geochronology. Lithos , 198-199 :58–76. DOI:10.1016/j.lithos.2014.03.016 |
| [] | Yu SY, Zhang JX, Sun DY, Li YS, Gong JH. 2015a. Anatexis of ultrahigh-pressure eclogite during exhumation in the North Qaidam ultrahigh-pressure terrane: Constraints from petrology, zircon U-Pb dating, and geochemistry. Geological Society of America Bulletin , 127 (9-10) :1290–1312. DOI:10.1130/B31162.1 |
| [] | Yu SY, Zhang JX, Sun DY, del Real PG, Li YS, Zhao XL, Hou KJ. 2015b. Petrology, geochemistry, zircon U-Pb dating and Lu-Hf isotope of granitic leucosomes within felsic gneiss from the North Qaidam UHP terrane: Constraints on the timing and nature of partial melting. Lithos , 218-219 :1–21. DOI:10.1016/j.lithos.2015.01.008 |
| [] | Zhang GB, Song SG, Zhang LF, Niu YL. 2008a. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology. Lithos , 104 (1-4) :99–118. DOI:10.1016/j.lithos.2007.12.001 |
| [] | Zhang GB, Zhang LF, Song SG, Niu YL. 2009a. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences , 35 (3-4) :310–322. DOI:10.1016/j.jseaes.2008.11.013 |
| [] | Zhang GB, Ellis DJ, Christy AG, Zhang LF, Niu YL, Song SG. 2009b. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China. European Journal of Mineralogy , 21 (6) :1287–1300. DOI:10.1127/0935-1221/2009/0021-1989 |
| [] | Zhang JX, Zhang ZM, Xu ZQ, Yang JS, Cui JW. 1999. The ages of U-Pb and Sm-Nd for eclogite from the western segment of Altyn Tagh tectonic belt: Evidence for existence of Caledonian orogenic root. Chinese Science Bulletin , 44 (24) :2256–2259. DOI:10.1007/BF02885933 |
| [] | Zhang JX, Zhang ZM, Xu ZQ, Yang JS, Cui JW. 2001. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos , 56 (2-3) :187–206. DOI:10.1016/S0024-4937(00)00052-9 |
| [] | Zhang JX, Yang JS, Xu ZQ, Meng FC, Song SG, Li HB, Shi RD. 2002. Evidence for UHP metamorphism of eclogites from the Altun Mountains. Chinese Science Bulletin , 47 (9) :751–755. DOI:10.1360/02tb9170 |
| [] | Zhang JX, Yang JS, Mattinson CG, Xu ZQ, Meng FC, Shi RD. 2005a. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos , 84 (1-2) :51–76. DOI:10.1016/j.lithos.2005.02.002 |
| [] | Zhang JX, Mattinson CG, Meng FC, Wan YS. 2005b. An Early Palaeozoic HP/HT granulite-garnet peridotite association in the South Altyn Tagh, NW China: P-T history and U-Pb geochronology. Journal of Metamorphic Geology , 23 (7) :491–510. DOI:10.1111/j.1525-1314.2005.00585.x |
| [] | Zhang JX, Meng FC, Mattinson CG. 2007. Progress, controversies and Challenge of studies on South Altyn Tagh-North Qaidam HP/UHP metamorphic belt. Geological Journal of China Universities , 13 (3) :526–545. |
| [] | Zhang JX, Mattinson CG, Meng FC, Wan YS, Tung K. 2008b. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP/UHP metamorphic terrane, western China: Evidence from zircon U-Pb geochronology. Geological Society of America Bulletin , 120 (5-6) :732–749. DOI:10.1130/B26093.1 |
| [] | Zhang JX, Meng FC, Li JP, Mattinson CG. 2009c. Coesite in eclogite from the North Qaidam Mountains and its implications. Chinese Science Bulletin , 54 (6) :1105–1110. |
| [] | Zhang JX, Mattinson CG, Meng FC, Yang HJ, Wan YS. 2009d. U-Pb geochronology of paragneisses and metabasite in the Xitieshan area, North Qaidam Mountains, western China: Constraints on the exhumation of HP/UHP metamorphic rocks. Journal of Asian Earth Sciences , 35 (3-4) :245–258. DOI:10.1016/j.jseaes.2008.08.008 |
| [] | Zhang JX, Mattinson CG, Yu SY, Li JP, Meng FC. 2010. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: Spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology , 28 (9) :955–978. DOI:10.1111/jmg.2010.28.issue-9 |
| [] | Zhang JX, Mattinson CG, Yu SY, Li YS. 2014. Combined rutile-zircon thermometry and U-Pb geochronology: New constraints on Early Paleozoic HP/UHT granulite in the South Altyn Tagh, North Tibet, China. Lithos , 200-201 :241–257. DOI:10.1016/j.lithos.2014.05.006 |
| [] | Zhang JX, Yu SY, Li YS, Yu XX, Lin YH, Mao XH. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica , 31 (12) :3531–3554. |
| [] | Zheng YF, Fu B, Gong B, et al. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews , 62 (1-2) :105–161. DOI:10.1016/S0012-8252(02)00133-2 |
| [] | Zheng YF, Xia QX, Chen RX, et al. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews , 107 (3-4) :342–374. DOI:10.1016/j.earscirev.2011.04.004 |
| [] | 曹玉亭, 刘良, 王超, 杨文强, 朱小辉.2010. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成. 岩石学报 , 26 (11) :3259–3271. |
| [] | 曹玉亭, 刘良, 王超, 康磊, 杨文强, 梁莎, 廖小莹, 王亚伟.2013. 南阿尔金木纳布拉克地区高压泥质麻粒岩的确定及其地质意义. 岩石学报 , 29 (5) :1727–1739. |
| [] | 侯可军, 李延河, 田有荣.2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质 , 28 (4) :481–492. |
| [] | 康磊, 刘良, 曹玉亭, 王超, 杨文强, 梁莎.2013. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩都地球化学特征、锆石U-Pb定年及其地质意义. 岩石学报 , 29 (9) :3039–3048. |
| [] | 刘良, 车自成, 王焰, 罗金海, 王建其, 高章鉴.1998. 阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据. 科学通报 , 43 (8) :880–883. |
| [] | 杨文强, 刘良, 丁海波, 校培喜, 曹玉亭, 康磊.2012. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义. 岩石学报 , 28 (12) :4139–4150. |
| [] | 张建新, 张泽明, 许志琴, 杨经绥, 崔军文.1999. 阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄-阿尔金中加里东期山根存在的证据. 科学通报 , 44 (10) :1109–1112. |
| [] | 张建新, 杨经绥, 许志琴, 孟繁聪, 宋述光, 李海兵, 史仁灯.2002. 阿尔金榴辉岩中超高压变质作用证据. 科学通报 , 47 (3) :231–234. |
| [] | 张建新, 孟繁聪, MattinsonCG.2007. 南阿尔金-柴北缘高压-超高压变质带研究进展、问题及挑战. 高校地质学报 , 13 (3) :526–545. |
| [] | 张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红.2015. 原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报 , 31 (12) :3531–3554. |
2016, Vol. 32
